]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/libefi/rdwr_efi.c
cppcheck: (error) Memory leak: vtoc
[FreeBSD/FreeBSD.git] / lib / libefi / rdwr_efi.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2002, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2012 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2018 by Delphix. All rights reserved.
26  */
27
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <errno.h>
31 #include <string.h>
32 #include <strings.h>
33 #include <unistd.h>
34 #include <uuid/uuid.h>
35 #include <zlib.h>
36 #include <libintl.h>
37 #include <sys/types.h>
38 #include <sys/dkio.h>
39 #include <sys/vtoc.h>
40 #include <sys/mhd.h>
41 #include <sys/param.h>
42 #include <sys/dktp/fdisk.h>
43 #include <sys/efi_partition.h>
44 #include <sys/byteorder.h>
45 #include <sys/vdev_disk.h>
46 #include <linux/fs.h>
47
48 static struct uuid_to_ptag {
49         struct uuid     uuid;
50 } conversion_array[] = {
51         { EFI_UNUSED },
52         { EFI_BOOT },
53         { EFI_ROOT },
54         { EFI_SWAP },
55         { EFI_USR },
56         { EFI_BACKUP },
57         { EFI_UNUSED },         /* STAND is never used */
58         { EFI_VAR },
59         { EFI_HOME },
60         { EFI_ALTSCTR },
61         { EFI_UNUSED },         /* CACHE (cachefs) is never used */
62         { EFI_RESERVED },
63         { EFI_SYSTEM },
64         { EFI_LEGACY_MBR },
65         { EFI_SYMC_PUB },
66         { EFI_SYMC_CDS },
67         { EFI_MSFT_RESV },
68         { EFI_DELL_BASIC },
69         { EFI_DELL_RAID },
70         { EFI_DELL_SWAP },
71         { EFI_DELL_LVM },
72         { EFI_DELL_RESV },
73         { EFI_AAPL_HFS },
74         { EFI_AAPL_UFS },
75         { EFI_FREEBSD_BOOT },
76         { EFI_FREEBSD_SWAP },
77         { EFI_FREEBSD_UFS },
78         { EFI_FREEBSD_VINUM },
79         { EFI_FREEBSD_ZFS },
80         { EFI_BIOS_BOOT },
81         { EFI_INTC_RS },
82         { EFI_SNE_BOOT },
83         { EFI_LENOVO_BOOT },
84         { EFI_MSFT_LDMM },
85         { EFI_MSFT_LDMD },
86         { EFI_MSFT_RE },
87         { EFI_IBM_GPFS },
88         { EFI_MSFT_STORAGESPACES },
89         { EFI_HPQ_DATA },
90         { EFI_HPQ_SVC },
91         { EFI_RHT_DATA },
92         { EFI_RHT_HOME },
93         { EFI_RHT_SRV },
94         { EFI_RHT_DMCRYPT },
95         { EFI_RHT_LUKS },
96         { EFI_FREEBSD_DISKLABEL },
97         { EFI_AAPL_RAID },
98         { EFI_AAPL_RAIDOFFLINE },
99         { EFI_AAPL_BOOT },
100         { EFI_AAPL_LABEL },
101         { EFI_AAPL_TVRECOVERY },
102         { EFI_AAPL_CORESTORAGE },
103         { EFI_NETBSD_SWAP },
104         { EFI_NETBSD_FFS },
105         { EFI_NETBSD_LFS },
106         { EFI_NETBSD_RAID },
107         { EFI_NETBSD_CAT },
108         { EFI_NETBSD_CRYPT },
109         { EFI_GOOG_KERN },
110         { EFI_GOOG_ROOT },
111         { EFI_GOOG_RESV },
112         { EFI_HAIKU_BFS },
113         { EFI_MIDNIGHTBSD_BOOT },
114         { EFI_MIDNIGHTBSD_DATA },
115         { EFI_MIDNIGHTBSD_SWAP },
116         { EFI_MIDNIGHTBSD_UFS },
117         { EFI_MIDNIGHTBSD_VINUM },
118         { EFI_MIDNIGHTBSD_ZFS },
119         { EFI_CEPH_JOURNAL },
120         { EFI_CEPH_DMCRYPTJOURNAL },
121         { EFI_CEPH_OSD },
122         { EFI_CEPH_DMCRYPTOSD },
123         { EFI_CEPH_CREATE },
124         { EFI_CEPH_DMCRYPTCREATE },
125         { EFI_OPENBSD_DISKLABEL },
126         { EFI_BBRY_QNX },
127         { EFI_BELL_PLAN9 },
128         { EFI_VMW_KCORE },
129         { EFI_VMW_VMFS },
130         { EFI_VMW_RESV },
131         { EFI_RHT_ROOTX86 },
132         { EFI_RHT_ROOTAMD64 },
133         { EFI_RHT_ROOTARM },
134         { EFI_RHT_ROOTARM64 },
135         { EFI_ACRONIS_SECUREZONE },
136         { EFI_ONIE_BOOT },
137         { EFI_ONIE_CONFIG },
138         { EFI_IBM_PPRPBOOT },
139         { EFI_FREEDESKTOP_BOOT }
140 };
141
142 /*
143  * Default vtoc information for non-SVr4 partitions
144  */
145 struct dk_map2  default_vtoc_map[NDKMAP] = {
146         {       V_ROOT,         0       },              /* a - 0 */
147         {       V_SWAP,         V_UNMNT },              /* b - 1 */
148         {       V_BACKUP,       V_UNMNT },              /* c - 2 */
149         {       V_UNASSIGNED,   0       },              /* d - 3 */
150         {       V_UNASSIGNED,   0       },              /* e - 4 */
151         {       V_UNASSIGNED,   0       },              /* f - 5 */
152         {       V_USR,          0       },              /* g - 6 */
153         {       V_UNASSIGNED,   0       },              /* h - 7 */
154
155 #if defined(_SUNOS_VTOC_16)
156
157 #if defined(i386) || defined(__amd64) || defined(__arm) || \
158     defined(__powerpc) || defined(__sparc) || defined(__s390__) || \
159     defined(__mips__) || defined(__rv64g__)
160         {       V_BOOT,         V_UNMNT },              /* i - 8 */
161         {       V_ALTSCTR,      0       },              /* j - 9 */
162
163 #else
164 #error No VTOC format defined.
165 #endif                  /* defined(i386) */
166
167         {       V_UNASSIGNED,   0       },              /* k - 10 */
168         {       V_UNASSIGNED,   0       },              /* l - 11 */
169         {       V_UNASSIGNED,   0       },              /* m - 12 */
170         {       V_UNASSIGNED,   0       },              /* n - 13 */
171         {       V_UNASSIGNED,   0       },              /* o - 14 */
172         {       V_UNASSIGNED,   0       },              /* p - 15 */
173 #endif                  /* defined(_SUNOS_VTOC_16) */
174 };
175
176 int efi_debug = 0;
177
178 static int efi_read(int, struct dk_gpt *);
179
180 /*
181  * Return a 32-bit CRC of the contents of the buffer.  Pre-and-post
182  * one's conditioning will be handled by crc32() internally.
183  */
184 static uint32_t
185 efi_crc32(const unsigned char *buf, unsigned int size)
186 {
187         uint32_t crc = crc32(0, Z_NULL, 0);
188
189         crc = crc32(crc, buf, size);
190
191         return (crc);
192 }
193
194 static int
195 read_disk_info(int fd, diskaddr_t *capacity, uint_t *lbsize)
196 {
197         int sector_size;
198         unsigned long long capacity_size;
199
200         if (ioctl(fd, BLKSSZGET, &sector_size) < 0)
201                 return (-1);
202
203         if (ioctl(fd, BLKGETSIZE64, &capacity_size) < 0)
204                 return (-1);
205
206         *lbsize = (uint_t)sector_size;
207         *capacity = (diskaddr_t)(capacity_size / sector_size);
208
209         return (0);
210 }
211
212 static int
213 efi_get_info(int fd, struct dk_cinfo *dki_info)
214 {
215         char *path;
216         char *dev_path;
217         int rval = 0;
218
219         memset(dki_info, 0, sizeof (*dki_info));
220
221         path = calloc(1, PATH_MAX);
222         if (path == NULL)
223                 goto error;
224
225         /*
226          * The simplest way to get the partition number under linux is
227          * to parse it out of the /dev/<disk><partition> block device name.
