]> CyberLeo.Net >> Repos - FreeBSD/releng/9.1.git/blob - lib/libkvm/kvm_proc.c
MFC r239041:
[FreeBSD/releng/9.1.git] / lib / libkvm / kvm_proc.c
1 /*-
2  * Copyright (c) 1989, 1992, 1993
3  *      The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software developed by the Computer Systems
6  * Engineering group at Lawrence Berkeley Laboratory under DARPA contract
7  * BG 91-66 and contributed to Berkeley.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33
34 #if 0
35 #if defined(LIBC_SCCS) && !defined(lint)
36 static char sccsid[] = "@(#)kvm_proc.c  8.3 (Berkeley) 9/23/93";
37 #endif /* LIBC_SCCS and not lint */
38 #endif
39
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD$");
42
43 /*
44  * Proc traversal interface for kvm.  ps and w are (probably) the exclusive
45  * users of this code, so we've factored it out into a separate module.
46  * Thus, we keep this grunge out of the other kvm applications (i.e.,
47  * most other applications are interested only in open/close/read/nlist).
48  */
49
50 #include <sys/param.h>
51 #define _WANT_UCRED     /* make ucred.h give us 'struct ucred' */
52 #include <sys/ucred.h>
53 #include <sys/queue.h>
54 #include <sys/_lock.h>
55 #include <sys/_mutex.h>
56 #include <sys/_task.h>
57 #include <sys/cpuset.h>
58 #include <sys/user.h>
59 #include <sys/proc.h>
60 #define _WANT_PRISON    /* make jail.h give us 'struct prison' */
61 #include <sys/jail.h>
62 #include <sys/exec.h>
63 #include <sys/stat.h>
64 #include <sys/sysent.h>
65 #include <sys/ioctl.h>
66 #include <sys/tty.h>
67 #include <sys/file.h>
68 #include <sys/conf.h>
69 #include <stdio.h>
70 #include <stdlib.h>
71 #include <unistd.h>
72 #include <nlist.h>
73 #include <kvm.h>
74
75 #include <sys/sysctl.h>
76
77 #include <limits.h>
78 #include <memory.h>
79 #include <paths.h>
80
81 #include "kvm_private.h"
82
83 #define KREAD(kd, addr, obj) \
84         (kvm_read(kd, addr, (char *)(obj), sizeof(*obj)) != sizeof(*obj))
85
86 static int ticks;
87 static int hz;
88 static uint64_t cpu_tick_frequency;
89
90 /*
91  * From sys/kern/kern_tc.c. Depends on cpu_tick_frequency, which is
92  * read/initialized before this function is ever called.
93  */
94 static uint64_t
95 cputick2usec(uint64_t tick)
96 {
97
98         if (cpu_tick_frequency == 0)
99                 return (0);
100         if (tick > 18446744073709551)           /* floor(2^64 / 1000) */
101                 return (tick / (cpu_tick_frequency / 1000000));
102         else if (tick > 18446744073709) /* floor(2^64 / 1000000) */
103                 return ((tick * 1000) / (cpu_tick_frequency / 1000));
104         else
105                 return ((tick * 1000000) / cpu_tick_frequency);
106 }
107
108 /*
109  * Read proc's from memory file into buffer bp, which has space to hold
110  * at most maxcnt procs.
111  */
112 static int
113 kvm_proclist(kvm_t *kd, int what, int arg, struct proc *p,
114     struct kinfo_proc *bp, int maxcnt)
115 {
116         int cnt = 0;
117         struct kinfo_proc kinfo_proc, *kp;
118         struct pgrp pgrp;
119         struct session sess;
120         struct cdev t_cdev;
121         struct tty tty;
122         struct vmspace vmspace;
123         struct sigacts sigacts;
124 #if 0
125         struct pstats pstats;
126 #endif
127         struct ucred ucred;
128         struct prison pr;
129         struct thread mtd;
130         struct proc proc;
131         struct proc pproc;
132         struct sysentvec sysent;
133         char svname[KI_EMULNAMELEN];
134
135         kp = &kinfo_proc;
136         kp->ki_structsize = sizeof(kinfo_proc);
137         /*
138          * Loop on the processes. this is completely broken because we need to be
139          * able to loop on the threads and merge the ones that are the same process some how.
