]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/dbuf.c
Update build system and packaging
[FreeBSD/FreeBSD.git] / module / zfs / dbuf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51
52 kstat_t *dbuf_ksp;
53
54 typedef struct dbuf_stats {
55         /*
56          * Various statistics about the size of the dbuf cache.
57          */
58         kstat_named_t cache_count;
59         kstat_named_t cache_size_bytes;
60         kstat_named_t cache_size_bytes_max;
61         /*
62          * Statistics regarding the bounds on the dbuf cache size.
63          */
64         kstat_named_t cache_target_bytes;
65         kstat_named_t cache_lowater_bytes;
66         kstat_named_t cache_hiwater_bytes;
67         /*
68          * Total number of dbuf cache evictions that have occurred.
69          */
70         kstat_named_t cache_total_evicts;
71         /*
72          * The distribution of dbuf levels in the dbuf cache and
73          * the total size of all dbufs at each level.
74          */
75         kstat_named_t cache_levels[DN_MAX_LEVELS];
76         kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
77         /*
78          * Statistics about the dbuf hash table.
79          */
80         kstat_named_t hash_hits;
81         kstat_named_t hash_misses;
82         kstat_named_t hash_collisions;
83         kstat_named_t hash_elements;
84         kstat_named_t hash_elements_max;
85         /*
86          * Number of sublists containing more than one dbuf in the dbuf
87          * hash table. Keep track of the longest hash chain.
88          */
89         kstat_named_t hash_chains;
90         kstat_named_t hash_chain_max;
91         /*
92          * Number of times a dbuf_create() discovers that a dbuf was
93          * already created and in the dbuf hash table.
94          */
95         kstat_named_t hash_insert_race;
96 } dbuf_stats_t;
97
98 dbuf_stats_t dbuf_stats = {
99         { "cache_count",                        KSTAT_DATA_UINT64 },
100         { "cache_size_bytes",                   KSTAT_DATA_UINT64 },
101         { "cache_size_bytes_max",               KSTAT_DATA_UINT64 },
102         { "cache_target_bytes",                 KSTAT_DATA_UINT64 },
103         { "cache_lowater_bytes",                KSTAT_DATA_UINT64 },
104         { "cache_hiwater_bytes",                KSTAT_DATA_UINT64 },
105         { "cache_total_evicts",                 KSTAT_DATA_UINT64 },
106         { { "cache_levels_N",                   KSTAT_DATA_UINT64 } },
107         { { "cache_levels_bytes_N",             KSTAT_DATA_UINT64 } },
108         { "hash_hits",                          KSTAT_DATA_UINT64 },
109         { "hash_misses",                        KSTAT_DATA_UINT64 },
110         { "hash_collisions",                    KSTAT_DATA_UINT64 },
111         { "hash_elements",                      KSTAT_DATA_UINT64 },
112         { "hash_elements_max",                  KSTAT_DATA_UINT64 },
113         { "hash_chains",                        KSTAT_DATA_UINT64 },
114         { "hash_chain_max",                     KSTAT_DATA_UINT64 },
115         { "hash_insert_race",                   KSTAT_DATA_UINT64 }
116 };
117
118 #define DBUF_STAT_INCR(stat, val)       \
119         atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
120 #define DBUF_STAT_DECR(stat, val)       \
121         DBUF_STAT_INCR(stat, -(val));
122 #define DBUF_STAT_BUMP(stat)            \
123         DBUF_STAT_INCR(stat, 1);
124 #define DBUF_STAT_BUMPDOWN(stat)        \
125         DBUF_STAT_INCR(stat, -1);
126 #define DBUF_STAT_MAX(stat, v) {                                        \
127         uint64_t _m;                                                    \
128         while ((v) > (_m = dbuf_stats.stat.value.ui64) &&               \
129             (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
130                 continue;                                               \
131 }
132
133 struct dbuf_hold_impl_data {
134         /* Function arguments */
135         dnode_t *dh_dn;
136         uint8_t dh_level;
137         uint64_t dh_blkid;
138         boolean_t dh_fail_sparse;
139         boolean_t dh_fail_uncached;
140         void *dh_tag;
141         dmu_buf_impl_t **dh_dbp;
142         /* Local variables */
143         dmu_buf_impl_t *dh_db;
144         dmu_buf_impl_t *dh_parent;
145         blkptr_t *dh_bp;
146         int dh_err;
147         dbuf_dirty_record_t *dh_dr;
148         int dh_depth;
149 };
150
151 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
152     dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
153         boolean_t fail_uncached,
154         void *tag, dmu_buf_impl_t **dbp, int depth);
155 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
156
157 uint_t zfs_dbuf_evict_key;
158
159 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
160 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
161
162 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
163     dmu_buf_evict_func_t *evict_func_sync,
164     dmu_buf_evict_func_t *evict_func_async,
165     dmu_buf_t **clear_on_evict_dbufp);
166
167 /*
168  * Global data structures and functions for the dbuf cache.
169  */
170 static kmem_cache_t *dbuf_kmem_cache;
171 static taskq_t *dbu_evict_taskq;
172
173 static kthread_t *dbuf_cache_evict_thread;
174 static kmutex_t dbuf_evict_lock;
175 static kcondvar_t dbuf_evict_cv;
176 static boolean_t dbuf_evict_thread_exit;
177
178 /*
179  * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
180  * are not currently held but have been recently released. These dbufs
181  * are not eligible for arc eviction until they are aged out of the cache.
182  * Dbufs are added to the dbuf cache once the last hold is released. If a
183  * dbuf is later accessed and still exists in the dbuf cache, then it will
184  * be removed from the cache and later re-added to the head of the cache.
185  * Dbufs that are aged out of the cache will be immediately destroyed and
186  * become eligible for arc eviction.
187  */
188 static multilist_t *dbuf_cache;
189 static refcount_t dbuf_cache_size;
190 unsigned long dbuf_cache_max_bytes = 0;
191
192 /* Set the default size of the dbuf cache to log2 fraction of arc size. */
193 int dbuf_cache_shift = 5;
194
195 /*
196  * The dbuf cache uses a three-stage eviction policy:
197  *      - A low water marker designates when the dbuf eviction thread
198  *      should stop evicting from the dbuf cache.
199  *      - When we reach the maximum size (aka mid water mark), we
200  *      signal the eviction thread to run.
201  *      - The high water mark indicates when the eviction thread
202  *      is unable to keep up with the incoming load and eviction must
203  *      happen in the context of the calling thread.
204  *
205  * The dbuf cache:
206  *                                                 (max size)
207  *                                      low water   mid water   hi water
208  * +----------------------------------------+----------+----------+
209  * |                                        |          |          |
210  * |                                        |          |          |
211  * |                                        |          |          |
212  * |                                        |          |          |
213  * +----------------------------------------+----------+----------+
214  *                                        stop        signal     evict
215  *                                      evicting     eviction   directly
216  *                                                    thread
217  *
218  * The high and low water marks indicate the operating range for the eviction
219  * thread. The low water mark is, by default, 90% of the total size of the
220  * cache and the high water mark is at 110% (both of these percentages can be
221  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
222  * respectively). The eviction thread will try to ensure that the cache remains
223  * within this range by waking up every second and checking if the cache is
224  * above the low water mark. The thread can also be woken up by callers adding
225  * elements into the cache if the cache is larger than the mid water (i.e max
226  * cache size). Once the eviction thread is woken up and eviction is required,
227  * it will continue evicting buffers until it's able to reduce the cache size
228  * to the low water mark. If the cache size continues to grow and hits the high
229  * water mark, then callers adding elements to the cache will begin to evict
230  * directly from the cache until the cache is no longer above the high water
231  * mark.
232  */
233
234 /*
235  * The percentage above and below the maximum cache size.
236  */
237 uint_t dbuf_cache_hiwater_pct = 10;
238 uint_t dbuf_cache_lowater_pct = 10;
239
240 /* ARGSUSED */
241 static int
242 dbuf_cons(void *vdb, void *unused, int kmflag)
243 {
244         dmu_buf_impl_t *db = vdb;
245         bzero(db, sizeof (dmu_buf_impl_t));
246
247         mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
248         cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
249         multilist_link_init(&db->db_cache_link);
250         refcount_create(&db->db_holds);
251
252         return (0);
253 }
254
255 /* ARGSUSED */
256 static void
257 dbuf_dest(void *vdb, void *unused)
258 {
259         dmu_buf_impl_t *db = vdb;
260         mutex_destroy(&db->db_mtx);
261         cv_destroy(&db->db_changed);
262         ASSERT(!multilist_link_active(&db->db_cache_link));
263         refcount_destroy(&db->db_holds);
264 }
265
266 /*
267  * dbuf hash table routines
268  */
269 static dbuf_hash_table_t dbuf_hash_table;
270
271 static uint64_t dbuf_hash_count;
272
273 static uint64_t
274 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
275 {
276         uintptr_t osv = (uintptr_t)os;
277         uint64_t crc = -1ULL;
278
279         ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
280         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
281         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
282         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
283         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
284         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
285         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
286
287         crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
288
289         return (crc);
290 }
291
292 #define DBUF_EQUAL(dbuf, os, obj, level, blkid)         \
293         ((dbuf)->db.db_object == (obj) &&               \
294         (dbuf)->db_objset == (os) &&                    \
295         (dbuf)->db_level == (level) &&                  \
296         (dbuf)->db_blkid == (blkid))
297
298 dmu_buf_impl_t *
299 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
300 {
301         dbuf_hash_table_t *h = &dbuf_hash_table;
302         uint64_t hv;
303         uint64_t idx;
304         dmu_buf_impl_t *db;
305
306         hv = dbuf_hash(os, obj, level, blkid);
307         idx = hv & h->hash_table_mask;
308
309         mutex_enter(DBUF_HASH_MUTEX(h, idx));
310         for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
311                 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
312                         mutex_enter(&db->db_mtx);
313                         if (db->db_state != DB_EVICTING) {
314                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
315                                 return (db);
316                         }
317                         mutex_exit(&db->db_mtx);
318                 }
319         }
320         mutex_exit(DBUF_HASH_MUTEX(h, idx));
321         return (NULL);
322 }
323
324 static dmu_buf_impl_t *
325 dbuf_find_bonus(objset_t *os, uint64_t object)
326 {
327         dnode_t *dn;
328         dmu_buf_impl_t *db = NULL;
329
330         if (dnode_hold(os, object, FTAG, &dn) == 0) {
331                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
332                 if (dn->dn_bonus != NULL) {
333                         db = dn->dn_bonus;
334                         mutex_enter(&db->db_mtx);
335                 }
336                 rw_exit(&dn->dn_struct_rwlock);
337                 dnode_rele(dn, FTAG);
338         }
339         return (db);
340 }
341
342 /*
343  * Insert an entry into the hash table.  If there is already an element
344  * equal to elem in the hash table, then the already existing element
345  * will be returned and the new element will not be inserted.
346  * Otherwise returns NULL.
347  */
348 static dmu_buf_impl_t *
349 dbuf_hash_insert(dmu_buf_impl_t *db)
350 {
351         dbuf_hash_table_t *h = &dbuf_hash_table;
352         objset_t *os = db->db_objset;
353         uint64_t obj = db->db.db_object;
354         int level = db->db_level;
355         uint64_t blkid, hv, idx;
356         dmu_buf_impl_t *dbf;
357         uint32_t i;
358
359         blkid = db->db_blkid;
360         hv = dbuf_hash(os, obj, level, blkid);
361         idx = hv & h->hash_table_mask;
362
363         mutex_enter(DBUF_HASH_MUTEX(h, idx));
364         for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
365             dbf = dbf->db_hash_next, i++) {
366                 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
367                         mutex_enter(&dbf->db_mtx);
368                         if (dbf->db_state != DB_EVICTING) {
369                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
370                                 return (dbf);
371                         }
372                         mutex_exit(&dbf->db_mtx);
373                 }
374         }
375
376         if (i > 0) {
377                 DBUF_STAT_BUMP(hash_collisions);
378                 if (i == 1)
379                         DBUF_STAT_BUMP(hash_chains);
380
381                 DBUF_STAT_MAX(hash_chain_max, i);
382         }
383
384         mutex_enter(&db->db_mtx);
385         db->db_hash_next = h->hash_table[idx];
386         h->hash_table[idx] = db;
387         mutex_exit(DBUF_HASH_MUTEX(h, idx));
388         atomic_inc_64(&dbuf_hash_count);
389         DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
390
391         return (NULL);
392 }
393
394 /*
395  * Remove an entry from the hash table.  It must be in the EVICTING state.
396  */
397 static void
398 dbuf_hash_remove(dmu_buf_impl_t *db)
399 {
400         dbuf_hash_table_t *h = &dbuf_hash_table;
401         uint64_t hv, idx;
402         dmu_buf_impl_t *dbf, **dbp;
403
404         hv = dbuf_hash(db->db_objset, db->db.db_object,
405             db->db_level, db->db_blkid);
406         idx = hv & h->hash_table_mask;
407
408         /*
409          * We mustn't hold db_mtx to maintain lock ordering:
410          * DBUF_HASH_MUTEX > db_mtx.
411          */
412         ASSERT(refcount_is_zero(&db->db_holds));
413         ASSERT(db->db_state == DB_EVICTING);
414         ASSERT(!MUTEX_HELD(&db->db_mtx));
415
416         mutex_enter(DBUF_HASH_MUTEX(h, idx));
417         dbp = &h->hash_table[idx];
418         while ((dbf = *dbp) != db) {
419                 dbp = &dbf->db_hash_next;
420                 ASSERT(dbf != NULL);
421         }
422         *dbp = db->db_hash_next;
423         db->db_hash_next = NULL;
424         if (h->hash_table[idx] &&
425             h->hash_table[idx]->db_hash_next == NULL)
426                 DBUF_STAT_BUMPDOWN(hash_chains);
427         mutex_exit(DBUF_HASH_MUTEX(h, idx));
428         atomic_dec_64(&dbuf_hash_count);
429 }
430
431 typedef enum {
432         DBVU_EVICTING,
433         DBVU_NOT_EVICTING
434 } dbvu_verify_type_t;
435
436 static void
437 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
438 {
439 #ifdef ZFS_DEBUG
440         int64_t holds;
441
442         if (db->db_user == NULL)
443                 return;
444
445         /* Only data blocks support the attachment of user data. */
446         ASSERT(db->db_level == 0);
447
448         /* Clients must resolve a dbuf before attaching user data. */
449         ASSERT(db->db.db_data != NULL);
450         ASSERT3U(db->db_state, ==, DB_CACHED);
451
452         holds = refcount_count(&db->db_holds);
453         if (verify_type == DBVU_EVICTING) {
454                 /*
455                  * Immediate eviction occurs when holds == dirtycnt.
456                  * For normal eviction buffers, holds is zero on
457                  * eviction, except when dbuf_fix_old_data() calls
458                  * dbuf_clear_data().  However, the hold count can grow
459                  * during eviction even though db_mtx is held (see
460                  * dmu_bonus_hold() for an example), so we can only
461                  * test the generic invariant that holds >= dirtycnt.
462                  */
463                 ASSERT3U(holds, >=, db->db_dirtycnt);
464         } else {
465                 if (db->db_user_immediate_evict == TRUE)
466                         ASSERT3U(holds, >=, db->db_dirtycnt);
467                 else
468                         ASSERT3U(holds, >, 0);
469         }
470 #endif
471 }
472
473 static void
474 dbuf_evict_user(dmu_buf_impl_t *db)
475 {
476         dmu_buf_user_t *dbu = db->db_user;
477
478         ASSERT(MUTEX_HELD(&db->db_mtx));
479
480         if (dbu == NULL)
481                 return;
482
483         dbuf_verify_user(db, DBVU_EVICTING);
484         db->db_user = NULL;
485
486 #ifdef ZFS_DEBUG
487         if (dbu->dbu_clear_on_evict_dbufp != NULL)
488                 *dbu->dbu_clear_on_evict_dbufp = NULL;
489 #endif
490
491         /*
492          * There are two eviction callbacks - one that we call synchronously
493          * and one that we invoke via a taskq.  The async one is useful for
494          * avoiding lock order reversals and limiting stack depth.
495          *
496          * Note that if we have a sync callback but no async callback,
497          * it's likely that the sync callback will free the structure
498          * containing the dbu.  In that case we need to take care to not
499          * dereference dbu after calling the sync evict func.
500          */
501         boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
502
503         if (dbu->dbu_evict_func_sync != NULL)
504                 dbu->dbu_evict_func_sync(dbu);
505
506         if (has_async) {
507                 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
508                     dbu, 0, &dbu->dbu_tqent);
509         }
510 }
511
512 boolean_t
513 dbuf_is_metadata(dmu_buf_impl_t *db)
514 {
515         /*
516          * Consider indirect blocks and spill blocks to be meta data.
517          */
518         if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
519                 return (B_TRUE);
520         } else {
521                 boolean_t is_metadata;
522
523                 DB_DNODE_ENTER(db);
524                 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
525                 DB_DNODE_EXIT(db);
526
527                 return (is_metadata);
528         }
529 }
530
531
532 /*
533  * This function *must* return indices evenly distributed between all
534  * sublists of the multilist. This is needed due to how the dbuf eviction
535  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
536  * distributed between all sublists and uses this assumption when
537  * deciding which sublist to evict from and how much to evict from it.