228          * The kernel creates this using the partition number when it
229          * populates /dev/ so it may be trusted.  The tricky bit here is
230          * that the naming convention is based on the block device type.
231          * So we need to take this in to account when parsing out the
232          * partition information.  Another issue is that the libefi API
233          * API only provides the open fd and not the file path.  To handle
234          * this realpath(3) is used to resolve the block device name from
235          * /proc/self/fd/<fd>.  Aside from the partition number we collect
236          * some additional device info.
237          */
238         (void) sprintf(path, "/proc/self/fd/%d", fd);
239         dev_path = realpath(path, NULL);
240         free(path);
241
242         if (dev_path == NULL)
243                 goto error;
244
245         if ((strncmp(dev_path, "/dev/sd", 7) == 0)) {
246                 strcpy(dki_info->dki_cname, "sd");
247                 dki_info->dki_ctype = DKC_SCSI_CCS;
248                 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
249                     dki_info->dki_dname,
250                     &dki_info->dki_partition);
251         } else if ((strncmp(dev_path, "/dev/hd", 7) == 0)) {
252                 strcpy(dki_info->dki_cname, "hd");
253                 dki_info->dki_ctype = DKC_DIRECT;
254                 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
255                     dki_info->dki_dname,
256                     &dki_info->dki_partition);
257         } else if ((strncmp(dev_path, "/dev/md", 7) == 0)) {
258                 strcpy(dki_info->dki_cname, "pseudo");
259                 dki_info->dki_ctype = DKC_MD;
260                 strcpy(dki_info->dki_dname, "md");
261                 rval = sscanf(dev_path, "/dev/md%[0-9]p%hu",
262                     dki_info->dki_dname + 2,
263                     &dki_info->dki_partition);
264         } else if ((strncmp(dev_path, "/dev/vd", 7) == 0)) {
265                 strcpy(dki_info->dki_cname, "vd");
266                 dki_info->dki_ctype = DKC_MD;
267                 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
268                     dki_info->dki_dname,
269                     &dki_info->dki_partition);
270         } else if ((strncmp(dev_path, "/dev/xvd", 8) == 0)) {
271                 strcpy(dki_info->dki_cname, "xvd");
272                 dki_info->dki_ctype = DKC_MD;
273                 rval = sscanf(dev_path, "/dev/%[a-zA-Z]%hu",
274                     dki_info->dki_dname,
275                     &dki_info->dki_partition);
276         } else if ((strncmp(dev_path, "/dev/zd", 7) == 0)) {
277                 strcpy(dki_info->dki_cname, "zd");
278                 dki_info->dki_ctype = DKC_MD;
279                 strcpy(dki_info->dki_dname, "zd");
280                 rval = sscanf(dev_path, "/dev/zd%[0-9]p%hu",
281                     dki_info->dki_dname + 2,
282                     &dki_info->dki_partition);
283         } else if ((strncmp(dev_path, "/dev/dm-", 8) == 0)) {
284                 strcpy(dki_info->dki_cname, "pseudo");
285                 dki_info->dki_ctype = DKC_VBD;
286                 strcpy(dki_info->dki_dname, "dm-");
287                 rval = sscanf(dev_path, "/dev/dm-%[0-9]p%hu",
288                     dki_info->dki_dname + 3,
289                     &dki_info->dki_partition);
290         } else if ((strncmp(dev_path, "/dev/ram", 8) == 0)) {
291                 strcpy(dki_info->dki_cname, "pseudo");
292                 dki_info->dki_ctype = DKC_PCMCIA_MEM;
293                 strcpy(dki_info->dki_dname, "ram");
294                 rval = sscanf(dev_path, "/dev/ram%[0-9]p%hu",
295                     dki_info->dki_dname + 3,
296                     &dki_info->dki_partition);
297         } else if ((strncmp(dev_path, "/dev/loop", 9) == 0)) {
298                 strcpy(dki_info->dki_cname, "pseudo");
299                 dki_info->dki_ctype = DKC_VBD;
300                 strcpy(dki_info->dki_dname, "loop");
301                 rval = sscanf(dev_path, "/dev/loop%[0-9]p%hu",
302                     dki_info->dki_dname + 4,
303                     &dki_info->dki_partition);
304         } else if ((strncmp(dev_path, "/dev/nvme", 9) == 0)) {
305                 strcpy(dki_info->dki_cname, "nvme");
306                 dki_info->dki_ctype = DKC_SCSI_CCS;
307                 strcpy(dki_info->dki_dname, "nvme");
308                 (void) sscanf(dev_path, "/dev/nvme%[0-9]",
309                     dki_info->dki_dname + 4);
310                 size_t controller_length = strlen(
311                     dki_info->dki_dname);
312                 strcpy(dki_info->dki_dname + controller_length,
313                     "n");
314                 rval = sscanf(dev_path,
315                     "/dev/nvme%*[0-9]n%[0-9]p%hu",
316                     dki_info->dki_dname + controller_length + 1,
317                     &dki_info->dki_partition);
318         } else {
319                 strcpy(dki_info->dki_dname, "unknown");
320                 strcpy(dki_info->dki_cname, "unknown");
321                 dki_info->dki_ctype = DKC_UNKNOWN;
322         }
323
324         switch (rval) {
325         case 0:
326                 errno = EINVAL;
327                 goto error;
328         case 1:
329                 dki_info->dki_partition = 0;
330         }
331
332         free(dev_path);
333
334         return (0);
335 error:
336         if (efi_debug)
337                 (void) fprintf(stderr, "DKIOCINFO errno 0x%x\n", errno);
338
339         switch (errno) {
340         case EIO:
341                 return (VT_EIO);
342         case EINVAL:
343                 return (VT_EINVAL);
344         default:
345                 return (VT_ERROR);
346         }
347 }
348
349 /*
350  * the number of blocks the EFI label takes up (round up to nearest
351  * block)
352  */
353 #define NBLOCKS(p, l)   (1 + ((((p) * (int)sizeof (efi_gpe_t))  + \
354                                 ((l) - 1)) / (l)))
355 /* number of partitions -- limited by what we can malloc */
356 #define MAX_PARTS       ((4294967295UL - sizeof (struct dk_gpt)) / \
357                             sizeof (struct dk_part))
358
359 int
360 efi_alloc_and_init(int fd, uint32_t nparts, struct dk_gpt **vtoc)
361 {
362         diskaddr_t      capacity = 0;
363         uint_t          lbsize = 0;
364         uint_t          nblocks;
365         size_t          length;
366         struct dk_gpt   *vptr;
367         struct uuid     uuid;
368         struct dk_cinfo dki_info;
369
370         if (read_disk_info(fd, &capacity, &lbsize) != 0)
371                 return (-1);
372
373         if (efi_get_info(fd, &dki_info) != 0)
374                 return (-1);
375
376         if (dki_info.dki_partition != 0)
377                 return (-1);
378
379         if ((dki_info.dki_ctype == DKC_PCMCIA_MEM) ||
380             (dki_info.dki_ctype == DKC_VBD) ||
381             (dki_info.dki_ctype == DKC_UNKNOWN))
382                 return (-1);
383
384         nblocks = NBLOCKS(nparts, lbsize);
385         if ((nblocks * lbsize) < EFI_MIN_ARRAY_SIZE + lbsize) {
386                 /* 16K plus one block for the GPT */
387                 nblocks = EFI_MIN_ARRAY_SIZE / lbsize + 1;
388         }
389
390         if (nparts > MAX_PARTS) {
391                 if (efi_debug) {
392                         (void) fprintf(stderr,
393                         "the maximum number of partitions supported is %lu\n",
394                             MAX_PARTS);
395                 }
396                 return (-1);
397         }
398
399         length = sizeof (struct dk_gpt) +
400             sizeof (struct dk_part) * (nparts - 1);
401
402         vptr = calloc(1, length);
403         if (vptr == NULL)
404                 return (-1);
405
406         *vtoc = vptr;
407
408         vptr->efi_version = EFI_VERSION_CURRENT;
409         vptr->efi_lbasize = lbsize;
410         vptr->efi_nparts = nparts;
411         /*
412          * add one block here for the PMBR; on disks with a 512 byte
413          * block size and 128 or fewer partitions, efi_first_u_lba
414          * should work out to "34"
415          */
416         vptr->efi_first_u_lba = nblocks + 1;
417         vptr->efi_last_lba = capacity - 1;
418         vptr->efi_altern_lba = capacity -1;
419         vptr->efi_last_u_lba = vptr->efi_last_lba - nblocks;
420
421         (void) uuid_generate((uchar_t *)&uuid);
422         UUID_LE_CONVERT(vptr->efi_disk_uguid, uuid);
423         return (0);
424 }
425
426 /*
427  * Read EFI - return partition number upon success.