140          */
141         for (; cnt < maxcnt && p != NULL; p = LIST_NEXT(&proc, p_list)) {
142                 memset(kp, 0, sizeof *kp);
143                 if (KREAD(kd, (u_long)p, &proc)) {
144                         _kvm_err(kd, kd->program, "can't read proc at %p", p);
145                         return (-1);
146                 }
147                 if (proc.p_state != PRS_ZOMBIE) {
148                         if (KREAD(kd, (u_long)TAILQ_FIRST(&proc.p_threads),
149                             &mtd)) {
150                                 _kvm_err(kd, kd->program,
151                                     "can't read thread at %p",
152                                     TAILQ_FIRST(&proc.p_threads));
153                                 return (-1);
154                         }
155                 }
156                 if (KREAD(kd, (u_long)proc.p_ucred, &ucred) == 0) {
157                         kp->ki_ruid = ucred.cr_ruid;
158                         kp->ki_svuid = ucred.cr_svuid;
159                         kp->ki_rgid = ucred.cr_rgid;
160                         kp->ki_svgid = ucred.cr_svgid;
161                         kp->ki_cr_flags = ucred.cr_flags;
162                         if (ucred.cr_ngroups > KI_NGROUPS) {
163                                 kp->ki_ngroups = KI_NGROUPS;
164                                 kp->ki_cr_flags |= KI_CRF_GRP_OVERFLOW;
165                         } else
166                                 kp->ki_ngroups = ucred.cr_ngroups;
167                         kvm_read(kd, (u_long)ucred.cr_groups, kp->ki_groups,
168                             kp->ki_ngroups * sizeof(gid_t));
169                         kp->ki_uid = ucred.cr_uid;
170                         if (ucred.cr_prison != NULL) {
171                                 if (KREAD(kd, (u_long)ucred.cr_prison, &pr)) {
172                                         _kvm_err(kd, kd->program,
173                                             "can't read prison at %p",
174                                             ucred.cr_prison);
175                                         return (-1);
176                                 }
177                                 kp->ki_jid = pr.pr_id;
178                         }
179                 }
180
181                 switch(what & ~KERN_PROC_INC_THREAD) {
182
183                 case KERN_PROC_GID:
184                         if (kp->ki_groups[0] != (gid_t)arg)
185                                 continue;
186                         break;
187
188                 case KERN_PROC_PID:
189                         if (proc.p_pid != (pid_t)arg)
190                                 continue;
191                         break;
192
193                 case KERN_PROC_RGID:
194                         if (kp->ki_rgid != (gid_t)arg)
195                                 continue;
196                         break;
197
198                 case KERN_PROC_UID:
199                         if (kp->ki_uid != (uid_t)arg)
200                                 continue;
201                         break;
202
203                 case KERN_PROC_RUID:
204                         if (kp->ki_ruid != (uid_t)arg)
205                                 continue;
206                         break;
207                 }
208                 /*
209                  * We're going to add another proc to the set.  If this
210                  * will overflow the buffer, assume the reason is because
211                  * nprocs (or the proc list) is corrupt and declare an error.