538  */
539 unsigned int
540 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
541 {
542         dmu_buf_impl_t *db = obj;
543
544         /*
545          * The assumption here, is the hash value for a given
546          * dmu_buf_impl_t will remain constant throughout it's lifetime
547          * (i.e. it's objset, object, level and blkid fields don't change).
548          * Thus, we don't need to store the dbuf's sublist index
549          * on insertion, as this index can be recalculated on removal.
550          *
551          * Also, the low order bits of the hash value are thought to be
552          * distributed evenly. Otherwise, in the case that the multilist
553          * has a power of two number of sublists, each sublists' usage
554          * would not be evenly distributed.
555          */
556         return (dbuf_hash(db->db_objset, db->db.db_object,
557             db->db_level, db->db_blkid) %
558             multilist_get_num_sublists(ml));
559 }
560
561 static inline unsigned long
562 dbuf_cache_target_bytes(void)
563 {
564         return MIN(dbuf_cache_max_bytes,
565             arc_target_bytes() >> dbuf_cache_shift);
566 }
567
568 static inline uint64_t
569 dbuf_cache_hiwater_bytes(void)
570 {
571         uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
572         return (dbuf_cache_target +
573             (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
574 }
575
576 static inline uint64_t
577 dbuf_cache_lowater_bytes(void)
578 {
579         uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
580         return (dbuf_cache_target -
581             (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
582 }
583
584 static inline boolean_t
585 dbuf_cache_above_hiwater(void)
586 {
587         return (refcount_count(&dbuf_cache_size) > dbuf_cache_hiwater_bytes());
588 }
589
590 static inline boolean_t
591 dbuf_cache_above_lowater(void)
592 {
593         return (refcount_count(&dbuf_cache_size) > dbuf_cache_lowater_bytes());
594 }
595
596 /*
597  * Evict the oldest eligible dbuf from the dbuf cache.
598  */
599 static void
600 dbuf_evict_one(void)
601 {
602         int idx = multilist_get_random_index(dbuf_cache);
603         multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
604
605         ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
606
607         /*
608          * Set the thread's tsd to indicate that it's processing evictions.
609          * Once a thread stops evicting from the dbuf cache it will
610          * reset its tsd to NULL.
611          */
612         ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
613         (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
614
615         dmu_buf_impl_t *db = multilist_sublist_tail(mls);
616         while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
617                 db = multilist_sublist_prev(mls, db);
618         }
619
620         DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
621             multilist_sublist_t *, mls);
622
623         if (db != NULL) {
624                 multilist_sublist_remove(mls, db);
625                 multilist_sublist_unlock(mls);
626                 (void) refcount_remove_many(&dbuf_cache_size,
627                     db->db.db_size, db);
628                 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
629                 DBUF_STAT_BUMPDOWN(cache_count);
630                 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
631                     db->db.db_size);
632                 dbuf_destroy(db);
633                 DBUF_STAT_MAX(cache_size_bytes_max,
634                     refcount_count(&dbuf_cache_size));
635                 DBUF_STAT_BUMP(cache_total_evicts);
636         } else {
637                 multilist_sublist_unlock(mls);
638         }
639         (void) tsd_set(zfs_dbuf_evict_key, NULL);
640 }
641
642 /*
643  * The dbuf evict thread is responsible for aging out dbufs from the
644  * cache. Once the cache has reached it's maximum size, dbufs are removed
645  * and destroyed. The eviction thread will continue running until the size
646  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
647  * out of the cache it is destroyed and becomes eligible for arc eviction.
648  */
649 /* ARGSUSED */
650 static void
651 dbuf_evict_thread(void *unused)
652 {
653         callb_cpr_t cpr;
654
655         CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
656
657         mutex_enter(&dbuf_evict_lock);
658         while (!dbuf_evict_thread_exit) {
659                 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
660                         CALLB_CPR_SAFE_BEGIN(&cpr);
661                         (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
662                             &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
663                         CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
664                 }
665                 mutex_exit(&dbuf_evict_lock);
666
667                 /*
668                  * Keep evicting as long as we're above the low water mark
669                  * for the cache. We do this without holding the locks to
670                  * minimize lock contention.
671                  */
672                 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
673                         dbuf_evict_one();
674                 }
675
676                 mutex_enter(&dbuf_evict_lock);
677         }
678
679         dbuf_evict_thread_exit = B_FALSE;
680         cv_broadcast(&dbuf_evict_cv);
681         CALLB_CPR_EXIT(&cpr);   /* drops dbuf_evict_lock */
682         thread_exit();
683 }
684
685 /*
686  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
687  * If the dbuf cache is at its high water mark, then evict a dbuf from the
688  * dbuf cache using the callers context.
689  */
690 static void
691 dbuf_evict_notify(void)
692 {
693
694         /*
695          * We use thread specific data to track when a thread has
696          * started processing evictions. This allows us to avoid deeply
697          * nested stacks that would have a call flow similar to this:
698          *
699          * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
700          *      ^                                               |
701          *      |                                               |
702          *      +-----dbuf_destroy()<--dbuf_evict_one()<--------+
703          *
704          * The dbuf_eviction_thread will always have its tsd set until
705          * that thread exits. All other threads will only set their tsd
706          * if they are participating in the eviction process. This only
707          * happens if the eviction thread is unable to process evictions
708          * fast enough. To keep the dbuf cache size in check, other threads
709          * can evict from the dbuf cache directly. Those threads will set
710          * their tsd values so that we ensure that they only evict one dbuf
711          * from the dbuf cache.
712          */
713         if (tsd_get(zfs_dbuf_evict_key) != NULL)
714                 return;
715
716         /*
717          * We check if we should evict without holding the dbuf_evict_lock,
718          * because it's OK to occasionally make the wrong decision here,
719          * and grabbing the lock results in massive lock contention.
720          */
721         if (refcount_count(&dbuf_cache_size) > dbuf_cache_target_bytes()) {
722                 if (dbuf_cache_above_hiwater())
723                         dbuf_evict_one();
724                 cv_signal(&dbuf_evict_cv);
725         }
726 }
727
728 static int
729 dbuf_kstat_update(kstat_t *ksp, int rw)
730 {
731         dbuf_stats_t *ds = ksp->ks_data;
732
733         if (rw == KSTAT_WRITE) {
734                 return (SET_ERROR(EACCES));
735         } else {
736                 ds->cache_size_bytes.value.ui64 =
737                     refcount_count(&dbuf_cache_size);
738                 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
739                 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
740                 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
741                 ds->hash_elements.value.ui64 = dbuf_hash_count;
742         }
743
744         return (0);
745 }
746
747 void
748 dbuf_init(void)
749 {
750         uint64_t hsize = 1ULL << 16;
751         dbuf_hash_table_t *h = &dbuf_hash_table;
752         int i;
753
754         /*
755          * The hash table is big enough to fill all of physical memory
756          * with an average block size of zfs_arc_average_blocksize (default 8K).
757          * By default, the table will take up
758          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
759          */
760         while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
761                 hsize <<= 1;
762
763 retry:
764         h->hash_table_mask = hsize - 1;
765 #if defined(_KERNEL)
766         /*
767          * Large allocations which do not require contiguous pages
768          * should be using vmem_alloc() in the linux kernel
769          */
770         h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
771 #else
772         h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
773 #endif
774         if (h->hash_table == NULL) {
775                 /* XXX - we should really return an error instead of assert */
776                 ASSERT(hsize > (1ULL << 10));
777                 hsize >>= 1;
778                 goto retry;
779         }
780
781         dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
782             sizeof (dmu_buf_impl_t),
783             0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
784
785         for (i = 0; i < DBUF_MUTEXES; i++)
786                 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
787
788         dbuf_stats_init(h);
789
790         /*
791          * Setup the parameters for the dbuf cache. We set the size of the
792          * dbuf cache to 1/32nd (default) of the target size of the ARC. If
793          * the value has been specified as a module option and it's not
794          * greater than the target size of the ARC, then we honor that value.
795          */
796         if (dbuf_cache_max_bytes == 0 ||
797             dbuf_cache_max_bytes >= arc_target_bytes()) {
798                 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
799         }
800
801         /*
802          * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
803          * configuration is not required.
804          */
805         dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
806
807         dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
808             offsetof(dmu_buf_impl_t, db_cache_link),
809             dbuf_cache_multilist_index_func);
810         refcount_create(&dbuf_cache_size);
811
812         tsd_create(&zfs_dbuf_evict_key, NULL);
813         dbuf_evict_thread_exit = B_FALSE;
814         mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
815         cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
816         dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
817             NULL, 0, &p0, TS_RUN, minclsyspri);
818
819         dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
820             KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
821             KSTAT_FLAG_VIRTUAL);
822         if (dbuf_ksp != NULL) {
823                 dbuf_ksp->ks_data = &dbuf_stats;
824                 dbuf_ksp->ks_update = dbuf_kstat_update;
825                 kstat_install(dbuf_ksp);
826
827                 for (i = 0; i < DN_MAX_LEVELS; i++) {
828                         snprintf(dbuf_stats.cache_levels[i].name,
829                             KSTAT_STRLEN, "cache_level_%d", i);
830                         dbuf_stats.cache_levels[i].data_type =
831                             KSTAT_DATA_UINT64;
832                         snprintf(dbuf_stats.cache_levels_bytes[i].name,
833                             KSTAT_STRLEN, "cache_level_%d_bytes", i);
834                         dbuf_stats.cache_levels_bytes[i].data_type =
835                             KSTAT_DATA_UINT64;
836                 }
837         }
838 }
839
840 void
841 dbuf_fini(void)
842 {
843         dbuf_hash_table_t *h = &dbuf_hash_table;
844         int i;
845
846         dbuf_stats_destroy();
847
848         for (i = 0; i < DBUF_MUTEXES; i++)
849                 mutex_destroy(&h->hash_mutexes[i]);
850 #if defined(_KERNEL)
851         /*
852          * Large allocations which do not require contiguous pages
853          * should be using vmem_free() in the linux kernel
854          */
855         vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
856 #else
857         kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
858 #endif
859         kmem_cache_destroy(dbuf_kmem_cache);
860         taskq_destroy(dbu_evict_taskq);
861
862         mutex_enter(&dbuf_evict_lock);
863         dbuf_evict_thread_exit = B_TRUE;
864         while (dbuf_evict_thread_exit) {
865                 cv_signal(&dbuf_evict_cv);
866                 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
867         }
868         mutex_exit(&dbuf_evict_lock);
869         tsd_destroy(&zfs_dbuf_evict_key);
870
871         mutex_destroy(&dbuf_evict_lock);
872         cv_destroy(&dbuf_evict_cv);
873
874         refcount_destroy(&dbuf_cache_size);
875         multilist_destroy(dbuf_cache);
876
877         if (dbuf_ksp != NULL) {
878                 kstat_delete(dbuf_ksp);
879                 dbuf_ksp = NULL;
880         }
881 }
882
883 /*
884  * Other stuff.
885  */
886
887 #ifdef ZFS_DEBUG
888 static void
889 dbuf_verify(dmu_buf_impl_t *db)
890 {
891         dnode_t *dn;
892         dbuf_dirty_record_t *dr;
893
894         ASSERT(MUTEX_HELD(&db->db_mtx));
895
896         if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
897                 return;
898
899         ASSERT(db->db_objset != NULL);
900         DB_DNODE_ENTER(db);
901         dn = DB_DNODE(db);
902         if (dn == NULL) {
903                 ASSERT(db->db_parent == NULL);
904                 ASSERT(db->db_blkptr == NULL);
905         } else {
906                 ASSERT3U(db->db.db_object, ==, dn->dn_object);
907                 ASSERT3P(db->db_objset, ==, dn->dn_objset);
908                 ASSERT3U(db->db_level, <, dn->dn_nlevels);
909                 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
910                     db->db_blkid == DMU_SPILL_BLKID ||
911                     !avl_is_empty(&dn->dn_dbufs));
912         }
913         if (db->db_blkid == DMU_BONUS_BLKID) {
914                 ASSERT(dn != NULL);
915                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
916                 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
917         } else if (db->db_blkid == DMU_SPILL_BLKID) {
918                 ASSERT(dn != NULL);
919                 ASSERT0(db->db.db_offset);
920         } else {
921                 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
922         }
923
924         for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
925                 ASSERT(dr->dr_dbuf == db);
926
927         for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
928                 ASSERT(dr->dr_dbuf == db);
929
930         /*
931          * We can't assert that db_size matches dn_datablksz because it
932          * can be momentarily different when another thread is doing
933          * dnode_set_blksz().
934          */
935         if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
936                 dr = db->db_data_pending;
937                 /*
938                  * It should only be modified in syncing context, so
939                  * make sure we only have one copy of the data.
940                  */
941                 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
942         }
943
944         /* verify db->db_blkptr */
945         if (db->db_blkptr) {
946                 if (db->db_parent == dn->dn_dbuf) {
947                         /* db is pointed to by the dnode */
948                         /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
949                         if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
950                                 ASSERT(db->db_parent == NULL);
951                         else
952                                 ASSERT(db->db_parent != NULL);
953                         if (db->db_blkid != DMU_SPILL_BLKID)
954                                 ASSERT3P(db->db_blkptr, ==,
955                                     &dn->dn_phys->dn_blkptr[db->db_blkid]);
956                 } else {
957                         /* db is pointed to by an indirect block */
958                         ASSERTV(int epb = db->db_parent->db.db_size >>
959                             SPA_BLKPTRSHIFT);
960                         ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
961                         ASSERT3U(db->db_parent->db.db_object, ==,
962                             db->db.db_object);
963                         /*
964                          * dnode_grow_indblksz() can make this fail if we don't
965                          * have the struct_rwlock.  XXX indblksz no longer
966                          * grows.  safe to do this now?
967                          */
968                         if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
969                                 ASSERT3P(db->db_blkptr, ==,
970                                     ((blkptr_t *)db->db_parent->db.db_data +
971                                     db->db_blkid % epb));
972                         }
973                 }
974         }
975         if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
976             (db->db_buf == NULL || db->db_buf->b_data) &&
977             db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
978             db->db_state != DB_FILL && !dn->dn_free_txg) {
979                 /*
980                  * If the blkptr isn't set but they have nonzero data,
981                  * it had better be dirty, otherwise we'll lose that
982                  * data when we evict this buffer.
983                  *
984                  * There is an exception to this rule for indirect blocks; in
985                  * this case, if the indirect block is a hole, we fill in a few
986                  * fields on each of the child blocks (importantly, birth time)
987                  * to prevent hole birth times from being lost when you
988                  * partially fill in a hole.
989                  */
990                 if (db->db_dirtycnt == 0) {
991                         if (db->db_level == 0) {
992                                 uint64_t *buf = db->db.db_data;
993                                 int i;
994
995                                 for (i = 0; i < db->db.db_size >> 3; i++) {
996                                         ASSERT(buf[i] == 0);
997                                 }
998                         } else {
999                                 blkptr_t *bps = db->db.db_data;
1000                                 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1001                                     db->db.db_size);
1002                                 /*
1003                                  * We want to verify that all the blkptrs in the
1004                                  * indirect block are holes, but we may have
1005                                  * automatically set up a few fields for them.
1006                                  * We iterate through each blkptr and verify
1007                                  * they only have those fields set.
1008                                  */
1009                                 for (int i = 0;
1010                                     i < db->db.db_size / sizeof (blkptr_t);
1011                                     i++) {
1012                                         blkptr_t *bp = &bps[i];
1013                                         ASSERT(ZIO_CHECKSUM_IS_ZERO(
1014                                             &bp->blk_cksum));
1015                                         ASSERT(
1016                                             DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1017                                             DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1018                                             DVA_IS_EMPTY(&bp->blk_dva[2]));
1019                                         ASSERT0(bp->blk_fill);
1020                                         ASSERT0(bp->blk_pad[0]);
1021                                         ASSERT0(bp->blk_pad[1]);
1022                                         ASSERT(!BP_IS_EMBEDDED(bp));
1023                                         ASSERT(BP_IS_HOLE(bp));
1024                                         ASSERT0(bp->blk_phys_birth);
1025                                 }
1026                         }
1027                 }
1028         }
1029         DB_DNODE_EXIT(db);
1030 }
1031 #endif
1032
1033 static void
1034 dbuf_clear_data(dmu_buf_impl_t *db)
1035 {
1036         ASSERT(MUTEX_HELD(&db->db_mtx));
1037         dbuf_evict_user(db);
1038         ASSERT3P(db->db_buf, ==, NULL);
1039         db->db.db_data = NULL;
1040         if (db->db_state != DB_NOFILL)
1041                 db->db_state = DB_UNCACHED;
1042 }
1043
1044 static void
1045 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1046 {
1047         ASSERT(MUTEX_HELD(&db->db_mtx));
1048         ASSERT(buf != NULL);
1049
1050         db->db_buf = buf;
1051         ASSERT(buf->b_data != NULL);
1052         db->db.db_data = buf->b_data;
1053 }
1054
1055 /*
1056  * Loan out an arc_buf for read.  Return the loaned arc_buf.
1057  */
1058 arc_buf_t *
1059 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1060 {
1061         arc_buf_t *abuf;
1062
1063         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1064         mutex_enter(&db->db_mtx);
1065         if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
1066                 int blksz = db->db.db_size;
1067                 spa_t *spa = db->db_objset->os_spa;
1068
1069                 mutex_exit(&db->db_mtx);
1070                 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1071                 bcopy(db->db.db_data, abuf->b_data, blksz);
1072         } else {
1073                 abuf = db->db_buf;
1074                 arc_loan_inuse_buf(abuf, db);
1075                 db->db_buf = NULL;
1076                 dbuf_clear_data(db);
1077                 mutex_exit(&db->db_mtx);
1078         }
1079         return (abuf);
1080 }
1081
1082 /*
1083  * Calculate which level n block references the data at the level 0 offset
1084  * provided.
