]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/dbuf.c
Add dbuf hash and dbuf cache kstats
[FreeBSD/FreeBSD.git] / module / zfs / dbuf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50
51 kstat_t *dbuf_ksp;
52
53 typedef struct dbuf_stats {
54         /*
55          * Various statistics about the size of the dbuf cache.
56          */
57         kstat_named_t cache_count;
58         kstat_named_t cache_size_bytes;
59         kstat_named_t cache_size_bytes_max;
60         /*
61          * Statistics regarding the bounds on the dbuf cache size.
62          */
63         kstat_named_t cache_target_bytes;
64         kstat_named_t cache_lowater_bytes;
65         kstat_named_t cache_hiwater_bytes;
66         /*
67          * Total number of dbuf cache evictions that have occurred.
68          */
69         kstat_named_t cache_total_evicts;
70         /*
71          * The distribution of dbuf levels in the dbuf cache and
72          * the total size of all dbufs at each level.
73          */
74         kstat_named_t cache_levels[DN_MAX_LEVELS];
75         kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
76         /*
77          * Statistics about the dbuf hash table.
78          */
79         kstat_named_t hash_hits;
80         kstat_named_t hash_misses;
81         kstat_named_t hash_collisions;
82         kstat_named_t hash_elements;
83         kstat_named_t hash_elements_max;
84         /*
85          * Number of sublists containing more than one dbuf in the dbuf
86          * hash table. Keep track of the longest hash chain.
87          */
88         kstat_named_t hash_chains;
89         kstat_named_t hash_chain_max;
90         /*
91          * Number of times a dbuf_create() discovers that a dbuf was
92          * already created and in the dbuf hash table.
93          */
94         kstat_named_t hash_insert_race;
95 } dbuf_stats_t;
96
97 dbuf_stats_t dbuf_stats = {
98         { "cache_count",                        KSTAT_DATA_UINT64 },
99         { "cache_size_bytes",                   KSTAT_DATA_UINT64 },
100         { "cache_size_bytes_max",               KSTAT_DATA_UINT64 },
101         { "cache_target_bytes",                 KSTAT_DATA_UINT64 },
102         { "cache_lowater_bytes",                KSTAT_DATA_UINT64 },
103         { "cache_hiwater_bytes",                KSTAT_DATA_UINT64 },
104         { "cache_total_evicts",                 KSTAT_DATA_UINT64 },
105         { { "cache_levels_N",                   KSTAT_DATA_UINT64 } },
106         { { "cache_levels_bytes_N",             KSTAT_DATA_UINT64 } },
107         { "hash_hits",                          KSTAT_DATA_UINT64 },
108         { "hash_misses",                        KSTAT_DATA_UINT64 },
109         { "hash_collisions",                    KSTAT_DATA_UINT64 },
110         { "hash_elements",                      KSTAT_DATA_UINT64 },
111         { "hash_elements_max",                  KSTAT_DATA_UINT64 },
112         { "hash_chains",                        KSTAT_DATA_UINT64 },
113         { "hash_chain_max",                     KSTAT_DATA_UINT64 },
114         { "hash_insert_race",                   KSTAT_DATA_UINT64 }
115 };
116
117 #define DBUF_STAT_INCR(stat, val)       \
118         atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
119 #define DBUF_STAT_DECR(stat, val)       \
120         DBUF_STAT_INCR(stat, -(val));
121 #define DBUF_STAT_BUMP(stat)            \
122         DBUF_STAT_INCR(stat, 1);
123 #define DBUF_STAT_BUMPDOWN(stat)        \
124         DBUF_STAT_INCR(stat, -1);
125 #define DBUF_STAT_MAX(stat, v) {                                        \
126         uint64_t _m;                                                    \
127         while ((v) > (_m = dbuf_stats.stat.value.ui64) &&               \
128             (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
129                 continue;                                               \
130 }
131
132 struct dbuf_hold_impl_data {
133         /* Function arguments */
134         dnode_t *dh_dn;
135         uint8_t dh_level;
136         uint64_t dh_blkid;
137         boolean_t dh_fail_sparse;
138         boolean_t dh_fail_uncached;
139         void *dh_tag;
140         dmu_buf_impl_t **dh_dbp;
141         /* Local variables */
142         dmu_buf_impl_t *dh_db;
143         dmu_buf_impl_t *dh_parent;
144         blkptr_t *dh_bp;
145         int dh_err;
146         dbuf_dirty_record_t *dh_dr;
147         int dh_depth;
148 };
149
150 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
151     dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
152         boolean_t fail_uncached,
153         void *tag, dmu_buf_impl_t **dbp, int depth);
154 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
155
156 uint_t zfs_dbuf_evict_key;
157
158 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
159 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
160
161 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
162     dmu_buf_evict_func_t *evict_func_sync,
163     dmu_buf_evict_func_t *evict_func_async,
164     dmu_buf_t **clear_on_evict_dbufp);
165
166 /*
167  * Global data structures and functions for the dbuf cache.
168  */
169 static kmem_cache_t *dbuf_kmem_cache;
170 static taskq_t *dbu_evict_taskq;
171
172 static kthread_t *dbuf_cache_evict_thread;
173 static kmutex_t dbuf_evict_lock;
174 static kcondvar_t dbuf_evict_cv;
175 static boolean_t dbuf_evict_thread_exit;
176
177 /*
178  * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
179  * are not currently held but have been recently released. These dbufs
180  * are not eligible for arc eviction until they are aged out of the cache.
181  * Dbufs are added to the dbuf cache once the last hold is released. If a
182  * dbuf is later accessed and still exists in the dbuf cache, then it will
183  * be removed from the cache and later re-added to the head of the cache.
184  * Dbufs that are aged out of the cache will be immediately destroyed and
185  * become eligible for arc eviction.
186  */
187 static multilist_t *dbuf_cache;
188 static refcount_t dbuf_cache_size;
189 unsigned long  dbuf_cache_max_bytes = 100 * 1024 * 1024;
190
191 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
192 int dbuf_cache_max_shift = 5;
193
194 /*
195  * The dbuf cache uses a three-stage eviction policy:
196  *      - A low water marker designates when the dbuf eviction thread
197  *      should stop evicting from the dbuf cache.
198  *      - When we reach the maximum size (aka mid water mark), we
199  *      signal the eviction thread to run.
200  *      - The high water mark indicates when the eviction thread
201  *      is unable to keep up with the incoming load and eviction must
202  *      happen in the context of the calling thread.
203  *
204  * The dbuf cache:
205  *                                                 (max size)
206  *                                      low water   mid water   hi water
207  * +----------------------------------------+----------+----------+
208  * |                                        |          |          |
209  * |                                        |          |          |
210  * |                                        |          |          |
211  * |                                        |          |          |
212  * +----------------------------------------+----------+----------+
213  *                                        stop        signal     evict
214  *                                      evicting     eviction   directly
215  *                                                    thread
216  *
217  * The high and low water marks indicate the operating range for the eviction
218  * thread. The low water mark is, by default, 90% of the total size of the
219  * cache and the high water mark is at 110% (both of these percentages can be
220  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
221  * respectively). The eviction thread will try to ensure that the cache remains
222  * within this range by waking up every second and checking if the cache is
223  * above the low water mark. The thread can also be woken up by callers adding
224  * elements into the cache if the cache is larger than the mid water (i.e max
225  * cache size). Once the eviction thread is woken up and eviction is required,
226  * it will continue evicting buffers until it's able to reduce the cache size
227  * to the low water mark. If the cache size continues to grow and hits the high
228  * water mark, then callers adding elements to the cache will begin to evict
229  * directly from the cache until the cache is no longer above the high water
230  * mark.
231  */
232
233 /*
234  * The percentage above and below the maximum cache size.
235  */
236 uint_t dbuf_cache_hiwater_pct = 10;
237 uint_t dbuf_cache_lowater_pct = 10;
238
239 /* ARGSUSED */
240 static int
241 dbuf_cons(void *vdb, void *unused, int kmflag)
242 {
243         dmu_buf_impl_t *db = vdb;
244         bzero(db, sizeof (dmu_buf_impl_t));
245
246         mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
247         cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
248         multilist_link_init(&db->db_cache_link);
249         refcount_create(&db->db_holds);
250
251         return (0);
252 }
253
254 /* ARGSUSED */
255 static void
256 dbuf_dest(void *vdb, void *unused)
257 {
258         dmu_buf_impl_t *db = vdb;
259         mutex_destroy(&db->db_mtx);
260         cv_destroy(&db->db_changed);
261         ASSERT(!multilist_link_active(&db->db_cache_link));
262         refcount_destroy(&db->db_holds);
263 }
264
265 /*
266  * dbuf hash table routines
267  */
268 static dbuf_hash_table_t dbuf_hash_table;
269
270 static uint64_t dbuf_hash_count;
271
272 static uint64_t
273 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
274 {
275         uintptr_t osv = (uintptr_t)os;
276         uint64_t crc = -1ULL;
277
278         ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
279         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
280         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
281         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
282         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
283         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
284         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
285
286         crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
287
288         return (crc);
289 }
290
291 #define DBUF_EQUAL(dbuf, os, obj, level, blkid)         \
292         ((dbuf)->db.db_object == (obj) &&               \
293         (dbuf)->db_objset == (os) &&                    \
294         (dbuf)->db_level == (level) &&                  \
295         (dbuf)->db_blkid == (blkid))
296
297 dmu_buf_impl_t *
298 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
299 {
300         dbuf_hash_table_t *h = &dbuf_hash_table;
301         uint64_t hv;
302         uint64_t idx;
303         dmu_buf_impl_t *db;
304
305         hv = dbuf_hash(os, obj, level, blkid);
306         idx = hv & h->hash_table_mask;
307
308         mutex_enter(DBUF_HASH_MUTEX(h, idx));
309         for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
310                 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
311                         mutex_enter(&db->db_mtx);
312                         if (db->db_state != DB_EVICTING) {
313                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
314                                 return (db);
315                         }
316                         mutex_exit(&db->db_mtx);
317                 }
318         }
319         mutex_exit(DBUF_HASH_MUTEX(h, idx));
320         return (NULL);
321 }
322
323 static dmu_buf_impl_t *
324 dbuf_find_bonus(objset_t *os, uint64_t object)
325 {
326         dnode_t *dn;
327         dmu_buf_impl_t *db = NULL;
328
329         if (dnode_hold(os, object, FTAG, &dn) == 0) {
330                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
331                 if (dn->dn_bonus != NULL) {
332                         db = dn->dn_bonus;
333                         mutex_enter(&db->db_mtx);
334                 }
335                 rw_exit(&dn->dn_struct_rwlock);
336                 dnode_rele(dn, FTAG);
337         }
338         return (db);
339 }
340
341 /*
342  * Insert an entry into the hash table.  If there is already an element
343  * equal to elem in the hash table, then the already existing element
344  * will be returned and the new element will not be inserted.
345  * Otherwise returns NULL.
346  */
347 static dmu_buf_impl_t *
348 dbuf_hash_insert(dmu_buf_impl_t *db)
349 {
350         dbuf_hash_table_t *h = &dbuf_hash_table;
351         objset_t *os = db->db_objset;
352         uint64_t obj = db->db.db_object;
353         int level = db->db_level;
354         uint64_t blkid, hv, idx;
355         dmu_buf_impl_t *dbf;
356         uint32_t i;
357
358         blkid = db->db_blkid;
359         hv = dbuf_hash(os, obj, level, blkid);
360         idx = hv & h->hash_table_mask;
361
362         mutex_enter(DBUF_HASH_MUTEX(h, idx));
363         for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
364             dbf = dbf->db_hash_next, i++) {
365                 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
366                         mutex_enter(&dbf->db_mtx);
367                         if (dbf->db_state != DB_EVICTING) {
368                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
369                                 return (dbf);
370                         }
371                         mutex_exit(&dbf->db_mtx);
372                 }
373         }
374
375         if (i > 0) {
376                 DBUF_STAT_BUMP(hash_collisions);
377                 if (i == 1)
378                         DBUF_STAT_BUMP(hash_chains);
379
380                 DBUF_STAT_MAX(hash_chain_max, i);
381         }
382
383         mutex_enter(&db->db_mtx);
384         db->db_hash_next = h->hash_table[idx];
385         h->hash_table[idx] = db;
386         mutex_exit(DBUF_HASH_MUTEX(h, idx));
387         atomic_inc_64(&dbuf_hash_count);
388         DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
389
390         return (NULL);
391 }
392
393 /*
394  * Remove an entry from the hash table.  It must be in the EVICTING state.
395  */
396 static void
397 dbuf_hash_remove(dmu_buf_impl_t *db)
398 {
399         dbuf_hash_table_t *h = &dbuf_hash_table;
400         uint64_t hv, idx;
401         dmu_buf_impl_t *dbf, **dbp;
402
403         hv = dbuf_hash(db->db_objset, db->db.db_object,
404             db->db_level, db->db_blkid);
405         idx = hv & h->hash_table_mask;
406
407         /*
408          * We mustn't hold db_mtx to maintain lock ordering:
409          * DBUF_HASH_MUTEX > db_mtx.
410          */
411         ASSERT(refcount_is_zero(&db->db_holds));
412         ASSERT(db->db_state == DB_EVICTING);
413         ASSERT(!MUTEX_HELD(&db->db_mtx));
414
415         mutex_enter(DBUF_HASH_MUTEX(h, idx));
416         dbp = &h->hash_table[idx];
417         while ((dbf = *dbp) != db) {
418                 dbp = &dbf->db_hash_next;
419                 ASSERT(dbf != NULL);
420         }
421         *dbp = db->db_hash_next;
422         db->db_hash_next = NULL;
423         if (h->hash_table[idx] &&
424             h->hash_table[idx]->db_hash_next == NULL)
425                 DBUF_STAT_BUMPDOWN(hash_chains);
426         mutex_exit(DBUF_HASH_MUTEX(h, idx));
427         atomic_dec_64(&dbuf_hash_count);
428 }
429
430 typedef enum {
431         DBVU_EVICTING,
432         DBVU_NOT_EVICTING
433 } dbvu_verify_type_t;
434
435 static void
436 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
437 {
438 #ifdef ZFS_DEBUG
439         int64_t holds;
440
441         if (db->db_user == NULL)
442                 return;
443
444         /* Only data blocks support the attachment of user data. */
445         ASSERT(db->db_level == 0);
446
447         /* Clients must resolve a dbuf before attaching user data. */
448         ASSERT(db->db.db_data != NULL);
449         ASSERT3U(db->db_state, ==, DB_CACHED);
450
451         holds = refcount_count(&db->db_holds);
452         if (verify_type == DBVU_EVICTING) {
453                 /*
454                  * Immediate eviction occurs when holds == dirtycnt.
455                  * For normal eviction buffers, holds is zero on
456                  * eviction, except when dbuf_fix_old_data() calls
457                  * dbuf_clear_data().  However, the hold count can grow
458                  * during eviction even though db_mtx is held (see
459                  * dmu_bonus_hold() for an example), so we can only
460                  * test the generic invariant that holds >= dirtycnt.
461                  */
462                 ASSERT3U(holds, >=, db->db_dirtycnt);
463         } else {
464                 if (db->db_user_immediate_evict == TRUE)
465                         ASSERT3U(holds, >=, db->db_dirtycnt);
466                 else
467                         ASSERT3U(holds, >, 0);
468         }
469 #endif
470 }
471
472 static void
473 dbuf_evict_user(dmu_buf_impl_t *db)
474 {
475         dmu_buf_user_t *dbu = db->db_user;
476
477         ASSERT(MUTEX_HELD(&db->db_mtx));
478
479         if (dbu == NULL)
480                 return;
481
482         dbuf_verify_user(db, DBVU_EVICTING);
483         db->db_user = NULL;
484
485 #ifdef ZFS_DEBUG
486         if (dbu->dbu_clear_on_evict_dbufp != NULL)
487                 *dbu->dbu_clear_on_evict_dbufp = NULL;
488 #endif
489
490         /*
491          * There are two eviction callbacks - one that we call synchronously
492          * and one that we invoke via a taskq.  The async one is useful for
493          * avoiding lock order reversals and limiting stack depth.
494          *
495          * Note that if we have a sync callback but no async callback,
496          * it's likely that the sync callback will free the structure
497          * containing the dbu.  In that case we need to take care to not
498          * dereference dbu after calling the sync evict func.
499          */
500         boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
501
502         if (dbu->dbu_evict_func_sync != NULL)
503                 dbu->dbu_evict_func_sync(dbu);
504
505         if (has_async) {
506                 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
507                     dbu, 0, &dbu->dbu_tqent);
508         }
509 }
510
511 boolean_t
512 dbuf_is_metadata(dmu_buf_impl_t *db)
513 {
514         /*
515          * Consider indirect blocks and spill blocks to be meta data.
516          */
517         if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
518                 return (B_TRUE);
519         } else {
520                 boolean_t is_metadata;
521
522                 DB_DNODE_ENTER(db);
523                 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
524                 DB_DNODE_EXIT(db);
525
526                 return (is_metadata);
527         }
528 }
529
530
531 /*
532  * This function *must* return indices evenly distributed between all
533  * sublists of the multilist. This is needed due to how the dbuf eviction
534  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
535  * distributed between all sublists and uses this assumption when
536  * deciding which sublist to evict from and how much to evict from it.
537  */
538 unsigned int
539 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
540 {
541         dmu_buf_impl_t *db = obj;
542
543         /*
544          * The assumption here, is the hash value for a given
545          * dmu_buf_impl_t will remain constant throughout it's lifetime
546          * (i.e. it's objset, object, level and blkid fields don't change).
547          * Thus, we don't need to store the dbuf's sublist index
548          * on insertion, as this index can be recalculated on removal.
