]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - llvm/lib/Analysis/CFLAndersAliasAnalysis.cpp
Copy llvm vendor/*/dist to vendor/llvm-project/master
[FreeBSD/FreeBSD.git] / llvm / lib / Analysis / CFLAndersAliasAnalysis.cpp
1 //===- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a CFL-based, summary-based alias analysis algorithm. It
10 // differs from CFLSteensAliasAnalysis in its inclusion-based nature while
11 // CFLSteensAliasAnalysis is unification-based. This pass has worse performance
12 // than CFLSteensAliasAnalysis (the worst case complexity of
13 // CFLAndersAliasAnalysis is cubic, while the worst case complexity of
14 // CFLSteensAliasAnalysis is almost linear), but it is able to yield more
15 // precise analysis result. The precision of this analysis is roughly the same
16 // as that of an one level context-sensitive Andersen's algorithm.
17 //
18 // The algorithm used here is based on recursive state machine matching scheme
19 // proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu
20 // Rugina. The general idea is to extend the traditional transitive closure
21 // algorithm to perform CFL matching along the way: instead of recording
22 // "whether X is reachable from Y", we keep track of "whether X is reachable
23 // from Y at state Z", where the "state" field indicates where we are in the CFL
24 // matching process. To understand the matching better, it is advisable to have
25 // the state machine shown in Figure 3 of the paper available when reading the
26 // codes: all we do here is to selectively expand the transitive closure by
27 // discarding edges that are not recognized by the state machine.
28 //
29 // There are two differences between our current implementation and the one
30 // described in the paper:
31 // - Our algorithm eagerly computes all alias pairs after the CFLGraph is built,
32 // while in the paper the authors did the computation in a demand-driven
33 // fashion. We did not implement the demand-driven algorithm due to the
34 // additional coding complexity and higher memory profile, but if we found it
35 // necessary we may switch to it eventually.
36 // - In the paper the authors use a state machine that does not distinguish
37 // value reads from value writes. For example, if Y is reachable from X at state
38 // S3, it may be the case that X is written into Y, or it may be the case that
39 // there's a third value Z that writes into both X and Y. To make that
40 // distinction (which is crucial in building function summary as well as
41 // retrieving mod-ref info), we choose to duplicate some of the states in the
42 // paper's proposed state machine. The duplication does not change the set the
43 // machine accepts. Given a pair of reachable values, it only provides more
44 // detailed information on which value is being written into and which is being
45 // read from.
46 //
47 //===----------------------------------------------------------------------===//
48
49 // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
50 // CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because
51 // FunctionPasses are only allowed to inspect the Function that they're being
52 // run on. Realistically, this likely isn't a problem until we allow
53 // FunctionPasses to run concurrently.
54
55 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
56 #include "AliasAnalysisSummary.h"
57 #include "CFLGraph.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseMapInfo.h"
60 #include "llvm/ADT/DenseSet.h"
61 #include "llvm/ADT/None.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallVector.h"
65 #include "llvm/ADT/iterator_range.h"
66 #include "llvm/Analysis/AliasAnalysis.h"
67 #include "llvm/Analysis/MemoryLocation.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <bitset>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <functional>
83 #include <utility>
84 #include <vector>
85
86 using namespace llvm;
87 using namespace llvm::cflaa;
88
89 #define DEBUG_TYPE "cfl-anders-aa"
90
91 CFLAndersAAResult::CFLAndersAAResult(
92     std::function<const TargetLibraryInfo &(Function &F)> GetTLI)
93     : GetTLI(std::move(GetTLI)) {}
94 CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS)
95     : AAResultBase(std::move(RHS)), GetTLI(std::move(RHS.GetTLI)) {}
96 CFLAndersAAResult::~CFLAndersAAResult() = default;
97
98 namespace {
99
100 enum class MatchState : uint8_t {
101   // The following state represents S1 in the paper.
102   FlowFromReadOnly = 0,
103   // The following two states together represent S2 in the paper.
104   // The 'NoReadWrite' suffix indicates that there exists an alias path that
105   // does not contain assignment and reverse assignment edges.
106   // The 'ReadOnly' suffix indicates that there exists an alias path that
107   // contains reverse assignment edges only.
108   FlowFromMemAliasNoReadWrite,
109   FlowFromMemAliasReadOnly,
110   // The following two states together represent S3 in the paper.
111   // The 'WriteOnly' suffix indicates that there exists an alias path that
112   // contains assignment edges only.
113   // The 'ReadWrite' suffix indicates that there exists an alias path that
114   // contains both assignment and reverse assignment edges. Note that if X and Y
115   // are reachable at 'ReadWrite' state, it does NOT mean X is both read from
116   // and written to Y. Instead, it means that a third value Z is written to both
117   // X and Y.