212                  */
213                 if (cnt >= maxcnt) {
214                         _kvm_err(kd, kd->program, "nprocs corrupt");
215                         return (-1);
216                 }
217                 /*
218                  * gather kinfo_proc
219                  */
220                 kp->ki_paddr = p;
221                 kp->ki_addr = 0;        /* XXX uarea */
222                 /* kp->ki_kstack = proc.p_thread.td_kstack; XXXKSE */
223                 kp->ki_args = proc.p_args;
224                 kp->ki_tracep = proc.p_tracevp;
225                 kp->ki_textvp = proc.p_textvp;
226                 kp->ki_fd = proc.p_fd;
227                 kp->ki_vmspace = proc.p_vmspace;
228                 if (proc.p_sigacts != NULL) {
229                         if (KREAD(kd, (u_long)proc.p_sigacts, &sigacts)) {
230                                 _kvm_err(kd, kd->program,
231                                     "can't read sigacts at %p", proc.p_sigacts);
232                                 return (-1);
233                         }
234                         kp->ki_sigignore = sigacts.ps_sigignore;
235                         kp->ki_sigcatch = sigacts.ps_sigcatch;
236                 }
237 #if 0
238                 if ((proc.p_flag & P_INMEM) && proc.p_stats != NULL) {
239                         if (KREAD(kd, (u_long)proc.p_stats, &pstats)) {
240                                 _kvm_err(kd, kd->program,
241                                     "can't read stats at %x", proc.p_stats);
242                                 return (-1);
243                         }
244                         kp->ki_start = pstats.p_start;
245
246                         /*
247                          * XXX: The times here are probably zero and need
248                          * to be calculated from the raw data in p_rux and
249                          * p_crux.
250                          */
251                         kp->ki_rusage = pstats.p_ru;
252                         kp->ki_childstime = pstats.p_cru.ru_stime;
253                         kp->ki_childutime = pstats.p_cru.ru_utime;
254                         /* Some callers want child-times in a single value */
255                         timeradd(&kp->ki_childstime, &kp->ki_childutime,
256                             &kp->ki_childtime);
257                 }
258 #endif
259                 if (proc.p_oppid)
260                         kp->ki_ppid = proc.p_oppid;
261                 else if (proc.p_pptr) {
262                         if (KREAD(kd, (u_long)proc.p_pptr, &pproc)) {
263                                 _kvm_err(kd, kd->program,
264                                     "can't read pproc at %p", proc.p_pptr);
265                                 return (-1);
266                         }
267                         kp->ki_ppid = pproc.p_pid;
268                 } else 
269                         kp->ki_ppid = 0;
270                 if (proc.p_pgrp == NULL)
271                         goto nopgrp;
272                 if (KREAD(kd, (u_long)proc.p_pgrp, &pgrp)) {
273                         _kvm_err(kd, kd->program, "can't read pgrp at %p",
274                                  proc.p_pgrp);
275                         return (-1);
276                 }
277                 kp->ki_pgid = pgrp.pg_id;
278                 kp->ki_jobc = pgrp.pg_jobc;
279                 if (KREAD(kd, (u_long)pgrp.pg_session, &sess)) {
280                         _kvm_err(kd, kd->program, "can't read session at %p",
281                                 pgrp.pg_session);
282                         return (-1);
283                 }
284                 kp->ki_sid = sess.s_sid;
285                 (void)memcpy(kp->ki_login, sess.s_login,
286                                                 sizeof(kp->ki_login));
287                 kp->ki_kiflag = sess.s_ttyvp ? KI_CTTY : 0;
288                 if (sess.s_leader == p)
289                         kp->ki_kiflag |= KI_SLEADER;
290                 if ((proc.p_flag & P_CONTROLT) && sess.s_ttyp != NULL) {
291                         if (KREAD(kd, (u_long)sess.s_ttyp, &tty)) {
292                                 _kvm_err(kd, kd->program,
293                                          "can't read tty at %p", sess.s_ttyp);
294                                 return (-1);
295                         }
296                         if (tty.t_dev != NULL) {
