]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/libdevstat/devstat.c
Replace our version of the pwcache(3) API with NetBSD's implementation.
[FreeBSD/FreeBSD.git] / lib / libdevstat / devstat.c
1 /*
2  * Copyright (c) 1997, 1998 Kenneth D. Merry.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. The name of the author may not be used to endorse or promote products
14  *    derived from this software without specific prior written permission.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/types.h>
33 #include <sys/sysctl.h>
34 #include <sys/errno.h>
35 #include <sys/resource.h>
36 #include <sys/queue.h>
37
38 #include <ctype.h>
39 #include <err.h>
40 #include <fcntl.h>
41 #include <limits.h>
42 #include <stdio.h>
43 #include <stdlib.h>
44 #include <string.h>
45 #include <stdarg.h>
46 #include <kvm.h>
47 #include <nlist.h>
48
49 #include "devstat.h"
50
51 int
52 compute_stats(struct devstat *current, struct devstat *previous,
53               long double etime, u_int64_t *total_bytes,
54               u_int64_t *total_transfers, u_int64_t *total_blocks,
55               long double *kb_per_transfer, long double *transfers_per_second,
56               long double *mb_per_second, long double *blocks_per_second,
57               long double *ms_per_transaction);
58
59 typedef enum {
60         DEVSTAT_ARG_NOTYPE,
61         DEVSTAT_ARG_UINT64,
62         DEVSTAT_ARG_LD,
63         DEVSTAT_ARG_SKIP
64 } devstat_arg_type;
65
66 char devstat_errbuf[DEVSTAT_ERRBUF_SIZE];
67
68 /*
69  * Table to match descriptive strings with device types.  These are in
70  * order from most common to least common to speed search time.
71  */
72 struct devstat_match_table match_table[] = {
73         {"da",          DEVSTAT_TYPE_DIRECT,    DEVSTAT_MATCH_TYPE},
74         {"cd",          DEVSTAT_TYPE_CDROM,     DEVSTAT_MATCH_TYPE},
75         {"scsi",        DEVSTAT_TYPE_IF_SCSI,   DEVSTAT_MATCH_IF},
76         {"ide",         DEVSTAT_TYPE_IF_IDE,    DEVSTAT_MATCH_IF},
77         {"other",       DEVSTAT_TYPE_IF_OTHER,  DEVSTAT_MATCH_IF},
78         {"worm",        DEVSTAT_TYPE_WORM,      DEVSTAT_MATCH_TYPE},
79         {"sa",          DEVSTAT_TYPE_SEQUENTIAL,DEVSTAT_MATCH_TYPE},
80         {"pass",        DEVSTAT_TYPE_PASS,      DEVSTAT_MATCH_PASS},
81         {"optical",     DEVSTAT_TYPE_OPTICAL,   DEVSTAT_MATCH_TYPE},
82         {"array",       DEVSTAT_TYPE_STORARRAY, DEVSTAT_MATCH_TYPE},
83         {"changer",     DEVSTAT_TYPE_CHANGER,   DEVSTAT_MATCH_TYPE},
84         {"scanner",     DEVSTAT_TYPE_SCANNER,   DEVSTAT_MATCH_TYPE},
85         {"printer",     DEVSTAT_TYPE_PRINTER,   DEVSTAT_MATCH_TYPE},
86         {"floppy",      DEVSTAT_TYPE_FLOPPY,    DEVSTAT_MATCH_TYPE},
87         {"proc",        DEVSTAT_TYPE_PROCESSOR, DEVSTAT_MATCH_TYPE},
88         {"comm",        DEVSTAT_TYPE_COMM,      DEVSTAT_MATCH_TYPE},
89         {"enclosure",   DEVSTAT_TYPE_ENCLOSURE, DEVSTAT_MATCH_TYPE},
90         {NULL,          0,                      0}
91 };
92
93 struct devstat_args {
94         devstat_metric          metric;
95         devstat_arg_type        argtype;
96 } devstat_arg_list[] = {
97         { DSM_NONE, DEVSTAT_ARG_NOTYPE },
98         { DSM_TOTAL_BYTES, DEVSTAT_ARG_UINT64 },
99         { DSM_TOTAL_BYTES_READ, DEVSTAT_ARG_UINT64 },
100         { DSM_TOTAL_BYTES_WRITE, DEVSTAT_ARG_UINT64 },
101         { DSM_TOTAL_TRANSFERS, DEVSTAT_ARG_UINT64 },
102         { DSM_TOTAL_TRANSFERS_READ, DEVSTAT_ARG_UINT64 },
103         { DSM_TOTAL_TRANSFERS_WRITE, DEVSTAT_ARG_UINT64 },
104         { DSM_TOTAL_TRANSFERS_OTHER, DEVSTAT_ARG_UINT64 },
105         { DSM_TOTAL_BLOCKS, DEVSTAT_ARG_UINT64 },
106         { DSM_TOTAL_BLOCKS_READ, DEVSTAT_ARG_UINT64 },
107         { DSM_TOTAL_BLOCKS_WRITE, DEVSTAT_ARG_UINT64 },
108         { DSM_KB_PER_TRANSFER, DEVSTAT_ARG_LD },
109         { DSM_KB_PER_TRANSFER_READ, DEVSTAT_ARG_LD },
110         { DSM_KB_PER_TRANSFER_WRITE, DEVSTAT_ARG_LD },
111         { DSM_TRANSFERS_PER_SECOND, DEVSTAT_ARG_LD },
112         { DSM_TRANSFERS_PER_SECOND_READ, DEVSTAT_ARG_LD },
113         { DSM_TRANSFERS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
114         { DSM_TRANSFERS_PER_SECOND_OTHER, DEVSTAT_ARG_LD },
115         { DSM_MB_PER_SECOND, DEVSTAT_ARG_LD },
116         { DSM_MB_PER_SECOND_READ, DEVSTAT_ARG_LD },
117         { DSM_MB_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
118         { DSM_BLOCKS_PER_SECOND, DEVSTAT_ARG_LD },
119         { DSM_BLOCKS_PER_SECOND_READ, DEVSTAT_ARG_LD },
120         { DSM_BLOCKS_PER_SECOND_WRITE, DEVSTAT_ARG_LD },
121         { DSM_MS_PER_TRANSACTION, DEVSTAT_ARG_LD },
122         { DSM_MS_PER_TRANSACTION_READ, DEVSTAT_ARG_LD },
123         { DSM_MS_PER_TRANSACTION_WRITE, DEVSTAT_ARG_LD },
124         { DSM_SKIP, DEVSTAT_ARG_SKIP },
125         { DSM_TOTAL_BYTES_FREE, DEVSTAT_ARG_UINT64 },
126         { DSM_TOTAL_TRANSFERS_FREE, DEVSTAT_ARG_UINT64 },
127         { DSM_TOTAL_BLOCKS_FREE, DEVSTAT_ARG_UINT64 },
128         { DSM_KB_PER_TRANSFER_FREE, DEVSTAT_ARG_LD },
129         { DSM_MB_PER_SECOND_FREE, DEVSTAT_ARG_LD },
130         { DSM_TRANSFERS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
131         { DSM_BLOCKS_PER_SECOND_FREE, DEVSTAT_ARG_LD },
132         { DSM_MS_PER_TRANSACTION_OTHER, DEVSTAT_ARG_LD },
133         { DSM_MS_PER_TRANSACTION_FREE, DEVSTAT_ARG_LD },
134         { DSM_BUSY_PCT, DEVSTAT_ARG_LD },
135         { DSM_QUEUE_LENGTH, DEVSTAT_ARG_UINT64 },
136 };
137
138 static const char *namelist[] = {
139 #define X_NUMDEVS       0
140         "_devstat_num_devs",
141 #define X_GENERATION    1
142         "_devstat_generation",
143 #define X_VERSION       2
144         "_devstat_version",
145 #define X_DEVICE_STATQ  3
146         "_device_statq",
147 #define X_END           4
148 };
149
150 /*
151  * Local function declarations.