1085  */
1086 uint64_t
1087 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1088 {
1089         if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1090                 /*
1091                  * The level n blkid is equal to the level 0 blkid divided by
1092                  * the number of level 0s in a level n block.
1093                  *
1094                  * The level 0 blkid is offset >> datablkshift =
1095                  * offset / 2^datablkshift.
1096                  *
1097                  * The number of level 0s in a level n is the number of block
1098                  * pointers in an indirect block, raised to the power of level.
1099                  * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1100                  * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1101                  *
1102                  * Thus, the level n blkid is: offset /
1103                  * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
1104                  * = offset / 2^(datablkshift + level *
1105                  *   (indblkshift - SPA_BLKPTRSHIFT))
1106                  * = offset >> (datablkshift + level *
1107                  *   (indblkshift - SPA_BLKPTRSHIFT))
1108                  */
1109
1110                 const unsigned exp = dn->dn_datablkshift +
1111                     level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1112
1113                 if (exp >= 8 * sizeof (offset)) {
1114                         /* This only happens on the highest indirection level */
1115                         ASSERT3U(level, ==, dn->dn_nlevels - 1);
1116                         return (0);
1117                 }
1118
1119                 ASSERT3U(exp, <, 8 * sizeof (offset));
1120
1121                 return (offset >> exp);
1122         } else {
1123                 ASSERT3U(offset, <, dn->dn_datablksz);
1124                 return (0);
1125         }
1126 }
1127
1128 static void
1129 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1130     arc_buf_t *buf, void *vdb)
1131 {
1132         dmu_buf_impl_t *db = vdb;
1133
1134         mutex_enter(&db->db_mtx);
1135         ASSERT3U(db->db_state, ==, DB_READ);
1136         /*
1137          * All reads are synchronous, so we must have a hold on the dbuf
1138          */
1139         ASSERT(refcount_count(&db->db_holds) > 0);
1140         ASSERT(db->db_buf == NULL);
1141         ASSERT(db->db.db_data == NULL);
1142         if (db->db_level == 0 && db->db_freed_in_flight) {
1143                 /* we were freed in flight; disregard any error */
1144                 if (buf == NULL) {
1145                         buf = arc_alloc_buf(db->db_objset->os_spa,
1146                             db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1147                 }
1148                 arc_release(buf, db);
1149                 bzero(buf->b_data, db->db.db_size);
1150                 arc_buf_freeze(buf);
1151                 db->db_freed_in_flight = FALSE;
1152                 dbuf_set_data(db, buf);
1153                 db->db_state = DB_CACHED;
1154         } else if (buf != NULL) {
1155                 dbuf_set_data(db, buf);
1156                 db->db_state = DB_CACHED;
1157         } else {
1158                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1159                 ASSERT3P(db->db_buf, ==, NULL);
1160                 db->db_state = DB_UNCACHED;
1161         }
1162         cv_broadcast(&db->db_changed);
1163         dbuf_rele_and_unlock(db, NULL);
1164 }
1165
1166 static int
1167 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1168 {
1169         dnode_t *dn;
1170         zbookmark_phys_t zb;
1171         uint32_t aflags = ARC_FLAG_NOWAIT;
1172         int err, zio_flags = 0;
1173
1174         DB_DNODE_ENTER(db);
1175         dn = DB_DNODE(db);
1176         ASSERT(!refcount_is_zero(&db->db_holds));
1177         /* We need the struct_rwlock to prevent db_blkptr from changing. */
1178         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1179         ASSERT(MUTEX_HELD(&db->db_mtx));
1180         ASSERT(db->db_state == DB_UNCACHED);
1181         ASSERT(db->db_buf == NULL);
1182
1183         if (db->db_blkid == DMU_BONUS_BLKID) {
1184                 /*
1185                  * The bonus length stored in the dnode may be less than
1186                  * the maximum available space in the bonus buffer.
1187                  */
1188                 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1189                 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1190                 arc_buf_t *dn_buf = (dn->dn_dbuf != NULL) ?
1191                     dn->dn_dbuf->db_buf : NULL;
1192
1193                 /* if the underlying dnode block is encrypted, decrypt it */
1194                 if (dn_buf != NULL && dn->dn_objset->os_encrypted &&
1195                     DMU_OT_IS_ENCRYPTED(dn->dn_bonustype) &&
1196                     (flags & DB_RF_NO_DECRYPT) == 0 &&
1197                     arc_is_encrypted(dn_buf)) {
1198                         SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1199                             DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1200                         err = arc_untransform(dn_buf, dn->dn_objset->os_spa,
1201                             &zb, B_TRUE);
1202                         if (err != 0) {
1203                                 DB_DNODE_EXIT(db);
1204                                 mutex_exit(&db->db_mtx);
1205                                 return (err);
1206                         }
1207                 }
1208
1209                 ASSERT3U(bonuslen, <=, db->db.db_size);
1210                 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1211                 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1212                 if (bonuslen < max_bonuslen)
1213                         bzero(db->db.db_data, max_bonuslen);
1214                 if (bonuslen)
1215                         bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1216                 DB_DNODE_EXIT(db);
1217                 db->db_state = DB_CACHED;
1218                 mutex_exit(&db->db_mtx);
1219                 return (0);
1220         }
1221
1222         /*
1223          * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1224          * processes the delete record and clears the bp while we are waiting
1225          * for the dn_mtx (resulting in a "no" from block_freed).
1226          */
1227         if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1228             (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1229             BP_IS_HOLE(db->db_blkptr)))) {
1230                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1231
1232                 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1233                     db->db.db_size));
1234                 bzero(db->db.db_data, db->db.db_size);
1235
1236                 if (db->db_blkptr != NULL && db->db_level > 0 &&
1237                     BP_IS_HOLE(db->db_blkptr) &&
1238                     db->db_blkptr->blk_birth != 0) {
1239                         blkptr_t *bps = db->db.db_data;
1240                         for (int i = 0; i < ((1 <<
1241                             DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1242                             i++) {
1243                                 blkptr_t *bp = &bps[i];
1244                                 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1245                                     1 << dn->dn_indblkshift);
1246                                 BP_SET_LSIZE(bp,
1247                                     BP_GET_LEVEL(db->db_blkptr) == 1 ?
1248                                     dn->dn_datablksz :
1249                                     BP_GET_LSIZE(db->db_blkptr));
1250                                 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1251                                 BP_SET_LEVEL(bp,
1252                                     BP_GET_LEVEL(db->db_blkptr) - 1);
1253                                 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1254                         }
1255                 }
1256                 DB_DNODE_EXIT(db);
1257                 db->db_state = DB_CACHED;
1258                 mutex_exit(&db->db_mtx);
1259                 return (0);
1260         }
1261
1262         DB_DNODE_EXIT(db);
1263
1264         db->db_state = DB_READ;
1265         mutex_exit(&db->db_mtx);
1266
1267         if (DBUF_IS_L2CACHEABLE(db))
1268                 aflags |= ARC_FLAG_L2CACHE;
1269
1270         SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1271             db->db.db_object, db->db_level, db->db_blkid);
1272
1273         /*
1274          * All bps of an encrypted os should have the encryption bit set.
1275          * If this is not true it indicates tampering and we report an error.
1276          */
1277         if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1278                 spa_log_error(db->db_objset->os_spa, &zb);
1279                 zfs_panic_recover("unencrypted block in encrypted "
1280                     "object set %llu", dmu_objset_id(db->db_objset));
1281                 return (SET_ERROR(EIO));
1282         }
1283
1284         dbuf_add_ref(db, NULL);
1285
1286         zio_flags = (flags & DB_RF_CANFAIL) ?
1287             ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1288
1289         if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1290                 zio_flags |= ZIO_FLAG_RAW;
1291
1292         err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1293             dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1294             &aflags, &zb);
1295
1296         return (err);
1297 }
1298
1299 /*
1300  * This is our just-in-time copy function.  It makes a copy of buffers that
1301  * have been modified in a previous transaction group before we access them in
1302  * the current active group.
1303  *
1304  * This function is used in three places: when we are dirtying a buffer for the
1305  * first time in a txg, when we are freeing a range in a dnode that includes
1306  * this buffer, and when we are accessing a buffer which was received compressed
1307  * and later referenced in a WRITE_BYREF record.
1308  *
1309  * Note that when we are called from dbuf_free_range() we do not put a hold on
1310  * the buffer, we just traverse the active dbuf list for the dnode.
1311  */
1312 static void
1313 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1314 {
1315         dbuf_dirty_record_t *dr = db->db_last_dirty;
1316
1317         ASSERT(MUTEX_HELD(&db->db_mtx));
1318         ASSERT(db->db.db_data != NULL);
1319         ASSERT(db->db_level == 0);
1320         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1321
1322         if (dr == NULL ||
1323             (dr->dt.dl.dr_data !=
1324             ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1325                 return;
1326
1327         /*
1328          * If the last dirty record for this dbuf has not yet synced
1329          * and its referencing the dbuf data, either:
1330          *      reset the reference to point to a new copy,
1331          * or (if there a no active holders)
1332          *      just null out the current db_data pointer.
1333          */
1334         ASSERT3U(dr->dr_txg, >=, txg - 2);
1335         if (db->db_blkid == DMU_BONUS_BLKID) {
1336                 dnode_t *dn = DB_DNODE(db);
1337                 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1338                 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1339                 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1340                 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1341         } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1342                 dnode_t *dn = DB_DNODE(db);
1343                 int size = arc_buf_size(db->db_buf);
1344                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1345                 spa_t *spa = db->db_objset->os_spa;
1346                 enum zio_compress compress_type =
1347                     arc_get_compression(db->db_buf);
1348
1349                 if (arc_is_encrypted(db->db_buf)) {
1350                         boolean_t byteorder;
1351                         uint8_t salt[ZIO_DATA_SALT_LEN];
1352                         uint8_t iv[ZIO_DATA_IV_LEN];
1353                         uint8_t mac[ZIO_DATA_MAC_LEN];
1354
1355                         arc_get_raw_params(db->db_buf, &byteorder, salt,
1356                             iv, mac);
1357                         dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1358                             dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1359                             mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1360                             compress_type);
1361                 } else if (compress_type != ZIO_COMPRESS_OFF) {
1362                         ASSERT3U(type, ==, ARC_BUFC_DATA);
1363                         dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1364                             size, arc_buf_lsize(db->db_buf), compress_type);
1365                 } else {
1366                         dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1367                 }
1368                 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1369         } else {
1370                 db->db_buf = NULL;
1371                 dbuf_clear_data(db);
1372         }
1373 }
1374
1375 int
1376 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1377 {
1378         int err = 0;
1379         boolean_t prefetch;
1380         dnode_t *dn;
1381
1382         /*
1383          * We don't have to hold the mutex to check db_state because it
1384          * can't be freed while we have a hold on the buffer.
1385          */
1386         ASSERT(!refcount_is_zero(&db->db_holds));
1387
1388         if (db->db_state == DB_NOFILL)
1389                 return (SET_ERROR(EIO));
1390
1391         DB_DNODE_ENTER(db);
1392         dn = DB_DNODE(db);
1393         if ((flags & DB_RF_HAVESTRUCT) == 0)
1394                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1395
1396         prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1397             (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1398             DBUF_IS_CACHEABLE(db);
1399
1400         mutex_enter(&db->db_mtx);
1401         if (db->db_state == DB_CACHED) {
1402                 spa_t *spa = dn->dn_objset->os_spa;
1403
1404                 /*
1405                  * If the arc buf is compressed or encrypted, we need to
1406                  * untransform it to read the data. This could happen during
1407                  * the "zfs receive" of a stream which is deduplicated and
1408                  * either raw or compressed. We do not need to do this if the
1409                  * caller wants raw encrypted data.
1410                  */
1411                 if (db->db_buf != NULL && (flags & DB_RF_NO_DECRYPT) == 0 &&
1412                     (arc_is_encrypted(db->db_buf) ||
1413                     arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1414                         zbookmark_phys_t zb;
1415
1416                         SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1417                             db->db.db_object, db->db_level, db->db_blkid);
1418                         dbuf_fix_old_data(db, spa_syncing_txg(spa));
1419                         err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1420                         dbuf_set_data(db, db->db_buf);
1421                 }
1422                 mutex_exit(&db->db_mtx);
1423                 if (prefetch)
1424                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1425                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1426                         rw_exit(&dn->dn_struct_rwlock);
1427                 DB_DNODE_EXIT(db);
1428                 DBUF_STAT_BUMP(hash_hits);
1429         } else if (db->db_state == DB_UNCACHED) {
1430                 spa_t *spa = dn->dn_objset->os_spa;
1431                 boolean_t need_wait = B_FALSE;
1432
1433                 if (zio == NULL &&
1434                     db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1435                         zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1436                         need_wait = B_TRUE;
1437                 }
1438                 err = dbuf_read_impl(db, zio, flags);
1439
1440                 /* dbuf_read_impl has dropped db_mtx for us */
1441
1442                 if (!err && prefetch)
1443                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1444
1445                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1446                         rw_exit(&dn->dn_struct_rwlock);
1447                 DB_DNODE_EXIT(db);
1448                 DBUF_STAT_BUMP(hash_misses);
1449
1450                 if (!err && need_wait)
1451                         err = zio_wait(zio);
1452         } else {
1453                 /*
1454                  * Another reader came in while the dbuf was in flight
1455                  * between UNCACHED and CACHED.  Either a writer will finish
1456                  * writing the buffer (sending the dbuf to CACHED) or the
1457                  * first reader's request will reach the read_done callback
1458                  * and send the dbuf to CACHED.  Otherwise, a failure
1459                  * occurred and the dbuf went to UNCACHED.
1460                  */
1461                 mutex_exit(&db->db_mtx);
1462                 if (prefetch)
1463                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1464                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1465                         rw_exit(&dn->dn_struct_rwlock);
1466                 DB_DNODE_EXIT(db);
1467                 DBUF_STAT_BUMP(hash_misses);
1468
1469                 /* Skip the wait per the caller's request. */
1470                 mutex_enter(&db->db_mtx);
1471                 if ((flags & DB_RF_NEVERWAIT) == 0) {
1472                         while (db->db_state == DB_READ ||
1473                             db->db_state == DB_FILL) {
1474                                 ASSERT(db->db_state == DB_READ ||
1475                                     (flags & DB_RF_HAVESTRUCT) == 0);
1476                                 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1477                                     db, zio_t *, zio);
1478                                 cv_wait(&db->db_changed, &db->db_mtx);
1479                         }
1480                         if (db->db_state == DB_UNCACHED)
1481                                 err = SET_ERROR(EIO);
1482                 }
1483                 mutex_exit(&db->db_mtx);
1484         }
1485
1486         return (err);
1487 }
1488
1489 static void
1490 dbuf_noread(dmu_buf_impl_t *db)
1491 {
1492         ASSERT(!refcount_is_zero(&db->db_holds));
1493         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1494         mutex_enter(&db->db_mtx);
1495         while (db->db_state == DB_READ || db->db_state == DB_FILL)
1496                 cv_wait(&db->db_changed, &db->db_mtx);
1497         if (db->db_state == DB_UNCACHED) {
1498                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1499                 spa_t *spa = db->db_objset->os_spa;
1500
1501                 ASSERT(db->db_buf == NULL);
1502                 ASSERT(db->db.db_data == NULL);
1503                 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1504                 db->db_state = DB_FILL;
1505         } else if (db->db_state == DB_NOFILL) {
1506                 dbuf_clear_data(db);
1507         } else {
1508                 ASSERT3U(db->db_state, ==, DB_CACHED);
1509         }
1510         mutex_exit(&db->db_mtx);
1511 }
1512
1513 void
1514 dbuf_unoverride(dbuf_dirty_record_t *dr)
1515 {
1516         dmu_buf_impl_t *db = dr->dr_dbuf;
1517         blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1518         uint64_t txg = dr->dr_txg;
1519
1520         ASSERT(MUTEX_HELD(&db->db_mtx));
1521         /*
1522          * This assert is valid because dmu_sync() expects to be called by
1523          * a zilog's get_data while holding a range lock.  This call only
1524          * comes from dbuf_dirty() callers who must also hold a range lock.
1525          */
1526         ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1527         ASSERT(db->db_level == 0);
1528
1529         if (db->db_blkid == DMU_BONUS_BLKID ||
1530             dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1531                 return;
1532
1533         ASSERT(db->db_data_pending != dr);
1534
1535         /* free this block */
1536         if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1537                 zio_free(db->db_objset->os_spa, txg, bp);
1538
1539         dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1540         dr->dt.dl.dr_nopwrite = B_FALSE;
1541         dr->dt.dl.dr_has_raw_params = B_FALSE;
1542
1543         /*
1544          * Release the already-written buffer, so we leave it in
1545          * a consistent dirty state.  Note that all callers are
1546          * modifying the buffer, so they will immediately do
1547          * another (redundant) arc_release().  Therefore, leave
1548          * the buf thawed to save the effort of freezing &
1549          * immediately re-thawing it.