118   FlowToWriteOnly,
119   FlowToReadWrite,
120   // The following two states together represent S4 in the paper.
121   FlowToMemAliasWriteOnly,
122   FlowToMemAliasReadWrite,
123 };
124
125 using StateSet = std::bitset<7>;
126
127 const unsigned ReadOnlyStateMask =
128     (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly)) |
129     (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly));
130 const unsigned WriteOnlyStateMask =
131     (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly)) |
132     (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly));
133
134 // A pair that consists of a value and an offset
135 struct OffsetValue {
136   const Value *Val;
137   int64_t Offset;
138 };
139
140 bool operator==(OffsetValue LHS, OffsetValue RHS) {
141   return LHS.Val == RHS.Val && LHS.Offset == RHS.Offset;
142 }
143 bool operator<(OffsetValue LHS, OffsetValue RHS) {
144   return std::less<const Value *>()(LHS.Val, RHS.Val) ||
145          (LHS.Val == RHS.Val && LHS.Offset < RHS.Offset);
146 }
147
148 // A pair that consists of an InstantiatedValue and an offset
149 struct OffsetInstantiatedValue {
150   InstantiatedValue IVal;
151   int64_t Offset;
152 };
153
154 bool operator==(OffsetInstantiatedValue LHS, OffsetInstantiatedValue RHS) {
155   return LHS.IVal == RHS.IVal && LHS.Offset == RHS.Offset;
156 }
157
158 // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in
159 // the paper) during the analysis.
160 class ReachabilitySet {
161   using ValueStateMap = DenseMap<InstantiatedValue, StateSet>;
162   using ValueReachMap = DenseMap<InstantiatedValue, ValueStateMap>;
163
164   ValueReachMap ReachMap;
165
166 public:
167   using const_valuestate_iterator = ValueStateMap::const_iterator;
168   using const_value_iterator = ValueReachMap::const_iterator;
169
170   // Insert edge 'From->To' at state 'State'
171   bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) {
172     assert(From != To);
173     auto &States = ReachMap[To][From];
174     auto Idx = static_cast<size_t>(State);
175     if (!States.test(Idx)) {
176       States.set(Idx);
177       return true;
178     }
179     return false;
180   }
181
182   // Return the set of all ('From', 'State') pair for a given node 'To'
183   iterator_range<const_valuestate_iterator>
184   reachableValueAliases(InstantiatedValue V) const {
185     auto Itr = ReachMap.find(V);
186     if (Itr == ReachMap.end())
187       return make_range<const_valuestate_iterator>(const_valuestate_iterator(),
188                                                    const_valuestate_iterator());
189     return make_range<const_valuestate_iterator>(Itr->second.begin(),
190                                                  Itr->second.end());
191   }
192
193   iterator_range<const_value_iterator> value_mappings() const {
194     return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end());
195   }
196 };
197
198 // We use AliasMemSet to keep track of all memory aliases (the nonterminal "M"
199 // in the paper) during the analysis.
200 class AliasMemSet {
201   using MemSet = DenseSet<InstantiatedValue>;
202   using MemMapType = DenseMap<InstantiatedValue, MemSet>;
203
204   MemMapType MemMap;
205
206 public:
207   using const_mem_iterator = MemSet::const_iterator;
208
209   bool insert(InstantiatedValue LHS, InstantiatedValue RHS) {
210     // Top-level values can never be memory aliases because one cannot take the
211     // addresses of them
212     assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0);
213     return MemMap[LHS].insert(RHS).second;
214   }
215
216   const MemSet *getMemoryAliases(InstantiatedValue V) const {
217     auto Itr = MemMap.find(V);
218     if (Itr == MemMap.end())
219       return nullptr;
220     return &Itr->second;
221   }
222 };
223
224 // We use AliasAttrMap to keep track of the AliasAttr of each node.
225 class AliasAttrMap {
226   using MapType = DenseMap<InstantiatedValue, AliasAttrs>;
227
228   MapType AttrMap;
229
230 public:
231   using const_iterator = MapType::const_iterator;
232
233   bool add(InstantiatedValue V, AliasAttrs Attr) {
234     auto &OldAttr = AttrMap[V];
235     auto NewAttr = OldAttr | Attr;
236     if (OldAttr == NewAttr)
237       return false;
238     OldAttr = NewAttr;
239     return true;
240   }
241
242   AliasAttrs getAttrs(InstantiatedValue V) const {
243     AliasAttrs Attr;
244     auto Itr = AttrMap.find(V);
245     if (Itr != AttrMap.end())
246       Attr = Itr->second;
247     return Attr;
248   }
249
250   iterator_range<const_iterator> mappings() const {
251     return make_range<const_iterator>(AttrMap.begin(), AttrMap.end());
252   }
253 };
254
255 struct WorkListItem {
256   InstantiatedValue From;
257   InstantiatedValue To;
258   MatchState State;
259 };
260
261 struct ValueSummary {
262   struct Record {
263     InterfaceValue IValue;
264     unsigned DerefLevel;
265   };
266   SmallVector<Record, 4> FromRecords, ToRecords;
267 };
268
269 } // end anonymous namespace
270
271 namespace llvm {
272
273 // Specialize DenseMapInfo for OffsetValue.
