]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/libmemstat/memstat.c
MFV r331400: 8484 Implement aggregate sum and use for arc counters
[FreeBSD/FreeBSD.git] / lib / libmemstat / memstat.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2005 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30
31 #include <sys/param.h>
32 #include <sys/sysctl.h>
33
34 #include <err.h>
35 #include <errno.h>
36 #include <stdio.h>
37 #include <stdlib.h>
38 #include <string.h>
39
40 #include "memstat.h"
41 #include "memstat_internal.h"
42
43 const char *
44 memstat_strerror(int error)
45 {
46
47         switch (error) {
48         case MEMSTAT_ERROR_NOMEMORY:
49                 return ("Cannot allocate memory");
50         case MEMSTAT_ERROR_VERSION:
51                 return ("Version mismatch");
52         case MEMSTAT_ERROR_PERMISSION:
53                 return ("Permission denied");
54         case MEMSTAT_ERROR_DATAERROR:
55                 return ("Data format error");
56         case MEMSTAT_ERROR_KVM:
57                 return ("KVM error");
58         case MEMSTAT_ERROR_KVM_NOSYMBOL:
59                 return ("KVM unable to find symbol");
60         case MEMSTAT_ERROR_KVM_SHORTREAD:
61                 return ("KVM short read");
62         case MEMSTAT_ERROR_UNDEFINED:
63         default:
64                 return ("Unknown error");
65         }
66 }
67
68 struct memory_type_list *
69 memstat_mtl_alloc(void)
70 {
71         struct memory_type_list *mtlp;
72
73         mtlp = malloc(sizeof(*mtlp));
74         if (mtlp == NULL)
75                 return (NULL);
76
77         LIST_INIT(&mtlp->mtl_list);
78         mtlp->mtl_error = MEMSTAT_ERROR_UNDEFINED;
79         return (mtlp);
80 }
81
82 struct memory_type *
83 memstat_mtl_first(struct memory_type_list *list)
84 {
85
86         return (LIST_FIRST(&list->mtl_list));
87 }
88
89 struct memory_type *
90 memstat_mtl_next(struct memory_type *mtp)
91 {
92
93         return (LIST_NEXT(mtp, mt_list));
94 }
95
96 void
97 _memstat_mtl_empty(struct memory_type_list *list)
98 {
99         struct memory_type *mtp;
100
101         while ((mtp = LIST_FIRST(&list->mtl_list))) {
102                 free(mtp->mt_percpu_alloc);
103                 free(mtp->mt_percpu_cache);
104                 LIST_REMOVE(mtp, mt_list);
105                 free(mtp);
106         }
107 }
108
109 void
110 memstat_mtl_free(struct memory_type_list *list)
111 {
112
113         _memstat_mtl_empty(list);
114         free(list);
115 }
116
117 int
118 memstat_mtl_geterror(struct memory_type_list *list)
119 {
120
121         return (list->mtl_error);
122 }
123
124 /*
125  * Look for an existing memory_type entry in a memory_type list, based on the
126  * allocator and name of the type.  If not found, return NULL.  No errno or
127  * memstat error.
128  */
129 struct memory_type *
130 memstat_mtl_find(struct memory_type_list *list, int allocator,
131     const char *name)
132 {
133         struct memory_type *mtp;
134
135         LIST_FOREACH(mtp, &list->mtl_list, mt_list) {
136                 if ((mtp->mt_allocator == allocator ||
137                     allocator == ALLOCATOR_ANY) &&
138                     strcmp(mtp->mt_name, name) == 0)
139                         return (mtp);
140         }
141         return (NULL);
142 }
143
144 /*
145  * Allocate a new memory_type with the specificed allocator type and name,
146  * then insert into the list.  The structure will be zero'd.
147  *
148  * libmemstat(3) internal function.
