]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/lsan/lsan_common.cc
Vendor import of compiler-rt release_39 branch r276489:
[FreeBSD/FreeBSD.git] / lib / lsan / lsan_common.cc
1 //=-- lsan_common.cc ------------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file is a part of LeakSanitizer.
11 // Implementation of common leak checking functionality.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "lsan_common.h"
16
17 #include "sanitizer_common/sanitizer_common.h"
18 #include "sanitizer_common/sanitizer_flags.h"
19 #include "sanitizer_common/sanitizer_flag_parser.h"
20 #include "sanitizer_common/sanitizer_placement_new.h"
21 #include "sanitizer_common/sanitizer_procmaps.h"
22 #include "sanitizer_common/sanitizer_stackdepot.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_suppressions.h"
25 #include "sanitizer_common/sanitizer_report_decorator.h"
26 #include "sanitizer_common/sanitizer_tls_get_addr.h"
27
28 #if CAN_SANITIZE_LEAKS
29 namespace __lsan {
30
31 // This mutex is used to prevent races between DoLeakCheck and IgnoreObject, and
32 // also to protect the global list of root regions.
33 BlockingMutex global_mutex(LINKER_INITIALIZED);
34
35 THREADLOCAL int disable_counter;
36 bool DisabledInThisThread() { return disable_counter > 0; }
37 void DisableInThisThread() { disable_counter++; }
38 void EnableInThisThread() {
39   if (!disable_counter && common_flags()->detect_leaks) {
40     Report("Unmatched call to __lsan_enable().\n");
41     Die();
42   }
43   disable_counter--;
44 }
45
46 Flags lsan_flags;
47
48 void Flags::SetDefaults() {
49 #define LSAN_FLAG(Type, Name, DefaultValue, Description) Name = DefaultValue;
50 #include "lsan_flags.inc"
51 #undef LSAN_FLAG
52 }
53
54 void RegisterLsanFlags(FlagParser *parser, Flags *f) {
55 #define LSAN_FLAG(Type, Name, DefaultValue, Description) \
56   RegisterFlag(parser, #Name, Description, &f->Name);
57 #include "lsan_flags.inc"
58 #undef LSAN_FLAG
59 }
60
61 #define LOG_POINTERS(...)                           \
62   do {                                              \
63     if (flags()->log_pointers) Report(__VA_ARGS__); \
64   } while (0);
65
66 #define LOG_THREADS(...)                           \
67   do {                                             \
68     if (flags()->log_threads) Report(__VA_ARGS__); \
69   } while (0);
70
71 ALIGNED(64) static char suppression_placeholder[sizeof(SuppressionContext)];
72 static SuppressionContext *suppression_ctx = nullptr;
73 static const char kSuppressionLeak[] = "leak";
74 static const char *kSuppressionTypes[] = { kSuppressionLeak };
75
76 void InitializeSuppressions() {
77   CHECK_EQ(nullptr, suppression_ctx);
78   suppression_ctx = new (suppression_placeholder) // NOLINT
79       SuppressionContext(kSuppressionTypes, ARRAY_SIZE(kSuppressionTypes));
80   suppression_ctx->ParseFromFile(flags()->suppressions);
81   if (&__lsan_default_suppressions)
82     suppression_ctx->Parse(__lsan_default_suppressions());
83 }
84
85 static SuppressionContext *GetSuppressionContext() {
86   CHECK(suppression_ctx);
87   return suppression_ctx;
88 }
89
90 struct RootRegion {
91   const void *begin;
92   uptr size;
93 };
94
95 InternalMmapVector<RootRegion> *root_regions;
96
97 void InitializeRootRegions() {
98   CHECK(!root_regions);
99   ALIGNED(64) static char placeholder[sizeof(InternalMmapVector<RootRegion>)];
100   root_regions = new(placeholder) InternalMmapVector<RootRegion>(1);
101 }
102
103 void InitCommonLsan() {
104   InitializeRootRegions();
105   if (common_flags()->detect_leaks) {
106     // Initialization which can fail or print warnings should only be done if
107     // LSan is actually enabled.
108     InitializeSuppressions();
109     InitializePlatformSpecificModules();
110   }
111 }
112
113 class Decorator: public __sanitizer::SanitizerCommonDecorator {
114  public:
115   Decorator() : SanitizerCommonDecorator() { }
116   const char *Error() { return Red(); }
117   const char *Leak() { return Blue(); }
118   const char *End() { return Default(); }
119 };
120
121 static inline bool CanBeAHeapPointer(uptr p) {
122   // Since our heap is located in mmap-ed memory, we can assume a sensible lower
123   // bound on heap addresses.