274 template <> struct DenseMapInfo<OffsetValue> {
275   static OffsetValue getEmptyKey() {
276     return OffsetValue{DenseMapInfo<const Value *>::getEmptyKey(),
277                        DenseMapInfo<int64_t>::getEmptyKey()};
278   }
279
280   static OffsetValue getTombstoneKey() {
281     return OffsetValue{DenseMapInfo<const Value *>::getTombstoneKey(),
282                        DenseMapInfo<int64_t>::getEmptyKey()};
283   }
284
285   static unsigned getHashValue(const OffsetValue &OVal) {
286     return DenseMapInfo<std::pair<const Value *, int64_t>>::getHashValue(
287         std::make_pair(OVal.Val, OVal.Offset));
288   }
289
290   static bool isEqual(const OffsetValue &LHS, const OffsetValue &RHS) {
291     return LHS == RHS;
292   }
293 };
294
295 // Specialize DenseMapInfo for OffsetInstantiatedValue.
296 template <> struct DenseMapInfo<OffsetInstantiatedValue> {
297   static OffsetInstantiatedValue getEmptyKey() {
298     return OffsetInstantiatedValue{
299         DenseMapInfo<InstantiatedValue>::getEmptyKey(),
300         DenseMapInfo<int64_t>::getEmptyKey()};
301   }
302
303   static OffsetInstantiatedValue getTombstoneKey() {
304     return OffsetInstantiatedValue{
305         DenseMapInfo<InstantiatedValue>::getTombstoneKey(),
306         DenseMapInfo<int64_t>::getEmptyKey()};
307   }
308
309   static unsigned getHashValue(const OffsetInstantiatedValue &OVal) {
310     return DenseMapInfo<std::pair<InstantiatedValue, int64_t>>::getHashValue(
311         std::make_pair(OVal.IVal, OVal.Offset));
312   }
313
314   static bool isEqual(const OffsetInstantiatedValue &LHS,
315                       const OffsetInstantiatedValue &RHS) {
316     return LHS == RHS;
317   }
318 };
319
320 } // end namespace llvm
321
322 class CFLAndersAAResult::FunctionInfo {
323   /// Map a value to other values that may alias it
324   /// Since the alias relation is symmetric, to save some space we assume values
325   /// are properly ordered: if a and b alias each other, and a < b, then b is in
326   /// AliasMap[a] but not vice versa.
327   DenseMap<const Value *, std::vector<OffsetValue>> AliasMap;
328
329   /// Map a value to its corresponding AliasAttrs
330   DenseMap<const Value *, AliasAttrs> AttrMap;
331
332   /// Summary of externally visible effects.