428  */
429 int
430 efi_alloc_and_read(int fd, struct dk_gpt **vtoc)
431 {
432         int                     rval;
433         uint32_t                nparts;
434         int                     length;
435         struct dk_gpt           *vptr;
436
437         /* figure out the number of entries that would fit into 16K */
438         nparts = EFI_MIN_ARRAY_SIZE / sizeof (efi_gpe_t);
439         length = (int) sizeof (struct dk_gpt) +
440             (int) sizeof (struct dk_part) * (nparts - 1);
441         vptr = calloc(1, length);
442
443         if (vptr == NULL)
444                 return (VT_ERROR);
445
446         vptr->efi_nparts = nparts;
447         rval = efi_read(fd, vptr);
448
449         if ((rval == VT_EINVAL) && vptr->efi_nparts > nparts) {
450                 void *tmp;
451                 length = (int) sizeof (struct dk_gpt) +
452                     (int) sizeof (struct dk_part) * (vptr->efi_nparts - 1);
453                 nparts = vptr->efi_nparts;
454                 if ((tmp = realloc(vptr, length)) == NULL) {
455                         free(vptr);
456                         *vtoc = NULL;
457                         return (VT_ERROR);
458                 } else {
459                         vptr = tmp;
460                         rval = efi_read(fd, vptr);
461                 }
462         }
463
464         if (rval < 0) {
465                 if (efi_debug) {
466                         (void) fprintf(stderr,
467                             "read of EFI table failed, rval=%d\n", rval);
468                 }
469                 free(vptr);
470                 *vtoc = NULL;
471         } else {
472                 *vtoc = vptr;
473         }
474
475         return (rval);
476 }
477
478 static int
479 efi_ioctl(int fd, int cmd, dk_efi_t *dk_ioc)
480 {
481         void *data = dk_ioc->dki_data;
482         int error;
483         diskaddr_t capacity;
484         uint_t lbsize;
485
486         /*
487          * When the IO is not being performed in kernel as an ioctl we need
488          * to know the sector size so we can seek to the proper byte offset.
489          */
490         if (read_disk_info(fd, &capacity, &lbsize) == -1) {
491                 if (efi_debug)
492                         fprintf(stderr, "unable to read disk info: %d", errno);
493
494                 errno = EIO;
495                 return (-1);
496         }
497
498         switch (cmd) {
499         case DKIOCGETEFI:
500                 if (lbsize == 0) {
501                         if (efi_debug)
502                                 (void) fprintf(stderr, "DKIOCGETEFI assuming "
503                                     "LBA %d bytes\n", DEV_BSIZE);
504
505                         lbsize = DEV_BSIZE;
506                 }
507
508                 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
509                 if (error == -1) {
510                         if (efi_debug)
511                                 (void) fprintf(stderr, "DKIOCGETEFI lseek "
512                                     "error: %d\n", errno);
513                         return (error);
514                 }
515
516                 error = read(fd, data, dk_ioc->dki_length);
517                 if (error == -1) {
518                         if (efi_debug)
519                                 (void) fprintf(stderr, "DKIOCGETEFI read "
520                                     "error: %d\n", errno);
521                         return (error);
522                 }
523
524                 if (error != dk_ioc->dki_length) {
525                         if (efi_debug)
526                                 (void) fprintf(stderr, "DKIOCGETEFI short "
527                                     "read of %d bytes\n", error);
528                         errno = EIO;
529                         return (-1);
530                 }
531                 error = 0;
532                 break;
533
534         case DKIOCSETEFI:
535                 if (lbsize == 0) {
536                         if (efi_debug)
537                                 (void) fprintf(stderr, "DKIOCSETEFI unknown "
538                                     "LBA size\n");
539                         errno = EIO;
540                         return (-1);
541                 }
542
543                 error = lseek(fd, dk_ioc->dki_lba * lbsize, SEEK_SET);
544                 if (error == -1) {
545                         if (efi_debug)
546                                 (void) fprintf(stderr, "DKIOCSETEFI lseek "
547                                     "error: %d\n", errno);
548                         return (error);
549                 }
550
551                 error = write(fd, data, dk_ioc->dki_length);
552                 if (error == -1) {
553                         if (efi_debug)
554                                 (void) fprintf(stderr, "DKIOCSETEFI write "
555                                     "error: %d\n", errno);
556                         return (error);
557                 }
558
559                 if (error != dk_ioc->dki_length) {
560                         if (efi_debug)
561                                 (void) fprintf(stderr, "DKIOCSETEFI short "
562                                     "write of %d bytes\n", error);
563                         errno = EIO;
564                         return (-1);
565                 }
566
567                 /* Sync the new EFI table to disk */
568                 error = fsync(fd);
569                 if (error == -1)
570                         return (error);
571
572                 /* Ensure any local disk cache is also flushed */
573                 if (ioctl(fd, BLKFLSBUF, 0) == -1)
574                         return (error);
575
576                 error = 0;
577                 break;
578
579         default:
580                 if (efi_debug)
581                         (void) fprintf(stderr, "unsupported ioctl()\n");
582
583                 errno = EIO;
584                 return (-1);
585         }
586
587         return (error);
588 }
589
590 int
591 efi_rescan(int fd)
592 {
593         int retry = 10;
594         int error;
595
596         /* Notify the kernel a devices partition table has been updated */
597         while ((error = ioctl(fd, BLKRRPART)) != 0) {
598                 if ((--retry == 0) || (errno != EBUSY)) {
599                         (void) fprintf(stderr, "the kernel failed to rescan "
600                             "the partition table: %d\n", errno);
601                         return (-1);
602                 }
603                 usleep(50000);
604         }
605
606         return (0);
607 }
608
609 static int
610 check_label(int fd, dk_efi_t *dk_ioc)
611 {
612         efi_gpt_t               *efi;
613         uint_t                  crc;
614
615         if (efi_ioctl(fd, DKIOCGETEFI, dk_ioc) == -1) {
616                 switch (errno) {
617                 case EIO:
618                         return (VT_EIO);
619                 default:
620                         return (VT_ERROR);
621                 }
622         }
623         efi = dk_ioc->dki_data;
624         if (efi->efi_gpt_Signature != LE_64(EFI_SIGNATURE)) {
625                 if (efi_debug)
626                         (void) fprintf(stderr,
627                             "Bad EFI signature: 0x%llx != 0x%llx\n",
628                             (long long)efi->efi_gpt_Signature,
629                             (long long)LE_64(EFI_SIGNATURE));
630                 return (VT_EINVAL);
631         }
632
633         /*
634          * check CRC of the header; the size of the header should
635          * never be larger than one block
636          */
637         crc = efi->efi_gpt_HeaderCRC32;
638         efi->efi_gpt_HeaderCRC32 = 0;
639         len_t headerSize = (len_t)LE_32(efi->efi_gpt_HeaderSize);
640
641         if (headerSize < EFI_MIN_LABEL_SIZE || headerSize > EFI_LABEL_SIZE) {
642                 if (efi_debug)
643                         (void) fprintf(stderr,
644                             "Invalid EFI HeaderSize %llu.  Assuming %d.\n",
645                             headerSize, EFI_MIN_LABEL_SIZE);
646         }
647
648         if ((headerSize > dk_ioc->dki_length) ||
649             crc != LE_32(efi_crc32((unsigned char *)efi, headerSize))) {
650                 if (efi_debug)
651                         (void) fprintf(stderr,
652                             "Bad EFI CRC: 0x%x != 0x%x\n",
653                             crc, LE_32(efi_crc32((unsigned char *)efi,
654                             headerSize)));
655                 return (VT_EINVAL);
656         }
657
658         return (0);
659 }
660
661 static int
662 efi_read(int fd, struct dk_gpt *vtoc)
663 {
664         int                     i, j;
665         int                     label_len;
666         int                     rval = 0;
667         int                     md_flag = 0;
668         int                     vdc_flag = 0;
669         diskaddr_t              capacity = 0;
670         uint_t                  lbsize = 0;
671         struct dk_minfo         disk_info;
672         dk_efi_t                dk_ioc;
673         efi_gpt_t               *efi;
674         efi_gpe_t               *efi_parts;
675         struct dk_cinfo         dki_info;
676         uint32_t                user_length;
677         boolean_t               legacy_label = B_FALSE;
678
679         /*
680          * get the partition number for this file descriptor.