124   const uptr kMinAddress = 4 * 4096;
125   if (p < kMinAddress) return false;
126 #if defined(__x86_64__)
127   // Accept only canonical form user-space addresses.
128   return ((p >> 47) == 0);
129 #elif defined(__mips64)
130   return ((p >> 40) == 0);
131 #elif defined(__aarch64__)
132   unsigned runtimeVMA =
133     (MostSignificantSetBitIndex(GET_CURRENT_FRAME()) + 1);
134   return ((p >> runtimeVMA) == 0);
135 #else
136   return true;
137 #endif
138 }
139
140 // Scans the memory range, looking for byte patterns that point into allocator
141 // chunks. Marks those chunks with |tag| and adds them to |frontier|.
142 // There are two usage modes for this function: finding reachable chunks
143 // (|tag| = kReachable) and finding indirectly leaked chunks
144 // (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
145 // so |frontier| = 0.
146 void ScanRangeForPointers(uptr begin, uptr end,
147                           Frontier *frontier,
148                           const char *region_type, ChunkTag tag) {
149   CHECK(tag == kReachable || tag == kIndirectlyLeaked);
150   const uptr alignment = flags()->pointer_alignment();
151   LOG_POINTERS("Scanning %s range %p-%p.\n", region_type, begin, end);
152   uptr pp = begin;
153   if (pp % alignment)
154     pp = pp + alignment - pp % alignment;
155   for (; pp + sizeof(void *) <= end; pp += alignment) {  // NOLINT
156     void *p = *reinterpret_cast<void **>(pp);
157     if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
158     uptr chunk = PointsIntoChunk(p);
159     if (!chunk) continue;
160     // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
161     if (chunk == begin) continue;
162     LsanMetadata m(chunk);
163     if (m.tag() == kReachable || m.tag() == kIgnored) continue;
164
165     // Do this check relatively late so we can log only the interesting cases.
166     if (!flags()->use_poisoned && WordIsPoisoned(pp)) {
167       LOG_POINTERS(
168           "%p is poisoned: ignoring %p pointing into chunk %p-%p of size "
169           "%zu.\n",
170           pp, p, chunk, chunk + m.requested_size(), m.requested_size());
171       continue;
172     }
173
174     m.set_tag(tag);
175     LOG_POINTERS("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
176                  chunk, chunk + m.requested_size(), m.requested_size());
177     if (frontier)
178       frontier->push_back(chunk);
179   }
180 }
181
182 void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
183   Frontier *frontier = reinterpret_cast<Frontier *>(arg);
184   ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
185 }
186
187 // Scans thread data (stacks and TLS) for heap pointers.
188 static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
189                            Frontier *frontier) {
190   InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
191   uptr registers_begin = reinterpret_cast<uptr>(registers.data());
192   uptr registers_end = registers_begin + registers.size();
193   for (uptr i = 0; i < suspended_threads.thread_count(); i++) {
194     uptr os_id = static_cast<uptr>(suspended_threads.GetThreadID(i));
195     LOG_THREADS("Processing thread %d.\n", os_id);
196     uptr stack_begin, stack_end, tls_begin, tls_end, cache_begin, cache_end;
197     DTLS *dtls;
198     bool thread_found = GetThreadRangesLocked(os_id, &stack_begin, &stack_end,
199                                               &tls_begin, &tls_end,
200                                               &cache_begin, &cache_end, &dtls);
201     if (!thread_found) {
202       // If a thread can't be found in the thread registry, it's probably in the
203       // process of destruction. Log this event and move on.
204       LOG_THREADS("Thread %d not found in registry.\n", os_id);
205       continue;
206     }
207     uptr sp;
208     bool have_registers =
209         (suspended_threads.GetRegistersAndSP(i, registers.data(), &sp) == 0);
210     if (!have_registers) {
211       Report("Unable to get registers from thread %d.\n");
212       // If unable to get SP, consider the entire stack to be reachable.