152  */
153 static int compare_select(const void *arg1, const void *arg2);
154 static int readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes);
155 static int readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes);
156 static char *get_devstat_kvm(kvm_t *kd);
157
158 #define KREADNL(kd, var, val) \
159         readkmem_nl(kd, namelist[var], &val, sizeof(val))
160
161 int
162 devstat_getnumdevs(kvm_t *kd)
163 {
164         size_t numdevsize;
165         int numdevs;
166
167         numdevsize = sizeof(int);
168
169         /*
170          * Find out how many devices we have in the system.
171          */
172         if (kd == NULL) {
173                 if (sysctlbyname("kern.devstat.numdevs", &numdevs,
174                                  &numdevsize, NULL, 0) == -1) {
175                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
176                                  "%s: error getting number of devices\n"
177                                  "%s: %s", __func__, __func__, 
178                                  strerror(errno));
179                         return(-1);
180                 } else
181                         return(numdevs);
182         } else {
183
184                 if (KREADNL(kd, X_NUMDEVS, numdevs) == -1)
185                         return(-1);
186                 else
187                         return(numdevs);
188         }
189 }
190
191 /*
192  * This is an easy way to get the generation number, but the generation is
193  * supplied in a more atmoic manner by the kern.devstat.all sysctl.
194  * Because this generation sysctl is separate from the statistics sysctl,
195  * the device list and the generation could change between the time that
196  * this function is called and the device list is retreived.
197  */
198 long
199 devstat_getgeneration(kvm_t *kd)
200 {
201         size_t gensize;
202         long generation;
203
204         gensize = sizeof(long);
205
206         /*
207          * Get the current generation number.
208          */
209         if (kd == NULL) {
210                 if (sysctlbyname("kern.devstat.generation", &generation, 
211                                  &gensize, NULL, 0) == -1) {
212                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
213                                  "%s: error getting devstat generation\n%s: %s",
214                                  __func__, __func__, strerror(errno));
215                         return(-1);
216                 } else
217                         return(generation);
218         } else {
219                 if (KREADNL(kd, X_GENERATION, generation) == -1)
220                         return(-1);
221                 else
222                         return(generation);
223         }
224 }
225
226 /*
227  * Get the current devstat version.  The return value of this function
228  * should be compared with DEVSTAT_VERSION, which is defined in
229  * sys/devicestat.h.  This will enable userland programs to determine
230  * whether they are out of sync with the kernel.
231  */
232 int
233 devstat_getversion(kvm_t *kd)
234 {
235         size_t versize;
236         int version;
237
238         versize = sizeof(int);
239
240         /*
241          * Get the current devstat version.
242          */
243         if (kd == NULL) {
244                 if (sysctlbyname("kern.devstat.version", &version, &versize,
245                                  NULL, 0) == -1) {
246                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
247                                  "%s: error getting devstat version\n%s: %s",
248                                  __func__, __func__, strerror(errno));
249                         return(-1);
250                 } else
251                         return(version);
252         } else {
253                 if (KREADNL(kd, X_VERSION, version) == -1)
254                         return(-1);
255                 else
256                         return(version);
257         }
258 }
259
260 /*
261  * Check the devstat version we know about against the devstat version the
262  * kernel knows about.  If they don't match, print an error into the
263  * devstat error buffer, and return -1.  If they match, return 0.
264  */
265 int
266 devstat_checkversion(kvm_t *kd)
267 {
268         int buflen, res, retval = 0, version;
269
270         version = devstat_getversion(kd);
271
272         if (version != DEVSTAT_VERSION) {
273                 /*
274                  * If getversion() returns an error (i.e. -1), then it
275                  * has printed an error message in the buffer.  Therefore,
276                  * we need to add a \n to the end of that message before we
277                  * print our own message in the buffer.
278                  */
279                 if (version == -1)
280                         buflen = strlen(devstat_errbuf);
281                 else
282                         buflen = 0;
283
284                 res = snprintf(devstat_errbuf + buflen,
285                                DEVSTAT_ERRBUF_SIZE - buflen,
286                                "%s%s: userland devstat version %d is not "
287                                "the same as the kernel\n%s: devstat "
288                                "version %d\n", version == -1 ? "\n" : "",
289                                __func__, DEVSTAT_VERSION, __func__, version);
290
291                 if (res < 0)
292                         devstat_errbuf[buflen] = '\0';
293
294                 buflen = strlen(devstat_errbuf);
295                 if (version < DEVSTAT_VERSION)
296                         res = snprintf(devstat_errbuf + buflen,
297                                        DEVSTAT_ERRBUF_SIZE - buflen,
298                                        "%s: libdevstat newer than kernel\n",
299                                        __func__);
300                 else
301                         res = snprintf(devstat_errbuf + buflen,
302                                        DEVSTAT_ERRBUF_SIZE - buflen,
303                                        "%s: kernel newer than libdevstat\n",
304                                        __func__);
305
306                 if (res < 0)
307                         devstat_errbuf[buflen] = '\0';
308
309                 retval = -1;
310         }
311
312         return(retval);
313 }
314
315 /*
316  * Get the current list of devices and statistics, and the current
317  * generation number.
318  * 
319  * Return values:
320  * -1  -- error
321  *  0  -- device list is unchanged
322  *  1  -- device list has changed
323  */
324 int
325 devstat_getdevs(kvm_t *kd, struct statinfo *stats)
326 {
327         int error;
328         size_t dssize;
329         int oldnumdevs;
330         long oldgeneration;
331         int retval = 0;
332         struct devinfo *dinfo;
333         struct timespec ts;
334
335         dinfo = stats->dinfo;
336
337         if (dinfo == NULL) {
338                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
339                          "%s: stats->dinfo was NULL", __func__);
340                 return(-1);
341         }
342
343         oldnumdevs = dinfo->numdevs;
344         oldgeneration = dinfo->generation;
345
346         clock_gettime(CLOCK_MONOTONIC, &ts);
347         stats->snap_time = ts.tv_sec + ts.tv_nsec * 1e-9;
348
349         if (kd == NULL) {
350                 /* If this is our first time through, mem_ptr will be null. */
351                 if (dinfo->mem_ptr == NULL) {
352                         /*
353                          * Get the number of devices.  If it's negative, it's an
354                          * error.  Don't bother setting the error string, since
355                          * getnumdevs() has already done that for us.
356                          */
357                         if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
358                                 return(-1);
359                         
360                         /*
361                          * The kern.devstat.all sysctl returns the current 
362                          * generation number, as well as all the devices.  
363                          * So we need four bytes more.
364                          */
365                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
366                                  sizeof(long);
367                         dinfo->mem_ptr = (u_int8_t *)malloc(dssize);
368                         if (dinfo->mem_ptr == NULL) {
369                                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
370                                          "%s: Cannot allocate memory for mem_ptr element",
371                                          __func__);
372                                 return(-1);
373                         }
374                 } else
375                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
376                                  sizeof(long);
377
378                 /*
379                  * Request all of the devices.  We only really allow for one
380                  * ENOMEM failure.  It would, of course, be possible to just go
381                  * in a loop and keep reallocing the device structure until we
382                  * don't get ENOMEM back.  I'm not sure it's worth it, though.
383                  * If devices are being added to the system that quickly, maybe
384                  * the user can just wait until all devices are added.
385                  */
386                 for (;;) {
387                         error = sysctlbyname("kern.devstat.all",
388                                              dinfo->mem_ptr, 
389                                              &dssize, NULL, 0);
390                         if (error != -1 || errno != EBUSY)
391                                 break;
392                 }
393                 if (error == -1) {
394                         /*
395                          * If we get ENOMEM back, that means that there are 
396                          * more devices now, so we need to allocate more 
397                          * space for the device array.
398                          */
399                         if (errno == ENOMEM) {
400                                 /*
401                                  * No need to set the error string here, 
402                                  * devstat_getnumdevs() will do that if it fails.