333   AliasSummary Summary;
334
335   Optional<AliasAttrs> getAttrs(const Value *) const;
336
337 public:
338   FunctionInfo(const Function &, const SmallVectorImpl<Value *> &,
339                const ReachabilitySet &, const AliasAttrMap &);
340
341   bool mayAlias(const Value *, LocationSize, const Value *, LocationSize) const;
342   const AliasSummary &getAliasSummary() const { return Summary; }
343 };
344
345 static bool hasReadOnlyState(StateSet Set) {
346   return (Set & StateSet(ReadOnlyStateMask)).any();
347 }
348
349 static bool hasWriteOnlyState(StateSet Set) {
350   return (Set & StateSet(WriteOnlyStateMask)).any();
351 }
352
353 static Optional<InterfaceValue>
354 getInterfaceValue(InstantiatedValue IValue,
355                   const SmallVectorImpl<Value *> &RetVals) {
356   auto Val = IValue.Val;
357
358   Optional<unsigned> Index;
359   if (auto Arg = dyn_cast<Argument>(Val))
360     Index = Arg->getArgNo() + 1;
361   else if (is_contained(RetVals, Val))
362     Index = 0;
363
364   if (Index)
365     return InterfaceValue{*Index, IValue.DerefLevel};
366   return None;
367 }
368
369 static void populateAttrMap(DenseMap<const Value *, AliasAttrs> &AttrMap,
370                             const AliasAttrMap &AMap) {
371   for (const auto &Mapping : AMap.mappings()) {
372     auto IVal = Mapping.first;
373
374     // Insert IVal into the map
375     auto &Attr = AttrMap[IVal.Val];
376     // AttrMap only cares about top-level values
377     if (IVal.DerefLevel == 0)
378       Attr |= Mapping.second;
379   }
380 }
381
382 static void
383 populateAliasMap(DenseMap<const Value *, std::vector<OffsetValue>> &AliasMap,
384                  const ReachabilitySet &ReachSet) {
385   for (const auto &OuterMapping : ReachSet.value_mappings()) {
386     // AliasMap only cares about top-level values
387     if (OuterMapping.first.DerefLevel > 0)
388       continue;
389
390     auto Val = OuterMapping.first.Val;
391     auto &AliasList = AliasMap[Val];
392     for (const auto &InnerMapping : OuterMapping.second) {
393       // Again, AliasMap only cares about top-level values
394       if (InnerMapping.first.DerefLevel == 0)
395         AliasList.push_back(OffsetValue{InnerMapping.first.Val, UnknownOffset});
396     }
397
398     // Sort AliasList for faster lookup
399     llvm::sort(AliasList);
400   }
401 }
402
403 static void populateExternalRelations(
404     SmallVectorImpl<ExternalRelation> &ExtRelations, const Function &Fn,
405     const SmallVectorImpl<Value *> &RetVals, const ReachabilitySet &ReachSet) {
406   // If a function only returns one of its argument X, then X will be both an
407   // argument and a return value at the same time. This is an edge case that
408   // needs special handling here.
409   for (const auto &Arg : Fn.args()) {
410     if (is_contained(RetVals, &Arg)) {
411       auto ArgVal = InterfaceValue{Arg.getArgNo() + 1, 0};
412       auto RetVal = InterfaceValue{0, 0};
413       ExtRelations.push_back(ExternalRelation{ArgVal, RetVal, 0});
414     }
415   }
416
417   // Below is the core summary construction logic.
418   // A naive solution of adding only the value aliases that are parameters or
419   // return values in ReachSet to the summary won't work: It is possible that a
420   // parameter P is written into an intermediate value I, and the function
421   // subsequently returns *I. In that case, *I is does not value alias anything
422   // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to
423   // (I, 1).
424   // To account for the aforementioned case, we need to check each non-parameter
425   // and non-return value for the possibility of acting as an intermediate.
426   // 'ValueMap' here records, for each value, which InterfaceValues read from or
427   // write into it. If both the read list and the write list of a given value
428   // are non-empty, we know that a particular value is an intermidate and we
429   // need to add summary edges from the writes to the reads.
430   DenseMap<Value *, ValueSummary> ValueMap;
431   for (const auto &OuterMapping : ReachSet.value_mappings()) {
432     if (auto Dst = getInterfaceValue(OuterMapping.first, RetVals)) {
433       for (const auto &InnerMapping : OuterMapping.second) {
434         // If Src is a param/return value, we get a same-level assignment.
435         if (auto Src = getInterfaceValue(InnerMapping.first, RetVals)) {
436           // This may happen if both Dst and Src are return values
437           if (*Dst == *Src)
438             continue;
439
440           if (hasReadOnlyState(InnerMapping.second))
441             ExtRelations.push_back(ExternalRelation{*Dst, *Src, UnknownOffset});
442           // No need to check for WriteOnly state, since ReachSet is symmetric
443         } else {
444           // If Src is not a param/return, add it to ValueMap
445           auto SrcIVal = InnerMapping.first;
446           if (hasReadOnlyState(InnerMapping.second))
447             ValueMap[SrcIVal.Val].FromRecords.push_back(
448                 ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