213       sp = stack_begin;
214     }
215
216     if (flags()->use_registers && have_registers)
217       ScanRangeForPointers(registers_begin, registers_end, frontier,
218                            "REGISTERS", kReachable);
219
220     if (flags()->use_stacks) {
221       LOG_THREADS("Stack at %p-%p (SP = %p).\n", stack_begin, stack_end, sp);
222       if (sp < stack_begin || sp >= stack_end) {
223         // SP is outside the recorded stack range (e.g. the thread is running a
224         // signal handler on alternate stack, or swapcontext was used).
225         // Again, consider the entire stack range to be reachable.
226         LOG_THREADS("WARNING: stack pointer not in stack range.\n");
227         uptr page_size = GetPageSizeCached();
228         int skipped = 0;
229         while (stack_begin < stack_end &&
230                !IsAccessibleMemoryRange(stack_begin, 1)) {
231           skipped++;
232           stack_begin += page_size;
233         }
234         LOG_THREADS("Skipped %d guard page(s) to obtain stack %p-%p.\n",
235                     skipped, stack_begin, stack_end);
236       } else {
237         // Shrink the stack range to ignore out-of-scope values.
238         stack_begin = sp;
239       }
240       ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
241                            kReachable);
242       ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
243     }
244
245     if (flags()->use_tls) {
246       LOG_THREADS("TLS at %p-%p.\n", tls_begin, tls_end);
247       if (cache_begin == cache_end) {
248         ScanRangeForPointers(tls_begin, tls_end, frontier, "TLS", kReachable);
249       } else {
250         // Because LSan should not be loaded with dlopen(), we can assume
251         // that allocator cache will be part of static TLS image.
252         CHECK_LE(tls_begin, cache_begin);
253         CHECK_GE(tls_end, cache_end);
254         if (tls_begin < cache_begin)
255           ScanRangeForPointers(tls_begin, cache_begin, frontier, "TLS",
256                                kReachable);
257         if (tls_end > cache_end)
258           ScanRangeForPointers(cache_end, tls_end, frontier, "TLS", kReachable);
259       }
260       if (dtls) {
261         for (uptr j = 0; j < dtls->dtv_size; ++j) {
262           uptr dtls_beg = dtls->dtv[j].beg;
263           uptr dtls_end = dtls_beg + dtls->dtv[j].size;
264           if (dtls_beg < dtls_end) {
265             LOG_THREADS("DTLS %zu at %p-%p.\n", j, dtls_beg, dtls_end);
266             ScanRangeForPointers(dtls_beg, dtls_end, frontier, "DTLS",
267                                  kReachable);
268           }
269         }
270       }
271     }
272   }
273 }
274
275 static void ProcessRootRegion(Frontier *frontier, uptr root_begin,
276                               uptr root_end) {
277   MemoryMappingLayout proc_maps(/*cache_enabled*/true);
278   uptr begin, end, prot;
279   while (proc_maps.Next(&begin, &end,
280                         /*offset*/ nullptr, /*filename*/ nullptr,
281                         /*filename_size*/ 0, &prot)) {
282     uptr intersection_begin = Max(root_begin, begin);
283     uptr intersection_end = Min(end, root_end);
284     if (intersection_begin >= intersection_end) continue;
285     bool is_readable = prot & MemoryMappingLayout::kProtectionRead;
286     LOG_POINTERS("Root region %p-%p intersects with mapped region %p-%p (%s)\n",
287                  root_begin, root_end, begin, end,
288                  is_readable ? "readable" : "unreadable");
289     if (is_readable)
290       ScanRangeForPointers(intersection_begin, intersection_end, frontier,
291                            "ROOT", kReachable);
292   }
293 }
294
295 // Scans root regions for heap pointers.
296 static void ProcessRootRegions(Frontier *frontier) {
297   if (!flags()->use_root_regions) return;
298   CHECK(root_regions);
299   for (uptr i = 0; i < root_regions->size(); i++) {
300     RootRegion region = (*root_regions)[i];
301     uptr begin_addr = reinterpret_cast<uptr>(region.begin);
302     ProcessRootRegion(frontier, begin_addr, begin_addr + region.size);
303   }
304 }
305
306 static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
307   while (frontier->size()) {
308     uptr next_chunk = frontier->back();
309     frontier->pop_back();
310     LsanMetadata m(next_chunk);
311     ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
312                          "HEAP", tag);
313   }
314 }
315
316 // ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
317 // which are reachable from it as indirectly leaked.
