]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/libkvm/kvm_proc.c
Fix reference count overflow in mqueuefs.
[FreeBSD/FreeBSD.git] / lib / libkvm / kvm_proc.c
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33
34 #if 0
35 #if defined(LIBC_SCCS) && !defined(lint)
36 static char sccsid[] = "@(#)kvm_proc.c  8.3 (Berkeley) 9/23/93";
37 #endif /* LIBC_SCCS and not lint */
38 #endif
39
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49
50 #include <sys/param.h>
51 #define _WANT_UCRED     /* make ucred.h give us 'struct ucred' */
52 #include <sys/ucred.h>
53 #include <sys/queue.h>
54 #include <sys/_lock.h>
55 #include <sys/_mutex.h>
56 #include <sys/_task.h>
57 #include <sys/cpuset.h>
58 #include <sys/user.h>
59 #include <sys/proc.h>
60 #define _WANT_PRISON    /* make jail.h give us 'struct prison' */
61 #include <sys/jail.h>
62 #include <sys/exec.h>
63 #include <sys/stat.h>
64 #include <sys/sysent.h>
65 #include <sys/ioctl.h>
66 #include <sys/tty.h>
67 #include <sys/file.h>
68 #include <sys/conf.h>
69 #define _WANT_KW_EXITCODE
70 #include <sys/wait.h>
71 #include <stdio.h>
72 #include <stdlib.h>
73 #include <unistd.h>
74 #include <nlist.h>
75 #include <kvm.h>
76
77 #include <sys/sysctl.h>
78
79 #include <limits.h>
80 #include <memory.h>
81 #include <paths.h>
82
83 #include "kvm_private.h"
84
85 #define KREAD(kd, addr, obj) \
86         (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
87
88 static int ticks;
89 static int hz;
90 static uint64_t cpu_tick_frequency;
91
92 /*
93  * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is
94  * read/initialized before this function is ever called.
95  */
96 static uint64_t
97 cputick2usec(uint64_t tick)
98 {
99
100         if (cpu_tick_frequency == 0)
101                 return (0);
102         if (tick > 18446744073709551)           /* floor(2^64 / 1000) */
103                 return (tick / (cpu_tick_frequency / 1000000));
104         else if (tick > 18446744073709) /* floor(2^64 / 1000000) */
105                 return ((tick * 1000) / (cpu_tick_frequency / 1000));
106         else
107                 return ((tick * 1000000) / cpu_tick_frequency);
108 }
109
110 /*
111  * Read proc's from memory file into buffer bp, which has space to hold
112  * at most maxcnt procs.
113  */
114 static int
115 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
116     struct kinfo_proc *bp, int maxcnt)
117 {
118         int cnt = 0;
119         struct kinfo_proc kinfo_proc, *kp;
120         struct pgrp pgrp;
121         struct session sess;
122         struct cdev t_cdev;
123         struct tty tty;
124         struct vmspace vmspace;
125         struct sigacts sigacts;
126 #if 0
127         struct pstats pstats;
128 #endif
129         struct ucred ucred;
130         struct prison pr;
131         struct thread mtd;
132         struct proc proc;
133         struct proc pproc;
134         struct sysentvec sysent;
135         char svname[KI_EMULNAMELEN];
136
137         kp = &kinfo_proc;
138         kp->ki_structsize = sizeof(kinfo_proc);
139         /*
140          * Loop on the processes. this is completely broken because we need to be
141          * able to loop on the threads and merge the ones that are the same process some how.