681          */
682         if ((rval = efi_get_info(fd, &dki_info)) != 0)
683                 return (rval);
684
685         if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
686             (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
687                 md_flag++;
688         } else if ((strncmp(dki_info.dki_cname, "vdc", 4) == 0) &&
689             (strncmp(dki_info.dki_dname, "vdc", 4) == 0)) {
690                 /*
691                  * The controller and drive name "vdc" (virtual disk client)
692                  * indicates a LDoms virtual disk.
693                  */
694                 vdc_flag++;
695         }
696
697         /* get the LBA size */
698         if (read_disk_info(fd, &capacity, &lbsize) == -1) {
699                 if (efi_debug) {
700                         (void) fprintf(stderr,
701                             "unable to read disk info: %d",
702                             errno);
703                 }
704                 return (VT_EINVAL);
705         }
706
707         disk_info.dki_lbsize = lbsize;
708         disk_info.dki_capacity = capacity;
709
710         if (disk_info.dki_lbsize == 0) {
711                 if (efi_debug) {
712                         (void) fprintf(stderr,
713                             "efi_read: assuming LBA 512 bytes\n");
714                 }
715                 disk_info.dki_lbsize = DEV_BSIZE;
716         }
717         /*
718          * Read the EFI GPT to figure out how many partitions we need
719          * to deal with.
720          */
721         dk_ioc.dki_lba = 1;
722         if (NBLOCKS(vtoc->efi_nparts, disk_info.dki_lbsize) < 34) {
723                 label_len = EFI_MIN_ARRAY_SIZE + disk_info.dki_lbsize;
724         } else {
725                 label_len = vtoc->efi_nparts * (int) sizeof (efi_gpe_t) +
726                     disk_info.dki_lbsize;
727                 if (label_len % disk_info.dki_lbsize) {
728                         /* pad to physical sector size */
729                         label_len += disk_info.dki_lbsize;
730                         label_len &= ~(disk_info.dki_lbsize - 1);
731                 }
732         }
733
734         if (posix_memalign((void **)&dk_ioc.dki_data,
735             disk_info.dki_lbsize, label_len))
736                 return (VT_ERROR);
737
738         memset(dk_ioc.dki_data, 0, label_len);
739         dk_ioc.dki_length = disk_info.dki_lbsize;
740         user_length = vtoc->efi_nparts;
741         efi = dk_ioc.dki_data;
742         if (md_flag) {
743                 dk_ioc.dki_length = label_len;
744                 if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
745                         switch (errno) {
746                         case EIO:
747                                 return (VT_EIO);
748                         default:
749                                 return (VT_ERROR);
750                         }
751                 }
752         } else if ((rval = check_label(fd, &dk_ioc)) == VT_EINVAL) {
753                 /*
754                  * No valid label here; try the alternate. Note that here
755                  * we just read GPT header and save it into dk_ioc.data,
756                  * Later, we will read GUID partition entry array if we
757                  * can get valid GPT header.
758                  */
759
760                 /*
761                  * This is a workaround for legacy systems. In the past, the
762                  * last sector of SCSI disk was invisible on x86 platform. At
763                  * that time, backup label was saved on the next to the last
764                  * sector. It is possible for users to move a disk from previous
765                  * solaris system to present system. Here, we attempt to search
766                  * legacy backup EFI label first.
767                  */
768                 dk_ioc.dki_lba = disk_info.dki_capacity - 2;
769                 dk_ioc.dki_length = disk_info.dki_lbsize;
770                 rval = check_label(fd, &dk_ioc);
771                 if (rval == VT_EINVAL) {
772                         /*
773                          * we didn't find legacy backup EFI label, try to
774                          * search backup EFI label in the last block.
775                          */
776                         dk_ioc.dki_lba = disk_info.dki_capacity - 1;
777                         dk_ioc.dki_length = disk_info.dki_lbsize;
778                         rval = check_label(fd, &dk_ioc);
779                         if (rval == 0) {
780                                 legacy_label = B_TRUE;
781                                 if (efi_debug)
782                                         (void) fprintf(stderr,
783                                             "efi_read: primary label corrupt; "
784                                             "using EFI backup label located on"
785                                             " the last block\n");
786                         }
787                 } else {
788                         if ((efi_debug) && (rval == 0))
789                                 (void) fprintf(stderr, "efi_read: primary label"
790                                     " corrupt; using legacy EFI backup label "
791                                     " located on the next to last block\n");
792                 }
793
794                 if (rval == 0) {
795                         dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
796                         vtoc->efi_flags |= EFI_GPT_PRIMARY_CORRUPT;
797                         vtoc->efi_nparts =
798                             LE_32(efi->efi_gpt_NumberOfPartitionEntries);
799                         /*
800                          * Partition tables are between backup GPT header
801                          * table and ParitionEntryLBA (the starting LBA of
802                          * the GUID partition entries array). Now that we
803                          * already got valid GPT header and saved it in
804                          * dk_ioc.dki_data, we try to get GUID partition
805                          * entry array here.
806                          */
807                         /* LINTED */
808                         dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
809                             + disk_info.dki_lbsize);
810                         if (legacy_label)
811                                 dk_ioc.dki_length = disk_info.dki_capacity - 1 -
812                                     dk_ioc.dki_lba;
813                         else
814                                 dk_ioc.dki_length = disk_info.dki_capacity - 2 -
815                                     dk_ioc.dki_lba;
816                         dk_ioc.dki_length *= disk_info.dki_lbsize;
817                         if (dk_ioc.dki_length >
818                             ((len_t)label_len - sizeof (*dk_ioc.dki_data))) {
819                                 rval = VT_EINVAL;
820                         } else {
821                                 /*
822                                  * read GUID partition entry array
823                                  */
824                                 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
825                         }
826                 }
827
828         } else if (rval == 0) {
829
830                 dk_ioc.dki_lba = LE_64(efi->efi_gpt_PartitionEntryLBA);
831                 /* LINTED */
832                 dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data
833                     + disk_info.dki_lbsize);
834                 dk_ioc.dki_length = label_len - disk_info.dki_lbsize;
835                 rval = efi_ioctl(fd, DKIOCGETEFI, &dk_ioc);
836
837         } else if (vdc_flag && rval == VT_ERROR && errno == EINVAL) {
838                 /*
839                  * When the device is a LDoms virtual disk, the DKIOCGETEFI
840                  * ioctl can fail with EINVAL if the virtual disk backend
841                  * is a ZFS volume serviced by a domain running an old version
842                  * of Solaris. This is because the DKIOCGETEFI ioctl was
843                  * initially incorrectly implemented for a ZFS volume and it
844                  * expected the GPT and GPE to be retrieved with a single ioctl.
845                  * So we try to read the GPT and the GPE using that old style
846                  * ioctl.
847                  */
848                 dk_ioc.dki_lba = 1;
849                 dk_ioc.dki_length = label_len;
850                 rval = check_label(fd, &dk_ioc);
851         }
852
853         if (rval < 0) {
854                 free(efi);
855                 return (rval);
856         }
857
858         /* LINTED -- always longlong aligned */
859         efi_parts = (efi_gpe_t *)(((char *)efi) + disk_info.dki_lbsize);
860
861         /*
862          * Assemble this into a "dk_gpt" struct for easier
863          * digestibility by applications.