549          *
550          * Also, the low order bits of the hash value are thought to be
551          * distributed evenly. Otherwise, in the case that the multilist
552          * has a power of two number of sublists, each sublists' usage
553          * would not be evenly distributed.
554          */
555         return (dbuf_hash(db->db_objset, db->db.db_object,
556             db->db_level, db->db_blkid) %
557             multilist_get_num_sublists(ml));
558 }
559
560 static inline unsigned long
561 dbuf_cache_target_bytes(void)
562 {
563         return MIN(dbuf_cache_max_bytes,
564             arc_target_bytes() >> dbuf_cache_max_shift);
565 }
566
567 static inline uint64_t
568 dbuf_cache_hiwater_bytes(void)
569 {
570         uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
571         return (dbuf_cache_target +
572             (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
573 }
574
575 static inline uint64_t
576 dbuf_cache_lowater_bytes(void)
577 {
578         uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
579         return (dbuf_cache_target -
580             (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
581 }
582
583 static inline boolean_t
584 dbuf_cache_above_hiwater(void)
585 {
586         return (refcount_count(&dbuf_cache_size) > dbuf_cache_hiwater_bytes());
587 }
588
589 static inline boolean_t
590 dbuf_cache_above_lowater(void)
591 {
592         return (refcount_count(&dbuf_cache_size) > dbuf_cache_lowater_bytes());
593 }
594
595 /*
596  * Evict the oldest eligible dbuf from the dbuf cache.
597  */
598 static void
599 dbuf_evict_one(void)
600 {
601         int idx = multilist_get_random_index(dbuf_cache);
602         multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
603
604         ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
605
606         /*
607          * Set the thread's tsd to indicate that it's processing evictions.
608          * Once a thread stops evicting from the dbuf cache it will
609          * reset its tsd to NULL.
610          */
611         ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
612         (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
613
614         dmu_buf_impl_t *db = multilist_sublist_tail(mls);
615         while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
616                 db = multilist_sublist_prev(mls, db);
617         }
618
619         DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
620             multilist_sublist_t *, mls);
621
622         if (db != NULL) {
623                 multilist_sublist_remove(mls, db);
624                 multilist_sublist_unlock(mls);
625                 (void) refcount_remove_many(&dbuf_cache_size,
626                     db->db.db_size, db);
627                 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
628                 DBUF_STAT_BUMPDOWN(cache_count);
629                 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
630                     db->db.db_size);
631                 dbuf_destroy(db);
632                 DBUF_STAT_MAX(cache_size_bytes_max,
633                     refcount_count(&dbuf_cache_size));
634                 DBUF_STAT_BUMP(cache_total_evicts);
635         } else {
636                 multilist_sublist_unlock(mls);
637         }
638         (void) tsd_set(zfs_dbuf_evict_key, NULL);
639 }
640
641 /*
642  * The dbuf evict thread is responsible for aging out dbufs from the
643  * cache. Once the cache has reached it's maximum size, dbufs are removed
644  * and destroyed. The eviction thread will continue running until the size
645  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
646  * out of the cache it is destroyed and becomes eligible for arc eviction.
647  */
648 /* ARGSUSED */
649 static void
650 dbuf_evict_thread(void *unused)
651 {
652         callb_cpr_t cpr;
653
654         CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
655
656         mutex_enter(&dbuf_evict_lock);
657         while (!dbuf_evict_thread_exit) {
658                 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
659                         CALLB_CPR_SAFE_BEGIN(&cpr);
660                         (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
661                             &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
662                         CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
663                 }
664                 mutex_exit(&dbuf_evict_lock);
665
666                 /*
667                  * Keep evicting as long as we're above the low water mark
668                  * for the cache. We do this without holding the locks to
669                  * minimize lock contention.
670                  */
671                 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
672                         dbuf_evict_one();
673                 }
674
675                 mutex_enter(&dbuf_evict_lock);
676         }
677
678         dbuf_evict_thread_exit = B_FALSE;
679         cv_broadcast(&dbuf_evict_cv);
680         CALLB_CPR_EXIT(&cpr);   /* drops dbuf_evict_lock */
681         thread_exit();
682 }
683
684 /*
685  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
686  * If the dbuf cache is at its high water mark, then evict a dbuf from the
687  * dbuf cache using the callers context.
688  */
689 static void
690 dbuf_evict_notify(void)
691 {
692
693         /*
694          * We use thread specific data to track when a thread has
695          * started processing evictions. This allows us to avoid deeply
696          * nested stacks that would have a call flow similar to this:
697          *
698          * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
699          *      ^                                               |
700          *      |                                               |
701          *      +-----dbuf_destroy()<--dbuf_evict_one()<--------+
702          *
703          * The dbuf_eviction_thread will always have its tsd set until
704          * that thread exits. All other threads will only set their tsd
705          * if they are participating in the eviction process. This only
706          * happens if the eviction thread is unable to process evictions
707          * fast enough. To keep the dbuf cache size in check, other threads
708          * can evict from the dbuf cache directly. Those threads will set
709          * their tsd values so that we ensure that they only evict one dbuf
710          * from the dbuf cache.
711          */
712         if (tsd_get(zfs_dbuf_evict_key) != NULL)
713                 return;
714
715         /*
716          * We check if we should evict without holding the dbuf_evict_lock,
717          * because it's OK to occasionally make the wrong decision here,
718          * and grabbing the lock results in massive lock contention.
719          */
720         if (refcount_count(&dbuf_cache_size) > dbuf_cache_target_bytes()) {
721                 if (dbuf_cache_above_hiwater())
722                         dbuf_evict_one();
723                 cv_signal(&dbuf_evict_cv);
724         }
725 }
726
727 static int
728 dbuf_kstat_update(kstat_t *ksp, int rw)
729 {
730         dbuf_stats_t *ds = ksp->ks_data;
731
732         if (rw == KSTAT_WRITE) {
733                 return (SET_ERROR(EACCES));
734         } else {
735                 ds->cache_size_bytes.value.ui64 =
736                     refcount_count(&dbuf_cache_size);
737                 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
738                 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
739                 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
740                 ds->hash_elements.value.ui64 = dbuf_hash_count;
741         }
742
743         return (0);
744 }
745
746 void
747 dbuf_init(void)
748 {
749         uint64_t hsize = 1ULL << 16;
750         dbuf_hash_table_t *h = &dbuf_hash_table;
751         int i;
752
753         /*
754          * The hash table is big enough to fill all of physical memory
755          * with an average block size of zfs_arc_average_blocksize (default 8K).
756          * By default, the table will take up
757          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
758          */
759         while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
760                 hsize <<= 1;
761
762 retry:
763         h->hash_table_mask = hsize - 1;
764 #if defined(_KERNEL) && defined(HAVE_SPL)
765         /*
766          * Large allocations which do not require contiguous pages
767          * should be using vmem_alloc() in the linux kernel
768          */
769         h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
770 #else
771         h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
772 #endif
773         if (h->hash_table == NULL) {
774                 /* XXX - we should really return an error instead of assert */
775                 ASSERT(hsize > (1ULL << 10));
776                 hsize >>= 1;
777                 goto retry;
778         }
779
780         dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
781             sizeof (dmu_buf_impl_t),
782             0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
783
784         for (i = 0; i < DBUF_MUTEXES; i++)
785                 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
786
787         dbuf_stats_init(h);
788
789         /*
790          * Setup the parameters for the dbuf cache. We cap the size of the
791          * dbuf cache to 1/32nd (default) of the size of the ARC.
792          */
793         dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
794             arc_target_bytes() >> dbuf_cache_max_shift);
795
796         /*
797          * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
798          * configuration is not required.
799          */
800         dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
801
802         dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
803             offsetof(dmu_buf_impl_t, db_cache_link),
804             dbuf_cache_multilist_index_func);
805         refcount_create(&dbuf_cache_size);
806
807         tsd_create(&zfs_dbuf_evict_key, NULL);
808         dbuf_evict_thread_exit = B_FALSE;
809         mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
810         cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
811         dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
812             NULL, 0, &p0, TS_RUN, minclsyspri);
813
814         dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
815             KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
816             KSTAT_FLAG_VIRTUAL);
817         if (dbuf_ksp != NULL) {
818                 dbuf_ksp->ks_data = &dbuf_stats;
819                 dbuf_ksp->ks_update = dbuf_kstat_update;
820                 kstat_install(dbuf_ksp);
821
822                 for (i = 0; i < DN_MAX_LEVELS; i++) {
823                         snprintf(dbuf_stats.cache_levels[i].name,
824                             KSTAT_STRLEN, "cache_level_%d", i);
825                         dbuf_stats.cache_levels[i].data_type =
826                             KSTAT_DATA_UINT64;
827                         snprintf(dbuf_stats.cache_levels_bytes[i].name,
828                             KSTAT_STRLEN, "cache_level_%d_bytes", i);
829                         dbuf_stats.cache_levels_bytes[i].data_type =
830                             KSTAT_DATA_UINT64;
831                 }
832         }
833 }
834
835 void
836 dbuf_fini(void)
837 {
838         dbuf_hash_table_t *h = &dbuf_hash_table;
839         int i;
840
841         dbuf_stats_destroy();
842
843         for (i = 0; i < DBUF_MUTEXES; i++)
844                 mutex_destroy(&h->hash_mutexes[i]);
845 #if defined(_KERNEL) && defined(HAVE_SPL)
846         /*
847          * Large allocations which do not require contiguous pages
848          * should be using vmem_free() in the linux kernel
849          */
850         vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
851 #else
852         kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
853 #endif
854         kmem_cache_destroy(dbuf_kmem_cache);
855         taskq_destroy(dbu_evict_taskq);
856
857         mutex_enter(&dbuf_evict_lock);
858         dbuf_evict_thread_exit = B_TRUE;
859         while (dbuf_evict_thread_exit) {
860                 cv_signal(&dbuf_evict_cv);
861                 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
862         }
863         mutex_exit(&dbuf_evict_lock);
864         tsd_destroy(&zfs_dbuf_evict_key);
865
866         mutex_destroy(&dbuf_evict_lock);
867         cv_destroy(&dbuf_evict_cv);
868
869         refcount_destroy(&dbuf_cache_size);
870         multilist_destroy(dbuf_cache);
871
872         if (dbuf_ksp != NULL) {
873                 kstat_delete(dbuf_ksp);
874                 dbuf_ksp = NULL;
875         }
876 }
877
878 /*
879  * Other stuff.
880  */
881
882 #ifdef ZFS_DEBUG
883 static void
884 dbuf_verify(dmu_buf_impl_t *db)
885 {
886         dnode_t *dn;
887         dbuf_dirty_record_t *dr;
888
889         ASSERT(MUTEX_HELD(&db->db_mtx));
890
891         if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
892                 return;
893
894         ASSERT(db->db_objset != NULL);
895         DB_DNODE_ENTER(db);
896         dn = DB_DNODE(db);
897         if (dn == NULL) {
898                 ASSERT(db->db_parent == NULL);
899                 ASSERT(db->db_blkptr == NULL);
900         } else {
901                 ASSERT3U(db->db.db_object, ==, dn->dn_object);
902                 ASSERT3P(db->db_objset, ==, dn->dn_objset);
903                 ASSERT3U(db->db_level, <, dn->dn_nlevels);
904                 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
905                     db->db_blkid == DMU_SPILL_BLKID ||
906                     !avl_is_empty(&dn->dn_dbufs));
907         }
908         if (db->db_blkid == DMU_BONUS_BLKID) {
909                 ASSERT(dn != NULL);
910                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
911                 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
912         } else if (db->db_blkid == DMU_SPILL_BLKID) {
913                 ASSERT(dn != NULL);
914                 ASSERT0(db->db.db_offset);
915         } else {
916                 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
917         }
918
919         for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
920                 ASSERT(dr->dr_dbuf == db);
921
922         for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
923                 ASSERT(dr->dr_dbuf == db);
924
925         /*
926          * We can't assert that db_size matches dn_datablksz because it
927          * can be momentarily different when another thread is doing
928          * dnode_set_blksz().
929          */
930         if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
931                 dr = db->db_data_pending;
932                 /*
933                  * It should only be modified in syncing context, so
934                  * make sure we only have one copy of the data.
935                  */
936                 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
937         }
938
939         /* verify db->db_blkptr */
940         if (db->db_blkptr) {
941                 if (db->db_parent == dn->dn_dbuf) {
942                         /* db is pointed to by the dnode */
943                         /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
944                         if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
945                                 ASSERT(db->db_parent == NULL);
946                         else
947                                 ASSERT(db->db_parent != NULL);
948                         if (db->db_blkid != DMU_SPILL_BLKID)
949                                 ASSERT3P(db->db_blkptr, ==,
950                                     &dn->dn_phys->dn_blkptr[db->db_blkid]);
951                 } else {
952                         /* db is pointed to by an indirect block */
953                         ASSERTV(int epb = db->db_parent->db.db_size >>
954                             SPA_BLKPTRSHIFT);
955                         ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
956                         ASSERT3U(db->db_parent->db.db_object, ==,
957                             db->db.db_object);
958                         /*
959                          * dnode_grow_indblksz() can make this fail if we don't
960                          * have the struct_rwlock.  XXX indblksz no longer
961                          * grows.  safe to do this now?
962                          */
963                         if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
964                                 ASSERT3P(db->db_blkptr, ==,
965                                     ((blkptr_t *)db->db_parent->db.db_data +
966                                     db->db_blkid % epb));
967                         }
968                 }
969         }
970         if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
971             (db->db_buf == NULL || db->db_buf->b_data) &&
972             db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
973             db->db_state != DB_FILL && !dn->dn_free_txg) {
974                 /*
975                  * If the blkptr isn't set but they have nonzero data,
976                  * it had better be dirty, otherwise we'll lose that
977                  * data when we evict this buffer.
978                  *
979                  * There is an exception to this rule for indirect blocks; in
980                  * this case, if the indirect block is a hole, we fill in a few
981                  * fields on each of the child blocks (importantly, birth time)
982                  * to prevent hole birth times from being lost when you
983                  * partially fill in a hole.
984                  */
985                 if (db->db_dirtycnt == 0) {
986                         if (db->db_level == 0) {
987                                 uint64_t *buf = db->db.db_data;
988                                 int i;
989
990                                 for (i = 0; i < db->db.db_size >> 3; i++) {
991                                         ASSERT(buf[i] == 0);
992                                 }
993                         } else {
994                                 blkptr_t *bps = db->db.db_data;
995                                 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
996                                     db->db.db_size);
997                                 /*
998                                  * We want to verify that all the blkptrs in the
999                                  * indirect block are holes, but we may have
1000                                  * automatically set up a few fields for them.
1001                                  * We iterate through each blkptr and verify
1002                                  * they only have those fields set.
1003                                  */
1004                                 for (int i = 0;
1005                                     i < db->db.db_size / sizeof (blkptr_t);
1006                                     i++) {
1007                                         blkptr_t *bp = &bps[i];
1008                                         ASSERT(ZIO_CHECKSUM_IS_ZERO(
1009                                             &bp->blk_cksum));
1010                                         ASSERT(
1011                                             DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1012                                             DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1013                                             DVA_IS_EMPTY(&bp->blk_dva[2]));
1014                                         ASSERT0(bp->blk_fill);
1015                                         ASSERT0(bp->blk_pad[0]);
1016                                         ASSERT0(bp->blk_pad[1]);
1017                                         ASSERT(!BP_IS_EMBEDDED(bp));
1018                                         ASSERT(BP_IS_HOLE(bp));
1019                                         ASSERT0(bp->blk_phys_birth);
1020                                 }
1021                         }
1022                 }
1023         }
1024         DB_DNODE_EXIT(db);
1025 }
1026 #endif
1027
1028 static void
1029 dbuf_clear_data(dmu_buf_impl_t *db)
1030 {
1031         ASSERT(MUTEX_HELD(&db->db_mtx));
1032         dbuf_evict_user(db);
1033         ASSERT3P(db->db_buf, ==, NULL);
1034         db->db.db_data = NULL;
1035         if (db->db_state != DB_NOFILL)
1036                 db->db_state = DB_UNCACHED;
1037 }
1038
1039 static void
1040 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1041 {
1042         ASSERT(MUTEX_HELD(&db->db_mtx));
1043         ASSERT(buf != NULL);
1044
1045         db->db_buf = buf;
1046         ASSERT(buf->b_data != NULL);
1047         db->db.db_data = buf->b_data;
1048 }
1049
1050 /*
1051  * Loan out an arc_buf for read.  Return the loaned arc_buf.
1052  */
1053 arc_buf_t *
1054 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1055 {
1056         arc_buf_t *abuf;
1057
1058         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1059         mutex_enter(&db->db_mtx);
1060         if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
1061                 int blksz = db->db.db_size;
1062                 spa_t *spa = db->db_objset->os_spa;
1063
1064                 mutex_exit(&db->db_mtx);
1065                 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1066                 bcopy(db->db.db_data, abuf->b_data, blksz);
1067         } else {
1068                 abuf = db->db_buf;
1069                 arc_loan_inuse_buf(abuf, db);
1070                 db->db_buf = NULL;
1071                 dbuf_clear_data(db);
1072                 mutex_exit(&db->db_mtx);
1073         }
1074         return (abuf);
1075 }
1076
1077 /*
1078  * Calculate which level n block references the data at the level 0 offset
1079  * provided.
1080  */
1081 uint64_t
1082 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1083 {
1084         if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1085                 /*
1086                  * The level n blkid is equal to the level 0 blkid divided by
1087                  * the number of level 0s in a level n block.
1088                  *
1089                  * The level 0 blkid is offset >> datablkshift =
1090                  * offset / 2^datablkshift.