318 static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
319   chunk = GetUserBegin(chunk);
320   LsanMetadata m(chunk);
321   if (m.allocated() && m.tag() != kReachable) {
322     ScanRangeForPointers(chunk, chunk + m.requested_size(),
323                          /* frontier */ nullptr, "HEAP", kIndirectlyLeaked);
324   }
325 }
326
327 // ForEachChunk callback. If chunk is marked as ignored, adds its address to
328 // frontier.
329 static void CollectIgnoredCb(uptr chunk, void *arg) {
330   CHECK(arg);
331   chunk = GetUserBegin(chunk);
332   LsanMetadata m(chunk);
333   if (m.allocated() && m.tag() == kIgnored) {
334     LOG_POINTERS("Ignored: chunk %p-%p of size %zu.\n",
335                  chunk, chunk + m.requested_size(), m.requested_size());
336     reinterpret_cast<Frontier *>(arg)->push_back(chunk);
337   }
338 }
339
340 // Sets the appropriate tag on each chunk.
341 static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
342   // Holds the flood fill frontier.
343   Frontier frontier(1);
344
345   ForEachChunk(CollectIgnoredCb, &frontier);
346   ProcessGlobalRegions(&frontier);
347   ProcessThreads(suspended_threads, &frontier);
348   ProcessRootRegions(&frontier);
349   FloodFillTag(&frontier, kReachable);
350
351   // The check here is relatively expensive, so we do this in a separate flood
352   // fill. That way we can skip the check for chunks that are reachable
353   // otherwise.
354   LOG_POINTERS("Processing platform-specific allocations.\n");
355   CHECK_EQ(0, frontier.size());
356   ProcessPlatformSpecificAllocations(&frontier);
357   FloodFillTag(&frontier, kReachable);
358
359   // Iterate over leaked chunks and mark those that are reachable from other
360   // leaked chunks.
361   LOG_POINTERS("Scanning leaked chunks.\n");
362   ForEachChunk(MarkIndirectlyLeakedCb, nullptr);
363 }
364
365 // ForEachChunk callback. Resets the tags to pre-leak-check state.
366 static void ResetTagsCb(uptr chunk, void *arg) {
367   (void)arg;
368   chunk = GetUserBegin(chunk);
369   LsanMetadata m(chunk);
370   if (m.allocated() && m.tag() != kIgnored)
371     m.set_tag(kDirectlyLeaked);
372 }
373
374 static void PrintStackTraceById(u32 stack_trace_id) {
375   CHECK(stack_trace_id);
376   StackDepotGet(stack_trace_id).Print();
377 }
378
379 // ForEachChunk callback. Aggregates information about unreachable chunks into
380 // a LeakReport.
381 static void CollectLeaksCb(uptr chunk, void *arg) {
382   CHECK(arg);
383   LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
384   chunk = GetUserBegin(chunk);
385   LsanMetadata m(chunk);
386   if (!m.allocated()) return;
387   if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
388     u32 resolution = flags()->resolution;
389     u32 stack_trace_id = 0;
390     if (resolution > 0) {
391       StackTrace stack = StackDepotGet(m.stack_trace_id());
392       stack.size = Min(stack.size, resolution);
393       stack_trace_id = StackDepotPut(stack);
394     } else {
395       stack_trace_id = m.stack_trace_id();
396     }
397     leak_report->AddLeakedChunk(chunk, stack_trace_id, m.requested_size(),
398                                 m.tag());
399   }
400 }
401
402 static void PrintMatchedSuppressions() {
403   InternalMmapVector<Suppression *> matched(1);
404   GetSuppressionContext()->GetMatched(&matched);
405   if (!matched.size())
406     return;
407   const char *line = "-----------------------------------------------------";
408   Printf("%s\n", line);
409   Printf("Suppressions used:\n");
410   Printf("  count      bytes template\n");
411   for (uptr i = 0; i < matched.size(); i++)
412     Printf("%7zu %10zu %s\n", static_cast<uptr>(atomic_load_relaxed(
413         &matched[i]->hit_count)), matched[i]->weight, matched[i]->templ);
414   Printf("%s\n\n", line);
415 }
416
417 struct CheckForLeaksParam {
418   bool success;
419   LeakReport leak_report;
420 };
421
422 static void CheckForLeaksCallback(const SuspendedThreadsList &suspended_threads,
423                                   void *arg) {
424   CheckForLeaksParam *param = reinterpret_cast<CheckForLeaksParam *>(arg);
425   CHECK(param);
426   CHECK(!param->success);
427   ClassifyAllChunks(suspended_threads);
428   ForEachChunk(CollectLeaksCb, &param->leak_report);
429   // Clean up for subsequent leak checks. This assumes we did not overwrite any
430   // kIgnored tags.