403                                  */
404                                 if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
405                                         return(-1);
406
407                                 dssize = (dinfo->numdevs * 
408                                         sizeof(struct devstat)) + sizeof(long);
409                                 dinfo->mem_ptr = (u_int8_t *)
410                                         realloc(dinfo->mem_ptr, dssize);
411                                 if ((error = sysctlbyname("kern.devstat.all", 
412                                     dinfo->mem_ptr, &dssize, NULL, 0)) == -1) {
413                                         snprintf(devstat_errbuf,
414                                                  sizeof(devstat_errbuf),
415                                                  "%s: error getting device "
416                                                  "stats\n%s: %s", __func__,
417                                                  __func__, strerror(errno));
418                                         return(-1);
419                                 }
420                         } else {
421                                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
422                                          "%s: error getting device stats\n"
423                                          "%s: %s", __func__, __func__,
424                                          strerror(errno));
425                                 return(-1);
426                         }
427                 } 
428
429         } else {
430                 /* 
431                  * This is of course non-atomic, but since we are working
432                  * on a core dump, the generation is unlikely to change
433                  */
434                 if ((dinfo->numdevs = devstat_getnumdevs(kd)) == -1)
435                         return(-1);
436                 if ((dinfo->mem_ptr = (u_int8_t *)get_devstat_kvm(kd)) == NULL)
437                         return(-1);
438         }
439         /*
440          * The sysctl spits out the generation as the first four bytes,
441          * then all of the device statistics structures.
442          */
443         dinfo->generation = *(long *)dinfo->mem_ptr;
444
445         /*
446          * If the generation has changed, and if the current number of
447          * devices is not the same as the number of devices recorded in the
448          * devinfo structure, it is likely that the device list has shrunk.
449          * The reason that it is likely that the device list has shrunk in
450          * this case is that if the device list has grown, the sysctl above
451          * will return an ENOMEM error, and we will reset the number of
452          * devices and reallocate the device array.  If the second sysctl
453          * fails, we will return an error and therefore never get to this
454          * point.  If the device list has shrunk, the sysctl will not
455          * return an error since we have more space allocated than is
456          * necessary.  So, in the shrinkage case, we catch it here and
457          * reallocate the array so that we don't use any more space than is
458          * necessary.
459          */
460         if (oldgeneration != dinfo->generation) {
461                 if (devstat_getnumdevs(kd) != dinfo->numdevs) {
462                         if ((dinfo->numdevs = devstat_getnumdevs(kd)) < 0)
463                                 return(-1);
464                         dssize = (dinfo->numdevs * sizeof(struct devstat)) +
465                                 sizeof(long);
466                         dinfo->mem_ptr = (u_int8_t *)realloc(dinfo->mem_ptr,
467                                                              dssize);
468                 }
469                 retval = 1;
470         }
471
472         dinfo->devices = (struct devstat *)(dinfo->mem_ptr + sizeof(long));
473
474         return(retval);
475 }
476
477 /*
478  * selectdevs():
479  *
480  * Devices are selected/deselected based upon the following criteria:
481  * - devices specified by the user on the command line
482  * - devices matching any device type expressions given on the command line
483  * - devices with the highest I/O, if 'top' mode is enabled
484  * - the first n unselected devices in the device list, if maxshowdevs
485  *   devices haven't already been selected and if the user has not
486  *   specified any devices on the command line and if we're in "add" mode.
487  *
488  * Input parameters:
489  * - device selection list (dev_select)
490  * - current number of devices selected (num_selected)
491  * - total number of devices in the selection list (num_selections)
492  * - devstat generation as of the last time selectdevs() was called
493  *   (select_generation)
494  * - current devstat generation (current_generation)
495  * - current list of devices and statistics (devices)
496  * - number of devices in the current device list (numdevs)
497  * - compiled version of the command line device type arguments (matches)
498  *   - This is optional.  If the number of devices is 0, this will be ignored.
499  *   - The matching code pays attention to the current selection mode.  So
500  *     if you pass in a matching expression, it will be evaluated based
501  *     upon the selection mode that is passed in.  See below for details.
502  * - number of device type matching expressions (num_matches)
503  *   - Set to 0 to disable the matching code.
504  * - list of devices specified on the command line by the user (dev_selections)
505  * - number of devices selected on the command line by the user
506  *   (num_dev_selections)
507  * - Our selection mode.  There are four different selection modes:
508  *      - add mode.  (DS_SELECT_ADD) Any devices matching devices explicitly
509  *        selected by the user or devices matching a pattern given by the
510  *        user will be selected in addition to devices that are already
511  *        selected.  Additional devices will be selected, up to maxshowdevs
512  *        number of devices. 
513  *      - only mode. (DS_SELECT_ONLY)  Only devices matching devices
514  *        explicitly given by the user or devices matching a pattern
515  *        given by the user will be selected.  No other devices will be
516  *        selected.
517  *      - addonly mode.  (DS_SELECT_ADDONLY)  This is similar to add and
518  *        only.  Basically, this will not de-select any devices that are
519  *        current selected, as only mode would, but it will also not
520  *        gratuitously select up to maxshowdevs devices as add mode would.
521  *      - remove mode.  (DS_SELECT_REMOVE)  Any devices matching devices
522  *        explicitly selected by the user or devices matching a pattern
523  *        given by the user will be de-selected.
524  * - maximum number of devices we can select (maxshowdevs)
525  * - flag indicating whether or not we're in 'top' mode (perf_select)
526  *
527  * Output data:
528  * - the device selection list may be modified and passed back out
529  * - the number of devices selected and the total number of items in the
530  *   device selection list may be changed
531  * - the selection generation may be changed to match the current generation
532  * 
533  * Return values:
534  * -1  -- error
535  *  0  -- selected devices are unchanged
536  *  1  -- selected devices changed
537  */
538 int
539 devstat_selectdevs(struct device_selection **dev_select, int *num_selected,
540                    int *num_selections, long *select_generation, 
541                    long current_generation, struct devstat *devices,
542                    int numdevs, struct devstat_match *matches, int num_matches,
543                    char **dev_selections, int num_dev_selections,
544                    devstat_select_mode select_mode, int maxshowdevs,
545                    int perf_select)
546 {
547         int i, j, k;
548         int init_selections = 0, init_selected_var = 0;
549         struct device_selection *old_dev_select = NULL;
550         int old_num_selections = 0, old_num_selected;
551         int selection_number = 0;
552         int changed = 0, found = 0;
553
554         if ((dev_select == NULL) || (devices == NULL) || (numdevs < 0))
555                 return(-1);
556
557         /*
558          * We always want to make sure that we have as many dev_select
559          * entries as there are devices. 
560          */
561         /*
562          * In this case, we haven't selected devices before.
563          */
564         if (*dev_select == NULL) {
565                 *dev_select = (struct device_selection *)malloc(numdevs *
566                         sizeof(struct device_selection));
567                 *select_generation = current_generation;
568                 init_selections = 1;
569                 changed = 1;
570         /*
571          * In this case, we have selected devices before, but the device
572          * list has changed since we last selected devices, so we need to
573          * either enlarge or reduce the size of the device selection list.
574          */
575         } else if (*num_selections != numdevs) {
576                 *dev_select = (struct device_selection *)reallocf(*dev_select,
577                         numdevs * sizeof(struct device_selection));
578                 *select_generation = current_generation;
579                 init_selections = 1;
580         /*
581          * In this case, we've selected devices before, and the selection
582          * list is the same size as it was the last time, but the device
583          * list has changed.
584          */
585         } else if (*select_generation < current_generation) {
586                 *select_generation = current_generation;
587                 init_selections = 1;
588         }
589
590         if (*dev_select == NULL) {
591                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
592                          "%s: Cannot (re)allocate memory for dev_select argument",
593                          __func__);
594                 return(-1);
595         }
596
597         /*
598          * If we're in "only" mode, we want to clear out the selected
599          * variable since we're going to select exactly what the user wants
600          * this time through.