297                                 if (KREAD(kd, (u_long)tty.t_dev, &t_cdev)) {
298                                         _kvm_err(kd, kd->program,
299                                                  "can't read cdev at %p",
300                                                 tty.t_dev);
301                                         return (-1);
302                                 }
303 #if 0
304                                 kp->ki_tdev = t_cdev.si_udev;
305 #else
306                                 kp->ki_tdev = NODEV;
307 #endif
308                         }
309                         if (tty.t_pgrp != NULL) {
310                                 if (KREAD(kd, (u_long)tty.t_pgrp, &pgrp)) {
311                                         _kvm_err(kd, kd->program,
312                                                  "can't read tpgrp at %p",
313                                                 tty.t_pgrp);
314                                         return (-1);
315                                 }
316                                 kp->ki_tpgid = pgrp.pg_id;
317                         } else
318                                 kp->ki_tpgid = -1;
319                         if (tty.t_session != NULL) {
320                                 if (KREAD(kd, (u_long)tty.t_session, &sess)) {
321                                         _kvm_err(kd, kd->program,
322                                             "can't read session at %p",
323                                             tty.t_session);
324                                         return (-1);
325                                 }
326                                 kp->ki_tsid = sess.s_sid;
327                         }
328                 } else {
329 nopgrp:
330                         kp->ki_tdev = NODEV;
331                 }
332                 if ((proc.p_state != PRS_ZOMBIE) && mtd.td_wmesg)
333                         (void)kvm_read(kd, (u_long)mtd.td_wmesg,
334                             kp->ki_wmesg, WMESGLEN);
335
336                 (void)kvm_read(kd, (u_long)proc.p_vmspace,
337                     (char *)&vmspace, sizeof(vmspace));
338                 kp->ki_size = vmspace.vm_map.size;
339                 /*
340                  * Approximate the kernel's method of calculating
341                  * this field.
342                  */
343 #define         pmap_resident_count(pm) ((pm)->pm_stats.resident_count)
344                 kp->ki_rssize = pmap_resident_count(&vmspace.vm_pmap); 
345                 kp->ki_swrss = vmspace.vm_swrss;
346                 kp->ki_tsize = vmspace.vm_tsize;
347                 kp->ki_dsize = vmspace.vm_dsize;
348                 kp->ki_ssize = vmspace.vm_ssize;
349
350                 switch (what & ~KERN_PROC_INC_THREAD) {
351
352                 case KERN_PROC_PGRP:
353                         if (kp->ki_pgid != (pid_t)arg)
354                                 continue;
355                         break;
356
357                 case KERN_PROC_SESSION:
358                         if (kp->ki_sid != (pid_t)arg)
359                                 continue;
360                         break;
361
362                 case KERN_PROC_TTY:
363                         if ((proc.p_flag & P_CONTROLT) == 0 ||
364                              kp->ki_tdev != (dev_t)arg)
365                                 continue;
366                         break;
367                 }
368                 if (proc.p_comm[0] != 0)
369                         strlcpy(kp->ki_comm, proc.p_comm, MAXCOMLEN);
370                 (void)kvm_read(kd, (u_long)proc.p_sysent, (char *)&sysent,
371                     sizeof(sysent));
372                 (void)kvm_read(kd, (u_long)sysent.sv_name, (char *)&svname,
373                     sizeof(svname));
374                 if (svname[0] != 0)
375                         strlcpy(kp->ki_emul, svname, KI_EMULNAMELEN);
376                 if ((proc.p_state != PRS_ZOMBIE) &&
377                     (mtd.td_blocked != 0)) {
378                         kp->ki_kiflag |= KI_LOCKBLOCK;
379                         if (mtd.td_lockname)
380                                 (void)kvm_read(kd,
381                                     (u_long)mtd.td_lockname,
382                                     kp->ki_lockname, LOCKNAMELEN);
383                         kp->ki_lockname[LOCKNAMELEN] = 0;
384                 }
385                 kp->ki_runtime = cputick2usec(proc.p_rux.rux_runtime);