431   ForEachChunk(ResetTagsCb, nullptr);
432   param->success = true;
433 }
434
435 static bool CheckForLeaks() {
436   if (&__lsan_is_turned_off && __lsan_is_turned_off())
437       return false;
438   EnsureMainThreadIDIsCorrect();
439   CheckForLeaksParam param;
440   param.success = false;
441   LockThreadRegistry();
442   LockAllocator();
443   DoStopTheWorld(CheckForLeaksCallback, &param);
444   UnlockAllocator();
445   UnlockThreadRegistry();
446
447   if (!param.success) {
448     Report("LeakSanitizer has encountered a fatal error.\n");
449     Report(
450         "HINT: For debugging, try setting environment variable "
451         "LSAN_OPTIONS=verbosity=1:log_threads=1\n");
452     Die();
453   }
454   param.leak_report.ApplySuppressions();
455   uptr unsuppressed_count = param.leak_report.UnsuppressedLeakCount();
456   if (unsuppressed_count > 0) {
457     Decorator d;
458     Printf("\n"
459            "================================================================="
460            "\n");
461     Printf("%s", d.Error());
462     Report("ERROR: LeakSanitizer: detected memory leaks\n");
463     Printf("%s", d.End());
464     param.leak_report.ReportTopLeaks(flags()->max_leaks);
465   }
466   if (common_flags()->print_suppressions)
467     PrintMatchedSuppressions();
468   if (unsuppressed_count > 0) {
469     param.leak_report.PrintSummary();
470     return true;
471   }
472   return false;
473 }
474
475 void DoLeakCheck() {
476   BlockingMutexLock l(&global_mutex);
477   static bool already_done;
478   if (already_done) return;
479   already_done = true;
480   bool have_leaks = CheckForLeaks();
481   if (!have_leaks) {
482     return;
483   }
484   if (common_flags()->exitcode) {
485     Die();
486   }
487 }
488
489 static int DoRecoverableLeakCheck() {
490   BlockingMutexLock l(&global_mutex);
491   bool have_leaks = CheckForLeaks();
492   return have_leaks ? 1 : 0;
493 }
494
495 static Suppression *GetSuppressionForAddr(uptr addr) {
496   Suppression *s = nullptr;
497
498   // Suppress by module name.
499   SuppressionContext *suppressions = GetSuppressionContext();
500   if (const char *module_name =
501           Symbolizer::GetOrInit()->GetModuleNameForPc(addr))
502     if (suppressions->Match(module_name, kSuppressionLeak, &s))
503       return s;
504
505   // Suppress by file or function name.
506   SymbolizedStack *frames = Symbolizer::GetOrInit()->SymbolizePC(addr);
507   for (SymbolizedStack *cur = frames; cur; cur = cur->next) {
508     if (suppressions->Match(cur->info.function, kSuppressionLeak, &s) ||
509         suppressions->Match(cur->info.file, kSuppressionLeak, &s)) {
510       break;
511     }
512   }
513   frames->ClearAll();
514   return s;
515 }
516
517 static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
518   StackTrace stack = StackDepotGet(stack_trace_id);
519   for (uptr i = 0; i < stack.size; i++) {
520     Suppression *s = GetSuppressionForAddr(
521         StackTrace::GetPreviousInstructionPc(stack.trace[i]));
522     if (s) return s;
523   }
524   return nullptr;
525 }
526
527 ///// LeakReport implementation. /////
528
529 // A hard limit on the number of distinct leaks, to avoid quadratic complexity
530 // in LeakReport::AddLeakedChunk(). We don't expect to ever see this many leaks
531 // in real-world applications.
532 // FIXME: Get rid of this limit by changing the implementation of LeakReport to
533 // use a hash table.