142          */
143         for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
144                 memset(kp, 0, sizeof *kp);
145                 if (KREAD(kd, (u_long)p, &proc)) {
146                         _kvm_err(kd, kd->program, "can't read proc at %p", p);
147                         return (-1);
148                 }
149                 if (proc.p_state == PRS_NEW)
150                         continue;
151                 if (proc.p_state != PRS_ZOMBIE) {
152                         if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
153                             &mtd)) {
154                                 _kvm_err(kd, kd->program,
155                                     "can't read thread at %p",
156                                     TAILQ_FIRST(&proc.p_threads));
157                                 return (-1);
158                         }
159                 }
160                 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
161                         kp->ki_ruid = ucred.cr_ruid;
162                         kp->ki_svuid = ucred.cr_svuid;
163                         kp->ki_rgid = ucred.cr_rgid;
164                         kp->ki_svgid = ucred.cr_svgid;
165                         kp->ki_cr_flags = ucred.cr_flags;
166                         if (ucred.cr_ngroups > KI_NGROUPS) {
167                                 kp->ki_ngroups = KI_NGROUPS;
168                                 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
169                         } else
170                                 kp->ki_ngroups = ucred.cr_ngroups;
171                         kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups,
172                             kp->ki_ngroups * sizeof(gid_t));
173                         kp->ki_uid = ucred.cr_uid;
174                         if (ucred.cr_prison != NULL) {
175                                 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
176                                         _kvm_err(kd, kd->program,
177                                             "can't read prison at %p",
178                                             ucred.cr_prison);
179                                         return (-1);
180                                 }
181                                 kp->ki_jid = pr.pr_id;
182                         }
183                 }
184
185                 switch(what & ~KERN_PROC_INC_THREAD) {
186
187                 case KERN_PROC_GID:
188                         if (kp->ki_groups[0] != (gid_t)arg)
189                                 continue;
190                         break;
191
192                 case KERN_PROC_PID:
193                         if (proc.p_pid != (pid_t)arg)
194                                 continue;
195                         break;
196
197                 case KERN_PROC_RGID:
198                         if (kp->ki_rgid != (gid_t)arg)
199                                 continue;
200                         break;
201
202                 case KERN_PROC_UID:
203                         if (kp->ki_uid != (uid_t)arg)
204                                 continue;
205                         break;
206
207                 case KERN_PROC_RUID:
208                         if (kp->ki_ruid != (uid_t)arg)
209                                 continue;
210                         break;
211                 }
212                 /*
213                  * We're going to add another proc to the set.  If this
214                  * will overflow the buffer, assume the reason is because
215                  * nprocs (or the proc list) is corrupt and declare an error.
216                  */
217                 if (cnt >= maxcnt) {
218                         _kvm_err(kd, kd->program, "nprocs corrupt");
219                         return (-1);
220                 }
221                 /*
222                  * gather kinfo_proc
223                  */
224                 kp->ki_paddr = p;
225                 kp->ki_addr = 0;        /* XXX uarea */
226                 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
227                 kp->ki_args = proc.p_args;
228                 kp->ki_tracep = proc.p_tracevp;
229                 kp->ki_textvp = proc.p_textvp;
230                 kp->ki_fd = proc.p_fd;
231                 kp->ki_vmspace = proc.p_vmspace;
232                 if (proc.p_sigacts != NULL) {
233                         if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
234                                 _kvm_err(kd, kd->program,
235                                     "can't read sigacts at %p", proc.p_sigacts);
236                                 return (-1);
237                         }
238                         kp->ki_sigignore = sigacts.ps_sigignore;
239                         kp->ki_sigcatch = sigacts.ps_sigcatch;
240                 }
241 #if 0
242                 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
243                         if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
244                                 _kvm_err(kd, kd->program,
245                                     "can't read stats at %x", proc.p_stats);
246                                 return (-1);
247                         }
248                         kp->ki_start = pstats.p_start;
249
250                         /*
251                          * XXX: The times here are probably zero and need
252                          * to be calculated from the raw data in p_rux and
253                          * p_crux.