601          */
602         if (select_mode == DS_SELECT_ONLY)
603                 init_selected_var = 1;
604
605         /*
606          * In all cases, we want to back up the number of selected devices.
607          * It is a quick and accurate way to determine whether the selected
608          * devices have changed.
609          */
610         old_num_selected = *num_selected;
611
612         /*
613          * We want to make a backup of the current selection list if 
614          * the list of devices has changed, or if we're in performance 
615          * selection mode.  In both cases, we don't want to make a backup
616          * if we already know for sure that the list will be different.
617          * This is certainly the case if this is our first time through the
618          * selection code.
619          */
620         if (((init_selected_var != 0) || (init_selections != 0)
621          || (perf_select != 0)) && (changed == 0)){
622                 old_dev_select = (struct device_selection *)malloc(
623                     *num_selections * sizeof(struct device_selection));
624                 if (old_dev_select == NULL) {
625                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
626                                  "%s: Cannot allocate memory for selection list backup",
627                                  __func__);
628                         return(-1);
629                 }
630                 old_num_selections = *num_selections;
631                 bcopy(*dev_select, old_dev_select, 
632                     sizeof(struct device_selection) * *num_selections);
633         }
634
635         if (init_selections != 0) {
636                 bzero(*dev_select, sizeof(struct device_selection) * numdevs);
637
638                 for (i = 0; i < numdevs; i++) {
639                         (*dev_select)[i].device_number = 
640                                 devices[i].device_number;
641                         strncpy((*dev_select)[i].device_name,
642                                 devices[i].device_name,
643                                 DEVSTAT_NAME_LEN);
644                         (*dev_select)[i].device_name[DEVSTAT_NAME_LEN - 1]='\0';
645                         (*dev_select)[i].unit_number = devices[i].unit_number;
646                         (*dev_select)[i].position = i;
647                 }
648                 *num_selections = numdevs;
649         } else if (init_selected_var != 0) {
650                 for (i = 0; i < numdevs; i++) 
651                         (*dev_select)[i].selected = 0;
652         }
653
654         /* we haven't gotten around to selecting anything yet.. */
655         if ((select_mode == DS_SELECT_ONLY) || (init_selections != 0)
656          || (init_selected_var != 0))
657                 *num_selected = 0;
658
659         /*
660          * Look through any devices the user specified on the command line
661          * and see if they match known devices.  If so, select them.
662          */
663         for (i = 0; (i < *num_selections) && (num_dev_selections > 0); i++) {
664                 char tmpstr[80];
665
666                 snprintf(tmpstr, sizeof(tmpstr), "%s%d",
667                          (*dev_select)[i].device_name,
668                          (*dev_select)[i].unit_number);
669                 for (j = 0; j < num_dev_selections; j++) {
670                         if (strcmp(tmpstr, dev_selections[j]) == 0) {
671                                 /*
672                                  * Here we do different things based on the
673                                  * mode we're in.  If we're in add or
674                                  * addonly mode, we only select this device
675                                  * if it hasn't already been selected.
676                                  * Otherwise, we would be unnecessarily
677                                  * changing the selection order and
678                                  * incrementing the selection count.  If
679                                  * we're in only mode, we unconditionally
680                                  * select this device, since in only mode
681                                  * any previous selections are erased and
682                                  * manually specified devices are the first
683                                  * ones to be selected.  If we're in remove
684                                  * mode, we de-select the specified device and
685                                  * decrement the selection count.
686                                  */
687                                 switch(select_mode) {
688                                 case DS_SELECT_ADD:
689                                 case DS_SELECT_ADDONLY:
690                                         if ((*dev_select)[i].selected)
691                                                 break;
692                                         /* FALLTHROUGH */
693                                 case DS_SELECT_ONLY:
694                                         (*dev_select)[i].selected =
695                                                 ++selection_number;
696                                         (*num_selected)++;
697                                         break;
698                                 case DS_SELECT_REMOVE:
699                                         (*dev_select)[i].selected = 0;
700                                         (*num_selected)--;
701                                         /*
702                                          * This isn't passed back out, we
703                                          * just use it to keep track of
704                                          * how many devices we've removed.
705                                          */
706                                         num_dev_selections--;
707                                         break;
708                                 }
709                                 break;
710                         }
711                 }
712         }
713
714         /*
715          * Go through the user's device type expressions and select devices
716          * accordingly.  We only do this if the number of devices already
717          * selected is less than the maximum number we can show.
718          */
719         for (i = 0; (i < num_matches) && (*num_selected < maxshowdevs); i++) {
720                 /* We should probably indicate some error here */
721                 if ((matches[i].match_fields == DEVSTAT_MATCH_NONE)
722                  || (matches[i].num_match_categories <= 0))
723                         continue;
724
725                 for (j = 0; j < numdevs; j++) {
726                         int num_match_categories;
727
728                         num_match_categories = matches[i].num_match_categories;
729
730                         /*
731                          * Determine whether or not the current device
732                          * matches the given matching expression.  This if
733                          * statement consists of three components:
734                          *   - the device type check
735                          *   - the device interface check
736                          *   - the passthrough check
737                          * If a the matching test is successful, it 
738                          * decrements the number of matching categories,
739                          * and if we've reached the last element that
740                          * needed to be matched, the if statement succeeds.
741                          * 
742                          */
743                         if ((((matches[i].match_fields & DEVSTAT_MATCH_TYPE)!=0)
744                           && ((devices[j].device_type & DEVSTAT_TYPE_MASK) ==
745                                 (matches[i].device_type & DEVSTAT_TYPE_MASK))
746                           &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
747                            || (((matches[i].match_fields & 
748                                 DEVSTAT_MATCH_PASS) == 0)
749                             && ((devices[j].device_type &
750                                 DEVSTAT_TYPE_PASS) == 0)))
751                           && (--num_match_categories == 0)) 
752                          || (((matches[i].match_fields & DEVSTAT_MATCH_IF) != 0)
753                           && ((devices[j].device_type & DEVSTAT_TYPE_IF_MASK) ==
754                                 (matches[i].device_type & DEVSTAT_TYPE_IF_MASK))
755                           &&(((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
756                            || (((matches[i].match_fields &
757                                 DEVSTAT_MATCH_PASS) == 0)
758                             && ((devices[j].device_type & 
759                                 DEVSTAT_TYPE_PASS) == 0)))
760                           && (--num_match_categories == 0))
761                          || (((matches[i].match_fields & DEVSTAT_MATCH_PASS)!=0)
762                           && ((devices[j].device_type & DEVSTAT_TYPE_PASS) != 0)
763                           && (--num_match_categories == 0))) {
764
765                                 /*
766                                  * This is probably a non-optimal solution
767                                  * to the problem that the devices in the
768                                  * device list will not be in the same
769                                  * order as the devices in the selection
770                                  * array.
771                                  */
772                                 for (k = 0; k < numdevs; k++) {
773                                         if ((*dev_select)[k].position == j) {
774                                                 found = 1;
775                                                 break;
776                                         }
777                                 }
778
779                                 /*
780                                  * There shouldn't be a case where a device
781                                  * in the device list is not in the
782                                  * selection list...but it could happen.
783                                  */
784                                 if (found != 1) {
785                                         fprintf(stderr, "selectdevs: couldn't"
786                                                 " find %s%d in selection "
787                                                 "list\n",
788                                                 devices[j].device_name,
789                                                 devices[j].unit_number);
790                                         break;
791                                 }
792
793                                 /*
794                                  * We do different things based upon the
795                                  * mode we're in.  If we're in add or only
796                                  * mode, we go ahead and select this device
797                                  * if it hasn't already been selected.  If
798                                  * it has already been selected, we leave
799                                  * it alone so we don't mess up the
800                                  * selection ordering.  Manually specified
801                                  * devices have already been selected, and
802                                  * they have higher priority than pattern
803                                  * matched devices.  If we're in remove
804                                  * mode, we de-select the given device and
805                                  * decrement the selected count.
