]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/libmemstat/memstat.c
Implement pci_enable_msi() and pci_disable_msi() in the LinuxKPI.
[FreeBSD/FreeBSD.git] / lib / libmemstat / memstat.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2005 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD$
29  */
30
31 #include <sys/param.h>
32 #include <sys/queue.h>
33 #include <sys/sysctl.h>
34
35 #include <err.h>
36 #include <errno.h>
37 #include <stdio.h>
38 #include <stdlib.h>
39 #include <string.h>
40
41 #include "memstat.h"
42 #include "memstat_internal.h"
43
44 const char *
45 memstat_strerror(int error)
46 {
47
48         switch (error) {
49         case MEMSTAT_ERROR_NOMEMORY:
50                 return ("Cannot allocate memory");
51         case MEMSTAT_ERROR_VERSION:
52                 return ("Version mismatch");
53         case MEMSTAT_ERROR_PERMISSION:
54                 return ("Permission denied");
55         case MEMSTAT_ERROR_DATAERROR:
56                 return ("Data format error");
57         case MEMSTAT_ERROR_KVM:
58                 return ("KVM error");
59         case MEMSTAT_ERROR_KVM_NOSYMBOL:
60                 return ("KVM unable to find symbol");
61         case MEMSTAT_ERROR_KVM_SHORTREAD:
62                 return ("KVM short read");
63         case MEMSTAT_ERROR_UNDEFINED:
64         default:
65                 return ("Unknown error");
66         }
67 }
68
69 struct memory_type_list *
70 memstat_mtl_alloc(void)
71 {
72         struct memory_type_list *mtlp;
73
74         mtlp = malloc(sizeof(*mtlp));
75         if (mtlp == NULL)
76                 return (NULL);
77
78         LIST_INIT(&mtlp->mtl_list);
79         mtlp->mtl_error = MEMSTAT_ERROR_UNDEFINED;
80         return (mtlp);
81 }
82
83 struct memory_type *
84 memstat_mtl_first(struct memory_type_list *list)
85 {
86
87         return (LIST_FIRST(&list->mtl_list));
88 }
89
90 struct memory_type *
91 memstat_mtl_next(struct memory_type *mtp)
92 {
93
94         return (LIST_NEXT(mtp, mt_list));
95 }
96
97 void
98 _memstat_mtl_empty(struct memory_type_list *list)
99 {
100         struct memory_type *mtp;
101
102         while ((mtp = LIST_FIRST(&list->mtl_list))) {
103                 free(mtp->mt_percpu_alloc);
104                 free(mtp->mt_percpu_cache);
105                 LIST_REMOVE(mtp, mt_list);
106                 free(mtp);
107         }
108 }
109
110 void
111 memstat_mtl_free(struct memory_type_list *list)
112 {
113
114         _memstat_mtl_empty(list);
115         free(list);
116 }
117
118 int
119 memstat_mtl_geterror(struct memory_type_list *list)
120 {
121
122         return (list->mtl_error);
123 }
124
125 /*
126  * Look for an existing memory_type entry in a memory_type list, based on the
127  * allocator and name of the type.  If not found, return NULL.  No errno or
128  * memstat error.
129  */
130 struct memory_type *
131 memstat_mtl_find(struct memory_type_list *list, int allocator,
132     const char *name)
133 {
134         struct memory_type *mtp;
135
136         LIST_FOREACH(mtp, &list->mtl_list, mt_list) {
137                 if ((mtp->mt_allocator == allocator ||
138                     allocator == ALLOCATOR_ANY) &&
139                     strcmp(mtp->mt_name, name) == 0)
140                         return (mtp);
141         }
142         return (NULL);
143 }
144
145 /*
146  * Allocate a new memory_type with the specificed allocator type and name,
147  * then insert into the list.  The structure will be zero'd.
148  *
149  * libmemstat(3) internal function.
