]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/msun/src/e_jn.c
MFC r343953:
[FreeBSD/FreeBSD.git] / lib / msun / src / e_jn.c
1 /* @(#)e_jn.c 1.4 95/01/18 */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12
13 #include <sys/cdefs.h>
14 __FBSDID("$FreeBSD$");
15
16 /*
17  * __ieee754_jn(n, x), __ieee754_yn(n, x)
18  * floating point Bessel's function of the 1st and 2nd kind
19  * of order n
20  *
21  * Special cases:
22  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
23  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
24  * Note 2. About jn(n,x), yn(n,x)
25  *      For n=0, j0(x) is called,
26  *      for n=1, j1(x) is called,
27  *      for n<x, forward recursion us used starting
28  *      from values of j0(x) and j1(x).
29  *      for n>x, a continued fraction approximation to
30  *      j(n,x)/j(n-1,x) is evaluated and then backward
31  *      recursion is used starting from a supposed value
32  *      for j(n,x). The resulting value of j(0,x) is
33  *      compared with the actual value to correct the
34  *      supposed value of j(n,x).
35  *
36  *      yn(n,x) is similar in all respects, except
37  *      that forward recursion is used for all
38  *      values of n>1.
39  */
40
41 #include "math.h"
42 #include "math_private.h"
43
44 static const volatile double vone = 1, vzero = 0;
45
46 static const double
47 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
48 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
49 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
50
51 static const double zero  =  0.00000000000000000000e+00;
52
53 double
54 __ieee754_jn(int n, double x)
55 {
56         int32_t i,hx,ix,lx, sgn;
57         double a, b, c, s, temp, di;
58         double z, w;
59
60     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
61      * Thus, J(-n,x) = J(n,-x)
62      */
63         EXTRACT_WORDS(hx,lx,x);
64         ix = 0x7fffffff&hx;
65     /* if J(n,NaN) is NaN */
66         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
67         if(n<0){
68                 n = -n;
69                 x = -x;
70                 hx ^= 0x80000000;
71         }
72         if(n==0) return(__ieee754_j0(x));
73         if(n==1) return(__ieee754_j1(x));
74         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
75         x = fabs(x);
76         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
77             b = zero;
78         else if((double)n<=x) {
79                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
80             if(ix>=0x52D00000) { /* x > 2**302 */
81     /* (x >> n**2)
82      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
83      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
84      *      Let s=sin(x), c=cos(x),
85      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
86      *
87      *             n    sin(xn)*sqt2    cos(xn)*sqt2
88      *          ----------------------------------
89      *             0     s-c             c+s
90      *             1    -s-c            -c+s
91      *             2    -s+c            -c-s
92      *             3     s+c             c-s
93      */
94                 sincos(x, &s, &c);
95                 switch(n&3) {
96                     case 0: temp =  c+s; break;
97                     case 1: temp = -c+s; break;
98                     case 2: temp = -c-s; break;
99                     case 3: temp =  c-s; break;
100                 }
101                 b = invsqrtpi*temp/sqrt(x);
102             } else {
103                 a = __ieee754_j0(x);
104                 b = __ieee754_j1(x);
105                 for(i=1;i<n;i++){
106                     temp = b;
107                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
108                     a = temp;
109                 }
110             }
111         } else {
112             if(ix<0x3e100000) { /* x < 2**-29 */
113     /* x is tiny, return the first Taylor expansion of J(n,x)
114      * J(n,x) = 1/n!*(x/2)^n  - ...
115      */
116                 if(n>33)        /* underflow */
117                     b = zero;
118                 else {
119                     temp = x*0.5; b = temp;
120                     for (a=one,i=2;i<=n;i++) {
121                         a *= (double)i;         /* a = n! */
122                         b *= temp;              /* b = (x/2)^n */
123                     }
124                     b = b/a;
125                 }
126             } else {
127                 /* use backward recurrence */
128                 /*                      x      x^2      x^2
129                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
130                  *                      2n  - 2(n+1) - 2(n+2)
131                  *
132                  *                      1      1        1
133                  *  (for large x)   =  ----  ------   ------   .....
134                  *                      2n   2(n+1)   2(n+2)
135                  *                      -- - ------ - ------ -
136                  *                       x     x         x
137                  *
138                  * Let w = 2n/x and h=2/x, then the above quotient
139                  * is equal to the continued fraction:
140                  *                  1
141                  *      = -----------------------
142                  *                     1
143                  *         w - -----------------
144                  *                        1
145                  *              w+h - ---------
146                  *                     w+2h - ...