864          */
865         vtoc->efi_version = LE_32(efi->efi_gpt_Revision);
866         vtoc->efi_nparts = LE_32(efi->efi_gpt_NumberOfPartitionEntries);
867         vtoc->efi_part_size = LE_32(efi->efi_gpt_SizeOfPartitionEntry);
868         vtoc->efi_lbasize = disk_info.dki_lbsize;
869         vtoc->efi_last_lba = disk_info.dki_capacity - 1;
870         vtoc->efi_first_u_lba = LE_64(efi->efi_gpt_FirstUsableLBA);
871         vtoc->efi_last_u_lba = LE_64(efi->efi_gpt_LastUsableLBA);
872         vtoc->efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA);
873         UUID_LE_CONVERT(vtoc->efi_disk_uguid, efi->efi_gpt_DiskGUID);
874
875         /*
876          * If the array the user passed in is too small, set the length
877          * to what it needs to be and return
878          */
879         if (user_length < vtoc->efi_nparts) {
880                 return (VT_EINVAL);
881         }
882
883         for (i = 0; i < vtoc->efi_nparts; i++) {
884
885                 UUID_LE_CONVERT(vtoc->efi_parts[i].p_guid,
886                     efi_parts[i].efi_gpe_PartitionTypeGUID);
887
888                 for (j = 0;
889                     j < sizeof (conversion_array)
890                     / sizeof (struct uuid_to_ptag); j++) {
891
892                         if (bcmp(&vtoc->efi_parts[i].p_guid,
893                             &conversion_array[j].uuid,
894                             sizeof (struct uuid)) == 0) {
895                                 vtoc->efi_parts[i].p_tag = j;
896                                 break;
897                         }
898                 }
899                 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
900                         continue;
901                 vtoc->efi_parts[i].p_flag =
902                     LE_16(efi_parts[i].efi_gpe_Attributes.PartitionAttrs);
903                 vtoc->efi_parts[i].p_start =
904                     LE_64(efi_parts[i].efi_gpe_StartingLBA);
905                 vtoc->efi_parts[i].p_size =
906                     LE_64(efi_parts[i].efi_gpe_EndingLBA) -
907                     vtoc->efi_parts[i].p_start + 1;
908                 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
909                         vtoc->efi_parts[i].p_name[j] =
910                             (uchar_t)LE_16(
911                             efi_parts[i].efi_gpe_PartitionName[j]);
912                 }
913
914                 UUID_LE_CONVERT(vtoc->efi_parts[i].p_uguid,
915                     efi_parts[i].efi_gpe_UniquePartitionGUID);
916         }
917         free(efi);
918
919         return (dki_info.dki_partition);
920 }
921
922 /* writes a "protective" MBR */
923 static int
924 write_pmbr(int fd, struct dk_gpt *vtoc)
925 {
926         dk_efi_t        dk_ioc;
927         struct mboot    mb;
928         uchar_t         *cp;
929         diskaddr_t      size_in_lba;
930         uchar_t         *buf;
931         int             len;
932
933         len = (vtoc->efi_lbasize == 0) ? sizeof (mb) : vtoc->efi_lbasize;
934         if (posix_memalign((void **)&buf, len, len))
935                 return (VT_ERROR);
936
937         /*
938          * Preserve any boot code and disk signature if the first block is
939          * already an MBR.
940          */
941         memset(buf, 0, len);
942         dk_ioc.dki_lba = 0;
943         dk_ioc.dki_length = len;
944         /* LINTED -- always longlong aligned */
945         dk_ioc.dki_data = (efi_gpt_t *)buf;
946         if (efi_ioctl(fd, DKIOCGETEFI, &dk_ioc) == -1) {
947                 (void) memcpy(&mb, buf, sizeof (mb));
948                 bzero(&mb, sizeof (mb));
949                 mb.signature = LE_16(MBB_MAGIC);
950         } else {
951                 (void) memcpy(&mb, buf, sizeof (mb));
952                 if (mb.signature != LE_16(MBB_MAGIC)) {
953                         bzero(&mb, sizeof (mb));
954                         mb.signature = LE_16(MBB_MAGIC);
955                 }
956         }
957
958         bzero(&mb.parts, sizeof (mb.parts));
959         cp = (uchar_t *)&mb.parts[0];
960         /* bootable or not */
961         *cp++ = 0;
962         /* beginning CHS; 0xffffff if not representable */
963         *cp++ = 0xff;
964         *cp++ = 0xff;
965         *cp++ = 0xff;
966         /* OS type */
967         *cp++ = EFI_PMBR;
968         /* ending CHS; 0xffffff if not representable */
969         *cp++ = 0xff;
970         *cp++ = 0xff;
971         *cp++ = 0xff;
972         /* starting LBA: 1 (little endian format) by EFI definition */
973         *cp++ = 0x01;
974         *cp++ = 0x00;
975         *cp++ = 0x00;
976         *cp++ = 0x00;
977         /* ending LBA: last block on the disk (little endian format) */
978         size_in_lba = vtoc->efi_last_lba;
979         if (size_in_lba < 0xffffffff) {
980                 *cp++ = (size_in_lba & 0x000000ff);
981                 *cp++ = (size_in_lba & 0x0000ff00) >> 8;
982                 *cp++ = (size_in_lba & 0x00ff0000) >> 16;
983                 *cp++ = (size_in_lba & 0xff000000) >> 24;
984         } else {
985                 *cp++ = 0xff;
986                 *cp++ = 0xff;
987                 *cp++ = 0xff;
988                 *cp++ = 0xff;
989         }
990
991         (void) memcpy(buf, &mb, sizeof (mb));
992         /* LINTED -- always longlong aligned */
993         dk_ioc.dki_data = (efi_gpt_t *)buf;
994         dk_ioc.dki_lba = 0;
995         dk_ioc.dki_length = len;
996         if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
997                 free(buf);
998                 switch (errno) {
999                 case EIO:
1000                         return (VT_EIO);
1001                 case EINVAL:
1002                         return (VT_EINVAL);
1003                 default:
1004                         return (VT_ERROR);
1005                 }
1006         }
1007         free(buf);
1008         return (0);
1009 }
1010
1011 /* make sure the user specified something reasonable */
1012 static int
1013 check_input(struct dk_gpt *vtoc)
1014 {
1015         int                     resv_part = -1;
1016         int                     i, j;
1017         diskaddr_t              istart, jstart, isize, jsize, endsect;
1018
1019         /*
1020          * Sanity-check the input (make sure no partitions overlap)
1021          */
1022         for (i = 0; i < vtoc->efi_nparts; i++) {
1023                 /* It can't be unassigned and have an actual size */
1024                 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1025                     (vtoc->efi_parts[i].p_size != 0)) {
1026                         if (efi_debug) {
1027                                 (void) fprintf(stderr, "partition %d is "
1028                                     "\"unassigned\" but has a size of %llu",
1029                                     i, vtoc->efi_parts[i].p_size);
1030                         }
1031                         return (VT_EINVAL);
1032                 }
1033                 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1034                         if (uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_guid))
1035                                 continue;
1036                         /* we have encountered an unknown uuid */
1037                         vtoc->efi_parts[i].p_tag = 0xff;
1038                 }
1039                 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1040                         if (resv_part != -1) {
1041                                 if (efi_debug) {
1042                                         (void) fprintf(stderr, "found "
1043                                             "duplicate reserved partition "
1044                                             "at %d\n", i);
1045                                 }
1046                                 return (VT_EINVAL);
1047                         }
1048                         resv_part = i;
1049                 }
1050                 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1051                     (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1052                         if (efi_debug) {
1053                                 (void) fprintf(stderr,
1054                                     "Partition %d starts at %llu.  ",
1055                                     i,
1056                                     vtoc->efi_parts[i].p_start);
1057                                 (void) fprintf(stderr,
1058                                     "It must be between %llu and %llu.\n",
1059                                     vtoc->efi_first_u_lba,
1060                                     vtoc->efi_last_u_lba);
1061                         }