149  */
150 struct memory_type *
151 _memstat_mt_allocate(struct memory_type_list *list, int allocator,
152     const char *name, int maxcpus)
153 {
154         struct memory_type *mtp;
155
156         mtp = malloc(sizeof(*mtp));
157         if (mtp == NULL)
158                 return (NULL);
159
160         bzero(mtp, sizeof(*mtp));
161
162         mtp->mt_allocator = allocator;
163         mtp->mt_percpu_alloc = malloc(sizeof(struct mt_percpu_alloc_s) *
164             maxcpus);
165         mtp->mt_percpu_cache = malloc(sizeof(struct mt_percpu_cache_s) *
166             maxcpus);
167         strlcpy(mtp->mt_name, name, MEMTYPE_MAXNAME);
168         LIST_INSERT_HEAD(&list->mtl_list, mtp, mt_list);
169         return (mtp);
170 }
171
172 /*
173  * Reset any libmemstat(3)-owned statistics in a memory_type record so that
174  * it can be reused without incremental addition problems.  Caller-owned
175  * memory is left "as-is", and must be updated by the caller if desired.
176  *
177  * libmemstat(3) internal function.
178  */
179 void
180 _memstat_mt_reset_stats(struct memory_type *mtp, int maxcpus)
181 {
182         int i;
183
184         mtp->mt_countlimit = 0;
185         mtp->mt_byteslimit = 0;
186         mtp->mt_sizemask = 0;
187         mtp->mt_size = 0;
188
189         mtp->mt_memalloced = 0;
190         mtp->mt_memfreed = 0;
191         mtp->mt_numallocs = 0;
192         mtp->mt_numfrees = 0;
193         mtp->mt_bytes = 0;
194         mtp->mt_count = 0;
195         mtp->mt_free = 0;
196         mtp->mt_failures = 0;
197         mtp->mt_sleeps = 0;
198
199         mtp->mt_zonefree = 0;
200         mtp->mt_kegfree = 0;
201
202         for (i = 0; i < maxcpus; i++) {
203                 mtp->mt_percpu_alloc[i].mtp_memalloced = 0;
204                 mtp->mt_percpu_alloc[i].mtp_memfreed = 0;
205                 mtp->mt_percpu_alloc[i].mtp_numallocs = 0;
206                 mtp->mt_percpu_alloc[i].mtp_numfrees = 0;
207                 mtp->mt_percpu_alloc[i].mtp_sizemask = 0;
208                 mtp->mt_percpu_cache[i].mtp_free = 0;
209         }
210 }
211
212 /*
213  * Accessor methods for struct memory_type.  Avoids encoding the structure
214  * ABI into the application.
215  */
216 const char *
217 memstat_get_name(const struct memory_type *mtp)
218 {
219
220         return (mtp->mt_name);
221 }
222
223 int
224 memstat_get_allocator(const struct memory_type *mtp)
225 {
226
227         return (mtp->mt_allocator);
228 }
229
230 uint64_t
231 memstat_get_countlimit(const struct memory_type *mtp)
232 {
233
234         return (mtp->mt_countlimit);
235 }
236
237 uint64_t
238 memstat_get_byteslimit(const struct memory_type *mtp)
239 {
240
241         return (mtp->mt_byteslimit);
242 }
243
244 uint64_t
245 memstat_get_sizemask(const struct memory_type *mtp)
246 {
247
248         return (mtp->mt_sizemask);
249 }
250
251 uint64_t
252 memstat_get_size(const struct memory_type *mtp)
253 {
254
255         return (mtp->mt_size);
256 }
257
258 uint64_t
259 memstat_get_rsize(const struct memory_type *mtp)
260 {
261
262         return (mtp->mt_rsize);
263 }
264
265 uint64_t
266 memstat_get_memalloced(const struct memory_type *mtp)
267 {
268
269         return (mtp->mt_memalloced);
270 }
271
272 uint64_t
273 memstat_get_memfreed(const struct memory_type *mtp)
274 {
275
276         return (mtp->mt_memfreed);
277 }
278
279 uint64_t
280 memstat_get_numallocs(const struct memory_type *mtp)
281 {
282
283         return (mtp->mt_numallocs);