386                 kp->ki_pid = proc.p_pid;
387                 kp->ki_siglist = proc.p_siglist;
388                 SIGSETOR(kp->ki_siglist, mtd.td_siglist);
389                 kp->ki_sigmask = mtd.td_sigmask;
390                 kp->ki_xstat = proc.p_xstat;
391                 kp->ki_acflag = proc.p_acflag;
392                 kp->ki_lock = proc.p_lock;
393                 if (proc.p_state != PRS_ZOMBIE) {
394                         kp->ki_swtime = (ticks - proc.p_swtick) / hz;
395                         kp->ki_flag = proc.p_flag;
396                         kp->ki_sflag = 0;
397                         kp->ki_nice = proc.p_nice;
398                         kp->ki_traceflag = proc.p_traceflag;
399                         if (proc.p_state == PRS_NORMAL) { 
400                                 if (TD_ON_RUNQ(&mtd) ||
401                                     TD_CAN_RUN(&mtd) ||
402                                     TD_IS_RUNNING(&mtd)) {
403                                         kp->ki_stat = SRUN;
404                                 } else if (mtd.td_state == 
405                                     TDS_INHIBITED) {
406                                         if (P_SHOULDSTOP(&proc)) {
407                                                 kp->ki_stat = SSTOP;
408                                         } else if (
409                                             TD_IS_SLEEPING(&mtd)) {
410                                                 kp->ki_stat = SSLEEP;
411                                         } else if (TD_ON_LOCK(&mtd)) {
412                                                 kp->ki_stat = SLOCK;
413                                         } else {
414                                                 kp->ki_stat = SWAIT;
415                                         }
416                                 }
417                         } else {
418                                 kp->ki_stat = SIDL;
419                         }
420                         /* Stuff from the thread */
421                         kp->ki_pri.pri_level = mtd.td_priority;
422                         kp->ki_pri.pri_native = mtd.td_base_pri;
423                         kp->ki_lastcpu = mtd.td_lastcpu;
424                         kp->ki_wchan = mtd.td_wchan;
425                         if (mtd.td_name[0] != 0)
426                                 strlcpy(kp->ki_tdname, mtd.td_name, MAXCOMLEN);
427                         kp->ki_oncpu = mtd.td_oncpu;
428                         if (mtd.td_name[0] != '\0')
429                                 strlcpy(kp->ki_tdname, mtd.td_name, sizeof(kp->ki_tdname));
430                         kp->ki_pctcpu = 0;
431                         kp->ki_rqindex = 0;
432                 } else {
433                         kp->ki_stat = SZOMB;
434                 }
435                 bcopy(&kinfo_proc, bp, sizeof(kinfo_proc));
436                 ++bp;
437                 ++cnt;
438         }
439         return (cnt);
440 }
441
442 /*
443  * Build proc info array by reading in proc list from a crash dump.
444  * Return number of procs read.  maxcnt is the max we will read.
445  */
446 static int
447 kvm_deadprocs(kvm_t *kd, int what, int arg, u_long a_allproc,
448     u_long a_zombproc, int maxcnt)
449 {
450         struct kinfo_proc *bp = kd->procbase;
451         int acnt, zcnt;
452         struct proc *p;
453
454         if (KREAD(kd, a_allproc, &p)) {
455                 _kvm_err(kd, kd->program, "cannot read allproc");
456                 return (-1);
457         }
458         acnt = kvm_proclist(kd, what, arg, p, bp, maxcnt);
459         if (acnt < 0)
460                 return (acnt);
461
462         if (KREAD(kd, a_zombproc, &p)) {
463                 _kvm_err(kd, kd->program, "cannot read zombproc");
464                 return (-1);
465         }
466         zcnt = kvm_proclist(kd, what, arg, p, bp + acnt, maxcnt - acnt);
467         if (zcnt < 0)
468                 zcnt = 0;
469
470         return (acnt + zcnt);
471 }
472
473 struct kinfo_proc *
474 kvm_getprocs(kvm_t *kd, int op, int arg, int *cnt)
475 {
476         int mib[4], st, nprocs;
477         size_t size, osize;
478         int temp_op;
479
480         if (kd->procbase != 0) {
481                 free((void *)kd->procbase);
482                 /*
483                  * Clear this pointer in case this call fails.  Otherwise,
484                  * kvm_close() will free it again.