1062                         return (VT_EINVAL);
1063                 }
1064                 if ((vtoc->efi_parts[i].p_start +
1065                     vtoc->efi_parts[i].p_size <
1066                     vtoc->efi_first_u_lba) ||
1067                     (vtoc->efi_parts[i].p_start +
1068                     vtoc->efi_parts[i].p_size >
1069                     vtoc->efi_last_u_lba + 1)) {
1070                         if (efi_debug) {
1071                                 (void) fprintf(stderr,
1072                                     "Partition %d ends at %llu.  ",
1073                                     i,
1074                                     vtoc->efi_parts[i].p_start +
1075                                     vtoc->efi_parts[i].p_size);
1076                                 (void) fprintf(stderr,
1077                                     "It must be between %llu and %llu.\n",
1078                                     vtoc->efi_first_u_lba,
1079                                     vtoc->efi_last_u_lba);
1080                         }
1081                         return (VT_EINVAL);
1082                 }
1083
1084                 for (j = 0; j < vtoc->efi_nparts; j++) {
1085                         isize = vtoc->efi_parts[i].p_size;
1086                         jsize = vtoc->efi_parts[j].p_size;
1087                         istart = vtoc->efi_parts[i].p_start;
1088                         jstart = vtoc->efi_parts[j].p_start;
1089                         if ((i != j) && (isize != 0) && (jsize != 0)) {
1090                                 endsect = jstart + jsize -1;
1091                                 if ((jstart <= istart) &&
1092                                     (istart <= endsect)) {
1093                                         if (efi_debug) {
1094                                                 (void) fprintf(stderr,
1095                                                     "Partition %d overlaps "
1096                                                     "partition %d.", i, j);
1097                                         }
1098                                         return (VT_EINVAL);
1099                                 }
1100                         }
1101                 }
1102         }
1103         /* just a warning for now */
1104         if ((resv_part == -1) && efi_debug) {
1105                 (void) fprintf(stderr,
1106                     "no reserved partition found\n");
1107         }
1108         return (0);
1109 }
1110
1111 /*
1112  * add all the unallocated space to the current label
1113  */
1114 int
1115 efi_use_whole_disk(int fd)
1116 {
1117         struct dk_gpt           *efi_label = NULL;
1118         int                     rval;
1119         int                     i;
1120         uint_t                  resv_index = 0, data_index = 0;
1121         diskaddr_t              resv_start = 0, data_start = 0;
1122         diskaddr_t              data_size, limit, difference;
1123         boolean_t               sync_needed = B_FALSE;
1124         uint_t                  nblocks;
1125
1126         rval = efi_alloc_and_read(fd, &efi_label);
1127         if (rval < 0) {
1128                 if (efi_label != NULL)
1129                         efi_free(efi_label);
1130                 return (rval);
1131         }
1132
1133         /*
1134          * Find the last physically non-zero partition.
1135          * This should be the reserved partition.
1136          */
1137         for (i = 0; i < efi_label->efi_nparts; i ++) {
1138                 if (resv_start < efi_label->efi_parts[i].p_start) {
1139                         resv_start = efi_label->efi_parts[i].p_start;
1140                         resv_index = i;
1141                 }
1142         }
1143
1144         /*
1145          * Find the last physically non-zero partition before that.
1146          * This is the data partition.
1147          */
1148         for (i = 0; i < resv_index; i ++) {
1149                 if (data_start < efi_label->efi_parts[i].p_start) {
1150                         data_start = efi_label->efi_parts[i].p_start;
1151                         data_index = i;
1152                 }
1153         }
1154         data_size = efi_label->efi_parts[data_index].p_size;
1155
1156         /*
1157          * See the "efi_alloc_and_init" function for more information
1158          * about where this "nblocks" value comes from.
1159          */
1160         nblocks = efi_label->efi_first_u_lba - 1;
1161
1162         /*
1163          * Determine if the EFI label is out of sync. We check that:
1164          *
1165          * 1. the data partition ends at the limit we set, and
1166          * 2. the reserved partition starts at the limit we set.
1167          *
1168          * If either of these conditions is not met, then we need to
1169          * resync the EFI label.
1170          *
1171          * The limit is the last usable LBA, determined by the last LBA
1172          * and the first usable LBA fields on the EFI label of the disk
1173          * (see the lines directly above). Additionally, we factor in
1174          * EFI_MIN_RESV_SIZE (per its use in "zpool_label_disk") and
1175          * P2ALIGN it to ensure the partition boundaries are aligned
1176          * (for performance reasons). The alignment should match the
1177          * alignment used by the "zpool_label_disk" function.
1178          */
1179         limit = P2ALIGN(efi_label->efi_last_lba - nblocks - EFI_MIN_RESV_SIZE,
1180             PARTITION_END_ALIGNMENT);
1181         if (data_start + data_size != limit || resv_start != limit)
1182                 sync_needed = B_TRUE;
1183
1184         if (efi_debug && sync_needed)
1185                 (void) fprintf(stderr, "efi_use_whole_disk: sync needed\n");
1186
1187         /*
1188          * If alter_lba is 1, we are using the backup label.
1189          * Since we can locate the backup label by disk capacity,
1190          * there must be no unallocated space.
1191          */
1192         if ((efi_label->efi_altern_lba == 1) || (efi_label->efi_altern_lba
1193             >= efi_label->efi_last_lba && !sync_needed)) {
1194                 if (efi_debug) {
1195                         (void) fprintf(stderr,
1196                             "efi_use_whole_disk: requested space not found\n");
1197                 }
1198                 efi_free(efi_label);
1199                 return (VT_ENOSPC);
1200         }
1201
1202         /*
1203          * Verify that we've found the reserved partition by checking
1204          * that it looks the way it did when we created it in zpool_label_disk.
1205          * If we've found the incorrect partition, then we know that this
1206          * device was reformatted and no longer is solely used by ZFS.
1207          */
1208         if ((efi_label->efi_parts[resv_index].p_size != EFI_MIN_RESV_SIZE) ||
1209             (efi_label->efi_parts[resv_index].p_tag != V_RESERVED) ||
1210             (resv_index != 8)) {
1211                 if (efi_debug) {
1212                         (void) fprintf(stderr,
1213                             "efi_use_whole_disk: wholedisk not available\n");
1214                 }
1215                 efi_free(efi_label);
1216                 return (VT_ENOSPC);
1217         }
1218
1219         if (data_start + data_size != resv_start) {
1220                 if (efi_debug) {
1221                         (void) fprintf(stderr,
1222                             "efi_use_whole_disk: "
1223                             "data_start (%lli) + "
1224                             "data_size (%lli) != "
1225                             "resv_start (%lli)\n",
1226                             data_start, data_size, resv_start);
1227                 }
1228
1229                 return (VT_EINVAL);
1230         }
1231
1232         if (limit < resv_start) {
1233                 if (efi_debug) {
1234                         (void) fprintf(stderr,
1235                             "efi_use_whole_disk: "
1236                             "limit (%lli) < resv_start (%lli)\n",
1237                             limit, resv_start);
1238                 }
1239
1240                 return (VT_EINVAL);
1241         }
1242
1243         difference = limit - resv_start;
1244
1245         if (efi_debug)
1246                 (void) fprintf(stderr,
1247                     "efi_use_whole_disk: difference is %lli\n", difference);
1248
1249         /*
1250          * Move the reserved partition. There is currently no data in
1251          * here except fabricated devids (which get generated via
1252          * efi_write()). So there is no need to copy data.
