]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/msun/src/e_jn.c
Merge llvm-project release/18.x llvmorg-18.1.3-0-gc13b7485b879
[FreeBSD/FreeBSD.git] / lib / msun / src / e_jn.c
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunSoft, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11
12 /*
13  * jn(n, x), yn(n, x)
14  * floating point Bessel's function of the 1st and 2nd kind
15  * of order n
16  *
17  * Special cases:
18  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20  * Note 2. About jn(n,x), yn(n,x)
21  *      For n=0, j0(x) is called.
22  *      For n=1, j1(x) is called.
23  *      For n<x, forward recursion is used starting
24  *      from values of j0(x) and j1(x).
25  *      For n>x, a continued fraction approximation to
26  *      j(n,x)/j(n-1,x) is evaluated and then backward
27  *      recursion is used starting from a supposed value
28  *      for j(n,x). The resulting values of j(0,x) or j(1,x) are
29  *      compared with the actual values to correct the
30  *      supposed value of j(n,x).
31  *
32  *      yn(n,x) is similar in all respects, except
33  *      that forward recursion is used for all
34  *      values of n>1.
35  */
36
37 #include "math.h"
38 #include "math_private.h"
39
40 static const volatile double vone = 1, vzero = 0;
41
42 static const double
43 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
44 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
45 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
46
47 static const double zero  =  0.00000000000000000000e+00;
48
49 double
50 jn(int n, double x)
51 {
52         int32_t i,hx,ix,lx, sgn;
53         double a, b, c, s, temp, di;
54         double z, w;
55
56     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
57      * Thus, J(-n,x) = J(n,-x)
58      */
59         EXTRACT_WORDS(hx,lx,x);
60         ix = 0x7fffffff&hx;
61     /* if J(n,NaN) is NaN */
62         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
63         if(n<0){
64                 n = -n;
65                 x = -x;
66                 hx ^= 0x80000000;
67         }
68         if(n==0) return(j0(x));
69         if(n==1) return(j1(x));
70         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
71         x = fabs(x);
72         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
73             b = zero;
74         else if((double)n<=x) {
75                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
76             if(ix>=0x52D00000) { /* x > 2**302 */
77     /* (x >> n**2)
78      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
79      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
80      *      Let s=sin(x), c=cos(x),
81      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
82      *
83      *             n    sin(xn)*sqt2    cos(xn)*sqt2
84      *          ----------------------------------
85      *             0     s-c             c+s
86      *             1    -s-c            -c+s
87      *             2    -s+c            -c-s
88      *             3     s+c             c-s
89      */
90                 sincos(x, &s, &c);
91                 switch(n&3) {
92                     case 0: temp =  c+s; break;
93                     case 1: temp = -c+s; break;
94                     case 2: temp = -c-s; break;
95                     case 3: temp =  c-s; break;
96                 }
97                 b = invsqrtpi*temp/sqrt(x);
98             } else {
99                 a = j0(x);
100                 b = j1(x);
101                 for(i=1;i<n;i++){
102                     temp = b;
103                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
104                     a = temp;
105                 }
106             }
107         } else {
108             if(ix<0x3e100000) { /* x < 2**-29 */
109     /* x is tiny, return the first Taylor expansion of J(n,x)
110      * J(n,x) = 1/n!*(x/2)^n  - ...
111      */
112                 if(n>33)        /* underflow */
113                     b = zero;
114                 else {
115                     temp = x*0.5; b = temp;
116                     for (a=one,i=2;i<=n;i++) {
117                         a *= (double)i;         /* a = n! */
118                         b *= temp;              /* b = (x/2)^n */
119                     }
120                     b = b/a;
121                 }
122             } else {
123                 /* use backward recurrence */
124                 /*                      x      x^2      x^2
125                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
126                  *                      2n  - 2(n+1) - 2(n+2)
127                  *
128                  *                      1      1        1
129                  *  (for large x)   =  ----  ------   ------   .....
130                  *                      2n   2(n+1)   2(n+2)
131                  *                      -- - ------ - ------ -
132                  *                       x     x         x
133                  *
134                  * Let w = 2n/x and h=2/x, then the above quotient
135                  * is equal to the continued fraction:
136                  *                  1
137                  *      = -----------------------
138                  *                     1
139                  *         w - -----------------
140                  *                        1
141                  *              w+h - ---------
142                  *                     w+2h - ...