534 const uptr kMaxLeaksConsidered = 5000;
535
536 void LeakReport::AddLeakedChunk(uptr chunk, u32 stack_trace_id,
537                                 uptr leaked_size, ChunkTag tag) {
538   CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
539   bool is_directly_leaked = (tag == kDirectlyLeaked);
540   uptr i;
541   for (i = 0; i < leaks_.size(); i++) {
542     if (leaks_[i].stack_trace_id == stack_trace_id &&
543         leaks_[i].is_directly_leaked == is_directly_leaked) {
544       leaks_[i].hit_count++;
545       leaks_[i].total_size += leaked_size;
546       break;
547     }
548   }
549   if (i == leaks_.size()) {
550     if (leaks_.size() == kMaxLeaksConsidered) return;
551     Leak leak = { next_id_++, /* hit_count */ 1, leaked_size, stack_trace_id,
552                   is_directly_leaked, /* is_suppressed */ false };
553     leaks_.push_back(leak);
554   }
555   if (flags()->report_objects) {
556     LeakedObject obj = {leaks_[i].id, chunk, leaked_size};
557     leaked_objects_.push_back(obj);
558   }
559 }
560
561 static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
562   if (leak1.is_directly_leaked == leak2.is_directly_leaked)
563     return leak1.total_size > leak2.total_size;
564   else
565     return leak1.is_directly_leaked;
566 }
567
568 void LeakReport::ReportTopLeaks(uptr num_leaks_to_report) {
569   CHECK(leaks_.size() <= kMaxLeaksConsidered);
570   Printf("\n");
571   if (leaks_.size() == kMaxLeaksConsidered)
572     Printf("Too many leaks! Only the first %zu leaks encountered will be "
573            "reported.\n",
574            kMaxLeaksConsidered);
575
576   uptr unsuppressed_count = UnsuppressedLeakCount();
577   if (num_leaks_to_report > 0 && num_leaks_to_report < unsuppressed_count)
578     Printf("The %zu top leak(s):\n", num_leaks_to_report);
579   InternalSort(&leaks_, leaks_.size(), LeakComparator);
580   uptr leaks_reported = 0;
581   for (uptr i = 0; i < leaks_.size(); i++) {
582     if (leaks_[i].is_suppressed) continue;
583     PrintReportForLeak(i);
584     leaks_reported++;
585     if (leaks_reported == num_leaks_to_report) break;
586   }
587   if (leaks_reported < unsuppressed_count) {
588     uptr remaining = unsuppressed_count - leaks_reported;
589     Printf("Omitting %zu more leak(s).\n", remaining);
590   }
591 }
592
593 void LeakReport::PrintReportForLeak(uptr index) {
594   Decorator d;
595   Printf("%s", d.Leak());
596   Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
597          leaks_[index].is_directly_leaked ? "Direct" : "Indirect",
598          leaks_[index].total_size, leaks_[index].hit_count);
599   Printf("%s", d.End());
600
601   PrintStackTraceById(leaks_[index].stack_trace_id);
602
603   if (flags()->report_objects) {
604     Printf("Objects leaked above:\n");
605     PrintLeakedObjectsForLeak(index);
606     Printf("\n");
607   }
608 }
609
610 void LeakReport::PrintLeakedObjectsForLeak(uptr index) {
611   u32 leak_id = leaks_[index].id;
612   for (uptr j = 0; j < leaked_objects_.size(); j++) {
613     if (leaked_objects_[j].leak_id == leak_id)
614       Printf("%p (%zu bytes)\n", leaked_objects_[j].addr,
615              leaked_objects_[j].size);
616   }
617 }
618
619 void LeakReport::PrintSummary() {
620   CHECK(leaks_.size() <= kMaxLeaksConsidered);
621   uptr bytes = 0, allocations = 0;
622   for (uptr i = 0; i < leaks_.size(); i++) {
623       if (leaks_[i].is_suppressed) continue;
624       bytes += leaks_[i].total_size;
625       allocations += leaks_[i].hit_count;
626   }
627   InternalScopedString summary(kMaxSummaryLength);
628   summary.append("%zu byte(s) leaked in %zu allocation(s).", bytes,
629                  allocations);
630   ReportErrorSummary(summary.data());
631 }
632
633 void LeakReport::ApplySuppressions() {
634   for (uptr i = 0; i < leaks_.size(); i++) {
635     Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
636     if (s) {
637       s->weight += leaks_[i].total_size;
638       atomic_store_relaxed(&s->hit_count, atomic_load_relaxed(&s->hit_count) +
639           leaks_[i].hit_count);
640       leaks_[i].is_suppressed = true;
641     }
642   }
643 }
644
645 uptr LeakReport::UnsuppressedLeakCount() {
646   uptr result = 0;
647   for (uptr i = 0; i < leaks_.size(); i++)
648     if (!leaks_[i].is_suppressed) result++;
649   return result;
650 }
651
652 } // namespace __lsan
653 #else // CAN_SANITIZE_LEAKS
654 namespace __lsan {
655 void InitCommonLsan() { }
656 void DoLeakCheck() { }
657 void DisableInThisThread() { }
658 void EnableInThisThread() { }
659 }
660 #endif // CAN_SANITIZE_LEAKS
661
662 using namespace __lsan;  // NOLINT
663
664 extern "C" {
665 SANITIZER_INTERFACE_ATTRIBUTE
666 void __lsan_ignore_object(const void *p) {
667 #if CAN_SANITIZE_LEAKS
668   if (!common_flags()->detect_leaks)
669     return;
670   // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
671   // locked.