449           if (hasWriteOnlyState(InnerMapping.second))
450             ValueMap[SrcIVal.Val].ToRecords.push_back(
451                 ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
452         }
453       }
454     }
455   }
456
457   for (const auto &Mapping : ValueMap) {
458     for (const auto &FromRecord : Mapping.second.FromRecords) {
459       for (const auto &ToRecord : Mapping.second.ToRecords) {
460         auto ToLevel = ToRecord.DerefLevel;
461         auto FromLevel = FromRecord.DerefLevel;
462         // Same-level assignments should have already been processed by now
463         if (ToLevel == FromLevel)
464           continue;
465
466         auto SrcIndex = FromRecord.IValue.Index;
467         auto SrcLevel = FromRecord.IValue.DerefLevel;
468         auto DstIndex = ToRecord.IValue.Index;
469         auto DstLevel = ToRecord.IValue.DerefLevel;
470         if (ToLevel > FromLevel)
471           SrcLevel += ToLevel - FromLevel;
472         else
473           DstLevel += FromLevel - ToLevel;
474
475         ExtRelations.push_back(ExternalRelation{
476             InterfaceValue{SrcIndex, SrcLevel},
477             InterfaceValue{DstIndex, DstLevel}, UnknownOffset});
478       }
479     }
480   }
481
482   // Remove duplicates in ExtRelations
483   llvm::sort(ExtRelations);
484   ExtRelations.erase(std::unique(ExtRelations.begin(), ExtRelations.end()),
485                      ExtRelations.end());
486 }
487
488 static void populateExternalAttributes(
489     SmallVectorImpl<ExternalAttribute> &ExtAttributes, const Function &Fn,
490     const SmallVectorImpl<Value *> &RetVals, const AliasAttrMap &AMap) {
491   for (const auto &Mapping : AMap.mappings()) {
492     if (auto IVal = getInterfaceValue(Mapping.first, RetVals)) {
493       auto Attr = getExternallyVisibleAttrs(Mapping.second);
494       if (Attr.any())
495         ExtAttributes.push_back(ExternalAttribute{*IVal, Attr});
496     }
497   }
498 }
499
500 CFLAndersAAResult::FunctionInfo::FunctionInfo(
501     const Function &Fn, const SmallVectorImpl<Value *> &RetVals,
502     const ReachabilitySet &ReachSet, const AliasAttrMap &AMap) {
503   populateAttrMap(AttrMap, AMap);
504   populateExternalAttributes(Summary.RetParamAttributes, Fn, RetVals, AMap);
505   populateAliasMap(AliasMap, ReachSet);
506   populateExternalRelations(Summary.RetParamRelations, Fn, RetVals, ReachSet);
507 }
508
509 Optional<AliasAttrs>
510 CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const {
511   assert(V != nullptr);
512
513   auto Itr = AttrMap.find(V);
514   if (Itr != AttrMap.end())
515     return Itr->second;
516   return None;
517 }
518
519 bool CFLAndersAAResult::FunctionInfo::mayAlias(
520     const Value *LHS, LocationSize MaybeLHSSize, const Value *RHS,
521     LocationSize MaybeRHSSize) const {
522   assert(LHS && RHS);
523
524   // Check if we've seen LHS and RHS before. Sometimes LHS or RHS can be created
525   // after the analysis gets executed, and we want to be conservative in those
526   // cases.
527   auto MaybeAttrsA = getAttrs(LHS);
528   auto MaybeAttrsB = getAttrs(RHS);
529   if (!MaybeAttrsA || !MaybeAttrsB)
530     return true;
531
532   // Check AliasAttrs before AliasMap lookup since it's cheaper
533   auto AttrsA = *MaybeAttrsA;
534   auto AttrsB = *MaybeAttrsB;
535   if (hasUnknownOrCallerAttr(AttrsA))
536     return AttrsB.any();
537   if (hasUnknownOrCallerAttr(AttrsB))
538     return AttrsA.any();
539   if (isGlobalOrArgAttr(AttrsA))
540     return isGlobalOrArgAttr(AttrsB);
541   if (isGlobalOrArgAttr(AttrsB))
542     return isGlobalOrArgAttr(AttrsA);
543
544   // At this point both LHS and RHS should point to locally allocated objects
545
546   auto Itr = AliasMap.find(LHS);
547   if (Itr != AliasMap.end()) {
548
549     // Find out all (X, Offset) where X == RHS
550     auto Comparator = [](OffsetValue LHS, OffsetValue RHS) {
551       return std::less<const Value *>()(LHS.Val, RHS.Val);
552     };
553 #ifdef EXPENSIVE_CHECKS
554     assert(std::is_sorted(Itr->second.begin(), Itr->second.end(), Comparator));
555 #endif
556     auto RangePair = std::equal_range(Itr->second.begin(), Itr->second.end(),
557                                       OffsetValue{RHS, 0}, Comparator);
558
559     if (RangePair.first != RangePair.second) {
560       // Be conservative about unknown sizes
561       if (MaybeLHSSize == LocationSize::unknown() ||
562           MaybeRHSSize == LocationSize::unknown())
563         return true;
564
565       const uint64_t LHSSize = MaybeLHSSize.getValue();
566       const uint64_t RHSSize = MaybeRHSSize.getValue();
567
568       for (const auto &OVal : make_range(RangePair)) {
569         // Be conservative about UnknownOffset
570         if (OVal.Offset == UnknownOffset)
571           return true;
572
573         // We know that LHS aliases (RHS + OVal.Offset) if the control flow
574         // reaches here. The may-alias query essentially becomes integer
575         // range-overlap queries over two ranges [OVal.Offset, OVal.Offset +
576         // LHSSize) and [0, RHSSize).
