]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/msun/src/e_jn.c
contrib/kyua: Merge vendor import
[FreeBSD/FreeBSD.git] / lib / msun / src / e_jn.c
1 /*
2  * ====================================================
3  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
4  *
5  * Developed at SunSoft, a Sun Microsystems, Inc. business.
6  * Permission to use, copy, modify, and distribute this
7  * software is freely granted, provided that this notice
8  * is preserved.
9  * ====================================================
10  */
11
12 #include <sys/cdefs.h>
13 /*
14  * jn(n, x), yn(n, x)
15  * floating point Bessel's function of the 1st and 2nd kind
16  * of order n
17  *
18  * Special cases:
19  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
20  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
21  * Note 2. About jn(n,x), yn(n,x)
22  *      For n=0, j0(x) is called.
23  *      For n=1, j1(x) is called.
24  *      For n<x, forward recursion is used starting
25  *      from values of j0(x) and j1(x).
26  *      For n>x, a continued fraction approximation to
27  *      j(n,x)/j(n-1,x) is evaluated and then backward
28  *      recursion is used starting from a supposed value
29  *      for j(n,x). The resulting values of j(0,x) or j(1,x) are
30  *      compared with the actual values to correct the
31  *      supposed value of j(n,x).
32  *
33  *      yn(n,x) is similar in all respects, except
34  *      that forward recursion is used for all
35  *      values of n>1.
36  */
37
38 #include "math.h"
39 #include "math_private.h"
40
41 static const volatile double vone = 1, vzero = 0;
42
43 static const double
44 invsqrtpi=  5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
45 two   =  2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */
46 one   =  1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */
47
48 static const double zero  =  0.00000000000000000000e+00;
49
50 double
51 jn(int n, double x)
52 {
53         int32_t i,hx,ix,lx, sgn;
54         double a, b, c, s, temp, di;
55         double z, w;
56
57     /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
58      * Thus, J(-n,x) = J(n,-x)
59      */
60         EXTRACT_WORDS(hx,lx,x);
61         ix = 0x7fffffff&hx;
62     /* if J(n,NaN) is NaN */
63         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
64         if(n<0){
65                 n = -n;
66                 x = -x;
67                 hx ^= 0x80000000;
68         }
69         if(n==0) return(j0(x));
70         if(n==1) return(j1(x));
71         sgn = (n&1)&(hx>>31);   /* even n -- 0, odd n -- sign(x) */
72         x = fabs(x);
73         if((ix|lx)==0||ix>=0x7ff00000)  /* if x is 0 or inf */
74             b = zero;
75         else if((double)n<=x) {
76                 /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
77             if(ix>=0x52D00000) { /* x > 2**302 */
78     /* (x >> n**2)
79      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
80      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
81      *      Let s=sin(x), c=cos(x),
82      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
83      *
84      *             n    sin(xn)*sqt2    cos(xn)*sqt2
85      *          ----------------------------------
86      *             0     s-c             c+s
87      *             1    -s-c            -c+s
88      *             2    -s+c            -c-s
89      *             3     s+c             c-s
90      */
91                 sincos(x, &s, &c);
92                 switch(n&3) {
93                     case 0: temp =  c+s; break;
94                     case 1: temp = -c+s; break;
95                     case 2: temp = -c-s; break;
96                     case 3: temp =  c-s; break;
97                 }
98                 b = invsqrtpi*temp/sqrt(x);
99             } else {
100                 a = j0(x);
101                 b = j1(x);
102                 for(i=1;i<n;i++){
103                     temp = b;
104                     b = b*((double)(i+i)/x) - a; /* avoid underflow */
105                     a = temp;
106                 }
107             }
108         } else {
109             if(ix<0x3e100000) { /* x < 2**-29 */
110     /* x is tiny, return the first Taylor expansion of J(n,x)
111      * J(n,x) = 1/n!*(x/2)^n  - ...
112      */
113                 if(n>33)        /* underflow */
114                     b = zero;
115                 else {
116                     temp = x*0.5; b = temp;
117                     for (a=one,i=2;i<=n;i++) {
118                         a *= (double)i;         /* a = n! */
119                         b *= temp;              /* b = (x/2)^n */
120                     }
121                     b = b/a;
122                 }
123             } else {
124                 /* use backward recurrence */
125                 /*                      x      x^2      x^2
126                  *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
127                  *                      2n  - 2(n+1) - 2(n+2)
128                  *
129                  *                      1      1        1
130                  *  (for large x)   =  ----  ------   ------   .....
131                  *                      2n   2(n+1)   2(n+2)
132                  *                      -- - ------ - ------ -
133                  *                       x     x         x
134                  *
135                  * Let w = 2n/x and h=2/x, then the above quotient
136                  * is equal to the continued fraction:
137                  *                  1
138                  *      = -----------------------
139                  *                     1
140                  *         w - -----------------
141                  *                        1
142                  *              w+h - ---------
143                  *                     w+2h - ...