1091                  *
1092                  * The number of level 0s in a level n is the number of block
1093                  * pointers in an indirect block, raised to the power of level.
1094                  * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1095                  * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1096                  *
1097                  * Thus, the level n blkid is: offset /
1098                  * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
1099                  * = offset / 2^(datablkshift + level *
1100                  *   (indblkshift - SPA_BLKPTRSHIFT))
1101                  * = offset >> (datablkshift + level *
1102                  *   (indblkshift - SPA_BLKPTRSHIFT))
1103                  */
1104
1105                 const unsigned exp = dn->dn_datablkshift +
1106                     level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1107
1108                 if (exp >= 8 * sizeof (offset)) {
1109                         /* This only happens on the highest indirection level */
1110                         ASSERT3U(level, ==, dn->dn_nlevels - 1);
1111                         return (0);
1112                 }
1113
1114                 ASSERT3U(exp, <, 8 * sizeof (offset));
1115
1116                 return (offset >> exp);
1117         } else {
1118                 ASSERT3U(offset, <, dn->dn_datablksz);
1119                 return (0);
1120         }
1121 }
1122
1123 static void
1124 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1125     arc_buf_t *buf, void *vdb)
1126 {
1127         dmu_buf_impl_t *db = vdb;
1128
1129         mutex_enter(&db->db_mtx);
1130         ASSERT3U(db->db_state, ==, DB_READ);
1131         /*
1132          * All reads are synchronous, so we must have a hold on the dbuf
1133          */
1134         ASSERT(refcount_count(&db->db_holds) > 0);
1135         ASSERT(db->db_buf == NULL);
1136         ASSERT(db->db.db_data == NULL);
1137         if (db->db_level == 0 && db->db_freed_in_flight) {
1138                 /* we were freed in flight; disregard any error */
1139                 if (buf == NULL) {
1140                         buf = arc_alloc_buf(db->db_objset->os_spa,
1141                             db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1142                 }
1143                 arc_release(buf, db);
1144                 bzero(buf->b_data, db->db.db_size);
1145                 arc_buf_freeze(buf);
1146                 db->db_freed_in_flight = FALSE;
1147                 dbuf_set_data(db, buf);
1148                 db->db_state = DB_CACHED;
1149         } else if (buf != NULL) {
1150                 dbuf_set_data(db, buf);
1151                 db->db_state = DB_CACHED;
1152         } else {
1153                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1154                 ASSERT3P(db->db_buf, ==, NULL);
1155                 db->db_state = DB_UNCACHED;
1156         }
1157         cv_broadcast(&db->db_changed);
1158         dbuf_rele_and_unlock(db, NULL);
1159 }
1160
1161 static int
1162 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1163 {
1164         dnode_t *dn;
1165         zbookmark_phys_t zb;
1166         uint32_t aflags = ARC_FLAG_NOWAIT;
1167         int err, zio_flags = 0;
1168
1169         DB_DNODE_ENTER(db);
1170         dn = DB_DNODE(db);
1171         ASSERT(!refcount_is_zero(&db->db_holds));
1172         /* We need the struct_rwlock to prevent db_blkptr from changing. */
1173         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1174         ASSERT(MUTEX_HELD(&db->db_mtx));
1175         ASSERT(db->db_state == DB_UNCACHED);
1176         ASSERT(db->db_buf == NULL);
1177
1178         if (db->db_blkid == DMU_BONUS_BLKID) {
1179                 /*
1180                  * The bonus length stored in the dnode may be less than
1181                  * the maximum available space in the bonus buffer.
1182                  */
1183                 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1184                 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1185                 arc_buf_t *dn_buf = (dn->dn_dbuf != NULL) ?
1186                     dn->dn_dbuf->db_buf : NULL;
1187
1188                 /* if the underlying dnode block is encrypted, decrypt it */
1189                 if (dn_buf != NULL && dn->dn_objset->os_encrypted &&
1190                     DMU_OT_IS_ENCRYPTED(dn->dn_bonustype) &&
1191                     (flags & DB_RF_NO_DECRYPT) == 0 &&
1192                     arc_is_encrypted(dn_buf)) {
1193                         err = arc_untransform(dn_buf, dn->dn_objset->os_spa,
1194                             dmu_objset_id(dn->dn_objset), B_TRUE);
1195                         if (err != 0) {
1196                                 DB_DNODE_EXIT(db);
1197                                 mutex_exit(&db->db_mtx);
1198                                 return (err);
1199                         }
1200                 }
1201
1202                 ASSERT3U(bonuslen, <=, db->db.db_size);
1203                 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1204                 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1205                 if (bonuslen < max_bonuslen)
1206                         bzero(db->db.db_data, max_bonuslen);
1207                 if (bonuslen)
1208                         bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1209                 DB_DNODE_EXIT(db);
1210                 db->db_state = DB_CACHED;
1211                 mutex_exit(&db->db_mtx);
1212                 return (0);
1213         }
1214
1215         /*
1216          * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1217          * processes the delete record and clears the bp while we are waiting
1218          * for the dn_mtx (resulting in a "no" from block_freed).
1219          */
1220         if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1221             (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1222             BP_IS_HOLE(db->db_blkptr)))) {
1223                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1224
1225                 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1226                     db->db.db_size));
1227                 bzero(db->db.db_data, db->db.db_size);
1228
1229                 if (db->db_blkptr != NULL && db->db_level > 0 &&
1230                     BP_IS_HOLE(db->db_blkptr) &&
1231                     db->db_blkptr->blk_birth != 0) {
1232                         blkptr_t *bps = db->db.db_data;
1233                         for (int i = 0; i < ((1 <<
1234                             DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1235                             i++) {
1236                                 blkptr_t *bp = &bps[i];
1237                                 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1238                                     1 << dn->dn_indblkshift);
1239                                 BP_SET_LSIZE(bp,
1240                                     BP_GET_LEVEL(db->db_blkptr) == 1 ?
1241                                     dn->dn_datablksz :
1242                                     BP_GET_LSIZE(db->db_blkptr));
1243                                 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1244                                 BP_SET_LEVEL(bp,
1245                                     BP_GET_LEVEL(db->db_blkptr) - 1);
1246                                 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1247                         }
1248                 }
1249                 DB_DNODE_EXIT(db);
1250                 db->db_state = DB_CACHED;
1251                 mutex_exit(&db->db_mtx);
1252                 return (0);
1253         }
1254
1255         DB_DNODE_EXIT(db);
1256
1257         db->db_state = DB_READ;
1258         mutex_exit(&db->db_mtx);
1259
1260         if (DBUF_IS_L2CACHEABLE(db))
1261                 aflags |= ARC_FLAG_L2CACHE;
1262
1263         SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1264             db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1265             db->db.db_object, db->db_level, db->db_blkid);
1266
1267         /*
1268          * All bps of an encrypted os should have the encryption bit set.
1269          * If this is not true it indicates tampering and we report an error.
1270          */
1271         if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1272                 spa_log_error(db->db_objset->os_spa, &zb);
1273                 zfs_panic_recover("unencrypted block in encrypted "
1274                     "object set %llu", dmu_objset_id(db->db_objset));
1275                 return (SET_ERROR(EIO));
1276         }
1277
1278         dbuf_add_ref(db, NULL);
1279
1280         zio_flags = (flags & DB_RF_CANFAIL) ?
1281             ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1282
1283         if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1284                 zio_flags |= ZIO_FLAG_RAW;
1285
1286         err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1287             dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1288             &aflags, &zb);
1289
1290         return (err);
1291 }
1292
1293 /*
1294  * This is our just-in-time copy function.  It makes a copy of buffers that
1295  * have been modified in a previous transaction group before we access them in
1296  * the current active group.
1297  *
1298  * This function is used in three places: when we are dirtying a buffer for the
1299  * first time in a txg, when we are freeing a range in a dnode that includes
1300  * this buffer, and when we are accessing a buffer which was received compressed
1301  * and later referenced in a WRITE_BYREF record.
1302  *
1303  * Note that when we are called from dbuf_free_range() we do not put a hold on
1304  * the buffer, we just traverse the active dbuf list for the dnode.
1305  */
1306 static void
1307 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1308 {
1309         dbuf_dirty_record_t *dr = db->db_last_dirty;
1310
1311         ASSERT(MUTEX_HELD(&db->db_mtx));
1312         ASSERT(db->db.db_data != NULL);
1313         ASSERT(db->db_level == 0);
1314         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1315
1316         if (dr == NULL ||
1317             (dr->dt.dl.dr_data !=
1318             ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1319                 return;
1320
1321         /*
1322          * If the last dirty record for this dbuf has not yet synced
1323          * and its referencing the dbuf data, either:
1324          *      reset the reference to point to a new copy,
1325          * or (if there a no active holders)
1326          *      just null out the current db_data pointer.
1327          */
1328         ASSERT3U(dr->dr_txg, >=, txg - 2);
1329         if (db->db_blkid == DMU_BONUS_BLKID) {
1330                 dnode_t *dn = DB_DNODE(db);
1331                 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1332                 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1333                 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1334                 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1335         } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1336                 dnode_t *dn = DB_DNODE(db);
1337                 int size = arc_buf_size(db->db_buf);
1338                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1339                 spa_t *spa = db->db_objset->os_spa;
1340                 enum zio_compress compress_type =
1341                     arc_get_compression(db->db_buf);
1342
1343                 if (arc_is_encrypted(db->db_buf)) {
1344                         boolean_t byteorder;
1345                         uint8_t salt[ZIO_DATA_SALT_LEN];
1346                         uint8_t iv[ZIO_DATA_IV_LEN];
1347                         uint8_t mac[ZIO_DATA_MAC_LEN];
1348
1349                         arc_get_raw_params(db->db_buf, &byteorder, salt,
1350                             iv, mac);
1351                         dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1352                             dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1353                             mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1354                             compress_type);
1355                 } else if (compress_type != ZIO_COMPRESS_OFF) {
1356                         ASSERT3U(type, ==, ARC_BUFC_DATA);
1357                         dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1358                             size, arc_buf_lsize(db->db_buf), compress_type);
1359                 } else {
1360                         dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1361                 }
1362                 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1363         } else {
1364                 db->db_buf = NULL;
1365                 dbuf_clear_data(db);
1366         }
1367 }
1368
1369 int
1370 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1371 {
1372         int err = 0;
1373         boolean_t prefetch;
1374         dnode_t *dn;
1375
1376         /*
1377          * We don't have to hold the mutex to check db_state because it
1378          * can't be freed while we have a hold on the buffer.
1379          */
1380         ASSERT(!refcount_is_zero(&db->db_holds));
1381
1382         if (db->db_state == DB_NOFILL)
1383                 return (SET_ERROR(EIO));
1384
1385         DB_DNODE_ENTER(db);
1386         dn = DB_DNODE(db);
1387         if ((flags & DB_RF_HAVESTRUCT) == 0)
1388                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1389
1390         prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1391             (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1392             DBUF_IS_CACHEABLE(db);
1393
1394         mutex_enter(&db->db_mtx);
1395         if (db->db_state == DB_CACHED) {
1396                 spa_t *spa = dn->dn_objset->os_spa;
1397
1398                 /*
1399                  * If the arc buf is compressed or encrypted, we need to
1400                  * untransform it to read the data. This could happen during
1401                  * the "zfs receive" of a stream which is deduplicated and
1402                  * either raw or compressed. We do not need to do this if the
1403                  * caller wants raw encrypted data.
1404                  */
1405                 if (db->db_buf != NULL && (flags & DB_RF_NO_DECRYPT) == 0 &&
1406                     (arc_is_encrypted(db->db_buf) ||
1407                     arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1408                         dbuf_fix_old_data(db, spa_syncing_txg(spa));
1409                         err = arc_untransform(db->db_buf, spa,
1410                             dmu_objset_id(db->db_objset), B_FALSE);
1411                         dbuf_set_data(db, db->db_buf);
1412                 }
1413                 mutex_exit(&db->db_mtx);
1414                 if (prefetch)
1415                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1416                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1417                         rw_exit(&dn->dn_struct_rwlock);
1418                 DB_DNODE_EXIT(db);
1419                 DBUF_STAT_BUMP(hash_hits);
1420         } else if (db->db_state == DB_UNCACHED) {
1421                 spa_t *spa = dn->dn_objset->os_spa;
1422                 boolean_t need_wait = B_FALSE;
1423
1424                 if (zio == NULL &&
1425                     db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1426                         zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1427                         need_wait = B_TRUE;
1428                 }
1429                 err = dbuf_read_impl(db, zio, flags);
1430
1431                 /* dbuf_read_impl has dropped db_mtx for us */
1432
1433                 if (!err && prefetch)
1434                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1435
1436                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1437                         rw_exit(&dn->dn_struct_rwlock);
1438                 DB_DNODE_EXIT(db);
1439                 DBUF_STAT_BUMP(hash_misses);
1440
1441                 if (!err && need_wait)
1442                         err = zio_wait(zio);
1443         } else {
1444                 /*
1445                  * Another reader came in while the dbuf was in flight
1446                  * between UNCACHED and CACHED.  Either a writer will finish
1447                  * writing the buffer (sending the dbuf to CACHED) or the
1448                  * first reader's request will reach the read_done callback
1449                  * and send the dbuf to CACHED.  Otherwise, a failure
1450                  * occurred and the dbuf went to UNCACHED.
1451                  */
1452                 mutex_exit(&db->db_mtx);
1453                 if (prefetch)
1454                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1455                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1456                         rw_exit(&dn->dn_struct_rwlock);
1457                 DB_DNODE_EXIT(db);
1458                 DBUF_STAT_BUMP(hash_misses);
1459
1460                 /* Skip the wait per the caller's request. */
1461                 mutex_enter(&db->db_mtx);
1462                 if ((flags & DB_RF_NEVERWAIT) == 0) {
1463                         while (db->db_state == DB_READ ||
1464                             db->db_state == DB_FILL) {
1465                                 ASSERT(db->db_state == DB_READ ||
1466                                     (flags & DB_RF_HAVESTRUCT) == 0);
1467                                 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1468                                     db, zio_t *, zio);
1469                                 cv_wait(&db->db_changed, &db->db_mtx);
1470                         }
1471                         if (db->db_state == DB_UNCACHED)
1472                                 err = SET_ERROR(EIO);
1473                 }
1474                 mutex_exit(&db->db_mtx);
1475         }
1476
1477         return (err);
1478 }
1479
1480 static void
1481 dbuf_noread(dmu_buf_impl_t *db)
1482 {
1483         ASSERT(!refcount_is_zero(&db->db_holds));
1484         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1485         mutex_enter(&db->db_mtx);
1486         while (db->db_state == DB_READ || db->db_state == DB_FILL)
1487                 cv_wait(&db->db_changed, &db->db_mtx);
1488         if (db->db_state == DB_UNCACHED) {
1489                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1490                 spa_t *spa = db->db_objset->os_spa;
1491
1492                 ASSERT(db->db_buf == NULL);
1493                 ASSERT(db->db.db_data == NULL);
1494                 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1495                 db->db_state = DB_FILL;
1496         } else if (db->db_state == DB_NOFILL) {
1497                 dbuf_clear_data(db);
1498         } else {
1499                 ASSERT3U(db->db_state, ==, DB_CACHED);
1500         }
1501         mutex_exit(&db->db_mtx);
1502 }
1503
1504 void
1505 dbuf_unoverride(dbuf_dirty_record_t *dr)
1506 {
1507         dmu_buf_impl_t *db = dr->dr_dbuf;
1508         blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1509         uint64_t txg = dr->dr_txg;
1510
1511         ASSERT(MUTEX_HELD(&db->db_mtx));
1512         /*
1513          * This assert is valid because dmu_sync() expects to be called by
1514          * a zilog's get_data while holding a range lock.  This call only
1515          * comes from dbuf_dirty() callers who must also hold a range lock.
1516          */
1517         ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1518         ASSERT(db->db_level == 0);
1519
1520         if (db->db_blkid == DMU_BONUS_BLKID ||
1521             dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1522                 return;
1523
1524         ASSERT(db->db_data_pending != dr);
1525
1526         /* free this block */
1527         if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1528                 zio_free(db->db_objset->os_spa, txg, bp);
1529
1530         dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1531         dr->dt.dl.dr_nopwrite = B_FALSE;
1532         dr->dt.dl.dr_raw = B_FALSE;
1533
1534         /*
1535          * Release the already-written buffer, so we leave it in
1536          * a consistent dirty state.  Note that all callers are
1537          * modifying the buffer, so they will immediately do
1538          * another (redundant) arc_release().  Therefore, leave
1539          * the buf thawed to save the effort of freezing &
1540          * immediately re-thawing it.
1541          */
1542         arc_release(dr->dt.dl.dr_data, db);
1543 }
1544
1545 /*
1546  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1547  * data blocks in the free range, so that any future readers will find
1548  * empty blocks.