577
578         // Try to be conservative on super large offsets
579         if (LLVM_UNLIKELY(LHSSize > INT64_MAX || RHSSize > INT64_MAX))
580           return true;
581
582         auto LHSStart = OVal.Offset;
583         // FIXME: Do we need to guard against integer overflow?
584         auto LHSEnd = OVal.Offset + static_cast<int64_t>(LHSSize);
585         auto RHSStart = 0;
586         auto RHSEnd = static_cast<int64_t>(RHSSize);
587         if (LHSEnd > RHSStart && LHSStart < RHSEnd)
588           return true;
589       }
590     }
591   }
592
593   return false;
594 }
595
596 static void propagate(InstantiatedValue From, InstantiatedValue To,
597                       MatchState State, ReachabilitySet &ReachSet,
598                       std::vector<WorkListItem> &WorkList) {
599   if (From == To)
600     return;
601   if (ReachSet.insert(From, To, State))
602     WorkList.push_back(WorkListItem{From, To, State});
603 }
604
605 static void initializeWorkList(std::vector<WorkListItem> &WorkList,
606                                ReachabilitySet &ReachSet,
607                                const CFLGraph &Graph) {
608   for (const auto &Mapping : Graph.value_mappings()) {
609     auto Val = Mapping.first;
610     auto &ValueInfo = Mapping.second;
611     assert(ValueInfo.getNumLevels() > 0);
612
613     // Insert all immediate assignment neighbors to the worklist
614     for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
615       auto Src = InstantiatedValue{Val, I};
616       // If there's an assignment edge from X to Y, it means Y is reachable from
617       // X at S3 and X is reachable from Y at S1
618       for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) {
619         propagate(Edge.Other, Src, MatchState::FlowFromReadOnly, ReachSet,
620                   WorkList);
621         propagate(Src, Edge.Other, MatchState::FlowToWriteOnly, ReachSet,
622                   WorkList);
623       }
624     }
625   }
626 }
627
628 static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph,
629                                                 InstantiatedValue V) {
630   auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1};
631   if (Graph.getNode(NodeBelow))
632     return NodeBelow;
633   return None;
634 }
635
636 static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph,
637                                 ReachabilitySet &ReachSet, AliasMemSet &MemSet,
638                                 std::vector<WorkListItem> &WorkList) {
639   auto FromNode = Item.From;
640   auto ToNode = Item.To;
641
642   auto NodeInfo = Graph.getNode(ToNode);
643   assert(NodeInfo != nullptr);
644
645   // TODO: propagate field offsets
646
647   // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds
648   // relations that are symmetric, we could actually cut the storage by half by
649   // sorting FromNode and ToNode before insertion happens.
650
651   // The newly added value alias pair may potentially generate more memory
652   // alias pairs. Check for them here.
653   auto FromNodeBelow = getNodeBelow(Graph, FromNode);
654   auto ToNodeBelow = getNodeBelow(Graph, ToNode);
655   if (FromNodeBelow && ToNodeBelow &&
656       MemSet.insert(*FromNodeBelow, *ToNodeBelow)) {
657     propagate(*FromNodeBelow, *ToNodeBelow,
658               MatchState::FlowFromMemAliasNoReadWrite, ReachSet, WorkList);
659     for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) {
660       auto Src = Mapping.first;
661       auto MemAliasPropagate = [&](MatchState FromState, MatchState ToState) {
662         if (Mapping.second.test(static_cast<size_t>(FromState)))
663           propagate(Src, *ToNodeBelow, ToState, ReachSet, WorkList);
664       };
665
666       MemAliasPropagate(MatchState::FlowFromReadOnly,
667                         MatchState::FlowFromMemAliasReadOnly);
668       MemAliasPropagate(MatchState::FlowToWriteOnly,
669                         MatchState::FlowToMemAliasWriteOnly);
670       MemAliasPropagate(MatchState::FlowToReadWrite,
671                         MatchState::FlowToMemAliasReadWrite);
672     }
673   }
674
675   // This is the core of the state machine walking algorithm. We expand ReachSet
676   // based on which state we are at (which in turn dictates what edges we
677   // should examine)
678   // From a high-level point of view, the state machine here guarantees two
679   // properties:
680   // - If *X and *Y are memory aliases, then X and Y are value aliases
681   // - If Y is an alias of X, then reverse assignment edges (if there is any)
682   // should precede any assignment edges on the path from X to Y.