254                          */
255                         kp->ki_rusage = pstats.p_ru;
256                         kp->ki_childstime = pstats.p_cru.ru_stime;
257                         kp->ki_childutime = pstats.p_cru.ru_utime;
258                         /* Some callers want child-times in a single value */
259                         timeradd(&kp->ki_childstime, &kp->ki_childutime,
260                             &kp->ki_childtime);
261                 }
262 #endif
263                 if (proc.p_oppid)
264                         kp->ki_ppid = proc.p_oppid;
265                 else if (proc.p_pptr) {
266                         if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
267                                 _kvm_err(kd, kd->program,
268                                     "can't read pproc at %p", proc.p_pptr);
269                                 return (-1);
270                         }
271                         kp->ki_ppid = pproc.p_pid;
272                 } else
273                         kp->ki_ppid = 0;
274                 if (proc.p_pgrp == NULL)
275                         goto nopgrp;
276                 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
277                         _kvm_err(kd, kd->program, "can't read pgrp at %p",
278                                  proc.p_pgrp);
279                         return (-1);
280                 }
281                 kp->ki_pgid = pgrp.pg_id;
282                 kp->ki_jobc = pgrp.pg_jobc;
283                 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
284                         _kvm_err(kd, kd->program, "can't read session at %p",
285                                 pgrp.pg_session);
286                         return (-1);
287                 }
288                 kp->ki_sid = sess.s_sid;
289                 (void)memcpy(kp->ki_login, sess.s_login,
290                                                 sizeof(kp->ki_login));
291                 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
292                 if (sess.s_leader == p)
293                         kp->ki_kiflag |= KI_SLEADER;
294                 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
295                         if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
296                                 _kvm_err(kd, kd->program,
297                                          "can't read tty at %p", sess.s_ttyp);
298                                 return (-1);
299                         }
300                         if (tty.t_dev != NULL) {
301                                 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
302                                         _kvm_err(kd, kd->program,
303                                                  "can't read cdev at %p",
304                                                 tty.t_dev);
305                                         return (-1);
306                                 }
307 #if 0
308                                 kp->ki_tdev = t_cdev.si_udev;
309 #else
310                                 kp->ki_tdev = NODEV;
311 #endif
312                         }
313                         if (tty.t_pgrp != NULL) {
314                                 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
315                                         _kvm_err(kd, kd->program,
316                                                  "can't read tpgrp at %p",
317                                                 tty.t_pgrp);
318                                         return (-1);
319                                 }
320                                 kp->ki_tpgid = pgrp.pg_id;
321                         } else
322                                 kp->ki_tpgid = -1;
323                         if (tty.t_session != NULL) {
324                                 if (KREAD(kd, (u_long)tty.t_session, &sess)) {
325                                         _kvm_err(kd, kd->program,
326                                             "can't read session at %p",
327                                             tty.t_session);
328                                         return (-1);
329                                 }
330                                 kp->ki_tsid = sess.s_sid;
331                         }
332                 } else {
333 nopgrp:
334                         kp->ki_tdev = NODEV;
335                 }
336                 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
337                         (void)kvm_read(kd, (u_long)mtd.td_wmesg,
338                             kp->ki_wmesg, WMESGLEN);
339
340                 (void)kvm_read(kd, (u_long)proc.p_vmspace,
341                     (char *)&vmspace, sizeof(vmspace));
342                 kp->ki_size = vmspace.vm_map.size;
343                 /*
344                  * Approximate the kernel's method of calculating
345                  * this field.
346                  */
347 #define         pmap_resident_count(pm) ((pm)->pm_stats.resident_count)
348                 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap);
349                 kp->ki_swrss = vmspace.vm_swrss;
350                 kp->ki_tsize = vmspace.vm_tsize;
351                 kp->ki_dsize = vmspace.vm_dsize;
352                 kp->ki_ssize = vmspace.vm_ssize;
353
354                 switch (what & ~KERN_PROC_INC_THREAD) {
355
356                 case KERN_PROC_PGRP:
357                         if (kp->ki_pgid != (pid_t)arg)
358                                 continue;
359                         break;
360
361                 case KERN_PROC_SESSION:
362                         if (kp->ki_sid != (pid_t)arg)
363                                 continue;
364                         break;
365
366                 case KERN_PROC_TTY:
367                         if ((proc.p_flag & P_CONTROLT) == 0 ||
368                              kp->ki_tdev != (dev_t)arg)
369                                 continue;
370                         break;
371                 }
372                 if (proc.p_comm[0] != 0)
373                         strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