1550          */
1551         arc_release(dr->dt.dl.dr_data, db);
1552 }
1553
1554 /*
1555  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1556  * data blocks in the free range, so that any future readers will find
1557  * empty blocks.
1558  */
1559 void
1560 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1561     dmu_tx_t *tx)
1562 {
1563         dmu_buf_impl_t *db_search;
1564         dmu_buf_impl_t *db, *db_next;
1565         uint64_t txg = tx->tx_txg;
1566         avl_index_t where;
1567
1568         if (end_blkid > dn->dn_maxblkid &&
1569             !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1570                 end_blkid = dn->dn_maxblkid;
1571         dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1572
1573         db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1574         db_search->db_level = 0;
1575         db_search->db_blkid = start_blkid;
1576         db_search->db_state = DB_SEARCH;
1577
1578         mutex_enter(&dn->dn_dbufs_mtx);
1579         db = avl_find(&dn->dn_dbufs, db_search, &where);
1580         ASSERT3P(db, ==, NULL);
1581
1582         db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1583
1584         for (; db != NULL; db = db_next) {
1585                 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1586                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1587
1588                 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1589                         break;
1590                 }
1591                 ASSERT3U(db->db_blkid, >=, start_blkid);
1592
1593                 /* found a level 0 buffer in the range */
1594                 mutex_enter(&db->db_mtx);
1595                 if (dbuf_undirty(db, tx)) {
1596                         /* mutex has been dropped and dbuf destroyed */
1597                         continue;
1598                 }
1599
1600                 if (db->db_state == DB_UNCACHED ||
1601                     db->db_state == DB_NOFILL ||
1602                     db->db_state == DB_EVICTING) {
1603                         ASSERT(db->db.db_data == NULL);
1604                         mutex_exit(&db->db_mtx);
1605                         continue;
1606                 }
1607                 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1608                         /* will be handled in dbuf_read_done or dbuf_rele */
1609                         db->db_freed_in_flight = TRUE;
1610                         mutex_exit(&db->db_mtx);
1611                         continue;
1612                 }
1613                 if (refcount_count(&db->db_holds) == 0) {
1614                         ASSERT(db->db_buf);
1615                         dbuf_destroy(db);
1616                         continue;
1617                 }
1618                 /* The dbuf is referenced */
1619
1620                 if (db->db_last_dirty != NULL) {
1621                         dbuf_dirty_record_t *dr = db->db_last_dirty;
1622
1623                         if (dr->dr_txg == txg) {
1624                                 /*
1625                                  * This buffer is "in-use", re-adjust the file
1626                                  * size to reflect that this buffer may
1627                                  * contain new data when we sync.
1628                                  */
1629                                 if (db->db_blkid != DMU_SPILL_BLKID &&
1630                                     db->db_blkid > dn->dn_maxblkid)
1631                                         dn->dn_maxblkid = db->db_blkid;
1632                                 dbuf_unoverride(dr);
1633                         } else {
1634                                 /*
1635                                  * This dbuf is not dirty in the open context.
1636                                  * Either uncache it (if its not referenced in
1637                                  * the open context) or reset its contents to
1638                                  * empty.
1639                                  */
1640                                 dbuf_fix_old_data(db, txg);
1641                         }
1642                 }
1643                 /* clear the contents if its cached */
1644                 if (db->db_state == DB_CACHED) {
1645                         ASSERT(db->db.db_data != NULL);
1646                         arc_release(db->db_buf, db);
1647                         bzero(db->db.db_data, db->db.db_size);
1648                         arc_buf_freeze(db->db_buf);
1649                 }
1650
1651                 mutex_exit(&db->db_mtx);
1652         }
1653
1654         kmem_free(db_search, sizeof (dmu_buf_impl_t));
1655         mutex_exit(&dn->dn_dbufs_mtx);
1656 }
1657
1658 void
1659 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1660 {
1661         arc_buf_t *buf, *obuf;
1662         int osize = db->db.db_size;
1663         arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1664         dnode_t *dn;
1665
1666         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1667
1668         DB_DNODE_ENTER(db);
1669         dn = DB_DNODE(db);
1670
1671         /* XXX does *this* func really need the lock? */
1672         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1673
1674         /*
1675          * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1676          * is OK, because there can be no other references to the db
1677          * when we are changing its size, so no concurrent DB_FILL can
1678          * be happening.
1679          */
1680         /*
1681          * XXX we should be doing a dbuf_read, checking the return
1682          * value and returning that up to our callers
1683          */
1684         dmu_buf_will_dirty(&db->db, tx);
1685
1686         /* create the data buffer for the new block */
1687         buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1688
1689         /* copy old block data to the new block */
1690         obuf = db->db_buf;
1691         bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1692         /* zero the remainder */
1693         if (size > osize)
1694                 bzero((uint8_t *)buf->b_data + osize, size - osize);
1695
1696         mutex_enter(&db->db_mtx);
1697         dbuf_set_data(db, buf);
1698         arc_buf_destroy(obuf, db);
1699         db->db.db_size = size;
1700
1701         if (db->db_level == 0) {
1702                 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1703                 db->db_last_dirty->dt.dl.dr_data = buf;
1704         }
1705         mutex_exit(&db->db_mtx);
1706
1707         dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1708         DB_DNODE_EXIT(db);
1709 }
1710
1711 void
1712 dbuf_release_bp(dmu_buf_impl_t *db)
1713 {
1714         ASSERTV(objset_t *os = db->db_objset);
1715
1716         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1717         ASSERT(arc_released(os->os_phys_buf) ||
1718             list_link_active(&os->os_dsl_dataset->ds_synced_link));
1719         ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1720
1721         (void) arc_release(db->db_buf, db);
1722 }
1723
1724 /*
1725  * We already have a dirty record for this TXG, and we are being
1726  * dirtied again.
1727  */
1728 static void
1729 dbuf_redirty(dbuf_dirty_record_t *dr)
1730 {
1731         dmu_buf_impl_t *db = dr->dr_dbuf;
1732
1733         ASSERT(MUTEX_HELD(&db->db_mtx));
1734
1735         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1736                 /*
1737                  * If this buffer has already been written out,
1738                  * we now need to reset its state.
1739                  */
1740                 dbuf_unoverride(dr);
1741                 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1742                     db->db_state != DB_NOFILL) {
1743                         /* Already released on initial dirty, so just thaw. */
1744                         ASSERT(arc_released(db->db_buf));
1745                         arc_buf_thaw(db->db_buf);
1746                 }
1747         }
1748 }
1749
1750 dbuf_dirty_record_t *
1751 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1752 {
1753         dnode_t *dn;
1754         objset_t *os;
1755         dbuf_dirty_record_t **drp, *dr;
1756         int drop_struct_lock = FALSE;
1757         int txgoff = tx->tx_txg & TXG_MASK;
1758
1759         ASSERT(tx->tx_txg != 0);
1760         ASSERT(!refcount_is_zero(&db->db_holds));
1761         DMU_TX_DIRTY_BUF(tx, db);
1762
1763         DB_DNODE_ENTER(db);
1764         dn = DB_DNODE(db);
1765         /*
1766          * Shouldn't dirty a regular buffer in syncing context.  Private
1767          * objects may be dirtied in syncing context, but only if they
1768          * were already pre-dirtied in open context.
1769          */
1770 #ifdef DEBUG
1771         if (dn->dn_objset->os_dsl_dataset != NULL) {
1772                 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1773                     RW_READER, FTAG);
1774         }
1775         ASSERT(!dmu_tx_is_syncing(tx) ||
1776             BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1777             DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1778             dn->dn_objset->os_dsl_dataset == NULL);
1779         if (dn->dn_objset->os_dsl_dataset != NULL)
1780                 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1781 #endif
1782         /*
1783          * We make this assert for private objects as well, but after we
1784          * check if we're already dirty.  They are allowed to re-dirty
1785          * in syncing context.
1786          */
1787         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1788             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1789             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1790
1791         mutex_enter(&db->db_mtx);
1792         /*
1793          * XXX make this true for indirects too?  The problem is that
1794          * transactions created with dmu_tx_create_assigned() from
1795          * syncing context don't bother holding ahead.
1796          */
1797         ASSERT(db->db_level != 0 ||
1798             db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1799             db->db_state == DB_NOFILL);
1800
1801         mutex_enter(&dn->dn_mtx);
1802         /*
1803          * Don't set dirtyctx to SYNC if we're just modifying this as we
1804          * initialize the objset.
1805          */
1806         if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1807                 if (dn->dn_objset->os_dsl_dataset != NULL) {
1808                         rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1809                             RW_READER, FTAG);
1810                 }
1811                 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1812                         dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1813                             DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1814                         ASSERT(dn->dn_dirtyctx_firstset == NULL);
1815                         dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1816                 }
1817                 if (dn->dn_objset->os_dsl_dataset != NULL) {
1818                         rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1819                             FTAG);
1820                 }
1821         }
1822
1823         if (tx->tx_txg > dn->dn_dirty_txg)
1824                 dn->dn_dirty_txg = tx->tx_txg;
1825         mutex_exit(&dn->dn_mtx);
1826
1827         if (db->db_blkid == DMU_SPILL_BLKID)
1828                 dn->dn_have_spill = B_TRUE;
1829
1830         /*
1831          * If this buffer is already dirty, we're done.
1832          */
1833         drp = &db->db_last_dirty;
1834         ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1835             db->db.db_object == DMU_META_DNODE_OBJECT);
1836         while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1837                 drp = &dr->dr_next;
1838         if (dr && dr->dr_txg == tx->tx_txg) {
1839                 DB_DNODE_EXIT(db);
1840
1841                 dbuf_redirty(dr);
1842                 mutex_exit(&db->db_mtx);
1843                 return (dr);
1844         }
1845
1846         /*
1847          * Only valid if not already dirty.
1848          */
1849         ASSERT(dn->dn_object == 0 ||
1850             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1851             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1852
1853         ASSERT3U(dn->dn_nlevels, >, db->db_level);
1854
1855         /*
1856          * We should only be dirtying in syncing context if it's the
1857          * mos or we're initializing the os or it's a special object.
1858          * However, we are allowed to dirty in syncing context provided
1859          * we already dirtied it in open context.  Hence we must make
1860          * this assertion only if we're not already dirty.
1861          */
1862         os = dn->dn_objset;
1863         VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1864 #ifdef DEBUG
1865         if (dn->dn_objset->os_dsl_dataset != NULL)
1866                 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1867         ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1868             os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1869         if (dn->dn_objset->os_dsl_dataset != NULL)
1870                 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1871 #endif
1872         ASSERT(db->db.db_size != 0);
1873
1874         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1875
1876         if (db->db_blkid != DMU_BONUS_BLKID) {
1877                 dmu_objset_willuse_space(os, db->db.db_size, tx);
1878         }
1879
1880         /*
1881          * If this buffer is dirty in an old transaction group we need
1882          * to make a copy of it so that the changes we make in this
1883          * transaction group won't leak out when we sync the older txg.
1884          */
1885         dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1886         list_link_init(&dr->dr_dirty_node);
1887         if (db->db_level == 0) {
1888                 void *data_old = db->db_buf;
1889
1890                 if (db->db_state != DB_NOFILL) {
1891                         if (db->db_blkid == DMU_BONUS_BLKID) {
1892                                 dbuf_fix_old_data(db, tx->tx_txg);
1893                                 data_old = db->db.db_data;
1894                         } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1895                                 /*
1896                                  * Release the data buffer from the cache so
1897                                  * that we can modify it without impacting
1898                                  * possible other users of this cached data
1899                                  * block.  Note that indirect blocks and
1900                                  * private objects are not released until the
1901                                  * syncing state (since they are only modified
1902                                  * then).
1903                                  */
1904                                 arc_release(db->db_buf, db);
1905                                 dbuf_fix_old_data(db, tx->tx_txg);
1906                                 data_old = db->db_buf;
1907                         }
1908                         ASSERT(data_old != NULL);
1909                 }
1910                 dr->dt.dl.dr_data = data_old;
1911         } else {
1912                 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1913                 list_create(&dr->dt.di.dr_children,
1914                     sizeof (dbuf_dirty_record_t),
1915                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
1916         }
1917         if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1918                 dr->dr_accounted = db->db.db_size;
1919         dr->dr_dbuf = db;
1920         dr->dr_txg = tx->tx_txg;
1921         dr->dr_next = *drp;
1922         *drp = dr;
1923
1924         /*
1925          * We could have been freed_in_flight between the dbuf_noread
1926          * and dbuf_dirty.  We win, as though the dbuf_noread() had
1927          * happened after the free.
1928          */
1929         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1930             db->db_blkid != DMU_SPILL_BLKID) {
1931                 mutex_enter(&dn->dn_mtx);
1932                 if (dn->dn_free_ranges[txgoff] != NULL) {
1933                         range_tree_clear(dn->dn_free_ranges[txgoff],
1934                             db->db_blkid, 1);
1935                 }
1936                 mutex_exit(&dn->dn_mtx);
1937                 db->db_freed_in_flight = FALSE;
1938         }
1939
1940         /*
1941          * This buffer is now part of this txg
1942          */
1943         dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1944         db->db_dirtycnt += 1;
1945         ASSERT3U(db->db_dirtycnt, <=, 3);
1946
1947         mutex_exit(&db->db_mtx);
1948
1949         if (db->db_blkid == DMU_BONUS_BLKID ||
1950             db->db_blkid == DMU_SPILL_BLKID) {
1951                 mutex_enter(&dn->dn_mtx);
1952                 ASSERT(!list_link_active(&dr->dr_dirty_node));
1953                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1954                 mutex_exit(&dn->dn_mtx);
1955                 dnode_setdirty(dn, tx);
1956                 DB_DNODE_EXIT(db);
1957                 return (dr);
1958         }
1959
1960         /*
1961          * The dn_struct_rwlock prevents db_blkptr from changing
1962          * due to a write from syncing context completing
1963          * while we are running, so we want to acquire it before
1964          * looking at db_blkptr.
1965          */
1966         if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1967                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1968                 drop_struct_lock = TRUE;
1969         }
1970
1971         /*
1972          * We need to hold the dn_struct_rwlock to make this assertion,
1973          * because it protects dn_phys / dn_next_nlevels from changing.
1974          */
1975         ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1976             dn->dn_phys->dn_nlevels > db->db_level ||
1977             dn->dn_next_nlevels[txgoff] > db->db_level ||
1978             dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1979             dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1980
1981         /*
1982          * If we are overwriting a dedup BP, then unless it is snapshotted,
1983          * when we get to syncing context we will need to decrement its
1984          * refcount in the DDT.  Prefetch the relevant DDT block so that
1985          * syncing context won't have to wait for the i/o.
1986          */
1987         ddt_prefetch(os->os_spa, db->db_blkptr);
1988
1989         if (db->db_level == 0) {
1990                 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1991                 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1992         }
1993
1994         if (db->db_level+1 < dn->dn_nlevels) {
1995                 dmu_buf_impl_t *parent = db->db_parent;
1996                 dbuf_dirty_record_t *di;
1997                 int parent_held = FALSE;
1998
1999                 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2000                         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2001
2002                         parent = dbuf_hold_level(dn, db->db_level+1,
2003                             db->db_blkid >> epbs, FTAG);
2004                         ASSERT(parent != NULL);
2005                         parent_held = TRUE;
2006                 }
2007                 if (drop_struct_lock)
2008                         rw_exit(&dn->dn_struct_rwlock);
2009                 ASSERT3U(db->db_level+1, ==, parent->db_level);
2010                 di = dbuf_dirty(parent, tx);
2011                 if (parent_held)
2012                         dbuf_rele(parent, FTAG);
2013
2014                 mutex_enter(&db->db_mtx);
2015                 /*
2016                  * Since we've dropped the mutex, it's possible that
2017                  * dbuf_undirty() might have changed this out from under us.
2018                  */
2019                 if (db->db_last_dirty == dr ||
2020                     dn->dn_object == DMU_META_DNODE_OBJECT) {
2021                         mutex_enter(&di->dt.di.dr_mtx);
2022                         ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2023                         ASSERT(!list_link_active(&dr->dr_dirty_node));
2024                         list_insert_tail(&di->dt.di.dr_children, dr);
2025                         mutex_exit(&di->dt.di.dr_mtx);
2026                         dr->dr_parent = di;
2027                 }
2028                 mutex_exit(&db->db_mtx);
2029         } else {
2030                 ASSERT(db->db_level+1 == dn->dn_nlevels);
2031                 ASSERT(db->db_blkid < dn->dn_nblkptr);
2032                 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2033                 mutex_enter(&dn->dn_mtx);
2034                 ASSERT(!list_link_active(&dr->dr_dirty_node));
2035                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2036                 mutex_exit(&dn->dn_mtx);
2037                 if (drop_struct_lock)
2038                         rw_exit(&dn->dn_struct_rwlock);
2039         }
2040
2041         dnode_setdirty(dn, tx);
2042         DB_DNODE_EXIT(db);
2043         return (dr);
2044 }
2045
2046 /*
2047  * Undirty a buffer in the transaction group referenced by the given
2048  * transaction.  Return whether this evicted the dbuf.
2049  */
2050 static boolean_t
2051 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2052 {
2053         dnode_t *dn;
2054         uint64_t txg = tx->tx_txg;
2055         dbuf_dirty_record_t *dr, **drp;
2056
2057         ASSERT(txg != 0);
2058
2059         /*
2060          * Due to our use of dn_nlevels below, this can only be called
2061          * in open context, unless we are operating on the MOS.