485                  */
486                 kd->procbase = 0;
487         }
488         if (ISALIVE(kd)) {
489                 size = 0;
490                 mib[0] = CTL_KERN;
491                 mib[1] = KERN_PROC;
492                 mib[2] = op;
493                 mib[3] = arg;
494                 temp_op = op & ~KERN_PROC_INC_THREAD;
495                 st = sysctl(mib,
496                     temp_op == KERN_PROC_ALL || temp_op == KERN_PROC_PROC ?
497                     3 : 4, NULL, &size, NULL, 0);
498                 if (st == -1) {
499                         _kvm_syserr(kd, kd->program, "kvm_getprocs");
500                         return (0);
501                 }
502                 /*
503                  * We can't continue with a size of 0 because we pass
504                  * it to realloc() (via _kvm_realloc()), and passing 0
505                  * to realloc() results in undefined behavior.
506                  */
507                 if (size == 0) {
508                         /*
509                          * XXX: We should probably return an invalid,
510                          * but non-NULL, pointer here so any client
511                          * program trying to dereference it will
512                          * crash.  However, _kvm_freeprocs() calls
513                          * free() on kd->procbase if it isn't NULL,
514                          * and free()'ing a junk pointer isn't good.
515                          * Then again, _kvm_freeprocs() isn't used
516                          * anywhere . . .
517                          */
518                         kd->procbase = _kvm_malloc(kd, 1);
519                         goto liveout;
520                 }
521                 do {
522                         size += size / 10;
523                         kd->procbase = (struct kinfo_proc *)
524                             _kvm_realloc(kd, kd->procbase, size);
525                         if (kd->procbase == 0)
526                                 return (0);
527                         osize = size;
528                         st = sysctl(mib, temp_op == KERN_PROC_ALL ||
529                             temp_op == KERN_PROC_PROC ? 3 : 4,
530                             kd->procbase, &size, NULL, 0);
531                 } while (st == -1 && errno == ENOMEM && size == osize);
532                 if (st == -1) {
533                         _kvm_syserr(kd, kd->program, "kvm_getprocs");
534                         return (0);
535                 }
536                 /*
537                  * We have to check the size again because sysctl()
538                  * may "round up" oldlenp if oldp is NULL; hence it
539                  * might've told us that there was data to get when
540                  * there really isn't any.
541                  */
542                 if (size > 0 &&
543                     kd->procbase->ki_structsize != sizeof(struct kinfo_proc)) {
544                         _kvm_err(kd, kd->program,
545                             "kinfo_proc size mismatch (expected %zu, got %d)",
546                             sizeof(struct kinfo_proc),
547                             kd->procbase->ki_structsize);
548                         return (0);
549                 }
550 liveout:
551                 nprocs = size == 0 ? 0 : size / kd->procbase->ki_structsize;
552         } else {
553                 struct nlist nl[7], *p;
554
555                 nl[0].n_name = "_nprocs";
556                 nl[1].n_name = "_allproc";
557                 nl[2].n_name = "_zombproc";
558                 nl[3].n_name = "_ticks";
559                 nl[4].n_name = "_hz";
560                 nl[5].n_name = "_cpu_tick_frequency";
561                 nl[6].n_name = 0;
562
563                 if (kvm_nlist(kd, nl) != 0) {
564                         for (p = nl; p->n_type != 0; ++p)
565                                 ;
566                         _kvm_err(kd, kd->program,
567                                  "%s: no such symbol", p->n_name);
568                         return (0);
569                 }
570                 if (KREAD(kd, nl[0].n_value, &nprocs)) {
571                         _kvm_err(kd, kd->program, "can't read nprocs");
572                         return (0);
573                 }
574                 if (KREAD(kd, nl[3].n_value, &ticks)) {
575                         _kvm_err(kd, kd->program, "can't read ticks");