1253          */
1254         efi_label->efi_parts[data_index].p_size += difference;
1255         efi_label->efi_parts[resv_index].p_start += difference;
1256         efi_label->efi_last_u_lba = efi_label->efi_last_lba - nblocks;
1257
1258         rval = efi_write(fd, efi_label);
1259         if (rval < 0) {
1260                 if (efi_debug) {
1261                         (void) fprintf(stderr,
1262                             "efi_use_whole_disk:fail to write label, rval=%d\n",
1263                             rval);
1264                 }
1265                 efi_free(efi_label);
1266                 return (rval);
1267         }
1268
1269         efi_free(efi_label);
1270         return (0);
1271 }
1272
1273 /*
1274  * write EFI label and backup label
1275  */
1276 int
1277 efi_write(int fd, struct dk_gpt *vtoc)
1278 {
1279         dk_efi_t                dk_ioc;
1280         efi_gpt_t               *efi;
1281         efi_gpe_t               *efi_parts;
1282         int                     i, j;
1283         struct dk_cinfo         dki_info;
1284         int                     rval;
1285         int                     md_flag = 0;
1286         int                     nblocks;
1287         diskaddr_t              lba_backup_gpt_hdr;
1288
1289         if ((rval = efi_get_info(fd, &dki_info)) != 0)
1290                 return (rval);
1291
1292         /* check if we are dealing with a metadevice */
1293         if ((strncmp(dki_info.dki_cname, "pseudo", 7) == 0) &&
1294             (strncmp(dki_info.dki_dname, "md", 3) == 0)) {
1295                 md_flag = 1;
1296         }
1297
1298         if (check_input(vtoc)) {
1299                 /*
1300                  * not valid; if it's a metadevice just pass it down
1301                  * because SVM will do its own checking
1302                  */
1303                 if (md_flag == 0) {
1304                         return (VT_EINVAL);
1305                 }
1306         }
1307
1308         dk_ioc.dki_lba = 1;
1309         if (NBLOCKS(vtoc->efi_nparts, vtoc->efi_lbasize) < 34) {
1310                 dk_ioc.dki_length = EFI_MIN_ARRAY_SIZE + vtoc->efi_lbasize;
1311         } else {
1312                 dk_ioc.dki_length = NBLOCKS(vtoc->efi_nparts,
1313                     vtoc->efi_lbasize) *
1314                     vtoc->efi_lbasize;
1315         }
1316
1317         /*
1318          * the number of blocks occupied by GUID partition entry array
1319          */
1320         nblocks = dk_ioc.dki_length / vtoc->efi_lbasize - 1;
1321
1322         /*
1323          * Backup GPT header is located on the block after GUID
1324          * partition entry array. Here, we calculate the address
1325          * for backup GPT header.
1326          */
1327         lba_backup_gpt_hdr = vtoc->efi_last_u_lba + 1 + nblocks;
1328         if (posix_memalign((void **)&dk_ioc.dki_data,
1329             vtoc->efi_lbasize, dk_ioc.dki_length))
1330                 return (VT_ERROR);
1331
1332         memset(dk_ioc.dki_data, 0, dk_ioc.dki_length);
1333         efi = dk_ioc.dki_data;
1334
1335         /* stuff user's input into EFI struct */
1336         efi->efi_gpt_Signature = LE_64(EFI_SIGNATURE);
1337         efi->efi_gpt_Revision = LE_32(vtoc->efi_version); /* 0x02000100 */
1338         efi->efi_gpt_HeaderSize = LE_32(sizeof (struct efi_gpt) - LEN_EFI_PAD);
1339         efi->efi_gpt_Reserved1 = 0;
1340         efi->efi_gpt_MyLBA = LE_64(1ULL);
1341         efi->efi_gpt_AlternateLBA = LE_64(lba_backup_gpt_hdr);
1342         efi->efi_gpt_FirstUsableLBA = LE_64(vtoc->efi_first_u_lba);
1343         efi->efi_gpt_LastUsableLBA = LE_64(vtoc->efi_last_u_lba);
1344         efi->efi_gpt_PartitionEntryLBA = LE_64(2ULL);
1345         efi->efi_gpt_NumberOfPartitionEntries = LE_32(vtoc->efi_nparts);
1346         efi->efi_gpt_SizeOfPartitionEntry = LE_32(sizeof (struct efi_gpe));
1347         UUID_LE_CONVERT(efi->efi_gpt_DiskGUID, vtoc->efi_disk_uguid);
1348
1349         /* LINTED -- always longlong aligned */
1350         efi_parts = (efi_gpe_t *)((char *)dk_ioc.dki_data + vtoc->efi_lbasize);
1351
1352         for (i = 0; i < vtoc->efi_nparts; i++) {
1353                 for (j = 0;
1354                     j < sizeof (conversion_array) /
1355                     sizeof (struct uuid_to_ptag); j++) {
1356
1357                         if (vtoc->efi_parts[i].p_tag == j) {
1358                                 UUID_LE_CONVERT(
1359                                     efi_parts[i].efi_gpe_PartitionTypeGUID,
1360                                     conversion_array[j].uuid);
1361                                 break;
1362                         }
1363                 }
1364
1365                 if (j == sizeof (conversion_array) /
1366                     sizeof (struct uuid_to_ptag)) {
1367                         /*
1368                          * If we didn't have a matching uuid match, bail here.
1369                          * Don't write a label with unknown uuid.
1370                          */
1371                         if (efi_debug) {
1372                                 (void) fprintf(stderr,
1373                                     "Unknown uuid for p_tag %d\n",
1374                                     vtoc->efi_parts[i].p_tag);
1375                         }
1376                         return (VT_EINVAL);
1377                 }
1378
1379                 /* Zero's should be written for empty partitions */
1380                 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED)
1381                         continue;
1382
1383                 efi_parts[i].efi_gpe_StartingLBA =
1384                     LE_64(vtoc->efi_parts[i].p_start);
1385                 efi_parts[i].efi_gpe_EndingLBA =
1386                     LE_64(vtoc->efi_parts[i].p_start +
1387                     vtoc->efi_parts[i].p_size - 1);
1388                 efi_parts[i].efi_gpe_Attributes.PartitionAttrs =
1389                     LE_16(vtoc->efi_parts[i].p_flag);
1390                 for (j = 0; j < EFI_PART_NAME_LEN; j++) {
1391                         efi_parts[i].efi_gpe_PartitionName[j] =
1392                             LE_16((ushort_t)vtoc->efi_parts[i].p_name[j]);
1393                 }
1394                 if ((vtoc->efi_parts[i].p_tag != V_UNASSIGNED) &&
1395                     uuid_is_null((uchar_t *)&vtoc->efi_parts[i].p_uguid)) {
1396                         (void) uuid_generate((uchar_t *)
1397                             &vtoc->efi_parts[i].p_uguid);
1398                 }
1399                 bcopy(&vtoc->efi_parts[i].p_uguid,
1400                     &efi_parts[i].efi_gpe_UniquePartitionGUID,
1401                     sizeof (uuid_t));
1402         }
1403         efi->efi_gpt_PartitionEntryArrayCRC32 =
1404             LE_32(efi_crc32((unsigned char *)efi_parts,
1405             vtoc->efi_nparts * (int)sizeof (struct efi_gpe)));
1406         efi->efi_gpt_HeaderCRC32 =
1407             LE_32(efi_crc32((unsigned char *)efi,
1408             LE_32(efi->efi_gpt_HeaderSize)));
1409
1410         if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1411                 free(dk_ioc.dki_data);
1412                 switch (errno) {
1413                 case EIO:
1414                         return (VT_EIO);
1415                 case EINVAL:
1416                         return (VT_EINVAL);
1417                 default:
1418                         return (VT_ERROR);
1419                 }
1420         }
1421         /* if it's a metadevice we're done */
1422         if (md_flag) {
1423                 free(dk_ioc.dki_data);
1424                 return (0);
1425         }
1426
1427         /* write backup partition array */
1428         dk_ioc.dki_lba = vtoc->efi_last_u_lba + 1;
1429         dk_ioc.dki_length -= vtoc->efi_lbasize;
1430         /* LINTED */
1431         dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data +
1432             vtoc->efi_lbasize);
1433
1434         if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1435                 /*
1436                  * we wrote the primary label okay, so don't fail
1437                  */
1438                 if (efi_debug) {
1439                         (void) fprintf(stderr,
1440                             "write of backup partitions to block %llu "
1441                             "failed, errno %d\n",
1442                             vtoc->efi_last_u_lba + 1,
1443                             errno);
1444                 }
1445         }
1446         /*
1447          * now swap MyLBA and AlternateLBA fields and write backup
1448          * partition table header
1449          */
1450         dk_ioc.dki_lba = lba_backup_gpt_hdr;
1451         dk_ioc.dki_length = vtoc->efi_lbasize;
1452         /* LINTED */
1453         dk_ioc.dki_data = (efi_gpt_t *)((char *)dk_ioc.dki_data -
1454             vtoc->efi_lbasize);
1455         efi->efi_gpt_AlternateLBA = LE_64(1ULL);
1456         efi->efi_gpt_MyLBA = LE_64(lba_backup_gpt_hdr);
1457         efi->efi_gpt_PartitionEntryLBA = LE_64(vtoc->efi_last_u_lba + 1);
1458         efi->efi_gpt_HeaderCRC32 = 0;
1459         efi->efi_gpt_HeaderCRC32 =
1460             LE_32(efi_crc32((unsigned char *)dk_ioc.dki_data,
1461             LE_32(efi->efi_gpt_HeaderSize)));
1462
1463         if (efi_ioctl(fd, DKIOCSETEFI, &dk_ioc) == -1) {
1464                 if (efi_debug) {
1465                         (void) fprintf(stderr,
1466                             "write of backup header to block %llu failed, "
1467                             "errno %d\n",
1468                             lba_backup_gpt_hdr,
1469                             errno);
1470                 }
1471         }
1472         /* write the PMBR */
1473         (void) write_pmbr(fd, vtoc);
1474         free(dk_ioc.dki_data);
1475
1476         return (0);
1477 }
1478
1479 void
1480 efi_free(struct dk_gpt *ptr)
1481 {
1482         free(ptr);
1483 }
1484
1485 /*
1486  * Input: File descriptor
1487  * Output: 1 if disk has an EFI label, or > 2TB with no VTOC or legacy MBR.