806                                  */
807                                 switch(select_mode) {
808                                 case DS_SELECT_ADD:
809                                 case DS_SELECT_ADDONLY:
810                                 case DS_SELECT_ONLY:
811                                         if ((*dev_select)[k].selected != 0)
812                                                 break;
813                                         (*dev_select)[k].selected =
814                                                 ++selection_number;
815                                         (*num_selected)++;
816                                         break;
817                                 case DS_SELECT_REMOVE:
818                                         (*dev_select)[k].selected = 0;
819                                         (*num_selected)--;
820                                         break;
821                                 }
822                         }
823                 }
824         }
825
826         /*
827          * Here we implement "top" mode.  Devices are sorted in the
828          * selection array based on two criteria:  whether or not they are
829          * selected (not selection number, just the fact that they are
830          * selected!) and the number of bytes in the "bytes" field of the
831          * selection structure.  The bytes field generally must be kept up
832          * by the user.  In the future, it may be maintained by library
833          * functions, but for now the user has to do the work.
834          *
835          * At first glance, it may seem wrong that we don't go through and
836          * select every device in the case where the user hasn't specified
837          * any devices or patterns.  In fact, though, it won't make any
838          * difference in the device sorting.  In that particular case (i.e.
839          * when we're in "add" or "only" mode, and the user hasn't
840          * specified anything) the first time through no devices will be
841          * selected, so the only criterion used to sort them will be their
842          * performance.  The second time through, and every time thereafter,
843          * all devices will be selected, so again selection won't matter.
844          */
845         if (perf_select != 0) {
846
847                 /* Sort the device array by throughput  */
848                 qsort(*dev_select, *num_selections,
849                       sizeof(struct device_selection),
850                       compare_select);
851
852                 if (*num_selected == 0) {
853                         /*
854                          * Here we select every device in the array, if it
855                          * isn't already selected.  Because the 'selected'
856                          * variable in the selection array entries contains
857                          * the selection order, the devstats routine can show
858                          * the devices that were selected first.
859                          */
860                         for (i = 0; i < *num_selections; i++) {
861                                 if ((*dev_select)[i].selected == 0) {
862                                         (*dev_select)[i].selected =
863                                                 ++selection_number;
864                                         (*num_selected)++;
865                                 }
866                         }
867                 } else {
868                         selection_number = 0;
869                         for (i = 0; i < *num_selections; i++) {
870                                 if ((*dev_select)[i].selected != 0) {
871                                         (*dev_select)[i].selected =
872                                                 ++selection_number;
873                                 }
874                         }
875                 }
876         }
877
878         /*
879          * If we're in the "add" selection mode and if we haven't already
880          * selected maxshowdevs number of devices, go through the array and
881          * select any unselected devices.  If we're in "only" mode, we
882          * obviously don't want to select anything other than what the user
883          * specifies.  If we're in "remove" mode, it probably isn't a good
884          * idea to go through and select any more devices, since we might
885          * end up selecting something that the user wants removed.  Through
886          * more complicated logic, we could actually figure this out, but
887          * that would probably require combining this loop with the various
888          * selections loops above.
889          */
890         if ((select_mode == DS_SELECT_ADD) && (*num_selected < maxshowdevs)) {
891                 for (i = 0; i < *num_selections; i++)
892                         if ((*dev_select)[i].selected == 0) {
893                                 (*dev_select)[i].selected = ++selection_number;
894                                 (*num_selected)++;
895                         }
896         }
897
898         /*
899          * Look at the number of devices that have been selected.  If it
900          * has changed, set the changed variable.  Otherwise, if we've
901          * made a backup of the selection list, compare it to the current
902          * selection list to see if the selected devices have changed.
903          */
904         if ((changed == 0) && (old_num_selected != *num_selected))
905                 changed = 1;
906         else if ((changed == 0) && (old_dev_select != NULL)) {
907                 /*
908                  * Now we go through the selection list and we look at
909                  * it three different ways.
910                  */
911                 for (i = 0; (i < *num_selections) && (changed == 0) && 
912                      (i < old_num_selections); i++) {
913                         /*
914                          * If the device at index i in both the new and old
915                          * selection arrays has the same device number and
916                          * selection status, it hasn't changed.  We
917                          * continue on to the next index.
918                          */
919                         if (((*dev_select)[i].device_number ==
920                              old_dev_select[i].device_number)
921                          && ((*dev_select)[i].selected == 
922                              old_dev_select[i].selected))
923                                 continue;
924
925                         /*
926                          * Now, if we're still going through the if
927                          * statement, the above test wasn't true.  So we
928                          * check here to see if the device at index i in
929                          * the current array is the same as the device at
930                          * index i in the old array.  If it is, that means
931                          * that its selection number has changed.  Set
932                          * changed to 1 and exit the loop.
933                          */
934                         else if ((*dev_select)[i].device_number ==
935                                   old_dev_select[i].device_number) {
936                                 changed = 1;
937                                 break;
938                         }
939                         /*
940                          * If we get here, then the device at index i in
941                          * the current array isn't the same device as the
942                          * device at index i in the old array.
943                          */
944                         else {
945                                 found = 0;
946
947                                 /*
948                                  * Search through the old selection array
949                                  * looking for a device with the same
950                                  * device number as the device at index i
951                                  * in the current array.  If the selection
952                                  * status is the same, then we mark it as
953                                  * found.  If the selection status isn't
954                                  * the same, we break out of the loop.
955                                  * Since found isn't set, changed will be
956                                  * set to 1 below.
957                                  */
958                                 for (j = 0; j < old_num_selections; j++) {
959                                         if (((*dev_select)[i].device_number ==
960                                               old_dev_select[j].device_number)
961                                          && ((*dev_select)[i].selected ==
962                                               old_dev_select[j].selected)){
963                                                 found = 1;
964                                                 break;
965                                         }
966                                         else if ((*dev_select)[i].device_number
967                                             == old_dev_select[j].device_number)
968                                                 break;
969                                 }
970                                 if (found == 0)
971                                         changed = 1;
972                         }
973                 }
974         }
975         if (old_dev_select != NULL)
976                 free(old_dev_select);
977
978         return(changed);
979 }
980
981 /*
982  * Comparison routine for qsort() above.  Note that the comparison here is
983  * backwards -- generally, it should return a value to indicate whether
984  * arg1 is <, =, or > arg2.  Instead, it returns the opposite.  The reason
985  * it returns the opposite is so that the selection array will be sorted in
986  * order of decreasing performance.  We sort on two parameters.  The first
987  * sort key is whether or not one or the other of the devices in question
988  * has been selected.  If one of them has, and the other one has not, the
989  * selected device is automatically more important than the unselected
990  * device.  If neither device is selected, we judge the devices based upon
991  * performance.
992  */
993 static int
994 compare_select(const void *arg1, const void *arg2)
995 {
996         if ((((const struct device_selection *)arg1)->selected)
997          && (((const struct device_selection *)arg2)->selected == 0))
998                 return(-1);
999         else if ((((const struct device_selection *)arg1)->selected == 0)
1000               && (((const struct device_selection *)arg2)->selected))
1001                 return(1);
1002         else if (((const struct device_selection *)arg2)->bytes <
1003                  ((const struct device_selection *)arg1)->bytes)
1004                 return(-1);
1005         else if (((const struct device_selection *)arg2)->bytes >
1006                  ((const struct device_selection *)arg1)->bytes)
1007                 return(1);
1008         else
1009                 return(0);
1010 }
1011
1012 /*
1013  * Take a string with the general format "arg1,arg2,arg3", and build a
1014  * device matching expression from it.
1015  */
1016 int
1017 devstat_buildmatch(char *match_str, struct devstat_match **matches,
1018                    int *num_matches)
1019 {
1020         char *tstr[5];
1021         char **tempstr;
1022         int num_args;
1023         int i, j;
1024
1025         /* We can't do much without a string to parse */
1026         if (match_str == NULL) {
1027                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1028                          "%s: no match expression", __func__);
1029                 return(-1);
1030         }
1031
1032         /*
1033          * Break the (comma delimited) input string out into separate strings.