576                         return (0);
577                 }
578                 if (KREAD(kd, nl[4].n_value, &hz)) {
579                         _kvm_err(kd, kd->program, "can't read hz");
580                         return (0);
581                 }
582                 if (KREAD(kd, nl[5].n_value, &cpu_tick_frequency)) {
583                         _kvm_err(kd, kd->program,
584                             "can't read cpu_tick_frequency");
585                         return (0);
586                 }
587                 size = nprocs * sizeof(struct kinfo_proc);
588                 kd->procbase = (struct kinfo_proc *)_kvm_malloc(kd, size);
589                 if (kd->procbase == 0)
590                         return (0);
591
592                 nprocs = kvm_deadprocs(kd, op, arg, nl[1].n_value,
593                                       nl[2].n_value, nprocs);
594 #ifdef notdef
595                 size = nprocs * sizeof(struct kinfo_proc);
596                 (void)realloc(kd->procbase, size);
597 #endif
598         }
599         *cnt = nprocs;
600         return (kd->procbase);
601 }
602
603 void
604 _kvm_freeprocs(kvm_t *kd)
605 {
606         if (kd->procbase) {
607                 free(kd->procbase);
608                 kd->procbase = 0;
609         }
610 }
611
612 void *
613 _kvm_realloc(kvm_t *kd, void *p, size_t n)
614 {
615         void *np = (void *)realloc(p, n);
616
617         if (np == 0) {
618                 free(p);
619                 _kvm_err(kd, kd->program, "out of memory");
620         }
621         return (np);
622 }
623
624 /*
625  * Get the command args or environment.
626  */
627 static char **
628 kvm_argv(kvm_t *kd, const struct kinfo_proc *kp, int env, int nchr)
629 {
630         int oid[4];
631         int i;
632         size_t bufsz;
633         static int buflen;
634         static char *buf, *p;
635         static char **bufp;
636         static int argc;
637
638         if (!ISALIVE(kd)) {
639                 _kvm_err(kd, kd->program,
640                     "cannot read user space from dead kernel");
641                 return (0);
642         }
643
644         if (nchr == 0 || nchr > ARG_MAX)
645                 nchr = ARG_MAX;
646         if (buflen == 0) {
647                 buf = malloc(nchr);
648                 if (buf == NULL) {
649                         _kvm_err(kd, kd->program, "cannot allocate memory");
650                         return (0);
651                 }
652                 buflen = nchr;
653                 argc = 32;
654                 bufp = malloc(sizeof(char *) * argc);
655         } else if (nchr > buflen) {
656                 p = realloc(buf, nchr);
657                 if (p != NULL) {
658                         buf = p;
659                         buflen = nchr;
660                 }
661         }
662         oid[0] = CTL_KERN;
663         oid[1] = KERN_PROC;
664         oid[2] = env ? KERN_PROC_ENV : KERN_PROC_ARGS;
665         oid[3] = kp->ki_pid;
666         bufsz = buflen;
667         if (sysctl(oid, 4, buf, &bufsz, 0, 0) == -1) {
668                 /*
669                  * If the supplied buf is too short to hold the requested
670                  * value the sysctl returns with ENOMEM. The buf is filled
671                  * with the truncated value and the returned bufsz is equal
672                  * to the requested len.
673                  */
674                 if (errno != ENOMEM || bufsz != (size_t)buflen)
675                         return (0);
676                 buf[bufsz - 1] = '\0';
677                 errno = 0;
678         } else if (bufsz == 0) {
679                 return (0);
680         }
681         i = 0;
682         p = buf;
683         do {
684                 bufp[i++] = p;
685                 p += strlen(p) + 1;
686                 if (i >= argc) {
687                         argc += argc;
688                         bufp = realloc(bufp,
689                             sizeof(char *) * argc);
690                 }
691         } while (p < buf + bufsz);
692         bufp[i++] = 0;
693         return (bufp);
694 }
695
696 char **
697 kvm_getargv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
698 {
699         return (kvm_argv(kd, kp, 0, nchr));
700 }
701
702 char **
703 kvm_getenvv(kvm_t *kd, const struct kinfo_proc *kp, int nchr)
704 {
705         return (kvm_argv(kd, kp, 1, nchr));
706 }