683   auto NextAssignState = [&](MatchState State) {
684     for (const auto &AssignEdge : NodeInfo->Edges)
685       propagate(FromNode, AssignEdge.Other, State, ReachSet, WorkList);
686   };
687   auto NextRevAssignState = [&](MatchState State) {
688     for (const auto &RevAssignEdge : NodeInfo->ReverseEdges)
689       propagate(FromNode, RevAssignEdge.Other, State, ReachSet, WorkList);
690   };
691   auto NextMemState = [&](MatchState State) {
692     if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) {
693       for (const auto &MemAlias : *AliasSet)
694         propagate(FromNode, MemAlias, State, ReachSet, WorkList);
695     }
696   };
697
698   switch (Item.State) {
699   case MatchState::FlowFromReadOnly:
700     NextRevAssignState(MatchState::FlowFromReadOnly);
701     NextAssignState(MatchState::FlowToReadWrite);
702     NextMemState(MatchState::FlowFromMemAliasReadOnly);
703     break;
704
705   case MatchState::FlowFromMemAliasNoReadWrite:
706     NextRevAssignState(MatchState::FlowFromReadOnly);
707     NextAssignState(MatchState::FlowToWriteOnly);
708     break;
709
710   case MatchState::FlowFromMemAliasReadOnly:
711     NextRevAssignState(MatchState::FlowFromReadOnly);
712     NextAssignState(MatchState::FlowToReadWrite);
713     break;
714
715   case MatchState::FlowToWriteOnly:
716     NextAssignState(MatchState::FlowToWriteOnly);
717     NextMemState(MatchState::FlowToMemAliasWriteOnly);
718     break;
719
720   case MatchState::FlowToReadWrite:
721     NextAssignState(MatchState::FlowToReadWrite);
722     NextMemState(MatchState::FlowToMemAliasReadWrite);
723     break;
724
725   case MatchState::FlowToMemAliasWriteOnly:
726     NextAssignState(MatchState::FlowToWriteOnly);
727     break;
728
729   case MatchState::FlowToMemAliasReadWrite:
730     NextAssignState(MatchState::FlowToReadWrite);
731     break;
732   }
733 }
734
735 static AliasAttrMap buildAttrMap(const CFLGraph &Graph,
736                                  const ReachabilitySet &ReachSet) {
737   AliasAttrMap AttrMap;
738   std::vector<InstantiatedValue> WorkList, NextList;
739
740   // Initialize each node with its original AliasAttrs in CFLGraph
741   for (const auto &Mapping : Graph.value_mappings()) {
742     auto Val = Mapping.first;
743     auto &ValueInfo = Mapping.second;
744     for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
745       auto Node = InstantiatedValue{Val, I};
746       AttrMap.add(Node, ValueInfo.getNodeInfoAtLevel(I).Attr);
747       WorkList.push_back(Node);
748     }
749   }
750
751   while (!WorkList.empty()) {
752     for (const auto &Dst : WorkList) {
753       auto DstAttr = AttrMap.getAttrs(Dst);
754       if (DstAttr.none())
755         continue;
756
757       // Propagate attr on the same level
758       for (const auto &Mapping : ReachSet.reachableValueAliases(Dst)) {
759         auto Src = Mapping.first;
760         if (AttrMap.add(Src, DstAttr))
761           NextList.push_back(Src);
762       }
763
764       // Propagate attr to the levels below
765       auto DstBelow = getNodeBelow(Graph, Dst);
766       while (DstBelow) {
767         if (AttrMap.add(*DstBelow, DstAttr)) {
768           NextList.push_back(*DstBelow);
769           break;
770         }
771         DstBelow = getNodeBelow(Graph, *DstBelow);
772       }
773     }
774     WorkList.swap(NextList);
775     NextList.clear();
776   }
777
778   return AttrMap;
779 }
780
781 CFLAndersAAResult::FunctionInfo
782 CFLAndersAAResult::buildInfoFrom(const Function &Fn) {
783   CFLGraphBuilder<CFLAndersAAResult> GraphBuilder(
784       *this, GetTLI(const_cast<Function &>(Fn)),
785       // Cast away the constness here due to GraphBuilder's API requirement
786       const_cast<Function &>(Fn));
787   auto &Graph = GraphBuilder.getCFLGraph();
788
789   ReachabilitySet ReachSet;
790   AliasMemSet MemSet;
791
792   std::vector<WorkListItem> WorkList, NextList;
793   initializeWorkList(WorkList, ReachSet, Graph);
794   // TODO: make sure we don't stop before the fix point is reached
795   while (!WorkList.empty()) {
796     for (const auto &Item : WorkList)
797       processWorkListItem(Item, Graph, ReachSet, MemSet, NextList);
798
799     NextList.swap(WorkList);
800     NextList.clear();
801   }
802
803   // Now that we have all the reachability info, propagate AliasAttrs according
804   // to it
805   auto IValueAttrMap = buildAttrMap(Graph, ReachSet);
806