1034          */
1035         for (tempstr = tstr, num_args  = 0; 
1036              (*tempstr = strsep(&match_str, ",")) != NULL && (num_args < 5);)
1037                 if (**tempstr != '\0') {
1038                         num_args++;
1039                         if (++tempstr >= &tstr[5])
1040                                 break;
1041                 }
1042
1043         /* The user gave us too many type arguments */
1044         if (num_args > 3) {
1045                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1046                          "%s: too many type arguments", __func__);
1047                 return(-1);
1048         }
1049
1050         if (*num_matches == 0)
1051                 *matches = NULL;
1052
1053         *matches = (struct devstat_match *)reallocf(*matches,
1054                   sizeof(struct devstat_match) * (*num_matches + 1));
1055
1056         if (*matches == NULL) {
1057                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1058                          "%s: Cannot allocate memory for matches list", __func__);
1059                 return(-1);
1060         }
1061                           
1062         /* Make sure the current entry is clear */
1063         bzero(&matches[0][*num_matches], sizeof(struct devstat_match));
1064
1065         /*
1066          * Step through the arguments the user gave us and build a device
1067          * matching expression from them.
1068          */
1069         for (i = 0; i < num_args; i++) {
1070                 char *tempstr2, *tempstr3;
1071
1072                 /*
1073                  * Get rid of leading white space.
1074                  */
1075                 tempstr2 = tstr[i];
1076                 while (isspace(*tempstr2) && (*tempstr2 != '\0'))
1077                         tempstr2++;
1078
1079                 /*
1080                  * Get rid of trailing white space.
1081                  */
1082                 tempstr3 = &tempstr2[strlen(tempstr2) - 1];
1083
1084                 while ((*tempstr3 != '\0') && (tempstr3 > tempstr2)
1085                     && (isspace(*tempstr3))) {
1086                         *tempstr3 = '\0';
1087                         tempstr3--;
1088                 }
1089
1090                 /*
1091                  * Go through the match table comparing the user's
1092                  * arguments to known device types, interfaces, etc.  
1093                  */
1094                 for (j = 0; match_table[j].match_str != NULL; j++) {
1095                         /*
1096                          * We do case-insensitive matching, in case someone
1097                          * wants to enter "SCSI" instead of "scsi" or
1098                          * something like that.  Only compare as many 
1099                          * characters as are in the string in the match 
1100                          * table.  This should help if someone tries to use 
1101                          * a super-long match expression.  
1102                          */
1103                         if (strncasecmp(tempstr2, match_table[j].match_str,
1104                             strlen(match_table[j].match_str)) == 0) {
1105                                 /*
1106                                  * Make sure the user hasn't specified two
1107                                  * items of the same type, like "da" and
1108                                  * "cd".  One device cannot be both.
1109                                  */
1110                                 if (((*matches)[*num_matches].match_fields &
1111                                     match_table[j].match_field) != 0) {
1112                                         snprintf(devstat_errbuf,
1113                                                  sizeof(devstat_errbuf),
1114                                                  "%s: cannot have more than "
1115                                                  "one match item in a single "
1116                                                  "category", __func__);
1117                                         return(-1);
1118                                 }
1119                                 /*
1120                                  * If we've gotten this far, we have a
1121                                  * winner.  Set the appropriate fields in
1122                                  * the match entry.
1123                                  */
1124                                 (*matches)[*num_matches].match_fields |=
1125                                         match_table[j].match_field;
1126                                 (*matches)[*num_matches].device_type |=
1127                                         match_table[j].type;
1128                                 (*matches)[*num_matches].num_match_categories++;
1129                                 break;
1130                         }
1131                 }
1132                 /*
1133                  * We should have found a match in the above for loop.  If
1134                  * not, that means the user entered an invalid device type
1135                  * or interface.
1136                  */
1137                 if ((*matches)[*num_matches].num_match_categories != (i + 1)) {
1138                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1139                                  "%s: unknown match item \"%s\"", __func__,
1140                                  tstr[i]);
1141                         return(-1);
1142                 }
1143         }
1144
1145         (*num_matches)++;
1146
1147         return(0);
1148 }
1149
1150 /*
1151  * Compute a number of device statistics.  Only one field is mandatory, and
1152  * that is "current".  Everything else is optional.  The caller passes in
1153  * pointers to variables to hold the various statistics he desires.  If he
1154  * doesn't want a particular staistic, he should pass in a NULL pointer.
1155  * Return values:
1156  * 0   -- success
1157  * -1  -- failure
1158  */
1159 int
1160 compute_stats(struct devstat *current, struct devstat *previous,
1161               long double etime, u_int64_t *total_bytes,
1162               u_int64_t *total_transfers, u_int64_t *total_blocks,
1163               long double *kb_per_transfer, long double *transfers_per_second,
1164               long double *mb_per_second, long double *blocks_per_second,
1165               long double *ms_per_transaction)
1166 {
1167         return(devstat_compute_statistics(current, previous, etime,
1168                total_bytes ? DSM_TOTAL_BYTES : DSM_SKIP,
1169                total_bytes,
1170                total_transfers ? DSM_TOTAL_TRANSFERS : DSM_SKIP,
1171                total_transfers,
1172                total_blocks ? DSM_TOTAL_BLOCKS : DSM_SKIP,
1173                total_blocks,
1174                kb_per_transfer ? DSM_KB_PER_TRANSFER : DSM_SKIP,
1175                kb_per_transfer,
1176                transfers_per_second ? DSM_TRANSFERS_PER_SECOND : DSM_SKIP,
1177                transfers_per_second,
1178                mb_per_second ? DSM_MB_PER_SECOND : DSM_SKIP,
1179                mb_per_second,
1180                blocks_per_second ? DSM_BLOCKS_PER_SECOND : DSM_SKIP,
1181                blocks_per_second,
1182                ms_per_transaction ? DSM_MS_PER_TRANSACTION : DSM_SKIP,
1183                ms_per_transaction,
1184                DSM_NONE));
1185 }
1186
1187
1188 /* This is 1/2^64 */
1189 #define BINTIME_SCALE 5.42101086242752217003726400434970855712890625e-20
1190
1191 long double
1192 devstat_compute_etime(struct bintime *cur_time, struct bintime *prev_time)
1193 {
1194         long double etime;
1195
1196         etime = cur_time->sec;
1197         etime += cur_time->frac * BINTIME_SCALE;
1198         if (prev_time != NULL) {
1199                 etime -= prev_time->sec;
1200                 etime -= prev_time->frac * BINTIME_SCALE;
1201         }
1202         return(etime);
1203 }
1204
1205 #define DELTA(field, index)                             \
1206         (current->field[(index)] - (previous ? previous->field[(index)] : 0))
1207
1208 #define DELTA_T(field)                                  \
1209         devstat_compute_etime(&current->field,          \
1210         (previous ? &previous->field : NULL))
1211
1212 int
1213 devstat_compute_statistics(struct devstat *current, struct devstat *previous,
1214                            long double etime, ...)
1215 {
1216         u_int64_t totalbytes, totalbytesread, totalbyteswrite, totalbytesfree;
1217         u_int64_t totaltransfers, totaltransfersread, totaltransferswrite;
1218         u_int64_t totaltransfersother, totalblocks, totalblocksread;
1219         u_int64_t totalblockswrite, totaltransfersfree, totalblocksfree;
1220         va_list ap;
1221         devstat_metric metric;
1222         u_int64_t *destu64;
1223         long double *destld;
1224         int retval, i;
1225
1226         retval = 0;
1227
1228         /*
1229          * current is the only mandatory field.