2062          * From syncing context, dn_nlevels may be different from the
2063          * dn_nlevels used when dbuf was dirtied.
2064          */
2065         ASSERT(db->db_objset ==
2066             dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2067             txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2068         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2069         ASSERT0(db->db_level);
2070         ASSERT(MUTEX_HELD(&db->db_mtx));
2071
2072         /*
2073          * If this buffer is not dirty, we're done.
2074          */
2075         for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2076                 if (dr->dr_txg <= txg)
2077                         break;
2078         if (dr == NULL || dr->dr_txg < txg)
2079                 return (B_FALSE);
2080         ASSERT(dr->dr_txg == txg);
2081         ASSERT(dr->dr_dbuf == db);
2082
2083         DB_DNODE_ENTER(db);
2084         dn = DB_DNODE(db);
2085
2086         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2087
2088         ASSERT(db->db.db_size != 0);
2089
2090         dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2091             dr->dr_accounted, txg);
2092
2093         *drp = dr->dr_next;
2094
2095         /*
2096          * Note that there are three places in dbuf_dirty()
2097          * where this dirty record may be put on a list.
2098          * Make sure to do a list_remove corresponding to
2099          * every one of those list_insert calls.
2100          */
2101         if (dr->dr_parent) {
2102                 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2103                 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2104                 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2105         } else if (db->db_blkid == DMU_SPILL_BLKID ||
2106             db->db_level + 1 == dn->dn_nlevels) {
2107                 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2108                 mutex_enter(&dn->dn_mtx);
2109                 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2110                 mutex_exit(&dn->dn_mtx);
2111         }
2112         DB_DNODE_EXIT(db);
2113
2114         if (db->db_state != DB_NOFILL) {
2115                 dbuf_unoverride(dr);
2116
2117                 ASSERT(db->db_buf != NULL);
2118                 ASSERT(dr->dt.dl.dr_data != NULL);
2119                 if (dr->dt.dl.dr_data != db->db_buf)
2120                         arc_buf_destroy(dr->dt.dl.dr_data, db);
2121         }
2122
2123         kmem_free(dr, sizeof (dbuf_dirty_record_t));
2124
2125         ASSERT(db->db_dirtycnt > 0);
2126         db->db_dirtycnt -= 1;
2127
2128         if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2129                 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2130                 dbuf_destroy(db);
2131                 return (B_TRUE);
2132         }
2133
2134         return (B_FALSE);
2135 }
2136
2137 static void
2138 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2139 {
2140         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2141
2142         ASSERT(tx->tx_txg != 0);
2143         ASSERT(!refcount_is_zero(&db->db_holds));
2144
2145         /*
2146          * Quick check for dirtyness.  For already dirty blocks, this
2147          * reduces runtime of this function by >90%, and overall performance
2148          * by 50% for some workloads (e.g. file deletion with indirect blocks
2149          * cached).
2150          */
2151         mutex_enter(&db->db_mtx);
2152
2153         dbuf_dirty_record_t *dr;
2154         for (dr = db->db_last_dirty;
2155             dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2156                 /*
2157                  * It's possible that it is already dirty but not cached,
2158                  * because there are some calls to dbuf_dirty() that don't
2159                  * go through dmu_buf_will_dirty().
2160                  */
2161                 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2162                         /* This dbuf is already dirty and cached. */
2163                         dbuf_redirty(dr);
2164                         mutex_exit(&db->db_mtx);
2165                         return;
2166                 }
2167         }
2168         mutex_exit(&db->db_mtx);
2169
2170         DB_DNODE_ENTER(db);
2171         if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2172                 flags |= DB_RF_HAVESTRUCT;
2173         DB_DNODE_EXIT(db);
2174         (void) dbuf_read(db, NULL, flags);
2175         (void) dbuf_dirty(db, tx);
2176 }
2177
2178 void
2179 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2180 {
2181         dmu_buf_will_dirty_impl(db_fake,
2182             DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2183 }
2184
2185 void
2186 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2187 {
2188         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2189
2190         db->db_state = DB_NOFILL;
2191
2192         dmu_buf_will_fill(db_fake, tx);
2193 }
2194
2195 void
2196 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2197 {
2198         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2199
2200         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2201         ASSERT(tx->tx_txg != 0);
2202         ASSERT(db->db_level == 0);
2203         ASSERT(!refcount_is_zero(&db->db_holds));
2204
2205         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2206             dmu_tx_private_ok(tx));
2207
2208         dbuf_noread(db);
2209         (void) dbuf_dirty(db, tx);
2210 }
2211
2212 /*
2213  * This function is effectively the same as dmu_buf_will_dirty(), but
2214  * indicates the caller expects raw encrypted data in the db, and provides
2215  * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2216  * blkptr_t when this dbuf is written.  This is only used for blocks of
2217  * dnodes, during raw receive.
2218  */
2219 void
2220 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2221     const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2222 {
2223         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2224         dbuf_dirty_record_t *dr;
2225
2226         /*
2227          * dr_has_raw_params is only processed for blocks of dnodes
2228          * (see dbuf_sync_dnode_leaf_crypt()).
2229          */
2230         ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2231         ASSERT3U(db->db_level, ==, 0);
2232         ASSERT(db->db_objset->os_raw_receive);
2233
2234         dmu_buf_will_dirty_impl(db_fake,
2235             DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2236
2237         dr = db->db_last_dirty;
2238         while (dr != NULL && dr->dr_txg > tx->tx_txg)
2239                 dr = dr->dr_next;
2240
2241         ASSERT3P(dr, !=, NULL);
2242         ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2243
2244         dr->dt.dl.dr_has_raw_params = B_TRUE;
2245         dr->dt.dl.dr_byteorder = byteorder;
2246         bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2247         bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2248         bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2249 }
2250
2251 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2252 /* ARGSUSED */
2253 void
2254 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2255 {
2256         mutex_enter(&db->db_mtx);
2257         DBUF_VERIFY(db);
2258
2259         if (db->db_state == DB_FILL) {
2260                 if (db->db_level == 0 && db->db_freed_in_flight) {
2261                         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2262                         /* we were freed while filling */
2263                         /* XXX dbuf_undirty? */
2264                         bzero(db->db.db_data, db->db.db_size);
2265                         db->db_freed_in_flight = FALSE;
2266                 }
2267                 db->db_state = DB_CACHED;
2268                 cv_broadcast(&db->db_changed);
2269         }
2270         mutex_exit(&db->db_mtx);
2271 }
2272
2273 void
2274 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2275     bp_embedded_type_t etype, enum zio_compress comp,
2276     int uncompressed_size, int compressed_size, int byteorder,
2277     dmu_tx_t *tx)
2278 {
2279         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2280         struct dirty_leaf *dl;
2281         dmu_object_type_t type;
2282
2283         if (etype == BP_EMBEDDED_TYPE_DATA) {
2284                 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2285                     SPA_FEATURE_EMBEDDED_DATA));
2286         }
2287
2288         DB_DNODE_ENTER(db);
2289         type = DB_DNODE(db)->dn_type;
2290         DB_DNODE_EXIT(db);
2291
2292         ASSERT0(db->db_level);
2293         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2294
2295         dmu_buf_will_not_fill(dbuf, tx);
2296
2297         ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2298         dl = &db->db_last_dirty->dt.dl;
2299         encode_embedded_bp_compressed(&dl->dr_overridden_by,
2300             data, comp, uncompressed_size, compressed_size);
2301         BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2302         BP_SET_TYPE(&dl->dr_overridden_by, type);
2303         BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2304         BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2305
2306         dl->dr_override_state = DR_OVERRIDDEN;
2307         dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2308 }
2309
2310 /*
2311  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2312  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2313  */
2314 void
2315 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2316 {
2317         ASSERT(!refcount_is_zero(&db->db_holds));
2318         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2319         ASSERT(db->db_level == 0);
2320         ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2321         ASSERT(buf != NULL);
2322         ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2323         ASSERT(tx->tx_txg != 0);
2324
2325         arc_return_buf(buf, db);
2326         ASSERT(arc_released(buf));
2327
2328         mutex_enter(&db->db_mtx);
2329
2330         while (db->db_state == DB_READ || db->db_state == DB_FILL)
2331                 cv_wait(&db->db_changed, &db->db_mtx);
2332
2333         ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2334
2335         if (db->db_state == DB_CACHED &&
2336             refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2337                 /*
2338                  * In practice, we will never have a case where we have an
2339                  * encrypted arc buffer while additional holds exist on the
2340                  * dbuf. We don't handle this here so we simply assert that
2341                  * fact instead.
2342                  */
2343                 ASSERT(!arc_is_encrypted(buf));
2344                 mutex_exit(&db->db_mtx);
2345                 (void) dbuf_dirty(db, tx);
2346                 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2347                 arc_buf_destroy(buf, db);
2348                 xuio_stat_wbuf_copied();
2349                 return;
2350         }
2351
2352         xuio_stat_wbuf_nocopy();
2353         if (db->db_state == DB_CACHED) {
2354                 dbuf_dirty_record_t *dr = db->db_last_dirty;
2355
2356                 ASSERT(db->db_buf != NULL);
2357                 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2358                         ASSERT(dr->dt.dl.dr_data == db->db_buf);
2359
2360                         if (!arc_released(db->db_buf)) {
2361                                 ASSERT(dr->dt.dl.dr_override_state ==
2362                                     DR_OVERRIDDEN);
2363                                 arc_release(db->db_buf, db);
2364                         }
2365                         dr->dt.dl.dr_data = buf;
2366                         arc_buf_destroy(db->db_buf, db);
2367                 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2368                         arc_release(db->db_buf, db);
2369                         arc_buf_destroy(db->db_buf, db);
2370                 }
2371                 db->db_buf = NULL;
2372         }
2373         ASSERT(db->db_buf == NULL);
2374         dbuf_set_data(db, buf);
2375         db->db_state = DB_FILL;
2376         mutex_exit(&db->db_mtx);
2377         (void) dbuf_dirty(db, tx);
2378         dmu_buf_fill_done(&db->db, tx);
2379 }
2380
2381 void
2382 dbuf_destroy(dmu_buf_impl_t *db)
2383 {
2384         dnode_t *dn;
2385         dmu_buf_impl_t *parent = db->db_parent;
2386         dmu_buf_impl_t *dndb;
2387
2388         ASSERT(MUTEX_HELD(&db->db_mtx));
2389         ASSERT(refcount_is_zero(&db->db_holds));
2390
2391         if (db->db_buf != NULL) {
2392                 arc_buf_destroy(db->db_buf, db);
2393                 db->db_buf = NULL;
2394         }
2395
2396         if (db->db_blkid == DMU_BONUS_BLKID) {
2397                 int slots = DB_DNODE(db)->dn_num_slots;
2398                 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2399                 if (db->db.db_data != NULL) {
2400                         kmem_free(db->db.db_data, bonuslen);
2401                         arc_space_return(bonuslen, ARC_SPACE_BONUS);
2402                         db->db_state = DB_UNCACHED;
2403                 }
2404         }
2405
2406         dbuf_clear_data(db);
2407
2408         if (multilist_link_active(&db->db_cache_link)) {
2409                 multilist_remove(dbuf_cache, db);
2410                 (void) refcount_remove_many(&dbuf_cache_size,
2411                     db->db.db_size, db);
2412                 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2413                 DBUF_STAT_BUMPDOWN(cache_count);
2414                 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2415                     db->db.db_size);
2416         }
2417
2418         ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2419         ASSERT(db->db_data_pending == NULL);
2420
2421         db->db_state = DB_EVICTING;
2422         db->db_blkptr = NULL;
2423
2424         /*
2425          * Now that db_state is DB_EVICTING, nobody else can find this via
2426          * the hash table.  We can now drop db_mtx, which allows us to
2427          * acquire the dn_dbufs_mtx.
2428          */
2429         mutex_exit(&db->db_mtx);
2430
2431         DB_DNODE_ENTER(db);
2432         dn = DB_DNODE(db);
2433         dndb = dn->dn_dbuf;
2434         if (db->db_blkid != DMU_BONUS_BLKID) {
2435                 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2436                 if (needlock)
2437                         mutex_enter(&dn->dn_dbufs_mtx);
2438                 avl_remove(&dn->dn_dbufs, db);
2439                 atomic_dec_32(&dn->dn_dbufs_count);
2440                 membar_producer();
2441                 DB_DNODE_EXIT(db);
2442                 if (needlock)
2443                         mutex_exit(&dn->dn_dbufs_mtx);
2444                 /*
2445                  * Decrementing the dbuf count means that the hold corresponding
2446                  * to the removed dbuf is no longer discounted in dnode_move(),
2447                  * so the dnode cannot be moved until after we release the hold.
2448                  * The membar_producer() ensures visibility of the decremented
2449                  * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2450                  * release any lock.
2451                  */
2452                 dnode_rele(dn, db);
2453                 db->db_dnode_handle = NULL;
2454
2455                 dbuf_hash_remove(db);
2456         } else {
2457                 DB_DNODE_EXIT(db);
2458         }
2459
2460         ASSERT(refcount_is_zero(&db->db_holds));
2461
2462         db->db_parent = NULL;
2463
2464         ASSERT(db->db_buf == NULL);
2465         ASSERT(db->db.db_data == NULL);
2466         ASSERT(db->db_hash_next == NULL);
2467         ASSERT(db->db_blkptr == NULL);
2468         ASSERT(db->db_data_pending == NULL);
2469         ASSERT(!multilist_link_active(&db->db_cache_link));
2470
2471         kmem_cache_free(dbuf_kmem_cache, db);
2472         arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2473
2474         /*
2475          * If this dbuf is referenced from an indirect dbuf,
2476          * decrement the ref count on the indirect dbuf.
2477          */
2478         if (parent && parent != dndb)
2479                 dbuf_rele(parent, db);
2480 }
2481
2482 /*
2483  * Note: While bpp will always be updated if the function returns success,
2484  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2485  * this happens when the dnode is the meta-dnode, or {user|group|project}used
2486  * object.
2487  */
2488 __attribute__((always_inline))
2489 static inline int
2490 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2491     dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2492 {
2493         *parentp = NULL;
2494         *bpp = NULL;
2495
2496         ASSERT(blkid != DMU_BONUS_BLKID);
2497
2498         if (blkid == DMU_SPILL_BLKID) {
2499                 mutex_enter(&dn->dn_mtx);
2500                 if (dn->dn_have_spill &&
2501                     (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2502                         *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2503                 else
2504                         *bpp = NULL;
2505                 dbuf_add_ref(dn->dn_dbuf, NULL);
2506                 *parentp = dn->dn_dbuf;
2507                 mutex_exit(&dn->dn_mtx);
2508                 return (0);
2509         }
2510
2511         int nlevels =
2512             (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2513         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2514
2515         ASSERT3U(level * epbs, <, 64);
2516         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2517         /*
2518          * This assertion shouldn't trip as long as the max indirect block size
2519          * is less than 1M.  The reason for this is that up to that point,
2520          * the number of levels required to address an entire object with blocks
2521          * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2522          * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2523          * (i.e. we can address the entire object), objects will all use at most
2524          * N-1 levels and the assertion won't overflow.  However, once epbs is
2525          * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2526          * enough to address an entire object, so objects will have 5 levels,
2527          * but then this assertion will overflow.
2528          *
2529          * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2530          * need to redo this logic to handle overflows.
2531          */
2532         ASSERT(level >= nlevels ||
2533             ((nlevels - level - 1) * epbs) +
2534             highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2535         if (level >= nlevels ||
2536             blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2537             ((nlevels - level - 1) * epbs)) ||
2538             (fail_sparse &&
2539             blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2540                 /* the buffer has no parent yet */
2541                 return (SET_ERROR(ENOENT));
2542         } else if (level < nlevels-1) {
2543                 /* this block is referenced from an indirect block */
2544                 int err;
2545                 if (dh == NULL) {
2546                         err = dbuf_hold_impl(dn, level+1,
2547                             blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2548                 } else {
2549                         __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2550                             blkid >> epbs, fail_sparse, FALSE, NULL,
2551                             parentp, dh->dh_depth + 1);
2552                         err = __dbuf_hold_impl(dh + 1);
2553                 }
2554                 if (err)
2555                         return (err);
2556                 err = dbuf_read(*parentp, NULL,
2557                     (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2558                 if (err) {
2559                         dbuf_rele(*parentp, NULL);
2560                         *parentp = NULL;
2561                         return (err);
2562                 }
2563                 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2564                     (blkid & ((1ULL << epbs) - 1));
2565                 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2566                         ASSERT(BP_IS_HOLE(*bpp));
2567                 return (0);
2568         } else {
2569                 /* the block is referenced from the dnode */
2570                 ASSERT3U(level, ==, nlevels-1);
2571                 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2572                     blkid < dn->dn_phys->dn_nblkptr);
2573                 if (dn->dn_dbuf) {
2574                         dbuf_add_ref(dn->dn_dbuf, NULL);
2575                         *parentp = dn->dn_dbuf;
2576                 }
2577                 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2578                 return (0);
2579         }
2580 }
2581
2582 static dmu_buf_impl_t *
2583 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2584     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2585 {
2586         objset_t *os = dn->dn_objset;
2587         dmu_buf_impl_t *db, *odb;
2588
2589         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2590         ASSERT(dn->dn_type != DMU_OT_NONE);
2591
2592         db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2593
2594         db->db_objset = os;
2595         db->db.db_object = dn->dn_object;
2596         db->db_level = level;
2597         db->db_blkid = blkid;
2598         db->db_last_dirty = NULL;
2599         db->db_dirtycnt = 0;
2600         db->db_dnode_handle = dn->dn_handle;
2601         db->db_parent = parent;
2602         db->db_blkptr = blkptr;
2603
2604         db->db_user = NULL;
2605         db->db_user_immediate_evict = FALSE;
2606         db->db_freed_in_flight = FALSE;
2607         db->db_pending_evict = FALSE;
2608
2609         if (blkid == DMU_BONUS_BLKID) {
2610                 ASSERT3P(parent, ==, dn->dn_dbuf);
2611                 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2612                     (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2613                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2614                 db->db.db_offset = DMU_BONUS_BLKID;
2615                 db->db_state = DB_UNCACHED;
2616                 /* the bonus dbuf is not placed in the hash table */
2617                 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2618                 return (db);
2619         } else if (blkid == DMU_SPILL_BLKID) {
2620                 db->db.db_size = (blkptr != NULL) ?