374                 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
375                     sizeof(sysent));
376                 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
377                     sizeof(svname));
378                 if (svname[0] != 0)
379                         strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
380                 if ((proc.p_state != PRS_ZOMBIE) &&
381                     (mtd.td_blocked != 0)) {
382                         kp->ki_kiflag |= KI_LOCKBLOCK;
383                         if (mtd.td_lockname)
384                                 (void)kvm_read(kd,
385                                     (u_long)mtd.td_lockname,
386                                     kp->ki_lockname, LOCKNAMELEN);
387                         kp->ki_lockname[LOCKNAMELEN] = 0;
388                 }
389                 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime);
390                 kp->ki_pid = proc.p_pid;
391                 kp->ki_siglist = proc.p_siglist;
392                 SIGSETOR(kp->ki_siglist, mtd.td_siglist);
393                 kp->ki_sigmask = mtd.td_sigmask;
394                 kp->ki_xstat = KW_EXITCODE(proc.p_xexit, proc.p_xsig);
395                 kp->ki_acflag = proc.p_acflag;
396                 kp->ki_lock = proc.p_lock;
397                 if (proc.p_state != PRS_ZOMBIE) {
398                         kp->ki_swtime = (ticks - proc.p_swtick) / hz;
399                         kp->ki_flag = proc.p_flag;
400                         kp->ki_sflag = 0;
401                         kp->ki_nice = proc.p_nice;
402                         kp->ki_traceflag = proc.p_traceflag;
403                         if (proc.p_state == PRS_NORMAL) {
404                                 if (TD_ON_RUNQ(&mtd) ||
405                                     TD_CAN_RUN(&mtd) ||
406                                     TD_IS_RUNNING(&mtd)) {
407                                         kp->ki_stat = SRUN;
408                                 } else if (mtd.td_state ==
409                                     TDS_INHIBITED) {
410                                         if (P_SHOULDSTOP(&proc)) {
411                                                 kp->ki_stat = SSTOP;
412                                         } else if (
413                                             TD_IS_SLEEPING(&mtd)) {
414                                                 kp->ki_stat = SSLEEP;
415                                         } else if (TD_ON_LOCK(&mtd)) {
416                                                 kp->ki_stat = SLOCK;
417                                         } else {
418                                                 kp->ki_stat = SWAIT;
419                                         }
420                                 }
421                         } else {
422                                 kp->ki_stat = SIDL;
423                         }
424                         /* Stuff from the thread */
425                         kp->ki_pri.pri_level = mtd.td_priority;
426                         kp->ki_pri.pri_native = mtd.td_base_pri;
427                         kp->ki_lastcpu = mtd.td_lastcpu;
428                         kp->ki_wchan = mtd.td_wchan;
429                         kp->ki_oncpu = mtd.td_oncpu;
430                         if (mtd.td_name[0] != '\0')
431                                 strlcpy(kp->ki_tdname, mtd.td_name, sizeof(kp->ki_tdname));
432                         kp->ki_pctcpu = 0;
433                         kp->ki_rqindex = 0;
434
435                         /*
436                          * Note: legacy fields; wraps at NO_CPU_OLD or the
437                          * old max CPU value as appropriate
438                          */
439                         if (mtd.td_lastcpu == NOCPU)
440                                 kp->ki_lastcpu_old = NOCPU_OLD;
441                         else if (mtd.td_lastcpu > MAXCPU_OLD)
442                                 kp->ki_lastcpu_old = MAXCPU_OLD;
443                         else
444                                 kp->ki_lastcpu_old = mtd.td_lastcpu;
445
446                         if (mtd.td_oncpu == NOCPU)
447                                 kp->ki_oncpu_old = NOCPU_OLD;
448                         else if (mtd.td_oncpu > MAXCPU_OLD)
449                                 kp->ki_oncpu_old = MAXCPU_OLD;
450                         else
451                                 kp->ki_oncpu_old = mtd.td_oncpu;
452                 } else {
453                         kp->ki_stat = SZOMB;
454                 }
455                 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
456                 ++bp;
457                 ++cnt;
458         }
459         return (cnt);
460 }
461
462 /*
463  * Build proc info array by reading in proc list from a crash dump.
464  * Return number of procs read.  maxcnt is the max we will read.
465  */
466 static int
467 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
468     u_long a_zombproc, int maxcnt)
469 {
470         struct kinfo_proc *bp = kd->procbase;
471         int acnt, zcnt;
472         struct proc *p;
473
474         if (KREAD(kd, a_allproc, &p)) {
475                 _kvm_err(kd, kd->program, "cannot read allproc");
476                 return (-1);
477         }
478         acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
479         if (acnt < 0)
480                 return (acnt);
481
482         if (KREAD(kd, a_zombproc, &p)) {
483                 _kvm_err(kd, kd->program, "cannot read zombproc");
484                 return (-1);
485         }
486         zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
487         if (zcnt < 0)
488                 zcnt = 0;
489
490         return (acnt + zcnt);
491 }
492
493 struct kinfo_proc *
494 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
495 {
496         int mib[4], st, nprocs;
497         size_t size, osize;
498         int temp_op;
499
500         if (kd->procbase != 0) {
501                 free((void *)kd->procbase);
502                 /*
503                  * Clear this pointer in case this call fails.  Otherwise,
504                  * kvm_close() will free it again.