1549  */
1550 void
1551 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1552     dmu_tx_t *tx)
1553 {
1554         dmu_buf_impl_t *db_search;
1555         dmu_buf_impl_t *db, *db_next;
1556         uint64_t txg = tx->tx_txg;
1557         avl_index_t where;
1558
1559         if (end_blkid > dn->dn_maxblkid &&
1560             !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1561                 end_blkid = dn->dn_maxblkid;
1562         dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1563
1564         db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1565         db_search->db_level = 0;
1566         db_search->db_blkid = start_blkid;
1567         db_search->db_state = DB_SEARCH;
1568
1569         mutex_enter(&dn->dn_dbufs_mtx);
1570         db = avl_find(&dn->dn_dbufs, db_search, &where);
1571         ASSERT3P(db, ==, NULL);
1572
1573         db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1574
1575         for (; db != NULL; db = db_next) {
1576                 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1577                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1578
1579                 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1580                         break;
1581                 }
1582                 ASSERT3U(db->db_blkid, >=, start_blkid);
1583
1584                 /* found a level 0 buffer in the range */
1585                 mutex_enter(&db->db_mtx);
1586                 if (dbuf_undirty(db, tx)) {
1587                         /* mutex has been dropped and dbuf destroyed */
1588                         continue;
1589                 }
1590
1591                 if (db->db_state == DB_UNCACHED ||
1592                     db->db_state == DB_NOFILL ||
1593                     db->db_state == DB_EVICTING) {
1594                         ASSERT(db->db.db_data == NULL);
1595                         mutex_exit(&db->db_mtx);
1596                         continue;
1597                 }
1598                 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1599                         /* will be handled in dbuf_read_done or dbuf_rele */
1600                         db->db_freed_in_flight = TRUE;
1601                         mutex_exit(&db->db_mtx);
1602                         continue;
1603                 }
1604                 if (refcount_count(&db->db_holds) == 0) {
1605                         ASSERT(db->db_buf);
1606                         dbuf_destroy(db);
1607                         continue;
1608                 }
1609                 /* The dbuf is referenced */
1610
1611                 if (db->db_last_dirty != NULL) {
1612                         dbuf_dirty_record_t *dr = db->db_last_dirty;
1613
1614                         if (dr->dr_txg == txg) {
1615                                 /*
1616                                  * This buffer is "in-use", re-adjust the file
1617                                  * size to reflect that this buffer may
1618                                  * contain new data when we sync.
1619                                  */
1620                                 if (db->db_blkid != DMU_SPILL_BLKID &&
1621                                     db->db_blkid > dn->dn_maxblkid)
1622                                         dn->dn_maxblkid = db->db_blkid;
1623                                 dbuf_unoverride(dr);
1624                         } else {
1625                                 /*
1626                                  * This dbuf is not dirty in the open context.
1627                                  * Either uncache it (if its not referenced in
1628                                  * the open context) or reset its contents to
1629                                  * empty.
1630                                  */
1631                                 dbuf_fix_old_data(db, txg);
1632                         }
1633                 }
1634                 /* clear the contents if its cached */
1635                 if (db->db_state == DB_CACHED) {
1636                         ASSERT(db->db.db_data != NULL);
1637                         arc_release(db->db_buf, db);
1638                         bzero(db->db.db_data, db->db.db_size);
1639                         arc_buf_freeze(db->db_buf);
1640                 }
1641
1642                 mutex_exit(&db->db_mtx);
1643         }
1644
1645         kmem_free(db_search, sizeof (dmu_buf_impl_t));
1646         mutex_exit(&dn->dn_dbufs_mtx);
1647 }
1648
1649 void
1650 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1651 {
1652         arc_buf_t *buf, *obuf;
1653         int osize = db->db.db_size;
1654         arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1655         dnode_t *dn;
1656
1657         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1658
1659         DB_DNODE_ENTER(db);
1660         dn = DB_DNODE(db);
1661
1662         /* XXX does *this* func really need the lock? */
1663         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1664
1665         /*
1666          * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1667          * is OK, because there can be no other references to the db
1668          * when we are changing its size, so no concurrent DB_FILL can
1669          * be happening.
1670          */
1671         /*
1672          * XXX we should be doing a dbuf_read, checking the return
1673          * value and returning that up to our callers
1674          */
1675         dmu_buf_will_dirty(&db->db, tx);
1676
1677         /* create the data buffer for the new block */
1678         buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1679
1680         /* copy old block data to the new block */
1681         obuf = db->db_buf;
1682         bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1683         /* zero the remainder */
1684         if (size > osize)
1685                 bzero((uint8_t *)buf->b_data + osize, size - osize);
1686
1687         mutex_enter(&db->db_mtx);
1688         dbuf_set_data(db, buf);
1689         arc_buf_destroy(obuf, db);
1690         db->db.db_size = size;
1691
1692         if (db->db_level == 0) {
1693                 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1694                 db->db_last_dirty->dt.dl.dr_data = buf;
1695         }
1696         mutex_exit(&db->db_mtx);
1697
1698         dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1699         DB_DNODE_EXIT(db);
1700 }
1701
1702 void
1703 dbuf_release_bp(dmu_buf_impl_t *db)
1704 {
1705         ASSERTV(objset_t *os = db->db_objset);
1706
1707         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1708         ASSERT(arc_released(os->os_phys_buf) ||
1709             list_link_active(&os->os_dsl_dataset->ds_synced_link));
1710         ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1711
1712         (void) arc_release(db->db_buf, db);
1713 }
1714
1715 /*
1716  * We already have a dirty record for this TXG, and we are being
1717  * dirtied again.
1718  */
1719 static void
1720 dbuf_redirty(dbuf_dirty_record_t *dr)
1721 {
1722         dmu_buf_impl_t *db = dr->dr_dbuf;
1723
1724         ASSERT(MUTEX_HELD(&db->db_mtx));
1725
1726         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1727                 /*
1728                  * If this buffer has already been written out,
1729                  * we now need to reset its state.
1730                  */
1731                 dbuf_unoverride(dr);
1732                 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1733                     db->db_state != DB_NOFILL) {
1734                         /* Already released on initial dirty, so just thaw. */
1735                         ASSERT(arc_released(db->db_buf));
1736                         arc_buf_thaw(db->db_buf);
1737                 }
1738         }
1739 }
1740
1741 dbuf_dirty_record_t *
1742 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1743 {
1744         dnode_t *dn;
1745         objset_t *os;
1746         dbuf_dirty_record_t **drp, *dr;
1747         int drop_struct_lock = FALSE;
1748         int txgoff = tx->tx_txg & TXG_MASK;
1749
1750         ASSERT(tx->tx_txg != 0);
1751         ASSERT(!refcount_is_zero(&db->db_holds));
1752         DMU_TX_DIRTY_BUF(tx, db);
1753
1754         DB_DNODE_ENTER(db);
1755         dn = DB_DNODE(db);
1756         /*
1757          * Shouldn't dirty a regular buffer in syncing context.  Private
1758          * objects may be dirtied in syncing context, but only if they
1759          * were already pre-dirtied in open context.
1760          */
1761 #ifdef DEBUG
1762         if (dn->dn_objset->os_dsl_dataset != NULL) {
1763                 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1764                     RW_READER, FTAG);
1765         }
1766         ASSERT(!dmu_tx_is_syncing(tx) ||
1767             BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1768             DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1769             dn->dn_objset->os_dsl_dataset == NULL);
1770         if (dn->dn_objset->os_dsl_dataset != NULL)
1771                 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1772 #endif
1773         /*
1774          * We make this assert for private objects as well, but after we
1775          * check if we're already dirty.  They are allowed to re-dirty
1776          * in syncing context.
1777          */
1778         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1779             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1780             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1781
1782         mutex_enter(&db->db_mtx);
1783         /*
1784          * XXX make this true for indirects too?  The problem is that
1785          * transactions created with dmu_tx_create_assigned() from
1786          * syncing context don't bother holding ahead.
1787          */
1788         ASSERT(db->db_level != 0 ||
1789             db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1790             db->db_state == DB_NOFILL);
1791
1792         mutex_enter(&dn->dn_mtx);
1793         /*
1794          * Don't set dirtyctx to SYNC if we're just modifying this as we
1795          * initialize the objset.
1796          */
1797         if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1798                 if (dn->dn_objset->os_dsl_dataset != NULL) {
1799                         rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1800                             RW_READER, FTAG);
1801                 }
1802                 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1803                         dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1804                             DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1805                         ASSERT(dn->dn_dirtyctx_firstset == NULL);
1806                         dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1807                 }
1808                 if (dn->dn_objset->os_dsl_dataset != NULL) {
1809                         rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1810                             FTAG);
1811                 }
1812         }
1813         mutex_exit(&dn->dn_mtx);
1814
1815         if (db->db_blkid == DMU_SPILL_BLKID)
1816                 dn->dn_have_spill = B_TRUE;
1817
1818         /*
1819          * If this buffer is already dirty, we're done.
1820          */
1821         drp = &db->db_last_dirty;
1822         ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1823             db->db.db_object == DMU_META_DNODE_OBJECT);
1824         while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1825                 drp = &dr->dr_next;
1826         if (dr && dr->dr_txg == tx->tx_txg) {
1827                 DB_DNODE_EXIT(db);
1828
1829                 dbuf_redirty(dr);
1830                 mutex_exit(&db->db_mtx);
1831                 return (dr);
1832         }
1833
1834         /*
1835          * Only valid if not already dirty.
1836          */
1837         ASSERT(dn->dn_object == 0 ||
1838             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1839             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1840
1841         ASSERT3U(dn->dn_nlevels, >, db->db_level);
1842
1843         /*
1844          * We should only be dirtying in syncing context if it's the
1845          * mos or we're initializing the os or it's a special object.
1846          * However, we are allowed to dirty in syncing context provided
1847          * we already dirtied it in open context.  Hence we must make
1848          * this assertion only if we're not already dirty.
1849          */
1850         os = dn->dn_objset;
1851         VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1852 #ifdef DEBUG
1853         if (dn->dn_objset->os_dsl_dataset != NULL)
1854                 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1855         ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1856             os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1857         if (dn->dn_objset->os_dsl_dataset != NULL)
1858                 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1859 #endif
1860         ASSERT(db->db.db_size != 0);
1861
1862         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1863
1864         if (db->db_blkid != DMU_BONUS_BLKID) {
1865                 dmu_objset_willuse_space(os, db->db.db_size, tx);
1866         }
1867
1868         /*
1869          * If this buffer is dirty in an old transaction group we need
1870          * to make a copy of it so that the changes we make in this
1871          * transaction group won't leak out when we sync the older txg.
1872          */
1873         dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1874         list_link_init(&dr->dr_dirty_node);
1875         if (db->db_level == 0) {
1876                 void *data_old = db->db_buf;
1877
1878                 if (db->db_state != DB_NOFILL) {
1879                         if (db->db_blkid == DMU_BONUS_BLKID) {
1880                                 dbuf_fix_old_data(db, tx->tx_txg);
1881                                 data_old = db->db.db_data;
1882                         } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1883                                 /*
1884                                  * Release the data buffer from the cache so
1885                                  * that we can modify it without impacting
1886                                  * possible other users of this cached data
1887                                  * block.  Note that indirect blocks and
1888                                  * private objects are not released until the
1889                                  * syncing state (since they are only modified
1890                                  * then).
1891                                  */
1892                                 arc_release(db->db_buf, db);
1893                                 dbuf_fix_old_data(db, tx->tx_txg);
1894                                 data_old = db->db_buf;
1895                         }
1896                         ASSERT(data_old != NULL);
1897                 }
1898                 dr->dt.dl.dr_data = data_old;
1899         } else {
1900                 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1901                 list_create(&dr->dt.di.dr_children,
1902                     sizeof (dbuf_dirty_record_t),
1903                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
1904         }
1905         if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1906                 dr->dr_accounted = db->db.db_size;
1907         dr->dr_dbuf = db;
1908         dr->dr_txg = tx->tx_txg;
1909         dr->dr_next = *drp;
1910         *drp = dr;
1911
1912         /*
1913          * We could have been freed_in_flight between the dbuf_noread
1914          * and dbuf_dirty.  We win, as though the dbuf_noread() had
1915          * happened after the free.
1916          */
1917         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1918             db->db_blkid != DMU_SPILL_BLKID) {
1919                 mutex_enter(&dn->dn_mtx);
1920                 if (dn->dn_free_ranges[txgoff] != NULL) {
1921                         range_tree_clear(dn->dn_free_ranges[txgoff],
1922                             db->db_blkid, 1);
1923                 }
1924                 mutex_exit(&dn->dn_mtx);
1925                 db->db_freed_in_flight = FALSE;
1926         }
1927
1928         /*
1929          * This buffer is now part of this txg
1930          */
1931         dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1932         db->db_dirtycnt += 1;
1933         ASSERT3U(db->db_dirtycnt, <=, 3);
1934
1935         mutex_exit(&db->db_mtx);
1936
1937         if (db->db_blkid == DMU_BONUS_BLKID ||
1938             db->db_blkid == DMU_SPILL_BLKID) {
1939                 mutex_enter(&dn->dn_mtx);
1940                 ASSERT(!list_link_active(&dr->dr_dirty_node));
1941                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1942                 mutex_exit(&dn->dn_mtx);
1943                 dnode_setdirty(dn, tx);
1944                 DB_DNODE_EXIT(db);
1945                 return (dr);
1946         }
1947
1948         /*
1949          * The dn_struct_rwlock prevents db_blkptr from changing
1950          * due to a write from syncing context completing
1951          * while we are running, so we want to acquire it before
1952          * looking at db_blkptr.
1953          */
1954         if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1955                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1956                 drop_struct_lock = TRUE;
1957         }
1958
1959         /*
1960          * We need to hold the dn_struct_rwlock to make this assertion,
1961          * because it protects dn_phys / dn_next_nlevels from changing.
1962          */
1963         ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1964             dn->dn_phys->dn_nlevels > db->db_level ||
1965             dn->dn_next_nlevels[txgoff] > db->db_level ||
1966             dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1967             dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1968
1969         /*
1970          * If we are overwriting a dedup BP, then unless it is snapshotted,
1971          * when we get to syncing context we will need to decrement its
1972          * refcount in the DDT.  Prefetch the relevant DDT block so that
1973          * syncing context won't have to wait for the i/o.
1974          */
1975         ddt_prefetch(os->os_spa, db->db_blkptr);
1976
1977         if (db->db_level == 0) {
1978                 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1979                 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1980         }
1981
1982         if (db->db_level+1 < dn->dn_nlevels) {
1983                 dmu_buf_impl_t *parent = db->db_parent;
1984                 dbuf_dirty_record_t *di;
1985                 int parent_held = FALSE;
1986
1987                 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1988                         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1989
1990                         parent = dbuf_hold_level(dn, db->db_level+1,
1991                             db->db_blkid >> epbs, FTAG);
1992                         ASSERT(parent != NULL);
1993                         parent_held = TRUE;
1994                 }
1995                 if (drop_struct_lock)
1996                         rw_exit(&dn->dn_struct_rwlock);
1997                 ASSERT3U(db->db_level+1, ==, parent->db_level);
1998                 di = dbuf_dirty(parent, tx);
1999                 if (parent_held)
2000                         dbuf_rele(parent, FTAG);
2001
2002                 mutex_enter(&db->db_mtx);
2003                 /*
2004                  * Since we've dropped the mutex, it's possible that
2005                  * dbuf_undirty() might have changed this out from under us.
2006                  */
2007                 if (db->db_last_dirty == dr ||
2008                     dn->dn_object == DMU_META_DNODE_OBJECT) {
2009                         mutex_enter(&di->dt.di.dr_mtx);
2010                         ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2011                         ASSERT(!list_link_active(&dr->dr_dirty_node));
2012                         list_insert_tail(&di->dt.di.dr_children, dr);
2013                         mutex_exit(&di->dt.di.dr_mtx);
2014                         dr->dr_parent = di;
2015                 }
2016                 mutex_exit(&db->db_mtx);
2017         } else {
2018                 ASSERT(db->db_level+1 == dn->dn_nlevels);
2019                 ASSERT(db->db_blkid < dn->dn_nblkptr);
2020                 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2021                 mutex_enter(&dn->dn_mtx);
2022                 ASSERT(!list_link_active(&dr->dr_dirty_node));
2023                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2024                 mutex_exit(&dn->dn_mtx);
2025                 if (drop_struct_lock)
2026                         rw_exit(&dn->dn_struct_rwlock);
2027         }
2028
2029         dnode_setdirty(dn, tx);
2030         DB_DNODE_EXIT(db);
2031         return (dr);
2032 }
2033
2034 /*
2035  * Undirty a buffer in the transaction group referenced by the given
2036  * transaction.  Return whether this evicted the dbuf.
2037  */
2038 static boolean_t
2039 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2040 {
2041         dnode_t *dn;
2042         uint64_t txg = tx->tx_txg;
2043         dbuf_dirty_record_t *dr, **drp;
2044
2045         ASSERT(txg != 0);
2046
2047         /*
2048          * Due to our use of dn_nlevels below, this can only be called
2049          * in open context, unless we are operating on the MOS.
2050          * From syncing context, dn_nlevels may be different from the
2051          * dn_nlevels used when dbuf was dirtied.
2052          */
2053         ASSERT(db->db_objset ==
2054             dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2055             txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2056         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2057         ASSERT0(db->db_level);
2058         ASSERT(MUTEX_HELD(&db->db_mtx));
2059
2060         /*
2061          * If this buffer is not dirty, we're done.
2062          */
2063         for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2064                 if (dr->dr_txg <= txg)
2065                         break;
2066         if (dr == NULL || dr->dr_txg < txg)
2067                 return (B_FALSE);
2068         ASSERT(dr->dr_txg == txg);
2069         ASSERT(dr->dr_dbuf == db);
2070
2071         DB_DNODE_ENTER(db);
2072         dn = DB_DNODE(db);
2073
2074         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2075
2076         ASSERT(db->db.db_size != 0);
2077
2078         dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2079             dr->dr_accounted, txg);
2080
2081         *drp = dr->dr_next;
2082
2083         /*
2084          * Note that there are three places in dbuf_dirty()
2085          * where this dirty record may be put on a list.
2086          * Make sure to do a list_remove corresponding to
2087          * every one of those list_insert calls.