2621                     BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2622                 db->db.db_offset = 0;
2623         } else {
2624                 int blocksize =
2625                     db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2626                 db->db.db_size = blocksize;
2627                 db->db.db_offset = db->db_blkid * blocksize;
2628         }
2629
2630         /*
2631          * Hold the dn_dbufs_mtx while we get the new dbuf
2632          * in the hash table *and* added to the dbufs list.
2633          * This prevents a possible deadlock with someone
2634          * trying to look up this dbuf before its added to the
2635          * dn_dbufs list.
2636          */
2637         mutex_enter(&dn->dn_dbufs_mtx);
2638         db->db_state = DB_EVICTING;
2639         if ((odb = dbuf_hash_insert(db)) != NULL) {
2640                 /* someone else inserted it first */
2641                 kmem_cache_free(dbuf_kmem_cache, db);
2642                 mutex_exit(&dn->dn_dbufs_mtx);
2643                 DBUF_STAT_BUMP(hash_insert_race);
2644                 return (odb);
2645         }
2646         avl_add(&dn->dn_dbufs, db);
2647
2648         db->db_state = DB_UNCACHED;
2649         mutex_exit(&dn->dn_dbufs_mtx);
2650         arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2651
2652         if (parent && parent != dn->dn_dbuf)
2653                 dbuf_add_ref(parent, db);
2654
2655         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2656             refcount_count(&dn->dn_holds) > 0);
2657         (void) refcount_add(&dn->dn_holds, db);
2658         atomic_inc_32(&dn->dn_dbufs_count);
2659
2660         dprintf_dbuf(db, "db=%p\n", db);
2661
2662         return (db);
2663 }
2664
2665 typedef struct dbuf_prefetch_arg {
2666         spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2667         zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2668         int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2669         int dpa_curlevel; /* The current level that we're reading */
2670         dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2671         zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2672         zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2673         arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2674 } dbuf_prefetch_arg_t;
2675
2676 /*
2677  * Actually issue the prefetch read for the block given.
2678  */
2679 static void
2680 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2681 {
2682         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2683                 return;
2684
2685         int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2686         arc_flags_t aflags =
2687             dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2688
2689         /* dnodes are always read as raw and then converted later */
2690         if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2691             dpa->dpa_curlevel == 0)
2692                 zio_flags |= ZIO_FLAG_RAW;
2693
2694         ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2695         ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2696         ASSERT(dpa->dpa_zio != NULL);
2697         (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2698             dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2699 }
2700
2701 /*
2702  * Called when an indirect block above our prefetch target is read in.  This
2703  * will either read in the next indirect block down the tree or issue the actual
2704  * prefetch if the next block down is our target.
2705  */
2706 static void
2707 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2708     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2709 {
2710         dbuf_prefetch_arg_t *dpa = private;
2711
2712         ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2713         ASSERT3S(dpa->dpa_curlevel, >, 0);
2714
2715         /*
2716          * The dpa_dnode is only valid if we are called with a NULL
2717          * zio. This indicates that the arc_read() returned without
2718          * first calling zio_read() to issue a physical read. Once
2719          * a physical read is made the dpa_dnode must be invalidated
2720          * as the locks guarding it may have been dropped. If the
2721          * dpa_dnode is still valid, then we want to add it to the dbuf
2722          * cache. To do so, we must hold the dbuf associated with the block
2723          * we just prefetched, read its contents so that we associate it
2724          * with an arc_buf_t, and then release it.
2725          */
2726         if (zio != NULL) {
2727                 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2728                 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2729                         ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2730                 } else {
2731                         ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2732                 }
2733                 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2734
2735                 dpa->dpa_dnode = NULL;
2736         } else if (dpa->dpa_dnode != NULL) {
2737                 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2738                     (dpa->dpa_epbs * (dpa->dpa_curlevel -
2739                     dpa->dpa_zb.zb_level));
2740                 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2741                     dpa->dpa_curlevel, curblkid, FTAG);
2742                 (void) dbuf_read(db, NULL,
2743                     DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2744                 dbuf_rele(db, FTAG);
2745         }
2746
2747         if (abuf == NULL) {
2748                 kmem_free(dpa, sizeof (*dpa));
2749                 return;
2750         }
2751
2752         dpa->dpa_curlevel--;
2753         uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2754             (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2755         blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2756             P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2757
2758         if (BP_IS_HOLE(bp)) {
2759                 kmem_free(dpa, sizeof (*dpa));
2760         } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2761                 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2762                 dbuf_issue_final_prefetch(dpa, bp);
2763                 kmem_free(dpa, sizeof (*dpa));
2764         } else {
2765                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2766                 zbookmark_phys_t zb;
2767
2768                 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2769                 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2770                         iter_aflags |= ARC_FLAG_L2CACHE;
2771
2772                 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2773
2774                 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2775                     dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2776
2777                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2778                     bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2779                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2780                     &iter_aflags, &zb);
2781         }
2782
2783         arc_buf_destroy(abuf, private);
2784 }
2785
2786 /*
2787  * Issue prefetch reads for the given block on the given level.  If the indirect
2788  * blocks above that block are not in memory, we will read them in
2789  * asynchronously.  As a result, this call never blocks waiting for a read to
2790  * complete. Note that the prefetch might fail if the dataset is encrypted and
2791  * the encryption key is unmapped before the IO completes.
2792  */
2793 void
2794 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2795     arc_flags_t aflags)
2796 {
2797         blkptr_t bp;
2798         int epbs, nlevels, curlevel;
2799         uint64_t curblkid;
2800
2801         ASSERT(blkid != DMU_BONUS_BLKID);
2802         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2803
2804         if (blkid > dn->dn_maxblkid)
2805                 return;
2806
2807         if (dnode_block_freed(dn, blkid))
2808                 return;
2809
2810         /*
2811          * This dnode hasn't been written to disk yet, so there's nothing to
2812          * prefetch.
2813          */
2814         nlevels = dn->dn_phys->dn_nlevels;
2815         if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2816                 return;
2817
2818         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2819         if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2820                 return;
2821
2822         dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2823             level, blkid);
2824         if (db != NULL) {
2825                 mutex_exit(&db->db_mtx);
2826                 /*
2827                  * This dbuf already exists.  It is either CACHED, or
2828                  * (we assume) about to be read or filled.
2829                  */
2830                 return;
2831         }
2832
2833         /*
2834          * Find the closest ancestor (indirect block) of the target block
2835          * that is present in the cache.  In this indirect block, we will
2836          * find the bp that is at curlevel, curblkid.
2837          */
2838         curlevel = level;
2839         curblkid = blkid;
2840         while (curlevel < nlevels - 1) {
2841                 int parent_level = curlevel + 1;
2842                 uint64_t parent_blkid = curblkid >> epbs;
2843                 dmu_buf_impl_t *db;
2844
2845                 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2846                     FALSE, TRUE, FTAG, &db) == 0) {
2847                         blkptr_t *bpp = db->db_buf->b_data;
2848                         bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2849                         dbuf_rele(db, FTAG);
2850                         break;
2851                 }
2852
2853                 curlevel = parent_level;
2854                 curblkid = parent_blkid;
2855         }
2856
2857         if (curlevel == nlevels - 1) {
2858                 /* No cached indirect blocks found. */
2859                 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2860                 bp = dn->dn_phys->dn_blkptr[curblkid];
2861         }
2862         if (BP_IS_HOLE(&bp))
2863                 return;
2864
2865         ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2866
2867         zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2868             ZIO_FLAG_CANFAIL);
2869
2870         dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2871         dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2872         SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2873             dn->dn_object, level, blkid);
2874         dpa->dpa_curlevel = curlevel;
2875         dpa->dpa_prio = prio;
2876         dpa->dpa_aflags = aflags;
2877         dpa->dpa_spa = dn->dn_objset->os_spa;
2878         dpa->dpa_dnode = dn;
2879         dpa->dpa_epbs = epbs;
2880         dpa->dpa_zio = pio;
2881
2882         /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2883         if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2884                 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2885
2886         /*
2887          * If we have the indirect just above us, no need to do the asynchronous
2888          * prefetch chain; we'll just run the last step ourselves.  If we're at
2889          * a higher level, though, we want to issue the prefetches for all the
2890          * indirect blocks asynchronously, so we can go on with whatever we were
2891          * doing.
2892          */
2893         if (curlevel == level) {
2894                 ASSERT3U(curblkid, ==, blkid);
2895                 dbuf_issue_final_prefetch(dpa, &bp);
2896                 kmem_free(dpa, sizeof (*dpa));
2897         } else {
2898                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2899                 zbookmark_phys_t zb;
2900
2901                 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2902                 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2903                         iter_aflags |= ARC_FLAG_L2CACHE;
2904
2905                 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2906                     dn->dn_object, curlevel, curblkid);
2907                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2908                     &bp, dbuf_prefetch_indirect_done, dpa, prio,
2909                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2910                     &iter_aflags, &zb);
2911         }
2912         /*
2913          * We use pio here instead of dpa_zio since it's possible that
2914          * dpa may have already been freed.
2915          */
2916         zio_nowait(pio);
2917 }
2918
2919 #define DBUF_HOLD_IMPL_MAX_DEPTH        20
2920
2921 /*
2922  * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2923  * the case of encrypted, compressed and uncompressed buffers by
2924  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
2925  * arc_alloc_compressed_buf() or arc_alloc_buf().*
2926  *
2927  * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2928  */
2929 noinline static void
2930 dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
2931 {
2932         dnode_t *dn = dh->dh_dn;
2933         dmu_buf_impl_t *db = dh->dh_db;
2934         dbuf_dirty_record_t *dr = dh->dh_dr;
2935         arc_buf_t *data = dr->dt.dl.dr_data;
2936
2937         enum zio_compress compress_type = arc_get_compression(data);
2938
2939         if (arc_is_encrypted(data)) {
2940                 boolean_t byteorder;
2941                 uint8_t salt[ZIO_DATA_SALT_LEN];
2942                 uint8_t iv[ZIO_DATA_IV_LEN];
2943                 uint8_t mac[ZIO_DATA_MAC_LEN];
2944
2945                 arc_get_raw_params(data, &byteorder, salt, iv, mac);
2946                 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
2947                     dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
2948                     dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
2949                     compress_type));
2950         } else if (compress_type != ZIO_COMPRESS_OFF) {
2951                 dbuf_set_data(db, arc_alloc_compressed_buf(
2952                     dn->dn_objset->os_spa, db, arc_buf_size(data),
2953                     arc_buf_lsize(data), compress_type));
2954         } else {
2955                 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2956                     DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2957         }
2958
2959         bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2960 }
2961
2962 /*
2963  * Returns with db_holds incremented, and db_mtx not held.
2964  * Note: dn_struct_rwlock must be held.
2965  */
2966 static int
2967 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2968 {
2969         ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2970         dh->dh_parent = NULL;
2971
2972         ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2973         ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2974         ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2975
2976         *(dh->dh_dbp) = NULL;
2977
2978         /* dbuf_find() returns with db_mtx held */
2979         dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2980             dh->dh_level, dh->dh_blkid);
2981
2982         if (dh->dh_db == NULL) {
2983                 dh->dh_bp = NULL;
2984
2985                 if (dh->dh_fail_uncached)
2986                         return (SET_ERROR(ENOENT));
2987
2988                 ASSERT3P(dh->dh_parent, ==, NULL);
2989                 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2990                     dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
2991                 if (dh->dh_fail_sparse) {
2992                         if (dh->dh_err == 0 &&
2993                             dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2994                                 dh->dh_err = SET_ERROR(ENOENT);
2995                         if (dh->dh_err) {
2996                                 if (dh->dh_parent)
2997                                         dbuf_rele(dh->dh_parent, NULL);
2998                                 return (dh->dh_err);
2999                         }
3000                 }
3001                 if (dh->dh_err && dh->dh_err != ENOENT)
3002                         return (dh->dh_err);
3003                 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3004                     dh->dh_parent, dh->dh_bp);
3005         }
3006
3007         if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
3008                 mutex_exit(&dh->dh_db->db_mtx);
3009                 return (SET_ERROR(ENOENT));
3010         }
3011
3012         if (dh->dh_db->db_buf != NULL) {
3013                 arc_buf_access(dh->dh_db->db_buf);
3014                 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
3015         }
3016
3017         ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
3018
3019         /*
3020          * If this buffer is currently syncing out, and we are are
3021          * still referencing it from db_data, we need to make a copy
3022          * of it in case we decide we want to dirty it again in this txg.
3023          */
3024         if (dh->dh_db->db_level == 0 &&
3025             dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
3026             dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
3027             dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
3028                 dh->dh_dr = dh->dh_db->db_data_pending;
3029                 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
3030                         dbuf_hold_copy(dh);
3031         }
3032
3033         if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3034                 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
3035                 multilist_remove(dbuf_cache, dh->dh_db);
3036                 (void) refcount_remove_many(&dbuf_cache_size,
3037                     dh->dh_db->db.db_size, dh->dh_db);
3038                 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3039                 DBUF_STAT_BUMPDOWN(cache_count);
3040                 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3041                     dh->dh_db->db.db_size);
3042         }
3043         (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
3044         DBUF_VERIFY(dh->dh_db);
3045         mutex_exit(&dh->dh_db->db_mtx);
3046
3047         /* NOTE: we can't rele the parent until after we drop the db_mtx */
3048         if (dh->dh_parent)
3049                 dbuf_rele(dh->dh_parent, NULL);
3050
3051         ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3052         ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3053         ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3054         *(dh->dh_dbp) = dh->dh_db;
3055
3056         return (0);
3057 }
3058
3059 /*
3060  * The following code preserves the recursive function dbuf_hold_impl()
3061  * but moves the local variables AND function arguments to the heap to
3062  * minimize the stack frame size.  Enough space is initially allocated
3063  * on the stack for 20 levels of recursion.
3064  */
3065 int
3066 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3067     boolean_t fail_sparse, boolean_t fail_uncached,
3068     void *tag, dmu_buf_impl_t **dbp)
3069 {
3070         struct dbuf_hold_impl_data *dh;
3071         int error;
3072
3073         dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
3074             DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
3075         __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
3076             fail_uncached, tag, dbp, 0);
3077
3078         error = __dbuf_hold_impl(dh);
3079
3080         kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
3081             DBUF_HOLD_IMPL_MAX_DEPTH);
3082
3083         return (error);
3084 }
3085
3086 static void
3087 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
3088     dnode_t *dn, uint8_t level, uint64_t blkid,
3089     boolean_t fail_sparse, boolean_t fail_uncached,
3090     void *tag, dmu_buf_impl_t **dbp, int depth)
3091 {
3092         dh->dh_dn = dn;
3093         dh->dh_level = level;
3094         dh->dh_blkid = blkid;
3095
3096         dh->dh_fail_sparse = fail_sparse;
3097         dh->dh_fail_uncached = fail_uncached;
3098
3099         dh->dh_tag = tag;
3100         dh->dh_dbp = dbp;
3101
3102         dh->dh_db = NULL;
3103         dh->dh_parent = NULL;
3104         dh->dh_bp = NULL;
3105         dh->dh_err = 0;
3106         dh->dh_dr = NULL;
3107
3108         dh->dh_depth = depth;
3109 }
3110
3111 dmu_buf_impl_t *
3112 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3113 {
3114         return (dbuf_hold_level(dn, 0, blkid, tag));
3115 }
3116
3117 dmu_buf_impl_t *
3118 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3119 {
3120         dmu_buf_impl_t *db;
3121         int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3122         return (err ? NULL : db);
3123 }
3124
3125 void
3126 dbuf_create_bonus(dnode_t *dn)
3127 {
3128         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3129
3130         ASSERT(dn->dn_bonus == NULL);
3131         dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3132 }
3133
3134 int
3135 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3136 {
3137         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3138         dnode_t *dn;
3139
3140         if (db->db_blkid != DMU_SPILL_BLKID)
3141                 return (SET_ERROR(ENOTSUP));
3142         if (blksz == 0)
3143                 blksz = SPA_MINBLOCKSIZE;
3144         ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3145         blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3146
3147         DB_DNODE_ENTER(db);
3148         dn = DB_DNODE(db);
3149         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3150         dbuf_new_size(db, blksz, tx);
3151         rw_exit(&dn->dn_struct_rwlock);
3152         DB_DNODE_EXIT(db);
3153
3154         return (0);
3155 }
3156
3157 void
3158 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3159 {
3160         dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3161 }
3162
3163 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3164 void
3165 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3166 {
3167         int64_t holds = refcount_add(&db->db_holds, tag);
3168         VERIFY3S(holds, >, 1);
3169 }
3170
3171 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3172 boolean_t
3173 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3174     void *tag)
3175 {
3176         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3177         dmu_buf_impl_t *found_db;
3178         boolean_t result = B_FALSE;
3179
3180         if (blkid == DMU_BONUS_BLKID)
3181                 found_db = dbuf_find_bonus(os, obj);
3182         else
3183                 found_db = dbuf_find(os, obj, 0, blkid);
3184
3185         if (found_db != NULL) {
3186                 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3187                         (void) refcount_add(&db->db_holds, tag);
3188                         result = B_TRUE;
3189                 }
3190                 mutex_exit(&found_db->db_mtx);
3191         }
3192         return (result);
3193 }
3194
3195 /*
3196  * If you call dbuf_rele() you had better not be referencing the dnode handle
3197  * unless you have some other direct or indirect hold on the dnode. (An indirect
3198  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3199  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3200  * dnode's parent dbuf evicting its dnode handles.