144                  *
145                  * To determine how many terms needed, let
146                  * Q(0) = w, Q(1) = w(w+h) - 1,
147                  * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
148                  * When Q(k) > 1e4      good for single
149                  * When Q(k) > 1e9      good for double
150                  * When Q(k) > 1e17     good for quadruple
151                  */
152             /* determine k */
153                 double t,v;
154                 double q0,q1,h,tmp; int32_t k,m;
155                 w  = (n+n)/(double)x; h = 2.0/(double)x;
156                 q0 = w;  z = w+h; q1 = w*z - 1.0; k=1;
157                 while(q1<1.0e9) {
158                         k += 1; z += h;
159                         tmp = z*q1 - q0;
160                         q0 = q1;
161                         q1 = tmp;
162                 }
163                 m = n+n;
164                 for(t=zero, i = 2*(n+k); i>=m; i -= 2) t = one/(i/x-t);
165                 a = t;
166                 b = one;
167                 /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
168                  *  Hence, if n*(log(2n/x)) > ...
169                  *  single 8.8722839355e+01
170                  *  double 7.09782712893383973096e+02
171                  *  long double 1.1356523406294143949491931077970765006170e+04
172                  *  then recurrent value may overflow and the result is
173                  *  likely underflow to zero
174                  */
175                 tmp = n;
176                 v = two/x;
177                 tmp = tmp*log(fabs(v*tmp));
178                 if(tmp<7.09782712893383973096e+02) {
179                     for(i=n-1,di=(double)(i+i);i>0;i--){
180                         temp = b;
181                         b *= di;
182                         b  = b/x - a;
183                         a = temp;
184                         di -= two;
185                     }
186                 } else {
187                     for(i=n-1,di=(double)(i+i);i>0;i--){
188                         temp = b;
189                         b *= di;
190                         b  = b/x - a;
191                         a = temp;
192                         di -= two;
193                     /* scale b to avoid spurious overflow */
194                         if(b>1e100) {
195                             a /= b;
196                             t /= b;
197                             b  = one;
198                         }
199                     }
200                 }
201                 z = j0(x);
202                 w = j1(x);
203                 if (fabs(z) >= fabs(w))
204                     b = (t*z/b);
205                 else
206                     b = (t*w/a);
207             }
208         }
209         if(sgn==1) return -b; else return b;
210 }
211
212 double
213 yn(int n, double x)
214 {
215         int32_t i,hx,ix,lx;
216         int32_t sign;
217         double a, b, c, s, temp;
218
219         EXTRACT_WORDS(hx,lx,x);
220         ix = 0x7fffffff&hx;
221         /* yn(n,NaN) = NaN */
222         if((ix|((u_int32_t)(lx|-lx))>>31)>0x7ff00000) return x+x;
223         /* yn(n,+-0) = -inf and raise divide-by-zero exception. */
224         if((ix|lx)==0) return -one/vzero;
225         /* yn(n,x<0) = NaN and raise invalid exception. */
226         if(hx<0) return vzero/vzero;
227         sign = 1;
228         if(n<0){
229                 n = -n;
230                 sign = 1 - ((n&1)<<1);
231         }
232         if(n==0) return(y0(x));
233         if(n==1) return(sign*y1(x));
234         if(ix==0x7ff00000) return zero;
235         if(ix>=0x52D00000) { /* x > 2**302 */
236     /* (x >> n**2)
237      *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
238      *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
239      *      Let s=sin(x), c=cos(x),
240      *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2), then
241      *
242      *             n    sin(xn)*sqt2    cos(xn)*sqt2
243      *          ----------------------------------
244      *             0     s-c             c+s
245      *             1    -s-c            -c+s
246      *             2    -s+c            -c-s
247      *             3     s+c             c-s
248      */
249                 sincos(x, &s, &c);
250                 switch(n&3) {
251                     case 0: temp =  s-c; break;
252                     case 1: temp = -s-c; break;
253                     case 2: temp = -s+c; break;
254                     case 3: temp =  s+c; break;
255                 }
256                 b = invsqrtpi*temp/sqrt(x);
257         } else {
258             u_int32_t high;
259             a = y0(x);
260             b = y1(x);
261         /* quit if b is -inf */
262             GET_HIGH_WORD(high,b);
263             for(i=1;i<n&&high!=0xfff00000;i++){
264                 temp = b;
265                 b = ((double)(i+i)/x)*b - a;
266                 GET_HIGH_WORD(high,b);
267                 a = temp;
268             }
269         }
270         if(sign>0) return b; else return -b;
271 }