1230          */
1231         if (current == NULL) {
1232                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1233                          "%s: current stats structure was NULL", __func__);
1234                 return(-1);
1235         }
1236
1237         totalbytesread = DELTA(bytes, DEVSTAT_READ);
1238         totalbyteswrite = DELTA(bytes, DEVSTAT_WRITE);
1239         totalbytesfree = DELTA(bytes, DEVSTAT_FREE);
1240         totalbytes = totalbytesread + totalbyteswrite + totalbytesfree;
1241
1242         totaltransfersread = DELTA(operations, DEVSTAT_READ);
1243         totaltransferswrite = DELTA(operations, DEVSTAT_WRITE);
1244         totaltransfersother = DELTA(operations, DEVSTAT_NO_DATA);
1245         totaltransfersfree = DELTA(operations, DEVSTAT_FREE);
1246         totaltransfers = totaltransfersread + totaltransferswrite +
1247                          totaltransfersother + totaltransfersfree;
1248
1249         totalblocks = totalbytes;
1250         totalblocksread = totalbytesread;
1251         totalblockswrite = totalbyteswrite;
1252         totalblocksfree = totalbytesfree;
1253
1254         if (current->block_size > 0) {
1255                 totalblocks /= current->block_size;
1256                 totalblocksread /= current->block_size;
1257                 totalblockswrite /= current->block_size;
1258                 totalblocksfree /= current->block_size;
1259         } else {
1260                 totalblocks /= 512;
1261                 totalblocksread /= 512;
1262                 totalblockswrite /= 512;
1263                 totalblocksfree /= 512;
1264         }
1265
1266         va_start(ap, etime);
1267
1268         while ((metric = (devstat_metric)va_arg(ap, devstat_metric)) != 0) {
1269
1270                 if (metric == DSM_NONE)
1271                         break;
1272
1273                 if (metric >= DSM_MAX) {
1274                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1275                                  "%s: metric %d is out of range", __func__,
1276                                  metric);
1277                         retval = -1;
1278                         goto bailout;
1279                 }
1280
1281                 switch (devstat_arg_list[metric].argtype) {
1282                 case DEVSTAT_ARG_UINT64:
1283                         destu64 = (u_int64_t *)va_arg(ap, u_int64_t *);
1284                         break;
1285                 case DEVSTAT_ARG_LD:
1286                         destld = (long double *)va_arg(ap, long double *);
1287                         break;
1288                 case DEVSTAT_ARG_SKIP:
1289                         destld = (long double *)va_arg(ap, long double *);
1290                         break;
1291                 default:
1292                         retval = -1;
1293                         goto bailout;
1294                         break; /* NOTREACHED */
1295                 }
1296
1297                 if (devstat_arg_list[metric].argtype == DEVSTAT_ARG_SKIP)
1298                         continue;
1299
1300                 switch (metric) {
1301                 case DSM_TOTAL_BYTES:
1302                         *destu64 = totalbytes;
1303                         break;
1304                 case DSM_TOTAL_BYTES_READ:
1305                         *destu64 = totalbytesread;
1306                         break;
1307                 case DSM_TOTAL_BYTES_WRITE:
1308                         *destu64 = totalbyteswrite;
1309                         break;
1310                 case DSM_TOTAL_BYTES_FREE:
1311                         *destu64 = totalbytesfree;
1312                         break;
1313                 case DSM_TOTAL_TRANSFERS:
1314                         *destu64 = totaltransfers;
1315                         break;
1316                 case DSM_TOTAL_TRANSFERS_READ:
1317                         *destu64 = totaltransfersread;
1318                         break;
1319                 case DSM_TOTAL_TRANSFERS_WRITE:
1320                         *destu64 = totaltransferswrite;
1321                         break;
1322                 case DSM_TOTAL_TRANSFERS_FREE:
1323                         *destu64 = totaltransfersfree;
1324                         break;
1325                 case DSM_TOTAL_TRANSFERS_OTHER:
1326                         *destu64 = totaltransfersother;
1327                         break;
1328                 case DSM_TOTAL_BLOCKS:
1329                         *destu64 = totalblocks;
1330                         break;
1331                 case DSM_TOTAL_BLOCKS_READ:
1332                         *destu64 = totalblocksread;
1333                         break;
1334                 case DSM_TOTAL_BLOCKS_WRITE:
1335                         *destu64 = totalblockswrite;
1336                         break;
1337                 case DSM_TOTAL_BLOCKS_FREE:
1338                         *destu64 = totalblocksfree;
1339                         break;
1340                 case DSM_KB_PER_TRANSFER:
1341                         *destld = totalbytes;
1342                         *destld /= 1024;
1343                         if (totaltransfers > 0)
1344                                 *destld /= totaltransfers;
1345                         else
1346                                 *destld = 0.0;
1347                         break;
1348                 case DSM_KB_PER_TRANSFER_READ:
1349                         *destld = totalbytesread;
1350                         *destld /= 1024;
1351                         if (totaltransfersread > 0)
1352                                 *destld /= totaltransfersread;
1353                         else
1354                                 *destld = 0.0;
1355                         break;
1356                 case DSM_KB_PER_TRANSFER_WRITE:
1357                         *destld = totalbyteswrite;
1358                         *destld /= 1024;
1359                         if (totaltransferswrite > 0)
1360                                 *destld /= totaltransferswrite;
1361                         else
1362                                 *destld = 0.0;
1363                         break;
1364                 case DSM_KB_PER_TRANSFER_FREE:
1365                         *destld = totalbytesfree;
1366                         *destld /= 1024;
1367                         if (totaltransfersfree > 0)
1368                                 *destld /= totaltransfersfree;
1369                         else
1370                                 *destld = 0.0;
1371                         break;
1372                 case DSM_TRANSFERS_PER_SECOND:
1373                         if (etime > 0.0) {
1374                                 *destld = totaltransfers;
1375                                 *destld /= etime;
1376                         } else
1377                                 *destld = 0.0;
1378                         break;
1379                 case DSM_TRANSFERS_PER_SECOND_READ:
1380                         if (etime > 0.0) {
1381                                 *destld = totaltransfersread;
1382                                 *destld /= etime;
1383                         } else
1384                                 *destld = 0.0;
1385                         break;
1386                 case DSM_TRANSFERS_PER_SECOND_WRITE:
1387                         if (etime > 0.0) {
1388                                 *destld = totaltransferswrite;
1389                                 *destld /= etime;
1390                         } else
1391                                 *destld = 0.0;
1392                         break;
1393                 case DSM_TRANSFERS_PER_SECOND_FREE:
1394                         if (etime > 0.0) {
1395                                 *destld = totaltransfersfree;
1396                                 *destld /= etime;
1397                         } else
1398                                 *destld = 0.0;
1399                         break;
1400                 case DSM_TRANSFERS_PER_SECOND_OTHER:
1401                         if (etime > 0.0) {
1402                                 *destld = totaltransfersother;
1403                                 *destld /= etime;
1404                         } else
1405                                 *destld = 0.0;
1406                         break;
1407                 case DSM_MB_PER_SECOND:
1408                         *destld = totalbytes;
1409                         *destld /= 1024 * 1024;
1410                         if (etime > 0.0)
1411                                 *destld /= etime;
1412                         else
1413                                 *destld = 0.0;
1414                         break;
1415                 case DSM_MB_PER_SECOND_READ:
1416                         *destld = totalbytesread;
1417                         *destld /= 1024 * 1024;
1418                         if (etime > 0.0)
1419                                 *destld /= etime;
1420                         else
1421                                 *destld = 0.0;
1422                         break;
1423                 case DSM_MB_PER_SECOND_WRITE:
1424                         *destld = totalbyteswrite;
1425                         *destld /= 1024 * 1024;
1426                         if (etime > 0.0)
1427                                 *destld /= etime;
1428                         else
1429                                 *destld = 0.0;
1430                         break;
1431                 case DSM_MB_PER_SECOND_FREE:
1432                         *destld = totalbytesfree;
1433                         *destld /= 1024 * 1024;
1434                         if (etime > 0.0)
1435                                 *destld /= etime;
1436                         else
1437                                 *destld = 0.0;
1438                         break;
1439                 case DSM_BLOCKS_PER_SECOND:
1440                         *destld = totalblocks;
1441                         if (etime > 0.0)
1442                                 *destld /= etime;
1443                         else
1444                                 *destld = 0.0;
1445                         break;
1446                 case DSM_BLOCKS_PER_SECOND_READ:
1447                         *destld = totalblocksread;
1448                         if (etime > 0.0)
1449                                 *destld /= etime;
1450                         else
1451                                 *destld = 0.0;
1452                         break;
1453                 case DSM_BLOCKS_PER_SECOND_WRITE:
1454                         *destld = totalblockswrite;
1455                         if (etime > 0.0)
1456                                 *destld /= etime;
1457                         else
1458                                 *destld = 0.0;
1459                         break;
1460                 case DSM_BLOCKS_PER_SECOND_FREE:
1461                         *destld = totalblocksfree;
1462                         if (etime > 0.0)
1463                                 *destld /= etime;
1464                         else
1465                                 *destld = 0.0;
1466                         break;
1467                 /*
1468                  * This calculation is somewhat bogus.  It simply divides
1469                  * the elapsed time by the total number of transactions
1470                  * completed.  While that does give the caller a good
1471                  * picture of the average rate of transaction completion,
1472                  * it doesn't necessarily give the caller a good view of
1473                  * how long transactions took to complete on average.