150  */
151 struct memory_type *
152 _memstat_mt_allocate(struct memory_type_list *list, int allocator,
153     const char *name, int maxcpus)
154 {
155         struct memory_type *mtp;
156
157         mtp = malloc(sizeof(*mtp));
158         if (mtp == NULL)
159                 return (NULL);
160
161         bzero(mtp, sizeof(*mtp));
162
163         mtp->mt_allocator = allocator;
164         mtp->mt_percpu_alloc = malloc(sizeof(struct mt_percpu_alloc_s) *
165             maxcpus);
166         mtp->mt_percpu_cache = malloc(sizeof(struct mt_percpu_cache_s) *
167             maxcpus);
168         strlcpy(mtp->mt_name, name, MEMTYPE_MAXNAME);
169         LIST_INSERT_HEAD(&list->mtl_list, mtp, mt_list);
170         return (mtp);
171 }
172
173 /*
174  * Reset any libmemstat(3)-owned statistics in a memory_type record so that
175  * it can be reused without incremental addition problems.  Caller-owned
176  * memory is left "as-is", and must be updated by the caller if desired.
177  *
178  * libmemstat(3) internal function.
179  */
180 void
181 _memstat_mt_reset_stats(struct memory_type *mtp, int maxcpus)
182 {
183         int i;
184
185         mtp->mt_countlimit = 0;
186         mtp->mt_byteslimit = 0;
187         mtp->mt_sizemask = 0;
188         mtp->mt_size = 0;
189
190         mtp->mt_memalloced = 0;
191         mtp->mt_memfreed = 0;
192         mtp->mt_numallocs = 0;
193         mtp->mt_numfrees = 0;
194         mtp->mt_bytes = 0;
195         mtp->mt_count = 0;
196         mtp->mt_free = 0;
197         mtp->mt_failures = 0;
198         mtp->mt_sleeps = 0;
199
200         mtp->mt_zonefree = 0;
201         mtp->mt_kegfree = 0;
202
203         for (i = 0; i < maxcpus; i++) {
204                 mtp->mt_percpu_alloc[i].mtp_memalloced = 0;
205                 mtp->mt_percpu_alloc[i].mtp_memfreed = 0;
206                 mtp->mt_percpu_alloc[i].mtp_numallocs = 0;
207                 mtp->mt_percpu_alloc[i].mtp_numfrees = 0;
208                 mtp->mt_percpu_alloc[i].mtp_sizemask = 0;
209                 mtp->mt_percpu_cache[i].mtp_free = 0;
210         }
211 }
212
213 /*
214  * Accessor methods for struct memory_type.  Avoids encoding the structure
215  * ABI into the application.
216  */
217 const char *
218 memstat_get_name(const struct memory_type *mtp)
219 {
220
221         return (mtp->mt_name);
222 }
223
224 int
225 memstat_get_allocator(const struct memory_type *mtp)
226 {
227
228         return (mtp->mt_allocator);
229 }
230
231 uint64_t
232 memstat_get_countlimit(const struct memory_type *mtp)
233 {
234
235         return (mtp->mt_countlimit);
236 }
237
238 uint64_t
239 memstat_get_byteslimit(const struct memory_type *mtp)
240 {
241
242         return (mtp->mt_byteslimit);
243 }
244
245 uint64_t
246 memstat_get_sizemask(const struct memory_type *mtp)
247 {
248
249         return (mtp->mt_sizemask);
250 }
251
252 uint64_t
253 memstat_get_size(const struct memory_type *mtp)
254 {
255
256         return (mtp->mt_size);
257 }
258
259 uint64_t
260 memstat_get_rsize(const struct memory_type *mtp)
261 {
262
263         return (mtp->mt_rsize);
264 }
265
266 uint64_t
267 memstat_get_memalloced(const struct memory_type *mtp)
268 {
269
270         return (mtp->mt_memalloced);
271 }
272
273 uint64_t
274 memstat_get_memfreed(const struct memory_type *mtp)
275 {
276
277         return (mtp->mt_memfreed);
278 }
279
280 uint64_t
281 memstat_get_numallocs(const struct memory_type *mtp)
282 {
283
284         return (mtp->mt_numallocs);
285 }
286
287 uint64_t