3201  */
3202 void
3203 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3204 {
3205         mutex_enter(&db->db_mtx);
3206         dbuf_rele_and_unlock(db, tag);
3207 }
3208
3209 void
3210 dmu_buf_rele(dmu_buf_t *db, void *tag)
3211 {
3212         dbuf_rele((dmu_buf_impl_t *)db, tag);
3213 }
3214
3215 /*
3216  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
3217  * db_dirtycnt and db_holds to be updated atomically.
3218  */
3219 void
3220 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
3221 {
3222         int64_t holds;
3223
3224         ASSERT(MUTEX_HELD(&db->db_mtx));
3225         DBUF_VERIFY(db);
3226
3227         /*
3228          * Remove the reference to the dbuf before removing its hold on the
3229          * dnode so we can guarantee in dnode_move() that a referenced bonus
3230          * buffer has a corresponding dnode hold.
3231          */
3232         holds = refcount_remove(&db->db_holds, tag);
3233         ASSERT(holds >= 0);
3234
3235         /*
3236          * We can't freeze indirects if there is a possibility that they
3237          * may be modified in the current syncing context.
3238          */
3239         if (db->db_buf != NULL &&
3240             holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3241                 arc_buf_freeze(db->db_buf);
3242         }
3243
3244         if (holds == db->db_dirtycnt &&
3245             db->db_level == 0 && db->db_user_immediate_evict)
3246                 dbuf_evict_user(db);
3247
3248         if (holds == 0) {
3249                 if (db->db_blkid == DMU_BONUS_BLKID) {
3250                         dnode_t *dn;
3251                         boolean_t evict_dbuf = db->db_pending_evict;
3252
3253                         /*
3254                          * If the dnode moves here, we cannot cross this
3255                          * barrier until the move completes.
3256                          */
3257                         DB_DNODE_ENTER(db);
3258
3259                         dn = DB_DNODE(db);
3260                         atomic_dec_32(&dn->dn_dbufs_count);
3261
3262                         /*
3263                          * Decrementing the dbuf count means that the bonus
3264                          * buffer's dnode hold is no longer discounted in
3265                          * dnode_move(). The dnode cannot move until after
3266                          * the dnode_rele() below.
3267                          */
3268                         DB_DNODE_EXIT(db);
3269
3270                         /*
3271                          * Do not reference db after its lock is dropped.
3272                          * Another thread may evict it.
3273                          */
3274                         mutex_exit(&db->db_mtx);
3275
3276                         if (evict_dbuf)
3277                                 dnode_evict_bonus(dn);
3278
3279                         dnode_rele(dn, db);
3280                 } else if (db->db_buf == NULL) {
3281                         /*
3282                          * This is a special case: we never associated this
3283                          * dbuf with any data allocated from the ARC.
3284                          */
3285                         ASSERT(db->db_state == DB_UNCACHED ||
3286                             db->db_state == DB_NOFILL);
3287                         dbuf_destroy(db);
3288                 } else if (arc_released(db->db_buf)) {
3289                         /*
3290                          * This dbuf has anonymous data associated with it.
3291                          */
3292                         dbuf_destroy(db);
3293                 } else {
3294                         boolean_t do_arc_evict = B_FALSE;
3295                         blkptr_t bp;
3296                         spa_t *spa = dmu_objset_spa(db->db_objset);
3297
3298                         if (!DBUF_IS_CACHEABLE(db) &&
3299                             db->db_blkptr != NULL &&
3300                             !BP_IS_HOLE(db->db_blkptr) &&
3301                             !BP_IS_EMBEDDED(db->db_blkptr)) {
3302                                 do_arc_evict = B_TRUE;
3303                                 bp = *db->db_blkptr;
3304                         }
3305
3306                         if (!DBUF_IS_CACHEABLE(db) ||
3307                             db->db_pending_evict) {
3308                                 dbuf_destroy(db);
3309                         } else if (!multilist_link_active(&db->db_cache_link)) {
3310                                 multilist_insert(dbuf_cache, db);
3311                                 (void) refcount_add_many(&dbuf_cache_size,
3312                                     db->db.db_size, db);
3313                                 DBUF_STAT_BUMP(cache_levels[db->db_level]);
3314                                 DBUF_STAT_BUMP(cache_count);
3315                                 DBUF_STAT_INCR(cache_levels_bytes[db->db_level],
3316                                     db->db.db_size);
3317                                 DBUF_STAT_MAX(cache_size_bytes_max,
3318                                     refcount_count(&dbuf_cache_size));
3319                                 mutex_exit(&db->db_mtx);
3320
3321                                 dbuf_evict_notify();
3322                         }
3323
3324                         if (do_arc_evict)
3325                                 arc_freed(spa, &bp);
3326                 }
3327         } else {
3328                 mutex_exit(&db->db_mtx);
3329         }
3330
3331 }
3332
3333 #pragma weak dmu_buf_refcount = dbuf_refcount
3334 uint64_t
3335 dbuf_refcount(dmu_buf_impl_t *db)
3336 {
3337         return (refcount_count(&db->db_holds));
3338 }
3339
3340 void *
3341 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3342     dmu_buf_user_t *new_user)
3343 {
3344         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3345
3346         mutex_enter(&db->db_mtx);
3347         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3348         if (db->db_user == old_user)
3349                 db->db_user = new_user;
3350         else
3351                 old_user = db->db_user;
3352         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3353         mutex_exit(&db->db_mtx);
3354
3355         return (old_user);
3356 }
3357
3358 void *
3359 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3360 {
3361         return (dmu_buf_replace_user(db_fake, NULL, user));
3362 }
3363
3364 void *
3365 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3366 {
3367         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3368
3369         db->db_user_immediate_evict = TRUE;
3370         return (dmu_buf_set_user(db_fake, user));
3371 }
3372
3373 void *
3374 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3375 {
3376         return (dmu_buf_replace_user(db_fake, user, NULL));
3377 }
3378
3379 void *
3380 dmu_buf_get_user(dmu_buf_t *db_fake)
3381 {
3382         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3383
3384         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3385         return (db->db_user);
3386 }
3387
3388 void
3389 dmu_buf_user_evict_wait()
3390 {
3391         taskq_wait(dbu_evict_taskq);
3392 }
3393
3394 blkptr_t *
3395 dmu_buf_get_blkptr(dmu_buf_t *db)
3396 {
3397         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3398         return (dbi->db_blkptr);
3399 }
3400
3401 objset_t *
3402 dmu_buf_get_objset(dmu_buf_t *db)
3403 {
3404         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3405         return (dbi->db_objset);
3406 }
3407
3408 dnode_t *
3409 dmu_buf_dnode_enter(dmu_buf_t *db)
3410 {
3411         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3412         DB_DNODE_ENTER(dbi);
3413         return (DB_DNODE(dbi));
3414 }
3415
3416 void
3417 dmu_buf_dnode_exit(dmu_buf_t *db)
3418 {
3419         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3420         DB_DNODE_EXIT(dbi);
3421 }
3422
3423 static void
3424 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3425 {
3426         /* ASSERT(dmu_tx_is_syncing(tx) */
3427         ASSERT(MUTEX_HELD(&db->db_mtx));
3428
3429         if (db->db_blkptr != NULL)
3430                 return;
3431
3432         if (db->db_blkid == DMU_SPILL_BLKID) {
3433                 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3434                 BP_ZERO(db->db_blkptr);
3435                 return;
3436         }
3437         if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3438                 /*
3439                  * This buffer was allocated at a time when there was
3440                  * no available blkptrs from the dnode, or it was
3441                  * inappropriate to hook it in (i.e., nlevels mis-match).
3442                  */
3443                 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3444                 ASSERT(db->db_parent == NULL);
3445                 db->db_parent = dn->dn_dbuf;
3446                 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3447                 DBUF_VERIFY(db);
3448         } else {
3449                 dmu_buf_impl_t *parent = db->db_parent;
3450                 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3451
3452                 ASSERT(dn->dn_phys->dn_nlevels > 1);
3453                 if (parent == NULL) {
3454                         mutex_exit(&db->db_mtx);
3455                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
3456                         parent = dbuf_hold_level(dn, db->db_level + 1,
3457                             db->db_blkid >> epbs, db);
3458                         rw_exit(&dn->dn_struct_rwlock);
3459                         mutex_enter(&db->db_mtx);
3460                         db->db_parent = parent;
3461                 }
3462                 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3463                     (db->db_blkid & ((1ULL << epbs) - 1));
3464                 DBUF_VERIFY(db);
3465         }
3466 }
3467
3468 /*
3469  * When syncing out a blocks of dnodes, adjust the block to deal with
3470  * encryption.  Normally, we make sure the block is decrypted before writing
3471  * it.  If we have crypt params, then we are writing a raw (encrypted) block,
3472  * from a raw receive.  In this case, set the ARC buf's crypt params so
3473  * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3474  */
3475 static void
3476 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3477 {
3478         int err;
3479         dmu_buf_impl_t *db = dr->dr_dbuf;
3480
3481         ASSERT(MUTEX_HELD(&db->db_mtx));
3482         ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3483         ASSERT3U(db->db_level, ==, 0);
3484
3485         if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3486                 zbookmark_phys_t zb;
3487
3488                 /*
3489                  * Unfortunately, there is currently no mechanism for
3490                  * syncing context to handle decryption errors. An error
3491                  * here is only possible if an attacker maliciously
3492                  * changed a dnode block and updated the associated
3493                  * checksums going up the block tree.
3494                  */
3495                 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3496                     db->db.db_object, db->db_level, db->db_blkid);
3497                 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3498                     &zb, B_TRUE);
3499                 if (err)
3500                         panic("Invalid dnode block MAC");
3501         } else if (dr->dt.dl.dr_has_raw_params) {
3502                 (void) arc_release(dr->dt.dl.dr_data, db);
3503                 arc_convert_to_raw(dr->dt.dl.dr_data,
3504                     dmu_objset_id(db->db_objset),
3505                     dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3506                     dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3507         }
3508 }
3509
3510 /*
3511  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3512  * is critical the we not allow the compiler to inline this function in to
3513  * dbuf_sync_list() thereby drastically bloating the stack usage.
3514  */
3515 noinline static void
3516 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3517 {
3518         dmu_buf_impl_t *db = dr->dr_dbuf;
3519         dnode_t *dn;
3520         zio_t *zio;
3521
3522         ASSERT(dmu_tx_is_syncing(tx));
3523
3524         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3525
3526         mutex_enter(&db->db_mtx);
3527
3528         ASSERT(db->db_level > 0);
3529         DBUF_VERIFY(db);
3530
3531         /* Read the block if it hasn't been read yet. */
3532         if (db->db_buf == NULL) {
3533                 mutex_exit(&db->db_mtx);
3534                 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3535                 mutex_enter(&db->db_mtx);
3536         }
3537         ASSERT3U(db->db_state, ==, DB_CACHED);
3538         ASSERT(db->db_buf != NULL);
3539
3540         DB_DNODE_ENTER(db);
3541         dn = DB_DNODE(db);
3542         /* Indirect block size must match what the dnode thinks it is. */
3543         ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3544         dbuf_check_blkptr(dn, db);
3545         DB_DNODE_EXIT(db);
3546
3547         /* Provide the pending dirty record to child dbufs */
3548         db->db_data_pending = dr;
3549
3550         mutex_exit(&db->db_mtx);
3551
3552         dbuf_write(dr, db->db_buf, tx);
3553
3554         zio = dr->dr_zio;
3555         mutex_enter(&dr->dt.di.dr_mtx);
3556         dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3557         ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3558         mutex_exit(&dr->dt.di.dr_mtx);
3559         zio_nowait(zio);
3560 }
3561
3562 /*
3563  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3564  * critical the we not allow the compiler to inline this function in to
3565  * dbuf_sync_list() thereby drastically bloating the stack usage.
3566  */
3567 noinline static void
3568 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3569 {
3570         arc_buf_t **datap = &dr->dt.dl.dr_data;
3571         dmu_buf_impl_t *db = dr->dr_dbuf;
3572         dnode_t *dn;
3573         objset_t *os;
3574         uint64_t txg = tx->tx_txg;
3575
3576         ASSERT(dmu_tx_is_syncing(tx));
3577
3578         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3579
3580         mutex_enter(&db->db_mtx);
3581         /*
3582          * To be synced, we must be dirtied.  But we
3583          * might have been freed after the dirty.
3584          */
3585         if (db->db_state == DB_UNCACHED) {
3586                 /* This buffer has been freed since it was dirtied */
3587                 ASSERT(db->db.db_data == NULL);
3588         } else if (db->db_state == DB_FILL) {
3589                 /* This buffer was freed and is now being re-filled */
3590                 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3591         } else {
3592                 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3593         }
3594         DBUF_VERIFY(db);
3595
3596         DB_DNODE_ENTER(db);
3597         dn = DB_DNODE(db);
3598
3599         if (db->db_blkid == DMU_SPILL_BLKID) {
3600                 mutex_enter(&dn->dn_mtx);
3601                 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3602                         /*
3603                          * In the previous transaction group, the bonus buffer
3604                          * was entirely used to store the attributes for the
3605                          * dnode which overrode the dn_spill field.  However,
3606                          * when adding more attributes to the file a spill
3607                          * block was required to hold the extra attributes.
3608                          *
3609                          * Make sure to clear the garbage left in the dn_spill
3610                          * field from the previous attributes in the bonus
3611                          * buffer.  Otherwise, after writing out the spill
3612                          * block to the new allocated dva, it will free
3613                          * the old block pointed to by the invalid dn_spill.
3614                          */
3615                         db->db_blkptr = NULL;
3616                 }
3617                 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3618                 mutex_exit(&dn->dn_mtx);
3619         }
3620
3621         /*
3622          * If this is a bonus buffer, simply copy the bonus data into the
3623          * dnode.  It will be written out when the dnode is synced (and it
3624          * will be synced, since it must have been dirty for dbuf_sync to
3625          * be called).
3626          */
3627         if (db->db_blkid == DMU_BONUS_BLKID) {
3628                 dbuf_dirty_record_t **drp;
3629
3630                 ASSERT(*datap != NULL);
3631                 ASSERT0(db->db_level);
3632                 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3633                     DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3634                 bcopy(*datap, DN_BONUS(dn->dn_phys),
3635                     DN_MAX_BONUS_LEN(dn->dn_phys));
3636                 DB_DNODE_EXIT(db);
3637
3638                 if (*datap != db->db.db_data) {
3639                         int slots = DB_DNODE(db)->dn_num_slots;
3640                         int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3641                         kmem_free(*datap, bonuslen);
3642                         arc_space_return(bonuslen, ARC_SPACE_BONUS);
3643                 }
3644                 db->db_data_pending = NULL;
3645                 drp = &db->db_last_dirty;
3646                 while (*drp != dr)
3647                         drp = &(*drp)->dr_next;
3648                 ASSERT(dr->dr_next == NULL);
3649                 ASSERT(dr->dr_dbuf == db);
3650                 *drp = dr->dr_next;
3651                 if (dr->dr_dbuf->db_level != 0) {
3652                         mutex_destroy(&dr->dt.di.dr_mtx);
3653                         list_destroy(&dr->dt.di.dr_children);
3654                 }
3655                 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3656                 ASSERT(db->db_dirtycnt > 0);
3657                 db->db_dirtycnt -= 1;
3658                 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3659                 return;
3660         }
3661
3662         os = dn->dn_objset;
3663
3664         /*
3665          * This function may have dropped the db_mtx lock allowing a dmu_sync
3666          * operation to sneak in. As a result, we need to ensure that we
3667          * don't check the dr_override_state until we have returned from
3668          * dbuf_check_blkptr.
3669          */
3670         dbuf_check_blkptr(dn, db);
3671
3672         /*
3673          * If this buffer is in the middle of an immediate write,
3674          * wait for the synchronous IO to complete.
3675          */
3676         while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3677                 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3678                 cv_wait(&db->db_changed, &db->db_mtx);
3679                 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3680         }
3681
3682         /*
3683          * If this is a dnode block, ensure it is appropriately encrypted
3684          * or decrypted, depending on what we are writing to it this txg.
3685          */
3686         if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3687                 dbuf_prepare_encrypted_dnode_leaf(dr);
3688
3689         if (db->db_state != DB_NOFILL &&
3690             dn->dn_object != DMU_META_DNODE_OBJECT &&
3691             refcount_count(&db->db_holds) > 1 &&
3692             dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3693             *datap == db->db_buf) {
3694                 /*
3695                  * If this buffer is currently "in use" (i.e., there
3696                  * are active holds and db_data still references it),
3697                  * then make a copy before we start the write so that
3698                  * any modifications from the open txg will not leak
3699                  * into this write.