1488  * Otherwise 0.
1489  */
1490 int
1491 efi_type(int fd)
1492 {
1493 #if 0
1494         struct vtoc vtoc;
1495         struct extvtoc extvtoc;
1496
1497         if (ioctl(fd, DKIOCGEXTVTOC, &extvtoc) == -1) {
1498                 if (errno == ENOTSUP)
1499                         return (1);
1500                 else if (errno == ENOTTY) {
1501                         if (ioctl(fd, DKIOCGVTOC, &vtoc) == -1)
1502                                 if (errno == ENOTSUP)
1503                                         return (1);
1504                 }
1505         }
1506         return (0);
1507 #else
1508         return (ENOSYS);
1509 #endif
1510 }
1511
1512 void
1513 efi_err_check(struct dk_gpt *vtoc)
1514 {
1515         int                     resv_part = -1;
1516         int                     i, j;
1517         diskaddr_t              istart, jstart, isize, jsize, endsect;
1518         int                     overlap = 0;
1519
1520         /*
1521          * make sure no partitions overlap
1522          */
1523         for (i = 0; i < vtoc->efi_nparts; i++) {
1524                 /* It can't be unassigned and have an actual size */
1525                 if ((vtoc->efi_parts[i].p_tag == V_UNASSIGNED) &&
1526                     (vtoc->efi_parts[i].p_size != 0)) {
1527                         (void) fprintf(stderr,
1528                             "partition %d is \"unassigned\" but has a size "
1529                             "of %llu\n", i, vtoc->efi_parts[i].p_size);
1530                 }
1531                 if (vtoc->efi_parts[i].p_tag == V_UNASSIGNED) {
1532                         continue;
1533                 }
1534                 if (vtoc->efi_parts[i].p_tag == V_RESERVED) {
1535                         if (resv_part != -1) {
1536                                 (void) fprintf(stderr,
1537                                     "found duplicate reserved partition at "
1538                                     "%d\n", i);
1539                         }
1540                         resv_part = i;
1541                         if (vtoc->efi_parts[i].p_size != EFI_MIN_RESV_SIZE)
1542                                 (void) fprintf(stderr,
1543                                     "Warning: reserved partition size must "
1544                                     "be %d sectors\n", EFI_MIN_RESV_SIZE);
1545                 }
1546                 if ((vtoc->efi_parts[i].p_start < vtoc->efi_first_u_lba) ||
1547                     (vtoc->efi_parts[i].p_start > vtoc->efi_last_u_lba)) {
1548                         (void) fprintf(stderr,
1549                             "Partition %d starts at %llu\n",
1550                             i,
1551                             vtoc->efi_parts[i].p_start);
1552                         (void) fprintf(stderr,
1553                             "It must be between %llu and %llu.\n",
1554                             vtoc->efi_first_u_lba,
1555                             vtoc->efi_last_u_lba);
1556                 }
1557                 if ((vtoc->efi_parts[i].p_start +
1558                     vtoc->efi_parts[i].p_size <
1559                     vtoc->efi_first_u_lba) ||
1560                     (vtoc->efi_parts[i].p_start +
1561                     vtoc->efi_parts[i].p_size >
1562                     vtoc->efi_last_u_lba + 1)) {
1563                         (void) fprintf(stderr,
1564                             "Partition %d ends at %llu\n",
1565                             i,
1566                             vtoc->efi_parts[i].p_start +
1567                             vtoc->efi_parts[i].p_size);
1568                         (void) fprintf(stderr,
1569                             "It must be between %llu and %llu.\n",
1570                             vtoc->efi_first_u_lba,
1571                             vtoc->efi_last_u_lba);
1572                 }
1573
1574                 for (j = 0; j < vtoc->efi_nparts; j++) {
1575                         isize = vtoc->efi_parts[i].p_size;
1576                         jsize = vtoc->efi_parts[j].p_size;
1577                         istart = vtoc->efi_parts[i].p_start;
1578                         jstart = vtoc->efi_parts[j].p_start;
1579                         if ((i != j) && (isize != 0) && (jsize != 0)) {
1580                                 endsect = jstart + jsize -1;
1581                                 if ((jstart <= istart) &&
1582                                     (istart <= endsect)) {
1583                                         if (!overlap) {
1584                                         (void) fprintf(stderr,
1585                                             "label error: EFI Labels do not "
1586                                             "support overlapping partitions\n");
1587                                         }
1588                                         (void) fprintf(stderr,
1589                                             "Partition %d overlaps partition "
1590                                             "%d.\n", i, j);
1591                                         overlap = 1;
1592                                 }
1593                         }
1594                 }
1595         }
1596         /* make sure there is a reserved partition */
1597         if (resv_part == -1) {
1598                 (void) fprintf(stderr,
1599                     "no reserved partition found\n");
1600         }
1601 }
1602
1603 /*
1604  * We need to get information necessary to construct a *new* efi
1605  * label type
1606  */
1607 int
1608 efi_auto_sense(int fd, struct dk_gpt **vtoc)
1609 {
1610
1611         int     i;
1612
1613         /*
1614          * Now build the default partition table
1615          */
1616         if (efi_alloc_and_init(fd, EFI_NUMPAR, vtoc) != 0) {
1617                 if (efi_debug) {
1618                         (void) fprintf(stderr, "efi_alloc_and_init failed.\n");
1619                 }
1620                 return (-1);
1621         }
1622
1623         for (i = 0; i < MIN((*vtoc)->efi_nparts, V_NUMPAR); i++) {
1624                 (*vtoc)->efi_parts[i].p_tag = default_vtoc_map[i].p_tag;
1625                 (*vtoc)->efi_parts[i].p_flag = default_vtoc_map[i].p_flag;
1626                 (*vtoc)->efi_parts[i].p_start = 0;
1627                 (*vtoc)->efi_parts[i].p_size = 0;
1628         }
1629         /*
1630          * Make constants first
1631          * and variable partitions later
1632          */
1633
1634         /* root partition - s0 128 MB */
1635         (*vtoc)->efi_parts[0].p_start = 34;
1636         (*vtoc)->efi_parts[0].p_size = 262144;
1637
1638         /* partition - s1  128 MB */
1639         (*vtoc)->efi_parts[1].p_start = 262178;
1640         (*vtoc)->efi_parts[1].p_size = 262144;
1641
1642         /* partition -s2 is NOT the Backup disk */
1643         (*vtoc)->efi_parts[2].p_tag = V_UNASSIGNED;
1644
1645         /* partition -s6 /usr partition - HOG */
1646         (*vtoc)->efi_parts[6].p_start = 524322;
1647         (*vtoc)->efi_parts[6].p_size = (*vtoc)->efi_last_u_lba - 524322
1648             - (1024 * 16);
1649
1650         /* efi reserved partition - s9 16K */
1651         (*vtoc)->efi_parts[8].p_start = (*vtoc)->efi_last_u_lba - (1024 * 16);
1652         (*vtoc)->efi_parts[8].p_size = (1024 * 16);
1653         (*vtoc)->efi_parts[8].p_tag = V_RESERVED;
1654         return (0);
1655 }