807   return FunctionInfo(Fn, GraphBuilder.getReturnValues(), ReachSet,
808                       std::move(IValueAttrMap));
809 }
810
811 void CFLAndersAAResult::scan(const Function &Fn) {
812   auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>()));
813   (void)InsertPair;
814   assert(InsertPair.second &&
815          "Trying to scan a function that has already been cached");
816
817   // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
818   // may get evaluated after operator[], potentially triggering a DenseMap
819   // resize and invalidating the reference returned by operator[]
820   auto FunInfo = buildInfoFrom(Fn);
821   Cache[&Fn] = std::move(FunInfo);
822   Handles.emplace_front(const_cast<Function *>(&Fn), this);
823 }
824
825 void CFLAndersAAResult::evict(const Function *Fn) { Cache.erase(Fn); }
826
827 const Optional<CFLAndersAAResult::FunctionInfo> &
828 CFLAndersAAResult::ensureCached(const Function &Fn) {
829   auto Iter = Cache.find(&Fn);
830   if (Iter == Cache.end()) {
831     scan(Fn);
832     Iter = Cache.find(&Fn);
833     assert(Iter != Cache.end());
834     assert(Iter->second.hasValue());
835   }
836   return Iter->second;
837 }
838
839 const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) {
840   auto &FunInfo = ensureCached(Fn);
841   if (FunInfo.hasValue())
842     return &FunInfo->getAliasSummary();
843   else
844     return nullptr;
845 }
846
847 AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA,
848                                      const MemoryLocation &LocB) {
849   auto *ValA = LocA.Ptr;
850   auto *ValB = LocB.Ptr;
851
852   if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
853     return NoAlias;
854
855   auto *Fn = parentFunctionOfValue(ValA);
856   if (!Fn) {
857     Fn = parentFunctionOfValue(ValB);
858     if (!Fn) {
859       // The only times this is known to happen are when globals + InlineAsm are
860       // involved
861       LLVM_DEBUG(
862           dbgs()
863           << "CFLAndersAA: could not extract parent function information.\n");
864       return MayAlias;
865     }
866   } else {
867     assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn);
868   }
869
870   assert(Fn != nullptr);
871   auto &FunInfo = ensureCached(*Fn);
872
873   // AliasMap lookup
874   if (FunInfo->mayAlias(ValA, LocA.Size, ValB, LocB.Size))
875     return MayAlias;
876   return NoAlias;
877 }
878
879 AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA,
880                                      const MemoryLocation &LocB,
881                                      AAQueryInfo &AAQI) {
882   if (LocA.Ptr == LocB.Ptr)
883     return MustAlias;
884
885   // Comparisons between global variables and other constants should be
886   // handled by BasicAA.
887   // CFLAndersAA may report NoAlias when comparing a GlobalValue and
888   // ConstantExpr, but every query needs to have at least one Value tied to a
889   // Function, and neither GlobalValues nor ConstantExprs are.
890   if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr))
891     return AAResultBase::alias(LocA, LocB, AAQI);
892
893   AliasResult QueryResult = query(LocA, LocB);
894   if (QueryResult == MayAlias)
895     return AAResultBase::alias(LocA, LocB, AAQI);
896
897   return QueryResult;
898 }
899
900 AnalysisKey CFLAndersAA::Key;
901
902 CFLAndersAAResult CFLAndersAA::run(Function &F, FunctionAnalysisManager &AM) {
903   auto GetTLI = [&AM](Function &F) -> TargetLibraryInfo & {
904     return AM.getResult<TargetLibraryAnalysis>(F);
905   };
906   return CFLAndersAAResult(GetTLI);
907 }
908
909 char CFLAndersAAWrapperPass::ID = 0;
910 INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa",
911                 "Inclusion-Based CFL Alias Analysis", false, true)
912
913 ImmutablePass *llvm::createCFLAndersAAWrapperPass() {
914   return new CFLAndersAAWrapperPass();
915 }
916
917 CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) {
918   initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry());
919 }
920
921 void CFLAndersAAWrapperPass::initializePass() {
922   auto GetTLI = [this](Function &F) -> TargetLibraryInfo & {
923     return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
924   };
925   Result.reset(new CFLAndersAAResult(GetTLI));
926 }
927
928 void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
929   AU.setPreservesAll();
930   AU.addRequired<TargetLibraryInfoWrapperPass>();
931 }