288 memstat_get_numfrees(const struct memory_type *mtp)
289 {
290
291         return (mtp->mt_numfrees);
292 }
293
294 uint64_t
295 memstat_get_bytes(const struct memory_type *mtp)
296 {
297
298         return (mtp->mt_bytes);
299 }
300
301 uint64_t
302 memstat_get_count(const struct memory_type *mtp)
303 {
304
305         return (mtp->mt_count);
306 }
307
308 uint64_t
309 memstat_get_free(const struct memory_type *mtp)
310 {
311
312         return (mtp->mt_free);
313 }
314
315 uint64_t
316 memstat_get_failures(const struct memory_type *mtp)
317 {
318
319         return (mtp->mt_failures);
320 }
321
322 uint64_t
323 memstat_get_sleeps(const struct memory_type *mtp)
324 {
325
326         return (mtp->mt_sleeps);
327 }
328
329 uint64_t
330 memstat_get_xdomain(const struct memory_type *mtp)
331 {
332
333         return (mtp->mt_xdomain);
334 }
335
336 void *
337 memstat_get_caller_pointer(const struct memory_type *mtp, int index)
338 {
339
340         return (mtp->mt_caller_pointer[index]);
341 }
342
343 void
344 memstat_set_caller_pointer(struct memory_type *mtp, int index, void *value)
345 {
346
347         mtp->mt_caller_pointer[index] = value;
348 }
349
350 uint64_t
351 memstat_get_caller_uint64(const struct memory_type *mtp, int index)
352 {
353
354         return (mtp->mt_caller_uint64[index]);
355 }
356
357 void
358 memstat_set_caller_uint64(struct memory_type *mtp, int index, uint64_t value)
359 {
360
361         mtp->mt_caller_uint64[index] = value;
362 }
363
364 uint64_t
365 memstat_get_zonefree(const struct memory_type *mtp)
366 {
367
368         return (mtp->mt_zonefree);
369 }
370
371 uint64_t
372 memstat_get_kegfree(const struct memory_type *mtp)
373 {
374
375         return (mtp->mt_kegfree);
376 }
377
378 uint64_t
379 memstat_get_percpu_memalloced(const struct memory_type *mtp, int cpu)
380 {
381
382         return (mtp->mt_percpu_alloc[cpu].mtp_memalloced);
383 }
384
385 uint64_t
386 memstat_get_percpu_memfreed(const struct memory_type *mtp, int cpu)
387 {
388
389         return (mtp->mt_percpu_alloc[cpu].mtp_memfreed);
390 }
391
392 uint64_t
393 memstat_get_percpu_numallocs(const struct memory_type *mtp, int cpu)
394 {
395
396         return (mtp->mt_percpu_alloc[cpu].mtp_numallocs);
397 }
398
399 uint64_t
400 memstat_get_percpu_numfrees(const struct memory_type *mtp, int cpu)
401 {
402
403         return (mtp->mt_percpu_alloc[cpu].mtp_numfrees);
404 }
405
406 uint64_t
407 memstat_get_percpu_sizemask(const struct memory_type *mtp, int cpu)
408 {
409
410         return (mtp->mt_percpu_alloc[cpu].mtp_sizemask);
411 }
412
413 void *
414 memstat_get_percpu_caller_pointer(const struct memory_type *mtp, int cpu,
415     int index)
416 {
417
418         return (mtp->mt_percpu_alloc[cpu].mtp_caller_pointer[index]);
419 }
420
421 void
422 memstat_set_percpu_caller_pointer(struct memory_type *mtp, int cpu,
423     int index, void *value)
424 {
425
426         mtp->mt_percpu_alloc[cpu].mtp_caller_pointer[index] = value;
427 }
428
429 uint64_t
430 memstat_get_percpu_caller_uint64(const struct memory_type *mtp, int cpu,
431     int index)
432 {
433
434         return (mtp->mt_percpu_alloc[cpu].mtp_caller_uint64[index]);
435 }
436
437 void
438 memstat_set_percpu_caller_uint64(struct memory_type *mtp, int cpu, int index,
439     uint64_t value)
440 {
441
442         mtp->mt_percpu_alloc[cpu].mtp_caller_uint64[index] = value;
443 }
444
445 uint64_t
446 memstat_get_percpu_free(const struct memory_type *mtp, int cpu)
447 {
448
449         return (mtp->mt_percpu_cache[cpu].mtp_free);
450 }