284 }
285
286 uint64_t
287 memstat_get_numfrees(const struct memory_type *mtp)
288 {
289
290         return (mtp->mt_numfrees);
291 }
292
293 uint64_t
294 memstat_get_bytes(const struct memory_type *mtp)
295 {
296
297         return (mtp->mt_bytes);
298 }
299
300 uint64_t
301 memstat_get_count(const struct memory_type *mtp)
302 {
303
304         return (mtp->mt_count);
305 }
306
307 uint64_t
308 memstat_get_free(const struct memory_type *mtp)
309 {
310
311         return (mtp->mt_free);
312 }
313
314 uint64_t
315 memstat_get_failures(const struct memory_type *mtp)
316 {
317
318         return (mtp->mt_failures);
319 }
320
321 uint64_t
322 memstat_get_sleeps(const struct memory_type *mtp)
323 {
324
325         return (mtp->mt_sleeps);
326 }
327
328 void *
329 memstat_get_caller_pointer(const struct memory_type *mtp, int index)
330 {
331
332         return (mtp->mt_caller_pointer[index]);
333 }
334
335 void
336 memstat_set_caller_pointer(struct memory_type *mtp, int index, void *value)
337 {
338
339         mtp->mt_caller_pointer[index] = value;
340 }
341
342 uint64_t
343 memstat_get_caller_uint64(const struct memory_type *mtp, int index)
344 {
345
346         return (mtp->mt_caller_uint64[index]);
347 }
348
349 void
350 memstat_set_caller_uint64(struct memory_type *mtp, int index, uint64_t value)
351 {
352
353         mtp->mt_caller_uint64[index] = value;
354 }
355
356 uint64_t
357 memstat_get_zonefree(const struct memory_type *mtp)
358 {
359
360         return (mtp->mt_zonefree);
361 }
362
363 uint64_t
364 memstat_get_kegfree(const struct memory_type *mtp)
365 {
366
367         return (mtp->mt_kegfree);
368 }
369
370 uint64_t
371 memstat_get_percpu_memalloced(const struct memory_type *mtp, int cpu)
372 {
373
374         return (mtp->mt_percpu_alloc[cpu].mtp_memalloced);
375 }
376
377 uint64_t
378 memstat_get_percpu_memfreed(const struct memory_type *mtp, int cpu)
379 {
380
381         return (mtp->mt_percpu_alloc[cpu].mtp_memfreed);
382 }
383
384 uint64_t
385 memstat_get_percpu_numallocs(const struct memory_type *mtp, int cpu)
386 {
387
388         return (mtp->mt_percpu_alloc[cpu].mtp_numallocs);
389 }
390
391 uint64_t
392 memstat_get_percpu_numfrees(const struct memory_type *mtp, int cpu)
393 {
394
395         return (mtp->mt_percpu_alloc[cpu].mtp_numfrees);
396 }
397
398 uint64_t
399 memstat_get_percpu_sizemask(const struct memory_type *mtp, int cpu)
400 {
401
402         return (mtp->mt_percpu_alloc[cpu].mtp_sizemask);
403 }
404
405 void *
406 memstat_get_percpu_caller_pointer(const struct memory_type *mtp, int cpu,
407     int index)
408 {
409
410         return (mtp->mt_percpu_alloc[cpu].mtp_caller_pointer[index]);
411 }
412
413 void
414 memstat_set_percpu_caller_pointer(struct memory_type *mtp, int cpu,
415     int index, void *value)
416 {
417
418         mtp->mt_percpu_alloc[cpu].mtp_caller_pointer[index] = value;
419 }
420
421 uint64_t
422 memstat_get_percpu_caller_uint64(const struct memory_type *mtp, int cpu,
423     int index)
424 {
425
426         return (mtp->mt_percpu_alloc[cpu].mtp_caller_uint64[index]);
427 }
428
429 void
430 memstat_set_percpu_caller_uint64(struct memory_type *mtp, int cpu, int index,
431     uint64_t value)
432 {
433
434         mtp->mt_percpu_alloc[cpu].mtp_caller_uint64[index] = value;
435 }
436
437 uint64_t
438 memstat_get_percpu_free(const struct memory_type *mtp, int cpu)
439 {
440
441         return (mtp->mt_percpu_cache[cpu].mtp_free);
442 }