2088          */
2089         if (dr->dr_parent) {
2090                 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2091                 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2092                 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2093         } else if (db->db_blkid == DMU_SPILL_BLKID ||
2094             db->db_level + 1 == dn->dn_nlevels) {
2095                 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2096                 mutex_enter(&dn->dn_mtx);
2097                 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2098                 mutex_exit(&dn->dn_mtx);
2099         }
2100         DB_DNODE_EXIT(db);
2101
2102         if (db->db_state != DB_NOFILL) {
2103                 dbuf_unoverride(dr);
2104
2105                 ASSERT(db->db_buf != NULL);
2106                 ASSERT(dr->dt.dl.dr_data != NULL);
2107                 if (dr->dt.dl.dr_data != db->db_buf)
2108                         arc_buf_destroy(dr->dt.dl.dr_data, db);
2109         }
2110
2111         kmem_free(dr, sizeof (dbuf_dirty_record_t));
2112
2113         ASSERT(db->db_dirtycnt > 0);
2114         db->db_dirtycnt -= 1;
2115
2116         if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2117                 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2118                 dbuf_destroy(db);
2119                 return (B_TRUE);
2120         }
2121
2122         return (B_FALSE);
2123 }
2124
2125 static void
2126 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2127 {
2128         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2129
2130         ASSERT(tx->tx_txg != 0);
2131         ASSERT(!refcount_is_zero(&db->db_holds));
2132
2133         /*
2134          * Quick check for dirtyness.  For already dirty blocks, this
2135          * reduces runtime of this function by >90%, and overall performance
2136          * by 50% for some workloads (e.g. file deletion with indirect blocks
2137          * cached).
2138          */
2139         mutex_enter(&db->db_mtx);
2140
2141         dbuf_dirty_record_t *dr;
2142         for (dr = db->db_last_dirty;
2143             dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2144                 /*
2145                  * It's possible that it is already dirty but not cached,
2146                  * because there are some calls to dbuf_dirty() that don't
2147                  * go through dmu_buf_will_dirty().
2148                  */
2149                 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2150                         /* This dbuf is already dirty and cached. */
2151                         dbuf_redirty(dr);
2152                         mutex_exit(&db->db_mtx);
2153                         return;
2154                 }
2155         }
2156         mutex_exit(&db->db_mtx);
2157
2158         DB_DNODE_ENTER(db);
2159         if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2160                 flags |= DB_RF_HAVESTRUCT;
2161         DB_DNODE_EXIT(db);
2162         (void) dbuf_read(db, NULL, flags);
2163         (void) dbuf_dirty(db, tx);
2164 }
2165
2166 void
2167 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2168 {
2169         dmu_buf_will_dirty_impl(db_fake,
2170             DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2171 }
2172
2173 void
2174 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2175 {
2176         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2177
2178         db->db_state = DB_NOFILL;
2179
2180         dmu_buf_will_fill(db_fake, tx);
2181 }
2182
2183 void
2184 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2185 {
2186         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2187
2188         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2189         ASSERT(tx->tx_txg != 0);
2190         ASSERT(db->db_level == 0);
2191         ASSERT(!refcount_is_zero(&db->db_holds));
2192
2193         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2194             dmu_tx_private_ok(tx));
2195
2196         dbuf_noread(db);
2197         (void) dbuf_dirty(db, tx);
2198 }
2199
2200 /*
2201  * This function is effectively the same as dmu_buf_will_dirty(), but
2202  * indicates the caller expects raw encrypted data in the db. It will
2203  * also set the raw flag on the created dirty record.
2204  */
2205 void
2206 dmu_buf_will_change_crypt_params(dmu_buf_t *db_fake, dmu_tx_t *tx)
2207 {
2208         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2209         dbuf_dirty_record_t *dr;
2210
2211         dmu_buf_will_dirty_impl(db_fake,
2212             DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2213
2214         dr = db->db_last_dirty;
2215         while (dr != NULL && dr->dr_txg > tx->tx_txg)
2216                 dr = dr->dr_next;
2217
2218         ASSERT3P(dr, !=, NULL);
2219         ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2220         dr->dt.dl.dr_raw = B_TRUE;
2221 }
2222
2223 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2224 /* ARGSUSED */
2225 void
2226 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2227 {
2228         mutex_enter(&db->db_mtx);
2229         DBUF_VERIFY(db);
2230
2231         if (db->db_state == DB_FILL) {
2232                 if (db->db_level == 0 && db->db_freed_in_flight) {
2233                         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2234                         /* we were freed while filling */
2235                         /* XXX dbuf_undirty? */
2236                         bzero(db->db.db_data, db->db.db_size);
2237                         db->db_freed_in_flight = FALSE;
2238                 }
2239                 db->db_state = DB_CACHED;
2240                 cv_broadcast(&db->db_changed);
2241         }
2242         mutex_exit(&db->db_mtx);
2243 }
2244
2245 void
2246 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2247     bp_embedded_type_t etype, enum zio_compress comp,
2248     int uncompressed_size, int compressed_size, int byteorder,
2249     dmu_tx_t *tx)
2250 {
2251         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2252         struct dirty_leaf *dl;
2253         dmu_object_type_t type;
2254
2255         if (etype == BP_EMBEDDED_TYPE_DATA) {
2256                 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2257                     SPA_FEATURE_EMBEDDED_DATA));
2258         }
2259
2260         DB_DNODE_ENTER(db);
2261         type = DB_DNODE(db)->dn_type;
2262         DB_DNODE_EXIT(db);
2263
2264         ASSERT0(db->db_level);
2265         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2266
2267         dmu_buf_will_not_fill(dbuf, tx);
2268
2269         ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2270         dl = &db->db_last_dirty->dt.dl;
2271         encode_embedded_bp_compressed(&dl->dr_overridden_by,
2272             data, comp, uncompressed_size, compressed_size);
2273         BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2274         BP_SET_TYPE(&dl->dr_overridden_by, type);
2275         BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2276         BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2277
2278         dl->dr_override_state = DR_OVERRIDDEN;
2279         dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2280 }
2281
2282 /*
2283  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2284  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2285  */
2286 void
2287 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2288 {
2289         ASSERT(!refcount_is_zero(&db->db_holds));
2290         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2291         ASSERT(db->db_level == 0);
2292         ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2293         ASSERT(buf != NULL);
2294         ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2295         ASSERT(tx->tx_txg != 0);
2296
2297         arc_return_buf(buf, db);
2298         ASSERT(arc_released(buf));
2299
2300         mutex_enter(&db->db_mtx);
2301
2302         while (db->db_state == DB_READ || db->db_state == DB_FILL)
2303                 cv_wait(&db->db_changed, &db->db_mtx);
2304
2305         ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2306
2307         if (db->db_state == DB_CACHED &&
2308             refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2309                 /*
2310                  * In practice, we will never have a case where we have an
2311                  * encrypted arc buffer while additional holds exist on the
2312                  * dbuf. We don't handle this here so we simply assert that
2313                  * fact instead.
2314                  */
2315                 ASSERT(!arc_is_encrypted(buf));
2316                 mutex_exit(&db->db_mtx);
2317                 (void) dbuf_dirty(db, tx);
2318                 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2319                 arc_buf_destroy(buf, db);
2320                 xuio_stat_wbuf_copied();
2321                 return;
2322         }
2323
2324         xuio_stat_wbuf_nocopy();
2325         if (db->db_state == DB_CACHED) {
2326                 dbuf_dirty_record_t *dr = db->db_last_dirty;
2327
2328                 ASSERT(db->db_buf != NULL);
2329                 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2330                         ASSERT(dr->dt.dl.dr_data == db->db_buf);
2331                         IMPLY(arc_is_encrypted(buf), dr->dt.dl.dr_raw);
2332
2333                         if (!arc_released(db->db_buf)) {
2334                                 ASSERT(dr->dt.dl.dr_override_state ==
2335                                     DR_OVERRIDDEN);
2336                                 arc_release(db->db_buf, db);
2337                         }
2338                         dr->dt.dl.dr_data = buf;
2339                         arc_buf_destroy(db->db_buf, db);
2340                 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2341                         arc_release(db->db_buf, db);
2342                         arc_buf_destroy(db->db_buf, db);
2343                 }
2344                 db->db_buf = NULL;
2345         }
2346         ASSERT(db->db_buf == NULL);
2347         dbuf_set_data(db, buf);
2348         db->db_state = DB_FILL;
2349         mutex_exit(&db->db_mtx);
2350         (void) dbuf_dirty(db, tx);
2351         dmu_buf_fill_done(&db->db, tx);
2352 }
2353
2354 void
2355 dbuf_destroy(dmu_buf_impl_t *db)
2356 {
2357         dnode_t *dn;
2358         dmu_buf_impl_t *parent = db->db_parent;
2359         dmu_buf_impl_t *dndb;
2360
2361         ASSERT(MUTEX_HELD(&db->db_mtx));
2362         ASSERT(refcount_is_zero(&db->db_holds));
2363
2364         if (db->db_buf != NULL) {
2365                 arc_buf_destroy(db->db_buf, db);
2366                 db->db_buf = NULL;
2367         }
2368
2369         if (db->db_blkid == DMU_BONUS_BLKID) {
2370                 int slots = DB_DNODE(db)->dn_num_slots;
2371                 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2372                 if (db->db.db_data != NULL) {
2373                         kmem_free(db->db.db_data, bonuslen);
2374                         arc_space_return(bonuslen, ARC_SPACE_BONUS);
2375                         db->db_state = DB_UNCACHED;
2376                 }
2377         }
2378
2379         dbuf_clear_data(db);
2380
2381         if (multilist_link_active(&db->db_cache_link)) {
2382                 multilist_remove(dbuf_cache, db);
2383                 (void) refcount_remove_many(&dbuf_cache_size,
2384                     db->db.db_size, db);
2385                 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2386                 DBUF_STAT_BUMPDOWN(cache_count);
2387                 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2388                     db->db.db_size);
2389         }
2390
2391         ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2392         ASSERT(db->db_data_pending == NULL);
2393
2394         db->db_state = DB_EVICTING;
2395         db->db_blkptr = NULL;
2396
2397         /*
2398          * Now that db_state is DB_EVICTING, nobody else can find this via
2399          * the hash table.  We can now drop db_mtx, which allows us to
2400          * acquire the dn_dbufs_mtx.
2401          */
2402         mutex_exit(&db->db_mtx);
2403
2404         DB_DNODE_ENTER(db);
2405         dn = DB_DNODE(db);
2406         dndb = dn->dn_dbuf;
2407         if (db->db_blkid != DMU_BONUS_BLKID) {
2408                 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2409                 if (needlock)
2410                         mutex_enter(&dn->dn_dbufs_mtx);
2411                 avl_remove(&dn->dn_dbufs, db);
2412                 atomic_dec_32(&dn->dn_dbufs_count);
2413                 membar_producer();
2414                 DB_DNODE_EXIT(db);
2415                 if (needlock)
2416                         mutex_exit(&dn->dn_dbufs_mtx);
2417                 /*
2418                  * Decrementing the dbuf count means that the hold corresponding
2419                  * to the removed dbuf is no longer discounted in dnode_move(),
2420                  * so the dnode cannot be moved until after we release the hold.
2421                  * The membar_producer() ensures visibility of the decremented
2422                  * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2423                  * release any lock.
2424                  */
2425                 dnode_rele(dn, db);
2426                 db->db_dnode_handle = NULL;
2427
2428                 dbuf_hash_remove(db);
2429         } else {
2430                 DB_DNODE_EXIT(db);
2431         }
2432
2433         ASSERT(refcount_is_zero(&db->db_holds));
2434
2435         db->db_parent = NULL;
2436
2437         ASSERT(db->db_buf == NULL);
2438         ASSERT(db->db.db_data == NULL);
2439         ASSERT(db->db_hash_next == NULL);
2440         ASSERT(db->db_blkptr == NULL);
2441         ASSERT(db->db_data_pending == NULL);
2442         ASSERT(!multilist_link_active(&db->db_cache_link));
2443
2444         kmem_cache_free(dbuf_kmem_cache, db);
2445         arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2446
2447         /*
2448          * If this dbuf is referenced from an indirect dbuf,
2449          * decrement the ref count on the indirect dbuf.
2450          */
2451         if (parent && parent != dndb)
2452                 dbuf_rele(parent, db);
2453 }
2454
2455 /*
2456  * Note: While bpp will always be updated if the function returns success,
2457  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2458  * this happens when the dnode is the meta-dnode, or a userused or groupused
2459  * object.
2460  */
2461 __attribute__((always_inline))
2462 static inline int
2463 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2464     dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2465 {
2466         *parentp = NULL;
2467         *bpp = NULL;
2468
2469         ASSERT(blkid != DMU_BONUS_BLKID);
2470
2471         if (blkid == DMU_SPILL_BLKID) {
2472                 mutex_enter(&dn->dn_mtx);
2473                 if (dn->dn_have_spill &&
2474                     (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2475                         *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2476                 else
2477                         *bpp = NULL;
2478                 dbuf_add_ref(dn->dn_dbuf, NULL);
2479                 *parentp = dn->dn_dbuf;
2480                 mutex_exit(&dn->dn_mtx);
2481                 return (0);
2482         }
2483
2484         int nlevels =
2485             (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2486         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2487
2488         ASSERT3U(level * epbs, <, 64);
2489         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2490         /*
2491          * This assertion shouldn't trip as long as the max indirect block size
2492          * is less than 1M.  The reason for this is that up to that point,
2493          * the number of levels required to address an entire object with blocks
2494          * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2495          * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2496          * (i.e. we can address the entire object), objects will all use at most
2497          * N-1 levels and the assertion won't overflow.  However, once epbs is
2498          * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2499          * enough to address an entire object, so objects will have 5 levels,
2500          * but then this assertion will overflow.
2501          *
2502          * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2503          * need to redo this logic to handle overflows.
2504          */
2505         ASSERT(level >= nlevels ||
2506             ((nlevels - level - 1) * epbs) +
2507             highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2508         if (level >= nlevels ||
2509             blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2510             ((nlevels - level - 1) * epbs)) ||
2511             (fail_sparse &&
2512             blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2513                 /* the buffer has no parent yet */
2514                 return (SET_ERROR(ENOENT));
2515         } else if (level < nlevels-1) {
2516                 /* this block is referenced from an indirect block */
2517                 int err;
2518                 if (dh == NULL) {
2519                         err = dbuf_hold_impl(dn, level+1,
2520                             blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2521                 } else {
2522                         __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2523                             blkid >> epbs, fail_sparse, FALSE, NULL,
2524                             parentp, dh->dh_depth + 1);
2525                         err = __dbuf_hold_impl(dh + 1);
2526                 }
2527                 if (err)
2528                         return (err);
2529                 err = dbuf_read(*parentp, NULL,
2530                     (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2531                 if (err) {
2532                         dbuf_rele(*parentp, NULL);
2533                         *parentp = NULL;
2534                         return (err);
2535                 }
2536                 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2537                     (blkid & ((1ULL << epbs) - 1));
2538                 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2539                         ASSERT(BP_IS_HOLE(*bpp));
2540                 return (0);
2541         } else {
2542                 /* the block is referenced from the dnode */
2543                 ASSERT3U(level, ==, nlevels-1);
2544                 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2545                     blkid < dn->dn_phys->dn_nblkptr);
2546                 if (dn->dn_dbuf) {
2547                         dbuf_add_ref(dn->dn_dbuf, NULL);
2548                         *parentp = dn->dn_dbuf;
2549                 }
2550                 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2551                 return (0);
2552         }
2553 }
2554
2555 static dmu_buf_impl_t *
2556 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2557     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2558 {
2559         objset_t *os = dn->dn_objset;
2560         dmu_buf_impl_t *db, *odb;
2561
2562         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2563         ASSERT(dn->dn_type != DMU_OT_NONE);
2564
2565         db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2566
2567         db->db_objset = os;
2568         db->db.db_object = dn->dn_object;
2569         db->db_level = level;
2570         db->db_blkid = blkid;
2571         db->db_last_dirty = NULL;
2572         db->db_dirtycnt = 0;
2573         db->db_dnode_handle = dn->dn_handle;
2574         db->db_parent = parent;
2575         db->db_blkptr = blkptr;
2576
2577         db->db_user = NULL;
2578         db->db_user_immediate_evict = FALSE;
2579         db->db_freed_in_flight = FALSE;
2580         db->db_pending_evict = FALSE;
2581
2582         if (blkid == DMU_BONUS_BLKID) {
2583                 ASSERT3P(parent, ==, dn->dn_dbuf);
2584                 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2585                     (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2586                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2587                 db->db.db_offset = DMU_BONUS_BLKID;
2588                 db->db_state = DB_UNCACHED;
2589                 /* the bonus dbuf is not placed in the hash table */
2590                 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2591                 return (db);
2592         } else if (blkid == DMU_SPILL_BLKID) {
2593                 db->db.db_size = (blkptr != NULL) ?
2594                     BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2595                 db->db.db_offset = 0;
2596         } else {
2597                 int blocksize =
2598                     db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2599                 db->db.db_size = blocksize;
2600                 db->db.db_offset = db->db_blkid * blocksize;
2601         }
2602
2603         /*
2604          * Hold the dn_dbufs_mtx while we get the new dbuf
2605          * in the hash table *and* added to the dbufs list.
2606          * This prevents a possible deadlock with someone
2607          * trying to look up this dbuf before its added to the
2608          * dn_dbufs list.