1474                  * Those two numbers will be different for a device that
1475                  * can handle more than one transaction at a time.  e.g.
1476                  * SCSI disks doing tagged queueing.
1477                  *
1478                  * The only way to accurately determine the real average
1479                  * time per transaction would be to compute and store the
1480                  * time on a per-transaction basis.  That currently isn't
1481                  * done in the kernel, and would only be desireable if it
1482                  * could be implemented in a somewhat non-intrusive and high
1483                  * performance way.
1484                  */
1485                 case DSM_MS_PER_TRANSACTION:
1486                         if (totaltransfers > 0) {
1487                                 *destld = 0;
1488                                 for (i = 0; i < DEVSTAT_N_TRANS_FLAGS; i++)
1489                                         *destld += DELTA_T(duration[i]);
1490                                 *destld /= totaltransfers;
1491                                 *destld *= 1000;
1492                         } else
1493                                 *destld = 0.0;
1494                         break;
1495                 /*
1496                  * As above, these next two really only give the average
1497                  * rate of completion for read and write transactions, not
1498                  * the average time the transaction took to complete.
1499                  */
1500                 case DSM_MS_PER_TRANSACTION_READ:
1501                         if (totaltransfersread > 0) {
1502                                 *destld = DELTA_T(duration[DEVSTAT_READ]);
1503                                 *destld /= totaltransfersread;
1504                                 *destld *= 1000;
1505                         } else
1506                                 *destld = 0.0;
1507                         break;
1508                 case DSM_MS_PER_TRANSACTION_WRITE:
1509                         if (totaltransferswrite > 0) {
1510                                 *destld = DELTA_T(duration[DEVSTAT_WRITE]);
1511                                 *destld /= totaltransferswrite;
1512                                 *destld *= 1000;
1513                         } else
1514                                 *destld = 0.0;
1515                         break;
1516                 case DSM_MS_PER_TRANSACTION_FREE:
1517                         if (totaltransfersfree > 0) {
1518                                 *destld = DELTA_T(duration[DEVSTAT_FREE]);
1519                                 *destld /= totaltransfersfree;
1520                                 *destld *= 1000;
1521                         } else
1522                                 *destld = 0.0;
1523                         break;
1524                 case DSM_MS_PER_TRANSACTION_OTHER:
1525                         if (totaltransfersother > 0) {
1526                                 *destld = DELTA_T(duration[DEVSTAT_NO_DATA]);
1527                                 *destld /= totaltransfersother;
1528                                 *destld *= 1000;
1529                         } else
1530                                 *destld = 0.0;
1531                         break;
1532                 case DSM_BUSY_PCT:
1533                         *destld = DELTA_T(busy_time);
1534                         if (*destld < 0)
1535                                 *destld = 0;
1536                         *destld /= etime;
1537                         *destld *= 100;
1538                         if (*destld < 0)
1539                                 *destld = 0;
1540                         break;
1541                 case DSM_QUEUE_LENGTH:
1542                         *destu64 = current->start_count - current->end_count;
1543                         break;
1544 /*
1545  * XXX: comment out the default block to see if any case's are missing.
1546  */
1547 #if 1
1548                 default:
1549                         /*
1550                          * This shouldn't happen, since we should have
1551                          * caught any out of range metrics at the top of
1552                          * the loop.
1553                          */
1554                         snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1555                                  "%s: unknown metric %d", __func__, metric);
1556                         retval = -1;
1557                         goto bailout;
1558                         break; /* NOTREACHED */
1559 #endif
1560                 }
1561         }
1562
1563 bailout:
1564
1565         va_end(ap);
1566         return(retval);
1567 }
1568
1569 static int 
1570 readkmem(kvm_t *kd, unsigned long addr, void *buf, size_t nbytes)
1571 {
1572
1573         if (kvm_read(kd, addr, buf, nbytes) == -1) {
1574                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1575                          "%s: error reading value (kvm_read): %s", __func__,
1576                          kvm_geterr(kd));
1577                 return(-1);
1578         }
1579         return(0);
1580 }
1581
1582 static int
1583 readkmem_nl(kvm_t *kd, const char *name, void *buf, size_t nbytes)
1584 {
1585         struct nlist nl[2];
1586
1587         nl[0].n_name = (char *)name;
1588         nl[1].n_name = NULL;
1589
1590         if (kvm_nlist(kd, nl) == -1) {
1591                 snprintf(devstat_errbuf, sizeof(devstat_errbuf),
1592                          "%s: error getting name list (kvm_nlist): %s",
1593                          __func__, kvm_geterr(kd));
1594                 return(-1);
1595         }
1596         return(readkmem(kd, nl[0].n_value, buf, nbytes));
1597 }
1598
1599 /*
1600  * This duplicates the functionality of the kernel sysctl handler for poking
1601  * through crash dumps.
1602  */
1603 static char *
1604 get_devstat_kvm(kvm_t *kd)
1605 {
1606         int i, wp;
1607         long gen;
1608         struct devstat *nds;
1609         struct devstat ds;
1610         struct devstatlist dhead;
1611         int num_devs;
1612         char *rv = NULL;
1613
1614         if ((num_devs = devstat_getnumdevs(kd)) <= 0)
1615                 return(NULL);
1616         if (KREADNL(kd, X_DEVICE_STATQ, dhead) == -1)
1617                 return(NULL);
1618
1619         nds = STAILQ_FIRST(&dhead);
1620         
1621         if ((rv = malloc(sizeof(gen))) == NULL) {
1622                 snprintf(devstat_errbuf, sizeof(devstat_errbuf), 
1623                          "%s: out of memory (initial malloc failed)",
1624                          __func__);
1625                 return(NULL);
1626         }
1627         gen = devstat_getgeneration(kd);
1628         memcpy(rv, &gen, sizeof(gen));
1629         wp = sizeof(gen);
1630         /*
1631          * Now push out all the devices.
1632          */
1633         for (i = 0; (nds != NULL) && (i < num_devs);  
1634              nds = STAILQ_NEXT(nds, dev_links), i++) {
1635                 if (readkmem(kd, (long)nds, &ds, sizeof(ds)) == -1) {
1636                         free(rv);
1637                         return(NULL);
1638                 }
1639                 nds = &ds;
1640                 rv = (char *)reallocf(rv, sizeof(gen) + 
1641                                       sizeof(ds) * (i + 1));
1642                 if (rv == NULL) {
1643                         snprintf(devstat_errbuf, sizeof(devstat_errbuf), 
1644                                  "%s: out of memory (malloc failed)",
1645                                  __func__);
1646                         return(NULL);
1647                 }
1648                 memcpy(rv + wp, &ds, sizeof(ds));
1649                 wp += sizeof(ds);
1650         }
1651         return(rv);
1652 }