]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - lib/msun/src/k_tanf.c
contrib/kyua: Merge vendor import
[FreeBSD/FreeBSD.git] / lib / msun / src / k_tanf.c
1 /* k_tanf.c -- float version of k_tan.c
2  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
3  * Optimized by Bruce D. Evans.
4  */
5
6 /*
7  * ====================================================
8  * Copyright 2004 Sun Microsystems, Inc.  All Rights Reserved.
9  *
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15
16 #ifndef INLINE_KERNEL_TANDF
17 #include <sys/cdefs.h>
18 #endif
19
20 #include "math.h"
21 #include "math_private.h"
22
23 /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
24 static const double
25 T[] =  {
26   0x15554d3418c99f.0p-54,       /* 0.333331395030791399758 */
27   0x1112fd38999f72.0p-55,       /* 0.133392002712976742718 */
28   0x1b54c91d865afe.0p-57,       /* 0.0533812378445670393523 */
29   0x191df3908c33ce.0p-58,       /* 0.0245283181166547278873 */
30   0x185dadfcecf44e.0p-61,       /* 0.00297435743359967304927 */
31   0x1362b9bf971bcd.0p-59,       /* 0.00946564784943673166728 */
32 };
33
34 #ifdef INLINE_KERNEL_TANDF
35 static __inline
36 #endif
37 float
38 __kernel_tandf(double x, int iy)
39 {
40         double z,r,w,s,t,u;
41
42         z       =  x*x;
43         /*
44          * Split up the polynomial into small independent terms to give
45          * opportunities for parallel evaluation.  The chosen splitting is
46          * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
47          * relative to Horner's method on sequential machines.
48          *
49          * We add the small terms from lowest degree up for efficiency on
50          * non-sequential machines (the lowest degree terms tend to be ready
51          * earlier).  Apart from this, we don't care about order of
52          * operations, and don't need to care since we have precision to
53          * spare.  However, the chosen splitting is good for accuracy too,
54          * and would give results as accurate as Horner's method if the
55          * small terms were added from highest degree down.
56          */
57         r = T[4]+z*T[5];
58         t = T[2]+z*T[3];
59         w = z*z;
60         s = z*x;
61         u = T[0]+z*T[1];
62         r = (x+s*u)+(s*w)*(t+w*r);
63         if(iy==1) return r;
64         else return -1.0/r;
65 }