2609          */
2610         mutex_enter(&dn->dn_dbufs_mtx);
2611         db->db_state = DB_EVICTING;
2612         if ((odb = dbuf_hash_insert(db)) != NULL) {
2613                 /* someone else inserted it first */
2614                 kmem_cache_free(dbuf_kmem_cache, db);
2615                 mutex_exit(&dn->dn_dbufs_mtx);
2616                 DBUF_STAT_BUMP(hash_insert_race);
2617                 return (odb);
2618         }
2619         avl_add(&dn->dn_dbufs, db);
2620
2621         db->db_state = DB_UNCACHED;
2622         mutex_exit(&dn->dn_dbufs_mtx);
2623         arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2624
2625         if (parent && parent != dn->dn_dbuf)
2626                 dbuf_add_ref(parent, db);
2627
2628         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2629             refcount_count(&dn->dn_holds) > 0);
2630         (void) refcount_add(&dn->dn_holds, db);
2631         atomic_inc_32(&dn->dn_dbufs_count);
2632
2633         dprintf_dbuf(db, "db=%p\n", db);
2634
2635         return (db);
2636 }
2637
2638 typedef struct dbuf_prefetch_arg {
2639         spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2640         zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2641         int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2642         int dpa_curlevel; /* The current level that we're reading */
2643         dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2644         zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2645         zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2646         arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2647 } dbuf_prefetch_arg_t;
2648
2649 /*
2650  * Actually issue the prefetch read for the block given.
2651  */
2652 static void
2653 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2654 {
2655         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2656                 return;
2657
2658         arc_flags_t aflags =
2659             dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2660
2661         ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2662         ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2663         ASSERT(dpa->dpa_zio != NULL);
2664         (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2665             dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2666             &aflags, &dpa->dpa_zb);
2667 }
2668
2669 /*
2670  * Called when an indirect block above our prefetch target is read in.  This
2671  * will either read in the next indirect block down the tree or issue the actual
2672  * prefetch if the next block down is our target.
2673  */
2674 static void
2675 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2676     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2677 {
2678         dbuf_prefetch_arg_t *dpa = private;
2679
2680         ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2681         ASSERT3S(dpa->dpa_curlevel, >, 0);
2682
2683         /*
2684          * The dpa_dnode is only valid if we are called with a NULL
2685          * zio. This indicates that the arc_read() returned without
2686          * first calling zio_read() to issue a physical read. Once
2687          * a physical read is made the dpa_dnode must be invalidated
2688          * as the locks guarding it may have been dropped. If the
2689          * dpa_dnode is still valid, then we want to add it to the dbuf
2690          * cache. To do so, we must hold the dbuf associated with the block
2691          * we just prefetched, read its contents so that we associate it
2692          * with an arc_buf_t, and then release it.
2693          */
2694         if (zio != NULL) {
2695                 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2696                 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2697                         ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2698                 } else {
2699                         ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2700                 }
2701                 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2702
2703                 dpa->dpa_dnode = NULL;
2704         } else if (dpa->dpa_dnode != NULL) {
2705                 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2706                     (dpa->dpa_epbs * (dpa->dpa_curlevel -
2707                     dpa->dpa_zb.zb_level));
2708                 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2709                     dpa->dpa_curlevel, curblkid, FTAG);
2710                 (void) dbuf_read(db, NULL,
2711                     DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2712                 dbuf_rele(db, FTAG);
2713         }
2714
2715         if (abuf == NULL) {
2716                 kmem_free(dpa, sizeof (*dpa));
2717                 return;
2718         }
2719
2720         dpa->dpa_curlevel--;
2721         uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2722             (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2723         blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2724             P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2725
2726         if (BP_IS_HOLE(bp)) {
2727                 kmem_free(dpa, sizeof (*dpa));
2728         } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2729                 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2730                 dbuf_issue_final_prefetch(dpa, bp);
2731                 kmem_free(dpa, sizeof (*dpa));
2732         } else {
2733                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2734                 zbookmark_phys_t zb;
2735
2736                 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2737                 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2738                         iter_aflags |= ARC_FLAG_L2CACHE;
2739
2740                 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2741
2742                 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2743                     dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2744
2745                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2746                     bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2747                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2748                     &iter_aflags, &zb);
2749         }
2750
2751         arc_buf_destroy(abuf, private);
2752 }
2753
2754 /*
2755  * Issue prefetch reads for the given block on the given level.  If the indirect
2756  * blocks above that block are not in memory, we will read them in
2757  * asynchronously.  As a result, this call never blocks waiting for a read to
2758  * complete. Note that the prefetch might fail if the dataset is encrypted and
2759  * the encryption key is unmapped before the IO completes.
2760  */
2761 void
2762 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2763     arc_flags_t aflags)
2764 {
2765         blkptr_t bp;
2766         int epbs, nlevels, curlevel;
2767         uint64_t curblkid;
2768
2769         ASSERT(blkid != DMU_BONUS_BLKID);
2770         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2771
2772         if (blkid > dn->dn_maxblkid)
2773                 return;
2774
2775         if (dnode_block_freed(dn, blkid))
2776                 return;
2777
2778         /*
2779          * This dnode hasn't been written to disk yet, so there's nothing to
2780          * prefetch.
2781          */
2782         nlevels = dn->dn_phys->dn_nlevels;
2783         if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2784                 return;
2785
2786         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2787         if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2788                 return;
2789
2790         dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2791             level, blkid);
2792         if (db != NULL) {
2793                 mutex_exit(&db->db_mtx);
2794                 /*
2795                  * This dbuf already exists.  It is either CACHED, or
2796                  * (we assume) about to be read or filled.
2797                  */
2798                 return;
2799         }
2800
2801         /*
2802          * Find the closest ancestor (indirect block) of the target block
2803          * that is present in the cache.  In this indirect block, we will
2804          * find the bp that is at curlevel, curblkid.
2805          */
2806         curlevel = level;
2807         curblkid = blkid;
2808         while (curlevel < nlevels - 1) {
2809                 int parent_level = curlevel + 1;
2810                 uint64_t parent_blkid = curblkid >> epbs;
2811                 dmu_buf_impl_t *db;
2812
2813                 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2814                     FALSE, TRUE, FTAG, &db) == 0) {
2815                         blkptr_t *bpp = db->db_buf->b_data;
2816                         bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2817                         dbuf_rele(db, FTAG);
2818                         break;
2819                 }
2820
2821                 curlevel = parent_level;
2822                 curblkid = parent_blkid;
2823         }
2824
2825         if (curlevel == nlevels - 1) {
2826                 /* No cached indirect blocks found. */
2827                 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2828                 bp = dn->dn_phys->dn_blkptr[curblkid];
2829         }
2830         if (BP_IS_HOLE(&bp))
2831                 return;
2832
2833         ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2834
2835         zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2836             ZIO_FLAG_CANFAIL);
2837
2838         dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2839         dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2840         SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2841             dn->dn_object, level, blkid);
2842         dpa->dpa_curlevel = curlevel;
2843         dpa->dpa_prio = prio;
2844         dpa->dpa_aflags = aflags;
2845         dpa->dpa_spa = dn->dn_objset->os_spa;
2846         dpa->dpa_dnode = dn;
2847         dpa->dpa_epbs = epbs;
2848         dpa->dpa_zio = pio;
2849
2850         /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2851         if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2852                 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2853
2854         /*
2855          * If we have the indirect just above us, no need to do the asynchronous
2856          * prefetch chain; we'll just run the last step ourselves.  If we're at
2857          * a higher level, though, we want to issue the prefetches for all the
2858          * indirect blocks asynchronously, so we can go on with whatever we were
2859          * doing.
2860          */
2861         if (curlevel == level) {
2862                 ASSERT3U(curblkid, ==, blkid);
2863                 dbuf_issue_final_prefetch(dpa, &bp);
2864                 kmem_free(dpa, sizeof (*dpa));
2865         } else {
2866                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2867                 zbookmark_phys_t zb;
2868
2869                 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2870                 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2871                         iter_aflags |= ARC_FLAG_L2CACHE;
2872
2873                 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2874                     dn->dn_object, curlevel, curblkid);
2875                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2876                     &bp, dbuf_prefetch_indirect_done, dpa, prio,
2877                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2878                     &iter_aflags, &zb);
2879         }
2880         /*
2881          * We use pio here instead of dpa_zio since it's possible that
2882          * dpa may have already been freed.
2883          */
2884         zio_nowait(pio);
2885 }
2886
2887 #define DBUF_HOLD_IMPL_MAX_DEPTH        20
2888
2889 /*
2890  * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2891  * the case of encrypted, compressed and uncompressed buffers by
2892  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
2893  * arc_alloc_compressed_buf() or arc_alloc_buf().*
2894  *
2895  * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2896  */
2897 noinline static void
2898 dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
2899 {
2900         dnode_t *dn = dh->dh_dn;
2901         dmu_buf_impl_t *db = dh->dh_db;
2902         dbuf_dirty_record_t *dr = dh->dh_dr;
2903         arc_buf_t *data = dr->dt.dl.dr_data;
2904
2905         enum zio_compress compress_type = arc_get_compression(data);
2906
2907         if (arc_is_encrypted(data)) {
2908                 boolean_t byteorder;
2909                 uint8_t salt[ZIO_DATA_SALT_LEN];
2910                 uint8_t iv[ZIO_DATA_IV_LEN];
2911                 uint8_t mac[ZIO_DATA_MAC_LEN];
2912
2913                 arc_get_raw_params(data, &byteorder, salt, iv, mac);
2914                 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
2915                     dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
2916                     dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
2917                     compress_type));
2918         } else if (compress_type != ZIO_COMPRESS_OFF) {
2919                 dbuf_set_data(db, arc_alloc_compressed_buf(
2920                     dn->dn_objset->os_spa, db, arc_buf_size(data),
2921                     arc_buf_lsize(data), compress_type));
2922         } else {
2923                 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2924                     DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2925         }
2926
2927         bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2928 }
2929
2930 /*
2931  * Returns with db_holds incremented, and db_mtx not held.
2932  * Note: dn_struct_rwlock must be held.
2933  */
2934 static int
2935 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2936 {
2937         ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2938         dh->dh_parent = NULL;
2939
2940         ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2941         ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2942         ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2943
2944         *(dh->dh_dbp) = NULL;
2945
2946         /* dbuf_find() returns with db_mtx held */
2947         dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2948             dh->dh_level, dh->dh_blkid);
2949
2950         if (dh->dh_db == NULL) {
2951                 dh->dh_bp = NULL;
2952
2953                 if (dh->dh_fail_uncached)
2954                         return (SET_ERROR(ENOENT));
2955
2956                 ASSERT3P(dh->dh_parent, ==, NULL);
2957                 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2958                     dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
2959                 if (dh->dh_fail_sparse) {
2960                         if (dh->dh_err == 0 &&
2961                             dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2962                                 dh->dh_err = SET_ERROR(ENOENT);
2963                         if (dh->dh_err) {
2964                                 if (dh->dh_parent)
2965                                         dbuf_rele(dh->dh_parent, NULL);
2966                                 return (dh->dh_err);
2967                         }
2968                 }
2969                 if (dh->dh_err && dh->dh_err != ENOENT)
2970                         return (dh->dh_err);
2971                 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2972                     dh->dh_parent, dh->dh_bp);
2973         }
2974
2975         if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2976                 mutex_exit(&dh->dh_db->db_mtx);
2977                 return (SET_ERROR(ENOENT));
2978         }
2979
2980         if (dh->dh_db->db_buf != NULL) {
2981                 arc_buf_access(dh->dh_db->db_buf);
2982                 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
2983         }
2984
2985         ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
2986
2987         /*
2988          * If this buffer is currently syncing out, and we are are
2989          * still referencing it from db_data, we need to make a copy
2990          * of it in case we decide we want to dirty it again in this txg.
2991          */
2992         if (dh->dh_db->db_level == 0 &&
2993             dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
2994             dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
2995             dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
2996                 dh->dh_dr = dh->dh_db->db_data_pending;
2997                 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
2998                         dbuf_hold_copy(dh);
2999         }
3000
3001         if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3002                 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
3003                 multilist_remove(dbuf_cache, dh->dh_db);
3004                 (void) refcount_remove_many(&dbuf_cache_size,
3005                     dh->dh_db->db.db_size, dh->dh_db);
3006                 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3007                 DBUF_STAT_BUMPDOWN(cache_count);
3008                 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3009                     dh->dh_db->db.db_size);
3010         }
3011         (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
3012         DBUF_VERIFY(dh->dh_db);
3013         mutex_exit(&dh->dh_db->db_mtx);
3014
3015         /* NOTE: we can't rele the parent until after we drop the db_mtx */
3016         if (dh->dh_parent)
3017                 dbuf_rele(dh->dh_parent, NULL);
3018
3019         ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3020         ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3021         ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3022         *(dh->dh_dbp) = dh->dh_db;
3023
3024         return (0);
3025 }
3026
3027 /*
3028  * The following code preserves the recursive function dbuf_hold_impl()
3029  * but moves the local variables AND function arguments to the heap to
3030  * minimize the stack frame size.  Enough space is initially allocated
3031  * on the stack for 20 levels of recursion.
3032  */
3033 int
3034 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3035     boolean_t fail_sparse, boolean_t fail_uncached,
3036     void *tag, dmu_buf_impl_t **dbp)
3037 {
3038         struct dbuf_hold_impl_data *dh;
3039         int error;
3040
3041         dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
3042             DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
3043         __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
3044             fail_uncached, tag, dbp, 0);
3045
3046         error = __dbuf_hold_impl(dh);
3047
3048         kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
3049             DBUF_HOLD_IMPL_MAX_DEPTH);
3050
3051         return (error);
3052 }
3053
3054 static void
3055 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
3056     dnode_t *dn, uint8_t level, uint64_t blkid,
3057     boolean_t fail_sparse, boolean_t fail_uncached,
3058     void *tag, dmu_buf_impl_t **dbp, int depth)
3059 {
3060         dh->dh_dn = dn;
3061         dh->dh_level = level;
3062         dh->dh_blkid = blkid;
3063
3064         dh->dh_fail_sparse = fail_sparse;
3065         dh->dh_fail_uncached = fail_uncached;
3066
3067         dh->dh_tag = tag;
3068         dh->dh_dbp = dbp;
3069
3070         dh->dh_db = NULL;
3071         dh->dh_parent = NULL;
3072         dh->dh_bp = NULL;
3073         dh->dh_err = 0;
3074         dh->dh_dr = NULL;
3075
3076         dh->dh_depth = depth;
3077 }
3078
3079 dmu_buf_impl_t *
3080 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3081 {
3082         return (dbuf_hold_level(dn, 0, blkid, tag));
3083 }
3084
3085 dmu_buf_impl_t *
3086 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3087 {
3088         dmu_buf_impl_t *db;
3089         int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3090         return (err ? NULL : db);
3091 }
3092
3093 void
3094 dbuf_create_bonus(dnode_t *dn)
3095 {
3096         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3097
3098         ASSERT(dn->dn_bonus == NULL);
3099         dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3100 }
3101
3102 int
3103 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3104 {
3105         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3106         dnode_t *dn;
3107
3108         if (db->db_blkid != DMU_SPILL_BLKID)
3109                 return (SET_ERROR(ENOTSUP));
3110         if (blksz == 0)
3111                 blksz = SPA_MINBLOCKSIZE;
3112         ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3113         blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3114
3115         DB_DNODE_ENTER(db);
3116         dn = DB_DNODE(db);
3117         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3118         dbuf_new_size(db, blksz, tx);
3119         rw_exit(&dn->dn_struct_rwlock);
3120         DB_DNODE_EXIT(db);
3121
3122         return (0);
3123 }
3124
3125 void
3126 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3127 {
3128         dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3129 }
3130
3131 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3132 void
3133 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3134 {
3135         int64_t holds = refcount_add(&db->db_holds, tag);
3136         VERIFY3S(holds, >, 1);
3137 }
3138
3139 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3140 boolean_t
3141 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3142     void *tag)
3143 {
3144         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3145         dmu_buf_impl_t *found_db;
3146         boolean_t result = B_FALSE;
3147
3148         if (blkid == DMU_BONUS_BLKID)
3149                 found_db = dbuf_find_bonus(os, obj);
3150         else
3151                 found_db = dbuf_find(os, obj, 0, blkid);
3152
3153         if (found_db != NULL) {
3154                 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3155                         (void) refcount_add(&db->db_holds, tag);
3156                         result = B_TRUE;
3157                 }
3158                 mutex_exit(&found_db->db_mtx);
3159         }
3160         return (result);
3161 }
3162
3163 /*
3164  * If you call dbuf_rele() you had better not be referencing the dnode handle
3165  * unless you have some other direct or indirect hold on the dnode. (An indirect
3166  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3167  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3168  * dnode's parent dbuf evicting its dnode handles.
3169  */
3170 void
3171 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3172 {
3173         mutex_enter(&db->db_mtx);
3174         dbuf_rele_and_unlock(db, tag);
3175 }
3176
3177 void
3178 dmu_buf_rele(dmu_buf_t *db, void *tag)
3179 {
3180         dbuf_rele((dmu_buf_impl_t *)db, tag);
3181 }
3182
3183 /*
3184  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
3185  * db_dirtycnt and db_holds to be updated atomically.
3186  */
3187 void
3188 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
3189 {
3190         int64_t holds;
3191
3192         ASSERT(MUTEX_HELD(&db->db_mtx));
3193         DBUF_VERIFY(db);
3194
3195         /*
3196          * Remove the reference to the dbuf before removing its hold on the
3197          * dnode so we can guarantee in dnode_move() that a referenced bonus
3198          * buffer has a corresponding dnode hold.
3199          */
3200         holds = refcount_remove(&db->db_holds, tag);
3201         ASSERT(holds >= 0);
3202
3203         /*
3204          * We can't freeze indirects if there is a possibility that they
3205          * may be modified in the current syncing context.