672   BlockingMutexLock l(&global_mutex);
673   IgnoreObjectResult res = IgnoreObjectLocked(p);
674   if (res == kIgnoreObjectInvalid)
675     VReport(1, "__lsan_ignore_object(): no heap object found at %p", p);
676   if (res == kIgnoreObjectAlreadyIgnored)
677     VReport(1, "__lsan_ignore_object(): "
678            "heap object at %p is already being ignored\n", p);
679   if (res == kIgnoreObjectSuccess)
680     VReport(1, "__lsan_ignore_object(): ignoring heap object at %p\n", p);
681 #endif // CAN_SANITIZE_LEAKS
682 }
683
684 SANITIZER_INTERFACE_ATTRIBUTE
685 void __lsan_register_root_region(const void *begin, uptr size) {
686 #if CAN_SANITIZE_LEAKS
687   BlockingMutexLock l(&global_mutex);
688   CHECK(root_regions);
689   RootRegion region = {begin, size};
690   root_regions->push_back(region);
691   VReport(1, "Registered root region at %p of size %llu\n", begin, size);
692 #endif // CAN_SANITIZE_LEAKS
693 }
694
695 SANITIZER_INTERFACE_ATTRIBUTE
696 void __lsan_unregister_root_region(const void *begin, uptr size) {
697 #if CAN_SANITIZE_LEAKS
698   BlockingMutexLock l(&global_mutex);
699   CHECK(root_regions);
700   bool removed = false;
701   for (uptr i = 0; i < root_regions->size(); i++) {
702     RootRegion region = (*root_regions)[i];
703     if (region.begin == begin && region.size == size) {
704       removed = true;
705       uptr last_index = root_regions->size() - 1;
706       (*root_regions)[i] = (*root_regions)[last_index];
707       root_regions->pop_back();
708       VReport(1, "Unregistered root region at %p of size %llu\n", begin, size);
709       break;
710     }
711   }
712   if (!removed) {
713     Report(
714         "__lsan_unregister_root_region(): region at %p of size %llu has not "
715         "been registered.\n",
716         begin, size);
717     Die();
718   }
719 #endif // CAN_SANITIZE_LEAKS
720 }
721
722 SANITIZER_INTERFACE_ATTRIBUTE
723 void __lsan_disable() {
724 #if CAN_SANITIZE_LEAKS
725   __lsan::DisableInThisThread();
726 #endif
727 }
728
729 SANITIZER_INTERFACE_ATTRIBUTE
730 void __lsan_enable() {
731 #if CAN_SANITIZE_LEAKS
732   __lsan::EnableInThisThread();
733 #endif
734 }
735
736 SANITIZER_INTERFACE_ATTRIBUTE
737 void __lsan_do_leak_check() {
738 #if CAN_SANITIZE_LEAKS
739   if (common_flags()->detect_leaks)
740     __lsan::DoLeakCheck();
741 #endif // CAN_SANITIZE_LEAKS
742 }
743
744 SANITIZER_INTERFACE_ATTRIBUTE
745 int __lsan_do_recoverable_leak_check() {
746 #if CAN_SANITIZE_LEAKS
747   if (common_flags()->detect_leaks)
748     return __lsan::DoRecoverableLeakCheck();
749 #endif // CAN_SANITIZE_LEAKS
750   return 0;
751 }
752
753 #if !SANITIZER_SUPPORTS_WEAK_HOOKS
754 SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
755 int __lsan_is_turned_off() {
756   return 0;
757 }
758 #endif
759 } // extern "C"