505                  */
506                 kd->procbase = 0;
507         }
508         if (ISALIVE(kd)) {
509                 size = 0;
510                 mib[0] = CTL_KERN;
511                 mib[1] = KERN_PROC;
512                 mib[2] = op;
513                 mib[3] = arg;
514                 temp_op = op & ~KERN_PROC_INC_THREAD;
515                 st = sysctl(mib,
516                     temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
517                     3 : 4, NULL, &size, NULL, 0);
518                 if (st == -1) {
519                         _kvm_syserr(kd, kd->program, "kvm_getprocs");
520                         return (0);
521                 }
522                 /*
523                  * We can't continue with a size of 0 because we pass
524                  * it to realloc() (via _kvm_realloc()), and passing 0
525                  * to realloc() results in undefined behavior.
526                  */
527                 if (size == 0) {
528                         /*
529                          * XXX: We should probably return an invalid,
530                          * but non-NULL, pointer here so any client
531                          * program trying to dereference it will
532                          * crash.  However, _kvm_freeprocs() calls
533                          * free() on kd->procbase if it isn't NULL,
534                          * and free()'ing a junk pointer isn't good.
535                          * Then again, _kvm_freeprocs() isn't used
536                          * anywhere . . .
537                          */
538                         kd->procbase = _kvm_malloc(kd, 1);
539                         goto liveout;
540                 }
541                 do {
542                         size += size / 10;
543                         kd->procbase = (struct kinfo_proc *)
544                             _kvm_realloc(kd, kd->procbase, size);
545                         if (kd->procbase == NULL)
546                                 return (0);
547                         osize = size;
548                         st = sysctl(mib, temp_op == KERN_PROC_ALL ||
549                             temp_op == KERN_PROC_PROC ? 3 : 4,
550                             kd->procbase, &size, NULL, 0);
551                 } while (st == -1 && errno == ENOMEM && size == osize);
552                 if (st == -1) {
553                         _kvm_syserr(kd, kd->program, "kvm_getprocs");
554                         return (0);
555                 }
556                 /*
557                  * We have to check the size again because sysctl()
558                  * may "round up" oldlenp if oldp is NULL; hence it
559                  * might've told us that there was data to get when
560                  * there really isn't any.
561                  */
562                 if (size > 0 &&
563                     kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
564                         _kvm_err(kd, kd->program,
565                             "kinfo_proc size mismatch (expected %zu, got %d)",
566                             sizeof(struct kinfo_proc),
567                             kd->procbase->ki_structsize);
568                         return (0);
569                 }
570 liveout:
571                 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
572         } else {
573                 struct nlist nl[7], *p;
574
575                 nl[0].n_name = "_nprocs";
576                 nl[1].n_name = "_allproc";
577                 nl[2].n_name = "_zombproc";
578                 nl[3].n_name = "_ticks";
579                 nl[4].n_name = "_hz";
580                 nl[5].n_name = "_cpu_tick_frequency";
581                 nl[6].n_name = 0;
582
583                 if (!kd->arch->ka_native(kd)) {
584                         _kvm_err(kd, kd->program,
585                             "cannot read procs from non-native core");
586                         return (0);
587                 }
588
589                 if (kvm_nlist(kd, nl) != 0) {
590                         for (p = nl; p->n_type != 0; ++p)
591                                 ;
592                         _kvm_err(kd, kd->program,
593                                  "%s: no such symbol", p->n_name);
594                         return (0);
595                 }
596                 if (KREAD(kd, nl[0].n_value, &nprocs)) {
597                         _kvm_err(kd, kd->program, "can't read nprocs");
598                         return (0);
599                 }
600                 if (KREAD(kd, nl[3].n_value, &ticks)) {
601                         _kvm_err(kd, kd->program, "can't read ticks");
602                         return (0);
603                 }
604                 if (KREAD(kd, nl[4].n_value, &hz)) {