3206          */
3207         if (db->db_buf != NULL &&
3208             holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3209                 arc_buf_freeze(db->db_buf);
3210         }
3211
3212         if (holds == db->db_dirtycnt &&
3213             db->db_level == 0 && db->db_user_immediate_evict)
3214                 dbuf_evict_user(db);
3215
3216         if (holds == 0) {
3217                 if (db->db_blkid == DMU_BONUS_BLKID) {
3218                         dnode_t *dn;
3219                         boolean_t evict_dbuf = db->db_pending_evict;
3220
3221                         /*
3222                          * If the dnode moves here, we cannot cross this
3223                          * barrier until the move completes.
3224                          */
3225                         DB_DNODE_ENTER(db);
3226
3227                         dn = DB_DNODE(db);
3228                         atomic_dec_32(&dn->dn_dbufs_count);
3229
3230                         /*
3231                          * Decrementing the dbuf count means that the bonus
3232                          * buffer's dnode hold is no longer discounted in
3233                          * dnode_move(). The dnode cannot move until after
3234                          * the dnode_rele() below.
3235                          */
3236                         DB_DNODE_EXIT(db);
3237
3238                         /*
3239                          * Do not reference db after its lock is dropped.
3240                          * Another thread may evict it.
3241                          */
3242                         mutex_exit(&db->db_mtx);
3243
3244                         if (evict_dbuf)
3245                                 dnode_evict_bonus(dn);
3246
3247                         dnode_rele(dn, db);
3248                 } else if (db->db_buf == NULL) {
3249                         /*
3250                          * This is a special case: we never associated this
3251                          * dbuf with any data allocated from the ARC.
3252                          */
3253                         ASSERT(db->db_state == DB_UNCACHED ||
3254                             db->db_state == DB_NOFILL);
3255                         dbuf_destroy(db);
3256                 } else if (arc_released(db->db_buf)) {
3257                         /*
3258                          * This dbuf has anonymous data associated with it.
3259                          */
3260                         dbuf_destroy(db);
3261                 } else {
3262                         boolean_t do_arc_evict = B_FALSE;
3263                         blkptr_t bp;
3264                         spa_t *spa = dmu_objset_spa(db->db_objset);
3265
3266                         if (!DBUF_IS_CACHEABLE(db) &&
3267                             db->db_blkptr != NULL &&
3268                             !BP_IS_HOLE(db->db_blkptr) &&
3269                             !BP_IS_EMBEDDED(db->db_blkptr)) {
3270                                 do_arc_evict = B_TRUE;
3271                                 bp = *db->db_blkptr;
3272                         }
3273
3274                         if (!DBUF_IS_CACHEABLE(db) ||
3275                             db->db_pending_evict) {
3276                                 dbuf_destroy(db);
3277                         } else if (!multilist_link_active(&db->db_cache_link)) {
3278                                 multilist_insert(dbuf_cache, db);
3279                                 (void) refcount_add_many(&dbuf_cache_size,
3280                                     db->db.db_size, db);
3281                                 DBUF_STAT_BUMP(cache_levels[db->db_level]);
3282                                 DBUF_STAT_BUMP(cache_count);
3283                                 DBUF_STAT_INCR(cache_levels_bytes[db->db_level],
3284                                     db->db.db_size);
3285                                 DBUF_STAT_MAX(cache_size_bytes_max,
3286                                     refcount_count(&dbuf_cache_size));
3287                                 mutex_exit(&db->db_mtx);
3288
3289                                 dbuf_evict_notify();
3290                         }
3291
3292                         if (do_arc_evict)
3293                                 arc_freed(spa, &bp);
3294                 }
3295         } else {
3296                 mutex_exit(&db->db_mtx);
3297         }
3298
3299 }
3300
3301 #pragma weak dmu_buf_refcount = dbuf_refcount
3302 uint64_t
3303 dbuf_refcount(dmu_buf_impl_t *db)
3304 {
3305         return (refcount_count(&db->db_holds));
3306 }
3307
3308 void *
3309 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3310     dmu_buf_user_t *new_user)
3311 {
3312         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3313
3314         mutex_enter(&db->db_mtx);
3315         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3316         if (db->db_user == old_user)
3317                 db->db_user = new_user;
3318         else
3319                 old_user = db->db_user;
3320         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3321         mutex_exit(&db->db_mtx);
3322
3323         return (old_user);
3324 }
3325
3326 void *
3327 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3328 {
3329         return (dmu_buf_replace_user(db_fake, NULL, user));
3330 }
3331
3332 void *
3333 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3334 {
3335         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3336
3337         db->db_user_immediate_evict = TRUE;
3338         return (dmu_buf_set_user(db_fake, user));
3339 }
3340
3341 void *
3342 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3343 {
3344         return (dmu_buf_replace_user(db_fake, user, NULL));
3345 }
3346
3347 void *
3348 dmu_buf_get_user(dmu_buf_t *db_fake)
3349 {
3350         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3351
3352         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3353         return (db->db_user);
3354 }
3355
3356 void
3357 dmu_buf_user_evict_wait()
3358 {
3359         taskq_wait(dbu_evict_taskq);
3360 }
3361
3362 blkptr_t *
3363 dmu_buf_get_blkptr(dmu_buf_t *db)
3364 {
3365         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3366         return (dbi->db_blkptr);
3367 }
3368
3369 objset_t *
3370 dmu_buf_get_objset(dmu_buf_t *db)
3371 {
3372         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3373         return (dbi->db_objset);
3374 }
3375
3376 dnode_t *
3377 dmu_buf_dnode_enter(dmu_buf_t *db)
3378 {
3379         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3380         DB_DNODE_ENTER(dbi);
3381         return (DB_DNODE(dbi));
3382 }
3383
3384 void
3385 dmu_buf_dnode_exit(dmu_buf_t *db)
3386 {
3387         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3388         DB_DNODE_EXIT(dbi);
3389 }
3390
3391 static void
3392 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3393 {
3394         /* ASSERT(dmu_tx_is_syncing(tx) */
3395         ASSERT(MUTEX_HELD(&db->db_mtx));
3396
3397         if (db->db_blkptr != NULL)
3398                 return;
3399
3400         if (db->db_blkid == DMU_SPILL_BLKID) {
3401                 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3402                 BP_ZERO(db->db_blkptr);
3403                 return;
3404         }
3405         if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3406                 /*
3407                  * This buffer was allocated at a time when there was
3408                  * no available blkptrs from the dnode, or it was
3409                  * inappropriate to hook it in (i.e., nlevels mis-match).
3410                  */
3411                 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3412                 ASSERT(db->db_parent == NULL);
3413                 db->db_parent = dn->dn_dbuf;
3414                 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3415                 DBUF_VERIFY(db);
3416         } else {
3417                 dmu_buf_impl_t *parent = db->db_parent;
3418                 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3419
3420                 ASSERT(dn->dn_phys->dn_nlevels > 1);
3421                 if (parent == NULL) {
3422                         mutex_exit(&db->db_mtx);
3423                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
3424                         parent = dbuf_hold_level(dn, db->db_level + 1,
3425                             db->db_blkid >> epbs, db);
3426                         rw_exit(&dn->dn_struct_rwlock);
3427                         mutex_enter(&db->db_mtx);
3428                         db->db_parent = parent;
3429                 }
3430                 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3431                     (db->db_blkid & ((1ULL << epbs) - 1));
3432                 DBUF_VERIFY(db);
3433         }
3434 }
3435
3436 /*
3437  * Ensure the dbuf's data is untransformed if the associated dirty
3438  * record requires it. This is used by dbuf_sync_leaf() to ensure
3439  * that a dnode block is decrypted before we write new data to it.
3440  * For raw writes we assert that the buffer is already encrypted.
3441  */
3442 static void
3443 dbuf_check_crypt(dbuf_dirty_record_t *dr)
3444 {
3445         int err;
3446         dmu_buf_impl_t *db = dr->dr_dbuf;
3447
3448         ASSERT(MUTEX_HELD(&db->db_mtx));
3449
3450         if (!dr->dt.dl.dr_raw && arc_is_encrypted(db->db_buf)) {
3451                 /*
3452                  * Unfortunately, there is currently no mechanism for
3453                  * syncing context to handle decryption errors. An error
3454                  * here is only possible if an attacker maliciously
3455                  * changed a dnode block and updated the associated
3456                  * checksums going up the block tree.
3457                  */
3458                 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3459                     dmu_objset_id(db->db_objset), B_TRUE);
3460                 if (err)
3461                         panic("Invalid dnode block MAC");
3462         } else if (dr->dt.dl.dr_raw) {
3463                 /*
3464                  * Writing raw encrypted data requires the db's arc buffer
3465                  * to be converted to raw by the caller.
3466                  */
3467                 ASSERT(arc_is_encrypted(db->db_buf));
3468         }
3469 }
3470
3471 /*
3472  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3473  * is critical the we not allow the compiler to inline this function in to
3474  * dbuf_sync_list() thereby drastically bloating the stack usage.
3475  */
3476 noinline static void
3477 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3478 {
3479         dmu_buf_impl_t *db = dr->dr_dbuf;
3480         dnode_t *dn;
3481         zio_t *zio;
3482
3483         ASSERT(dmu_tx_is_syncing(tx));
3484
3485         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3486
3487         mutex_enter(&db->db_mtx);
3488
3489         ASSERT(db->db_level > 0);
3490         DBUF_VERIFY(db);
3491
3492         /* Read the block if it hasn't been read yet. */
3493         if (db->db_buf == NULL) {
3494                 mutex_exit(&db->db_mtx);
3495                 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3496                 mutex_enter(&db->db_mtx);
3497         }
3498         ASSERT3U(db->db_state, ==, DB_CACHED);
3499         ASSERT(db->db_buf != NULL);
3500
3501         DB_DNODE_ENTER(db);
3502         dn = DB_DNODE(db);
3503         /* Indirect block size must match what the dnode thinks it is. */
3504         ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3505         dbuf_check_blkptr(dn, db);
3506         DB_DNODE_EXIT(db);
3507
3508         /* Provide the pending dirty record to child dbufs */
3509         db->db_data_pending = dr;
3510
3511         mutex_exit(&db->db_mtx);
3512         dbuf_write(dr, db->db_buf, tx);
3513
3514         zio = dr->dr_zio;
3515         mutex_enter(&dr->dt.di.dr_mtx);
3516         dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3517         ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3518         mutex_exit(&dr->dt.di.dr_mtx);
3519         zio_nowait(zio);
3520 }
3521
3522 /*
3523  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3524  * critical the we not allow the compiler to inline this function in to
3525  * dbuf_sync_list() thereby drastically bloating the stack usage.
3526  */
3527 noinline static void
3528 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3529 {
3530         arc_buf_t **datap = &dr->dt.dl.dr_data;
3531         dmu_buf_impl_t *db = dr->dr_dbuf;
3532         dnode_t *dn;
3533         objset_t *os;
3534         uint64_t txg = tx->tx_txg;
3535
3536         ASSERT(dmu_tx_is_syncing(tx));
3537
3538         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3539
3540         mutex_enter(&db->db_mtx);
3541         /*
3542          * To be synced, we must be dirtied.  But we
3543          * might have been freed after the dirty.
3544          */
3545         if (db->db_state == DB_UNCACHED) {
3546                 /* This buffer has been freed since it was dirtied */
3547                 ASSERT(db->db.db_data == NULL);
3548         } else if (db->db_state == DB_FILL) {
3549                 /* This buffer was freed and is now being re-filled */
3550                 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3551         } else {
3552                 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3553         }
3554         DBUF_VERIFY(db);
3555
3556         DB_DNODE_ENTER(db);
3557         dn = DB_DNODE(db);
3558
3559         if (db->db_blkid == DMU_SPILL_BLKID) {
3560                 mutex_enter(&dn->dn_mtx);
3561                 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3562                         /*
3563                          * In the previous transaction group, the bonus buffer
3564                          * was entirely used to store the attributes for the
3565                          * dnode which overrode the dn_spill field.  However,
3566                          * when adding more attributes to the file a spill
3567                          * block was required to hold the extra attributes.
3568                          *
3569                          * Make sure to clear the garbage left in the dn_spill
3570                          * field from the previous attributes in the bonus
3571                          * buffer.  Otherwise, after writing out the spill
3572                          * block to the new allocated dva, it will free
3573                          * the old block pointed to by the invalid dn_spill.
3574                          */
3575                         db->db_blkptr = NULL;
3576                 }
3577                 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3578                 mutex_exit(&dn->dn_mtx);
3579         }
3580
3581         /*
3582          * If this is a bonus buffer, simply copy the bonus data into the
3583          * dnode.  It will be written out when the dnode is synced (and it
3584          * will be synced, since it must have been dirty for dbuf_sync to
3585          * be called).
3586          */
3587         if (db->db_blkid == DMU_BONUS_BLKID) {
3588                 dbuf_dirty_record_t **drp;
3589
3590                 ASSERT(*datap != NULL);
3591                 ASSERT0(db->db_level);
3592                 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3593                     DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3594                 bcopy(*datap, DN_BONUS(dn->dn_phys),
3595                     DN_MAX_BONUS_LEN(dn->dn_phys));
3596                 DB_DNODE_EXIT(db);
3597
3598                 if (*datap != db->db.db_data) {
3599                         int slots = DB_DNODE(db)->dn_num_slots;
3600                         int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3601                         kmem_free(*datap, bonuslen);
3602                         arc_space_return(bonuslen, ARC_SPACE_BONUS);
3603                 }
3604                 db->db_data_pending = NULL;
3605                 drp = &db->db_last_dirty;
3606                 while (*drp != dr)
3607                         drp = &(*drp)->dr_next;
3608                 ASSERT(dr->dr_next == NULL);
3609                 ASSERT(dr->dr_dbuf == db);
3610                 *drp = dr->dr_next;
3611                 if (dr->dr_dbuf->db_level != 0) {
3612                         mutex_destroy(&dr->dt.di.dr_mtx);
3613                         list_destroy(&dr->dt.di.dr_children);
3614                 }
3615                 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3616                 ASSERT(db->db_dirtycnt > 0);
3617                 db->db_dirtycnt -= 1;
3618                 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3619                 return;
3620         }
3621
3622         os = dn->dn_objset;
3623
3624         /*
3625          * This function may have dropped the db_mtx lock allowing a dmu_sync
3626          * operation to sneak in. As a result, we need to ensure that we
3627          * don't check the dr_override_state until we have returned from
3628          * dbuf_check_blkptr.
3629          */
3630         dbuf_check_blkptr(dn, db);
3631
3632         /*
3633          * If this buffer is in the middle of an immediate write,
3634          * wait for the synchronous IO to complete.
3635          */
3636         while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3637                 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3638                 cv_wait(&db->db_changed, &db->db_mtx);
3639                 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3640         }
3641
3642         /*
3643          * If this is a dnode block, ensure it is appropriately encrypted
3644          * or decrypted, depending on what we are writing to it this txg.
3645          */
3646         if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3647                 dbuf_check_crypt(dr);
3648
3649         if (db->db_state != DB_NOFILL &&
3650             dn->dn_object != DMU_META_DNODE_OBJECT &&
3651             refcount_count(&db->db_holds) > 1 &&
3652             dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3653             *datap == db->db_buf) {
3654                 /*
3655                  * If this buffer is currently "in use" (i.e., there
3656                  * are active holds and db_data still references it),
3657                  * then make a copy before we start the write so that
3658                  * any modifications from the open txg will not leak
3659                  * into this write.
3660                  *
3661                  * NOTE: this copy does not need to be made for
3662                  * objects only modified in the syncing context (e.g.
3663                  * DNONE_DNODE blocks).
3664                  */
3665                 int psize = arc_buf_size(*datap);
3666                 int lsize = arc_buf_lsize(*datap);
3667                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3668                 enum zio_compress compress_type = arc_get_compression(*datap);
3669
3670                 if (arc_is_encrypted(*datap)) {
3671                         boolean_t byteorder;
3672                         uint8_t salt[ZIO_DATA_SALT_LEN];
3673                         uint8_t iv[ZIO_DATA_IV_LEN];
3674                         uint8_t mac[ZIO_DATA_MAC_LEN];
3675
3676                         arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3677                         *datap = arc_alloc_raw_buf(os->os_spa, db,
3678                             dmu_objset_id(os), byteorder, salt, iv, mac,
3679                             dn->dn_type, psize, lsize, compress_type);
3680                 } else if (compress_type != ZIO_COMPRESS_OFF) {
3681                         ASSERT3U(type, ==, ARC_BUFC_DATA);
3682                         *datap = arc_alloc_compressed_buf(os->os_spa, db,
3683                             psize, lsize, compress_type);
3684                 } else {
3685                         *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3686                 }
3687                 bcopy(db->db.db_data, (*datap)->b_data, psize);
3688         }
3689         db->db_data_pending = dr;
3690
3691         mutex_exit(&db->db_mtx);
3692
3693         dbuf_write(dr, *datap, tx);
3694
3695         ASSERT(!list_link_active(&dr->dr_dirty_node));
3696         if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3697                 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3698                 DB_DNODE_EXIT(db);
3699         } else {
3700                 /*
3701                  * Although zio_nowait() does not "wait for an IO", it does
3702                  * initiate the IO. If this is an empty write it seems plausible
3703                  * that the IO could actually be completed before the nowait
3704                  * returns. We need to DB_DNODE_EXIT() first in case
3705                  * zio_nowait() invalidates the dbuf.
3706                  */
3707                 DB_DNODE_EXIT(db);
3708                 zio_nowait(dr->dr_zio);
3709         }
3710 }
3711
3712 void
3713 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3714 {
3715         dbuf_dirty_record_t *dr;
3716
3717         while ((dr = list_head(list))) {
3718                 if (dr->dr_zio != NULL) {
3719                         /*
3720                          * If we find an already initialized zio then we
3721                          * are processing the meta-dnode, and we have finished.
3722                          * The dbufs for all dnodes are put back on the list
3723                          * during processing, so that we can zio_wait()
3724                          * these IOs after initiating all child IOs.