147                  *
148                  * To determine how many terms needed, let
149                  * Q(0) = w, Q(1) = w(w+h) - 1,
150                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
151                  * When Q(k) > 1e4      good for single
152                  * When Q(k) > 1e9      good for double
153                  * When Q(k) > 1e17     good for quadruple
154                  */
155             /* determine k */
156                 double t,v;
157                 double q0,q1,h,tmp; int32_t k,m;
158                 w  = (n+n)/(double)x; h = 2.0/(double)x;
159                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
160                 while(q1<1.0e9) {
161                         k += 1; z += h;
162                         tmp = z*q1 - q0;
163                         q0 = q1;
164                         q1 = tmp;
165                 }
166                 m = n+n;
167                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
168                 a = t;
169                 b = one;
170                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
171                  *  Hence, if n*(log(2n/x)) > ...
172                  *  single 8.8722839355e+01
173                  *  double 7.09782712893383973096e+02
174                  *  long double 1.1356523406294143949491931077970765006170e+04
175                  *  then recurrent value may overflow and the result is
176                  *  likely underflow to zero
177                  */
178                 tmp = n;
179                 v = two/x;
180                 tmp = tmp*__ieee754_log(fabs(v*tmp));
181                 if(tmp<7.09782712893383973096e+02) {
182                     for(i=n-1,di=(double)(i+i);i>0;i--){
183                         temp = b;
184                         b *= di;
185                         b  = b/x - a;
186                         a = temp;
187                         di -= two;
188                     }
189                 } else {
190                     for(i=n-1,di=(double)(i+i);i>0;i--){
191                         temp = b;
192                         b *= di;
193                         b  = b/x - a;
194                         a = temp;
195                         di -= two;
196                     /* scale b to avoid spurious overflow */
197                         if(b>1e100) {
198                             a /= b;
199                             t /= b;
200                             b  = one;
201                         }
202                     }
203                 }
204                 z = __ieee754_j0(x);
205                 w = __ieee754_j1(x);
206                 if (fabs(z) >= fabs(w))
207                     b = (t*z/b);
208                 else
209                     b = (t*w/a);
210             }
211         }
212         if(sgn==1) return -b; else return b;
213 }
214
215 double
216 __ieee754_yn(int n, double x)
217 {
218         int32_t i,hx,ix,lx;
219         int32_t sign;
220         double a, b, c, s, temp;
221
222         EXTRACT_WORDS(hx,lx,x);
223         ix = 0x7fffffff&hx;
224         /* yn(n,NaN) = NaN */
225         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
226         /* yn(n,+-0) = -inf and raise divide-by-zero exception. */
227         if((ix|lx)==0) return -one/vzero;
228         /* yn(n,x<0) = NaN and raise invalid exception. */
229         if(hx<0) return vzero/vzero;
230         sign = 1;
231         if(n<0){
232                 n = -n;
233                 sign = 1 - ((n&1)<<1);
234         }
235         if(n==0) return(__ieee754_y0(x));
236         if(n==1) return(sign*__ieee754_y1(x));
237         if(ix==0x7ff00000) return zero;
238         if(ix>=0x52D00000) { /* x > 2**302 */
239     /* (x >> n**2)
240      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
241      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
242      *      Let s=sin(x), c=cos(x),
243      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
244      *
245      *             n    sin(xn)*sqt2    cos(xn)*sqt2
246      *          ----------------------------------
247      *             0     s-c             c+s
248      *             1    -s-c            -c+s
249      *             2    -s+c            -c-s
250      *             3     s+c             c-s
251      */
252                 sincos(x, &s, &c);
253                 switch(n&3) {
254                     case 0: temp =  s-c; break;
255                     case 1: temp = -s-c; break;
256                     case 2: temp = -s+c; break;
257                     case 3: temp =  s+c; break;
258                 }
259                 b = invsqrtpi*temp/sqrt(x);
260         } else {
261             u_int32_t high;
262             a = __ieee754_y0(x);
263             b = __ieee754_y1(x);
264         /* quit if b is -inf */
265             GET_HIGH_WORD(high,b);
266             for(i=1;i<n&&high!=0xfff00000;i++){
267                 temp = b;
268                 b = ((double)(i+i)/x)*b - a;
269                 GET_HIGH_WORD(high,b);
270                 a = temp;
271             }
272         }
273         if(sign>0) return b; else return -b;
274 }