605                         _kvm_err(kd, kd->program, "can't read hz");
606                         return (0);
607                 }
608                 if (KREAD(kd, nl[5].n_value, &cpu_tick_frequency)) {
609                         _kvm_err(kd, kd->program,
610                             "can't read cpu_tick_frequency");
611                         return (0);
612                 }
613                 size = nprocs * sizeof(struct kinfo_proc);
614                 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
615                 if (kd->procbase == NULL)
616                         return (0);
617
618                 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
619                                       nl[2].n_value, nprocs);
620                 if (nprocs <= 0) {
621                         _kvm_freeprocs(kd);
622                         nprocs = 0;
623                 }
624 #ifdef notdef
625                 else {
626                         size = nprocs * sizeof(struct kinfo_proc);
627                         kd->procbase = realloc(kd->procbase, size);
628                 }
629 #endif
630         }
631         *cnt = nprocs;
632         return (kd->procbase);
633 }
634
635 void
636 _kvm_freeprocs(kvm_t *kd)
637 {
638
639         free(kd->procbase);
640         kd->procbase = NULL;
641 }
642
643 void *
644 _kvm_realloc(kvm_t *kd, void *p, size_t n)
645 {
646         void *np;
647
648         np = reallocf(p, n);
649         if (np == NULL)
650                 _kvm_err(kd, kd->program, "out of memory");
651         return (np);
652 }
653
654 /*
655  * Get the command args or environment.
656  */
657 static char **
658 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr)
659 {
660         int oid[4];
661         int i;
662         size_t bufsz;
663         static int buflen;
664         static char *buf, *p;
665         static char **bufp;
666         static int argc;
667         char **nbufp;
668
669         if (!ISALIVE(kd)) {
670                 _kvm_err(kd, kd->program,
671                     "cannot read user space from dead kernel");
672                 return (NULL);
673         }
674
675         if (nchr == 0 || nchr > ARG_MAX)
676                 nchr = ARG_MAX;
677         if (buflen == 0) {
678                 buf = malloc(nchr);
679                 if (buf == NULL) {
680                         _kvm_err(kd, kd->program, "cannot allocate memory");
681                         return (NULL);
682                 }
683                 argc = 32;
684                 bufp = malloc(sizeof(char *) * argc);
685                 if (bufp == NULL) {
686                         free(buf);
687                         buf = NULL;
688                         _kvm_err(kd, kd->program, "cannot allocate memory");
689                         return (NULL);
690                 }
691                 buflen = nchr;
692         } else if (nchr > buflen) {
693                 p = realloc(buf, nchr);
694                 if (p != NULL) {
695                         buf = p;
696                         buflen = nchr;
697                 }
698         }
699         oid[0] = CTL_KERN;
700         oid[1] = KERN_PROC;
701         oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
702         oid[3] = kp->ki_pid;
703         bufsz = buflen;
704         if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) {
705                 /*
706                  * If the supplied buf is too short to hold the requested
707                  * value the sysctl returns with ENOMEM. The buf is filled
708                  * with the truncated value and the returned bufsz is equal
709                  * to the requested len.
710                  */
711                 if (errno != ENOMEM || bufsz != (size_t)buflen)
712                         return (NULL);
713                 buf[bufsz - 1] = '\0';
714                 errno = 0;
715         } else if (bufsz == 0)
716                 return (NULL);
717         i = 0;
718         p = buf;
719         do {
720                 bufp[i++] = p;
721                 p += strlen(p) + 1;
722                 if (i >= argc) {
723                         argc += argc;
724                         nbufp = realloc(bufp, sizeof(char *) * argc);
725                         if (nbufp == NULL)
726                                 return (NULL);
727                         bufp = nbufp;
728                 }
729         } while (p < buf + bufsz);
730         bufp[i++] = 0;
731         return (bufp);
732 }
733
734 char **
735 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
736 {
737         return (kvm_argv(kd, kp, 0, nchr));
738 }
739
740 char **
741 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
742 {
743         return (kvm_argv(kd, kp, 1, nchr));
744 }