3725                          */
3726                         ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3727                             DMU_META_DNODE_OBJECT);
3728                         break;
3729                 }
3730                 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3731                     dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3732                         VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3733                 }
3734                 list_remove(list, dr);
3735                 if (dr->dr_dbuf->db_level > 0)
3736                         dbuf_sync_indirect(dr, tx);
3737                 else
3738                         dbuf_sync_leaf(dr, tx);
3739         }
3740 }
3741
3742 /* ARGSUSED */
3743 static void
3744 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3745 {
3746         dmu_buf_impl_t *db = vdb;
3747         dnode_t *dn;
3748         blkptr_t *bp = zio->io_bp;
3749         blkptr_t *bp_orig = &zio->io_bp_orig;
3750         spa_t *spa = zio->io_spa;
3751         int64_t delta;
3752         uint64_t fill = 0;
3753         int i;
3754
3755         ASSERT3P(db->db_blkptr, !=, NULL);
3756         ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3757
3758         DB_DNODE_ENTER(db);
3759         dn = DB_DNODE(db);
3760         delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3761         dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3762         zio->io_prev_space_delta = delta;
3763
3764         if (bp->blk_birth != 0) {
3765                 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3766                     BP_GET_TYPE(bp) == dn->dn_type) ||
3767                     (db->db_blkid == DMU_SPILL_BLKID &&
3768                     BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3769                     BP_IS_EMBEDDED(bp));
3770                 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3771         }
3772
3773         mutex_enter(&db->db_mtx);
3774
3775 #ifdef ZFS_DEBUG
3776         if (db->db_blkid == DMU_SPILL_BLKID) {
3777                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3778                 ASSERT(!(BP_IS_HOLE(bp)) &&
3779                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3780         }
3781 #endif
3782
3783         if (db->db_level == 0) {
3784                 mutex_enter(&dn->dn_mtx);
3785                 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3786                     db->db_blkid != DMU_SPILL_BLKID)
3787                         dn->dn_phys->dn_maxblkid = db->db_blkid;
3788                 mutex_exit(&dn->dn_mtx);
3789
3790                 if (dn->dn_type == DMU_OT_DNODE) {
3791                         i = 0;
3792                         while (i < db->db.db_size) {
3793                                 dnode_phys_t *dnp =
3794                                     (void *)(((char *)db->db.db_data) + i);
3795
3796                                 i += DNODE_MIN_SIZE;
3797                                 if (dnp->dn_type != DMU_OT_NONE) {
3798                                         fill++;
3799                                         i += dnp->dn_extra_slots *
3800                                             DNODE_MIN_SIZE;
3801                                 }
3802                         }
3803                 } else {
3804                         if (BP_IS_HOLE(bp)) {
3805                                 fill = 0;
3806                         } else {
3807                                 fill = 1;
3808                         }
3809                 }
3810         } else {
3811                 blkptr_t *ibp = db->db.db_data;
3812                 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3813                 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3814                         if (BP_IS_HOLE(ibp))
3815                                 continue;
3816                         fill += BP_GET_FILL(ibp);
3817                 }
3818         }
3819         DB_DNODE_EXIT(db);
3820
3821         if (!BP_IS_EMBEDDED(bp))
3822                 BP_SET_FILL(bp, fill);
3823
3824         mutex_exit(&db->db_mtx);
3825
3826         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3827         *db->db_blkptr = *bp;
3828         rw_exit(&dn->dn_struct_rwlock);
3829 }
3830
3831 /* ARGSUSED */
3832 /*
3833  * This function gets called just prior to running through the compression
3834  * stage of the zio pipeline. If we're an indirect block comprised of only
3835  * holes, then we want this indirect to be compressed away to a hole. In
3836  * order to do that we must zero out any information about the holes that
3837  * this indirect points to prior to before we try to compress it.
3838  */
3839 static void
3840 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3841 {
3842         dmu_buf_impl_t *db = vdb;
3843         dnode_t *dn;
3844         blkptr_t *bp;
3845         unsigned int epbs, i;
3846
3847         ASSERT3U(db->db_level, >, 0);
3848         DB_DNODE_ENTER(db);
3849         dn = DB_DNODE(db);
3850         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3851         ASSERT3U(epbs, <, 31);
3852
3853         /* Determine if all our children are holes */
3854         for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3855                 if (!BP_IS_HOLE(bp))
3856                         break;
3857         }
3858
3859         /*
3860          * If all the children are holes, then zero them all out so that
3861          * we may get compressed away.
3862          */
3863         if (i == 1ULL << epbs) {
3864                 /*
3865                  * We only found holes. Grab the rwlock to prevent
3866                  * anybody from reading the blocks we're about to
3867                  * zero out.
3868                  */
3869                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3870                 bzero(db->db.db_data, db->db.db_size);
3871                 rw_exit(&dn->dn_struct_rwlock);
3872         }
3873         DB_DNODE_EXIT(db);
3874 }
3875
3876 /*
3877  * The SPA will call this callback several times for each zio - once
3878  * for every physical child i/o (zio->io_phys_children times).  This
3879  * allows the DMU to monitor the progress of each logical i/o.  For example,
3880  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3881  * block.  There may be a long delay before all copies/fragments are completed,
3882  * so this callback allows us to retire dirty space gradually, as the physical
3883  * i/os complete.
3884  */
3885 /* ARGSUSED */
3886 static void
3887 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3888 {
3889         dmu_buf_impl_t *db = arg;
3890         objset_t *os = db->db_objset;
3891         dsl_pool_t *dp = dmu_objset_pool(os);
3892         dbuf_dirty_record_t *dr;
3893         int delta = 0;
3894
3895         dr = db->db_data_pending;
3896         ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3897
3898         /*
3899          * The callback will be called io_phys_children times.  Retire one
3900          * portion of our dirty space each time we are called.  Any rounding
3901          * error will be cleaned up by dsl_pool_sync()'s call to
3902          * dsl_pool_undirty_space().
3903          */
3904         delta = dr->dr_accounted / zio->io_phys_children;
3905         dsl_pool_undirty_space(dp, delta, zio->io_txg);
3906 }
3907
3908 /* ARGSUSED */
3909 static void
3910 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3911 {
3912         dmu_buf_impl_t *db = vdb;
3913         blkptr_t *bp_orig = &zio->io_bp_orig;
3914         blkptr_t *bp = db->db_blkptr;
3915         objset_t *os = db->db_objset;
3916         dmu_tx_t *tx = os->os_synctx;
3917         dbuf_dirty_record_t **drp, *dr;
3918
3919         ASSERT0(zio->io_error);
3920         ASSERT(db->db_blkptr == bp);
3921
3922         /*
3923          * For nopwrites and rewrites we ensure that the bp matches our
3924          * original and bypass all the accounting.
3925          */
3926         if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3927                 ASSERT(BP_EQUAL(bp, bp_orig));
3928         } else {
3929                 dsl_dataset_t *ds = os->os_dsl_dataset;
3930                 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3931                 dsl_dataset_block_born(ds, bp, tx);
3932         }
3933
3934         mutex_enter(&db->db_mtx);
3935
3936         DBUF_VERIFY(db);
3937
3938         drp = &db->db_last_dirty;
3939         while ((dr = *drp) != db->db_data_pending)
3940                 drp = &dr->dr_next;
3941         ASSERT(!list_link_active(&dr->dr_dirty_node));
3942         ASSERT(dr->dr_dbuf == db);
3943         ASSERT(dr->dr_next == NULL);
3944         *drp = dr->dr_next;
3945
3946 #ifdef ZFS_DEBUG
3947         if (db->db_blkid == DMU_SPILL_BLKID) {
3948                 dnode_t *dn;
3949
3950                 DB_DNODE_ENTER(db);
3951                 dn = DB_DNODE(db);
3952                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3953                 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3954                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3955                 DB_DNODE_EXIT(db);
3956         }
3957 #endif
3958
3959         if (db->db_level == 0) {
3960                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3961                 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3962                 if (db->db_state != DB_NOFILL) {
3963                         if (dr->dt.dl.dr_data != db->db_buf)
3964                                 arc_buf_destroy(dr->dt.dl.dr_data, db);
3965                 }
3966         } else {
3967                 dnode_t *dn;
3968
3969                 DB_DNODE_ENTER(db);
3970                 dn = DB_DNODE(db);
3971                 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3972                 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3973                 if (!BP_IS_HOLE(db->db_blkptr)) {
3974                         ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3975                             SPA_BLKPTRSHIFT);
3976                         ASSERT3U(db->db_blkid, <=,
3977                             dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3978                         ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3979                             db->db.db_size);
3980                 }
3981                 DB_DNODE_EXIT(db);
3982                 mutex_destroy(&dr->dt.di.dr_mtx);
3983                 list_destroy(&dr->dt.di.dr_children);
3984         }
3985         kmem_free(dr, sizeof (dbuf_dirty_record_t));
3986
3987         cv_broadcast(&db->db_changed);
3988         ASSERT(db->db_dirtycnt > 0);
3989         db->db_dirtycnt -= 1;
3990         db->db_data_pending = NULL;
3991         dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3992 }
3993
3994 static void
3995 dbuf_write_nofill_ready(zio_t *zio)
3996 {
3997         dbuf_write_ready(zio, NULL, zio->io_private);
3998 }
3999
4000 static void
4001 dbuf_write_nofill_done(zio_t *zio)
4002 {
4003         dbuf_write_done(zio, NULL, zio->io_private);
4004 }
4005
4006 static void
4007 dbuf_write_override_ready(zio_t *zio)
4008 {
4009         dbuf_dirty_record_t *dr = zio->io_private;
4010         dmu_buf_impl_t *db = dr->dr_dbuf;
4011
4012         dbuf_write_ready(zio, NULL, db);
4013 }
4014
4015 static void
4016 dbuf_write_override_done(zio_t *zio)
4017 {
4018         dbuf_dirty_record_t *dr = zio->io_private;
4019         dmu_buf_impl_t *db = dr->dr_dbuf;
4020         blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4021
4022         mutex_enter(&db->db_mtx);
4023         if (!BP_EQUAL(zio->io_bp, obp)) {
4024                 if (!BP_IS_HOLE(obp))
4025                         dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4026                 arc_release(dr->dt.dl.dr_data, db);
4027         }
4028         mutex_exit(&db->db_mtx);
4029
4030         dbuf_write_done(zio, NULL, db);
4031
4032         if (zio->io_abd != NULL)
4033                 abd_put(zio->io_abd);
4034 }
4035
4036 /* Issue I/O to commit a dirty buffer to disk. */
4037 static void
4038 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4039 {
4040         dmu_buf_impl_t *db = dr->dr_dbuf;
4041         dnode_t *dn;
4042         objset_t *os;
4043         dmu_buf_impl_t *parent = db->db_parent;
4044         uint64_t txg = tx->tx_txg;
4045         zbookmark_phys_t zb;
4046         zio_prop_t zp;
4047         zio_t *zio;
4048         int wp_flag = 0;
4049
4050         ASSERT(dmu_tx_is_syncing(tx));
4051
4052         DB_DNODE_ENTER(db);
4053         dn = DB_DNODE(db);
4054         os = dn->dn_objset;
4055
4056         if (db->db_state != DB_NOFILL) {
4057                 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4058                         /*
4059                          * Private object buffers are released here rather
4060                          * than in dbuf_dirty() since they are only modified
4061                          * in the syncing context and we don't want the
4062                          * overhead of making multiple copies of the data.
4063                          */
4064                         if (BP_IS_HOLE(db->db_blkptr)) {
4065                                 arc_buf_thaw(data);
4066                         } else {
4067                                 dbuf_release_bp(db);
4068                         }
4069                 }
4070         }
4071
4072         if (parent != dn->dn_dbuf) {
4073                 /* Our parent is an indirect block. */
4074                 /* We have a dirty parent that has been scheduled for write. */
4075                 ASSERT(parent && parent->db_data_pending);
4076                 /* Our parent's buffer is one level closer to the dnode. */
4077                 ASSERT(db->db_level == parent->db_level-1);
4078                 /*
4079                  * We're about to modify our parent's db_data by modifying
4080                  * our block pointer, so the parent must be released.
4081                  */
4082                 ASSERT(arc_released(parent->db_buf));
4083                 zio = parent->db_data_pending->dr_zio;
4084         } else {
4085                 /* Our parent is the dnode itself. */
4086                 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4087                     db->db_blkid != DMU_SPILL_BLKID) ||
4088                     (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4089                 if (db->db_blkid != DMU_SPILL_BLKID)
4090                         ASSERT3P(db->db_blkptr, ==,
4091                             &dn->dn_phys->dn_blkptr[db->db_blkid]);
4092                 zio = dn->dn_zio;
4093         }
4094
4095         ASSERT(db->db_level == 0 || data == db->db_buf);
4096         ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4097         ASSERT(zio);
4098
4099         SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4100             os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4101             db->db.db_object, db->db_level, db->db_blkid);
4102
4103         if (db->db_blkid == DMU_SPILL_BLKID)
4104                 wp_flag = WP_SPILL;
4105         wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4106
4107         dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4108         DB_DNODE_EXIT(db);
4109
4110         /*
4111          * We copy the blkptr now (rather than when we instantiate the dirty
4112          * record), because its value can change between open context and
4113          * syncing context. We do not need to hold dn_struct_rwlock to read
4114          * db_blkptr because we are in syncing context.
4115          */
4116         dr->dr_bp_copy = *db->db_blkptr;
4117
4118         if (db->db_level == 0 &&
4119             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4120                 /*
4121                  * The BP for this block has been provided by open context
4122                  * (by dmu_sync() or dmu_buf_write_embedded()).
4123                  */
4124                 abd_t *contents = (data != NULL) ?
4125                     abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4126
4127                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4128                     &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4129                     &zp, dbuf_write_override_ready, NULL, NULL,
4130                     dbuf_write_override_done,
4131                     dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4132                 mutex_enter(&db->db_mtx);
4133                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4134                 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4135                     dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4136                 mutex_exit(&db->db_mtx);
4137         } else if (db->db_state == DB_NOFILL) {
4138                 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4139                     zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4140                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4141                     &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4142                     dbuf_write_nofill_ready, NULL, NULL,
4143                     dbuf_write_nofill_done, db,
4144                     ZIO_PRIORITY_ASYNC_WRITE,
4145                     ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4146         } else {
4147                 ASSERT(arc_released(data));
4148
4149                 /*
4150                  * For indirect blocks, we want to setup the children
4151                  * ready callback so that we can properly handle an indirect
4152                  * block that only contains holes.
4153                  */
4154                 arc_write_done_func_t *children_ready_cb = NULL;
4155                 if (db->db_level != 0)
4156                         children_ready_cb = dbuf_write_children_ready;
4157
4158                 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4159                     &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4160                     &zp, dbuf_write_ready,
4161                     children_ready_cb, dbuf_write_physdone,
4162                     dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4163                     ZIO_FLAG_MUSTSUCCEED, &zb);
4164         }
4165 }
4166
4167 #if defined(_KERNEL) && defined(HAVE_SPL)
4168 EXPORT_SYMBOL(dbuf_find);
4169 EXPORT_SYMBOL(dbuf_is_metadata);
4170 EXPORT_SYMBOL(dbuf_destroy);
4171 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4172 EXPORT_SYMBOL(dbuf_whichblock);
4173 EXPORT_SYMBOL(dbuf_read);
4174 EXPORT_SYMBOL(dbuf_unoverride);
4175 EXPORT_SYMBOL(dbuf_free_range);
4176 EXPORT_SYMBOL(dbuf_new_size);
4177 EXPORT_SYMBOL(dbuf_release_bp);
4178 EXPORT_SYMBOL(dbuf_dirty);
4179 EXPORT_SYMBOL(dmu_buf_will_change_crypt_params);
4180 EXPORT_SYMBOL(dmu_buf_will_dirty);
4181 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4182 EXPORT_SYMBOL(dmu_buf_will_fill);
4183 EXPORT_SYMBOL(dmu_buf_fill_done);
4184 EXPORT_SYMBOL(dmu_buf_rele);
4185 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4186 EXPORT_SYMBOL(dbuf_prefetch);
4187 EXPORT_SYMBOL(dbuf_hold_impl);
4188 EXPORT_SYMBOL(dbuf_hold);
4189 EXPORT_SYMBOL(dbuf_hold_level);
4190 EXPORT_SYMBOL(dbuf_create_bonus);
4191 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4192 EXPORT_SYMBOL(dbuf_rm_spill);
4193 EXPORT_SYMBOL(dbuf_add_ref);
4194 EXPORT_SYMBOL(dbuf_rele);
4195 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4196 EXPORT_SYMBOL(dbuf_refcount);
4197 EXPORT_SYMBOL(dbuf_sync_list);
4198 EXPORT_SYMBOL(dmu_buf_set_user);
4199 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4200 EXPORT_SYMBOL(dmu_buf_get_user);
4201 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4202
4203 /* BEGIN CSTYLED */
4204 module_param(dbuf_cache_max_bytes, ulong, 0644);
4205 MODULE_PARM_DESC(dbuf_cache_max_bytes,
4206         "Maximum size in bytes of the dbuf cache.");
4207
4208 module_param(dbuf_cache_hiwater_pct, uint, 0644);
4209 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4210         "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4211         "directly.");
4212
4213 module_param(dbuf_cache_lowater_pct, uint, 0644);
4214 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4215         "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4216         "evicting dbufs.");
4217
4218 module_param(dbuf_cache_max_shift, int, 0644);
4219 MODULE_PARM_DESC(dbuf_cache_max_shift,
4220         "Cap the size of the dbuf cache to a log2 fraction of arc size.");
4221 /* END CSTYLED */
4222 #endif