143                  *
144                  * To determine how many terms needed, let
145                  * Q(0) = w, Q(1) = w(w+h) - 1,
146                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
147                  * When Q(k) > 1e4      good for single
148                  * When Q(k) > 1e9      good for double
149                  * When Q(k) > 1e17     good for quadruple
150                  */
151             /* determine k */
152                 double t,v;
153                 double q0,q1,h,tmp; int32_t k,m;
154                 w  = (n+n)/(double)x; h = 2.0/(double)x;
155                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
156                 while(q1<1.0e9) {
157                         k += 1; z += h;
158                         tmp = z*q1 - q0;
159                         q0 = q1;
160                         q1 = tmp;
161                 }
162                 m = n+n;
163                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
164                 a = t;
165                 b = one;
166                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
167                  *  Hence, if n*(log(2n/x)) > ...
168                  *  single 8.8722839355e+01
169                  *  double 7.09782712893383973096e+02
170                  *  long double 1.1356523406294143949491931077970765006170e+04
171                  *  then recurrent value may overflow and the result is
172                  *  likely underflow to zero
173                  */
174                 tmp = n;
175                 v = two/x;
176                 tmp = tmp*log(fabs(v*tmp));
177                 if(tmp<7.09782712893383973096e+02) {
178                     for(i=n-1,di=(double)(i+i);i>0;i--){
179                         temp = b;
180                         b *= di;
181                         b  = b/x - a;
182                         a = temp;
183                         di -= two;
184                     }
185                 } else {
186                     for(i=n-1,di=(double)(i+i);i>0;i--){
187                         temp = b;
188                         b *= di;
189                         b  = b/x - a;
190                         a = temp;
191                         di -= two;
192                     /* scale b to avoid spurious overflow */
193                         if(b>1e100) {
194                             a /= b;
195                             t /= b;
196                             b  = one;
197                         }
198                     }
199                 }
200                 z = j0(x);
201                 w = j1(x);
202                 if (fabs(z) >= fabs(w))
203                     b = (t*z/b);
204                 else
205                     b = (t*w/a);
206             }
207         }
208         if(sgn==1) return -b; else return b;
209 }
210
211 double
212 yn(int n, double x)
213 {
214         int32_t i,hx,ix,lx;
215         int32_t sign;
216         double a, b, c, s, temp;
217
218         EXTRACT_WORDS(hx,lx,x);
219         ix = 0x7fffffff&hx;
220         /* yn(n,NaN) = NaN */
221         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
222         /* yn(n,+-0) = -inf and raise divide-by-zero exception. */
223         if((ix|lx)==0) return -one/vzero;
224         /* yn(n,x<0) = NaN and raise invalid exception. */
225         if(hx<0) return vzero/vzero;
226         sign = 1;
227         if(n<0){
228                 n = -n;
229                 sign = 1 - ((n&1)<<1);
230         }
231         if(n==0) return(y0(x));
232         if(n==1) return(sign*y1(x));
233         if(ix==0x7ff00000) return zero;
234         if(ix>=0x52D00000) { /* x > 2**302 */
235     /* (x >> n**2)
236      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
237      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
238      *      Let s=sin(x), c=cos(x),
239      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
240      *
241      *             n    sin(xn)*sqt2    cos(xn)*sqt2
242      *          ----------------------------------
243      *             0     s-c             c+s
244      *             1    -s-c            -c+s
245      *             2    -s+c            -c-s
246      *             3     s+c             c-s
247      */
248                 sincos(x, &s, &c);
249                 switch(n&3) {
250                     case 0: temp =  s-c; break;
251                     case 1: temp = -s-c; break;
252                     case 2: temp = -s+c; break;
253                     case 3: temp =  s+c; break;
254                 }
255                 b = invsqrtpi*temp/sqrt(x);
256         } else {
257             u_int32_t high;
258             a = y0(x);
259             b = y1(x);
260         /* quit if b is -inf */
261             GET_HIGH_WORD(high,b);
262             for(i=1;i<n&&high!=0xfff00000;i++){
263                 temp = b;
264                 b = ((double)(i+i)/x)*b - a;
265                 GET_HIGH_WORD(high,b);
266                 a = temp;
267             }
268         }
269         if(sign>0) return b; else return -b;
270 }