3700                  *
3701                  * NOTE: this copy does not need to be made for
3702                  * objects only modified in the syncing context (e.g.
3703                  * DNONE_DNODE blocks).
3704                  */
3705                 int psize = arc_buf_size(*datap);
3706                 int lsize = arc_buf_lsize(*datap);
3707                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3708                 enum zio_compress compress_type = arc_get_compression(*datap);
3709
3710                 if (arc_is_encrypted(*datap)) {
3711                         boolean_t byteorder;
3712                         uint8_t salt[ZIO_DATA_SALT_LEN];
3713                         uint8_t iv[ZIO_DATA_IV_LEN];
3714                         uint8_t mac[ZIO_DATA_MAC_LEN];
3715
3716                         arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3717                         *datap = arc_alloc_raw_buf(os->os_spa, db,
3718                             dmu_objset_id(os), byteorder, salt, iv, mac,
3719                             dn->dn_type, psize, lsize, compress_type);
3720                 } else if (compress_type != ZIO_COMPRESS_OFF) {
3721                         ASSERT3U(type, ==, ARC_BUFC_DATA);
3722                         *datap = arc_alloc_compressed_buf(os->os_spa, db,
3723                             psize, lsize, compress_type);
3724                 } else {
3725                         *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3726                 }
3727                 bcopy(db->db.db_data, (*datap)->b_data, psize);
3728         }
3729         db->db_data_pending = dr;
3730
3731         mutex_exit(&db->db_mtx);
3732
3733         dbuf_write(dr, *datap, tx);
3734
3735         ASSERT(!list_link_active(&dr->dr_dirty_node));
3736         if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3737                 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3738                 DB_DNODE_EXIT(db);
3739         } else {
3740                 /*
3741                  * Although zio_nowait() does not "wait for an IO", it does
3742                  * initiate the IO. If this is an empty write it seems plausible
3743                  * that the IO could actually be completed before the nowait
3744                  * returns. We need to DB_DNODE_EXIT() first in case
3745                  * zio_nowait() invalidates the dbuf.
3746                  */
3747                 DB_DNODE_EXIT(db);
3748                 zio_nowait(dr->dr_zio);
3749         }
3750 }
3751
3752 void
3753 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3754 {
3755         dbuf_dirty_record_t *dr;
3756
3757         while ((dr = list_head(list))) {
3758                 if (dr->dr_zio != NULL) {
3759                         /*
3760                          * If we find an already initialized zio then we
3761                          * are processing the meta-dnode, and we have finished.
3762                          * The dbufs for all dnodes are put back on the list
3763                          * during processing, so that we can zio_wait()
3764                          * these IOs after initiating all child IOs.
3765                          */
3766                         ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3767                             DMU_META_DNODE_OBJECT);
3768                         break;
3769                 }
3770                 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3771                     dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3772                         VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3773                 }
3774                 list_remove(list, dr);
3775                 if (dr->dr_dbuf->db_level > 0)
3776                         dbuf_sync_indirect(dr, tx);
3777                 else
3778                         dbuf_sync_leaf(dr, tx);
3779         }
3780 }
3781
3782 /* ARGSUSED */
3783 static void
3784 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3785 {
3786         dmu_buf_impl_t *db = vdb;
3787         dnode_t *dn;
3788         blkptr_t *bp = zio->io_bp;
3789         blkptr_t *bp_orig = &zio->io_bp_orig;
3790         spa_t *spa = zio->io_spa;
3791         int64_t delta;
3792         uint64_t fill = 0;
3793         int i;
3794
3795         ASSERT3P(db->db_blkptr, !=, NULL);
3796         ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3797
3798         DB_DNODE_ENTER(db);
3799         dn = DB_DNODE(db);
3800         delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3801         dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3802         zio->io_prev_space_delta = delta;
3803
3804         if (bp->blk_birth != 0) {
3805                 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3806                     BP_GET_TYPE(bp) == dn->dn_type) ||
3807                     (db->db_blkid == DMU_SPILL_BLKID &&
3808                     BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3809                     BP_IS_EMBEDDED(bp));
3810                 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3811         }
3812
3813         mutex_enter(&db->db_mtx);
3814
3815 #ifdef ZFS_DEBUG
3816         if (db->db_blkid == DMU_SPILL_BLKID) {
3817                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3818                 ASSERT(!(BP_IS_HOLE(bp)) &&
3819                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3820         }
3821 #endif
3822
3823         if (db->db_level == 0) {
3824                 mutex_enter(&dn->dn_mtx);
3825                 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3826                     db->db_blkid != DMU_SPILL_BLKID)
3827                         dn->dn_phys->dn_maxblkid = db->db_blkid;
3828                 mutex_exit(&dn->dn_mtx);
3829
3830                 if (dn->dn_type == DMU_OT_DNODE) {
3831                         i = 0;
3832                         while (i < db->db.db_size) {
3833                                 dnode_phys_t *dnp =
3834                                     (void *)(((char *)db->db.db_data) + i);
3835
3836                                 i += DNODE_MIN_SIZE;
3837                                 if (dnp->dn_type != DMU_OT_NONE) {
3838                                         fill++;
3839                                         i += dnp->dn_extra_slots *
3840                                             DNODE_MIN_SIZE;
3841                                 }
3842                         }
3843                 } else {
3844                         if (BP_IS_HOLE(bp)) {
3845                                 fill = 0;
3846                         } else {
3847                                 fill = 1;
3848                         }
3849                 }
3850         } else {
3851                 blkptr_t *ibp = db->db.db_data;
3852                 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3853                 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3854                         if (BP_IS_HOLE(ibp))
3855                                 continue;
3856                         fill += BP_GET_FILL(ibp);
3857                 }
3858         }
3859         DB_DNODE_EXIT(db);
3860
3861         if (!BP_IS_EMBEDDED(bp))
3862                 BP_SET_FILL(bp, fill);
3863
3864         mutex_exit(&db->db_mtx);
3865
3866         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3867         *db->db_blkptr = *bp;
3868         rw_exit(&dn->dn_struct_rwlock);
3869 }
3870
3871 /* ARGSUSED */
3872 /*
3873  * This function gets called just prior to running through the compression
3874  * stage of the zio pipeline. If we're an indirect block comprised of only
3875  * holes, then we want this indirect to be compressed away to a hole. In
3876  * order to do that we must zero out any information about the holes that
3877  * this indirect points to prior to before we try to compress it.
3878  */
3879 static void
3880 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3881 {
3882         dmu_buf_impl_t *db = vdb;
3883         dnode_t *dn;
3884         blkptr_t *bp;
3885         unsigned int epbs, i;
3886
3887         ASSERT3U(db->db_level, >, 0);
3888         DB_DNODE_ENTER(db);
3889         dn = DB_DNODE(db);
3890         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3891         ASSERT3U(epbs, <, 31);
3892
3893         /* Determine if all our children are holes */
3894         for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3895                 if (!BP_IS_HOLE(bp))
3896                         break;
3897         }
3898
3899         /*
3900          * If all the children are holes, then zero them all out so that
3901          * we may get compressed away.
3902          */
3903         if (i == 1ULL << epbs) {
3904                 /*
3905                  * We only found holes. Grab the rwlock to prevent
3906                  * anybody from reading the blocks we're about to
3907                  * zero out.
3908                  */
3909                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3910                 bzero(db->db.db_data, db->db.db_size);
3911                 rw_exit(&dn->dn_struct_rwlock);
3912         }
3913         DB_DNODE_EXIT(db);
3914 }
3915
3916 /*
3917  * The SPA will call this callback several times for each zio - once
3918  * for every physical child i/o (zio->io_phys_children times).  This
3919  * allows the DMU to monitor the progress of each logical i/o.  For example,
3920  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3921  * block.  There may be a long delay before all copies/fragments are completed,
3922  * so this callback allows us to retire dirty space gradually, as the physical
3923  * i/os complete.
3924  */
3925 /* ARGSUSED */
3926 static void
3927 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3928 {
3929         dmu_buf_impl_t *db = arg;
3930         objset_t *os = db->db_objset;
3931         dsl_pool_t *dp = dmu_objset_pool(os);
3932         dbuf_dirty_record_t *dr;
3933         int delta = 0;
3934
3935         dr = db->db_data_pending;
3936         ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3937
3938         /*
3939          * The callback will be called io_phys_children times.  Retire one
3940          * portion of our dirty space each time we are called.  Any rounding
3941          * error will be cleaned up by dsl_pool_sync()'s call to
3942          * dsl_pool_undirty_space().
3943          */
3944         delta = dr->dr_accounted / zio->io_phys_children;
3945         dsl_pool_undirty_space(dp, delta, zio->io_txg);
3946 }
3947
3948 /* ARGSUSED */
3949 static void
3950 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3951 {
3952         dmu_buf_impl_t *db = vdb;
3953         blkptr_t *bp_orig = &zio->io_bp_orig;
3954         blkptr_t *bp = db->db_blkptr;
3955         objset_t *os = db->db_objset;
3956         dmu_tx_t *tx = os->os_synctx;
3957         dbuf_dirty_record_t **drp, *dr;
3958
3959         ASSERT0(zio->io_error);
3960         ASSERT(db->db_blkptr == bp);
3961
3962         /*
3963          * For nopwrites and rewrites we ensure that the bp matches our
3964          * original and bypass all the accounting.
3965          */
3966         if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3967                 ASSERT(BP_EQUAL(bp, bp_orig));
3968         } else {
3969                 dsl_dataset_t *ds = os->os_dsl_dataset;
3970                 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3971                 dsl_dataset_block_born(ds, bp, tx);
3972         }
3973
3974         mutex_enter(&db->db_mtx);
3975
3976         DBUF_VERIFY(db);
3977
3978         drp = &db->db_last_dirty;
3979         while ((dr = *drp) != db->db_data_pending)
3980                 drp = &dr->dr_next;
3981         ASSERT(!list_link_active(&dr->dr_dirty_node));
3982         ASSERT(dr->dr_dbuf == db);
3983         ASSERT(dr->dr_next == NULL);
3984         *drp = dr->dr_next;
3985
3986 #ifdef ZFS_DEBUG
3987         if (db->db_blkid == DMU_SPILL_BLKID) {
3988                 dnode_t *dn;
3989
3990                 DB_DNODE_ENTER(db);
3991                 dn = DB_DNODE(db);
3992                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3993                 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3994                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3995                 DB_DNODE_EXIT(db);
3996         }
3997 #endif
3998
3999         if (db->db_level == 0) {
4000                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4001                 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4002                 if (db->db_state != DB_NOFILL) {
4003                         if (dr->dt.dl.dr_data != db->db_buf)
4004                                 arc_buf_destroy(dr->dt.dl.dr_data, db);
4005                 }
4006         } else {
4007                 dnode_t *dn;
4008
4009                 DB_DNODE_ENTER(db);
4010                 dn = DB_DNODE(db);
4011                 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4012                 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4013                 if (!BP_IS_HOLE(db->db_blkptr)) {
4014                         ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
4015                             SPA_BLKPTRSHIFT);
4016                         ASSERT3U(db->db_blkid, <=,
4017                             dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4018                         ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4019                             db->db.db_size);
4020                 }
4021                 DB_DNODE_EXIT(db);
4022                 mutex_destroy(&dr->dt.di.dr_mtx);
4023                 list_destroy(&dr->dt.di.dr_children);
4024         }
4025         kmem_free(dr, sizeof (dbuf_dirty_record_t));
4026
4027         cv_broadcast(&db->db_changed);
4028         ASSERT(db->db_dirtycnt > 0);
4029         db->db_dirtycnt -= 1;
4030         db->db_data_pending = NULL;
4031         dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
4032 }
4033
4034 static void
4035 dbuf_write_nofill_ready(zio_t *zio)
4036 {
4037         dbuf_write_ready(zio, NULL, zio->io_private);
4038 }
4039
4040 static void
4041 dbuf_write_nofill_done(zio_t *zio)
4042 {
4043         dbuf_write_done(zio, NULL, zio->io_private);
4044 }
4045
4046 static void
4047 dbuf_write_override_ready(zio_t *zio)
4048 {
4049         dbuf_dirty_record_t *dr = zio->io_private;
4050         dmu_buf_impl_t *db = dr->dr_dbuf;
4051
4052         dbuf_write_ready(zio, NULL, db);
4053 }
4054
4055 static void
4056 dbuf_write_override_done(zio_t *zio)
4057 {
4058         dbuf_dirty_record_t *dr = zio->io_private;
4059         dmu_buf_impl_t *db = dr->dr_dbuf;
4060         blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4061
4062         mutex_enter(&db->db_mtx);
4063         if (!BP_EQUAL(zio->io_bp, obp)) {
4064                 if (!BP_IS_HOLE(obp))
4065                         dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4066                 arc_release(dr->dt.dl.dr_data, db);
4067         }
4068         mutex_exit(&db->db_mtx);
4069
4070         dbuf_write_done(zio, NULL, db);
4071
4072         if (zio->io_abd != NULL)
4073                 abd_put(zio->io_abd);
4074 }
4075
4076 typedef struct dbuf_remap_impl_callback_arg {
4077         objset_t        *drica_os;
4078         uint64_t        drica_blk_birth;
4079         dmu_tx_t        *drica_tx;
4080 } dbuf_remap_impl_callback_arg_t;
4081
4082 static void
4083 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4084     void *arg)
4085 {
4086         dbuf_remap_impl_callback_arg_t *drica = arg;
4087         objset_t *os = drica->drica_os;
4088         spa_t *spa = dmu_objset_spa(os);
4089         dmu_tx_t *tx = drica->drica_tx;
4090
4091         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4092
4093         if (os == spa_meta_objset(spa)) {
4094                 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4095         } else {
4096                 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4097                     size, drica->drica_blk_birth, tx);
4098         }
4099 }
4100
4101 static void
4102 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
4103 {
4104         blkptr_t bp_copy = *bp;
4105         spa_t *spa = dmu_objset_spa(dn->dn_objset);
4106         dbuf_remap_impl_callback_arg_t drica;
4107
4108         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4109
4110         drica.drica_os = dn->dn_objset;
4111         drica.drica_blk_birth = bp->blk_birth;
4112         drica.drica_tx = tx;
4113         if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4114             &drica)) {
4115                 /*
4116                  * The struct_rwlock prevents dbuf_read_impl() from
4117                  * dereferencing the BP while we are changing it.  To
4118                  * avoid lock contention, only grab it when we are actually
4119                  * changing the BP.
4120                  */
4121                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4122                 *bp = bp_copy;
4123                 rw_exit(&dn->dn_struct_rwlock);
4124         }
4125 }
4126
4127 /*
4128  * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4129  * to remap a copy of every bp in the dbuf.
4130  */
4131 boolean_t
4132 dbuf_can_remap(const dmu_buf_impl_t *db)
4133 {
4134         spa_t *spa = dmu_objset_spa(db->db_objset);
4135         blkptr_t *bp = db->db.db_data;
4136         boolean_t ret = B_FALSE;
4137
4138         ASSERT3U(db->db_level, >, 0);
4139         ASSERT3S(db->db_state, ==, DB_CACHED);
4140
4141         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4142
4143         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4144         for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4145                 blkptr_t bp_copy = bp[i];
4146                 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4147                         ret = B_TRUE;
4148                         break;
4149                 }
4150         }
4151         spa_config_exit(spa, SCL_VDEV, FTAG);
4152
4153         return (ret);
4154 }
4155
4156 boolean_t
4157 dnode_needs_remap(const dnode_t *dn)
4158 {
4159         spa_t *spa = dmu_objset_spa(dn->dn_objset);
4160         boolean_t ret = B_FALSE;
4161
4162         if (dn->dn_phys->dn_nlevels == 0) {
4163                 return (B_FALSE);
4164         }
4165
4166         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4167
4168         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4169         for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4170                 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4171                 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4172                         ret = B_TRUE;
4173                         break;
4174                 }
4175         }
4176         spa_config_exit(spa, SCL_VDEV, FTAG);
4177
4178         return (ret);
4179 }
4180
4181 /*
4182  * Remap any existing BP's to concrete vdevs, if possible.
4183  */
4184 static void
4185 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4186 {
4187         spa_t *spa = dmu_objset_spa(db->db_objset);
4188         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4189
4190         if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4191                 return;
4192
4193         if (db->db_level > 0) {
4194                 blkptr_t *bp = db->db.db_data;
4195                 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4196                         dbuf_remap_impl(dn, &bp[i], tx);
4197                 }
4198         } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4199                 dnode_phys_t *dnp = db->db.db_data;
4200                 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4201                     DMU_OT_DNODE);
4202                 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4203                     i += dnp[i].dn_extra_slots + 1) {
4204                         for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4205                                 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
4206                         }
4207                 }
4208         }
4209 }
4210
4211
4212 /* Issue I/O to commit a dirty buffer to disk. */
4213 static void
4214 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4215 {
4216         dmu_buf_impl_t *db = dr->dr_dbuf;
4217         dnode_t *dn;
4218         objset_t *os;
4219         dmu_buf_impl_t *parent = db->db_parent;
4220         uint64_t txg = tx->tx_txg;
4221         zbookmark_phys_t zb;
4222         zio_prop_t zp;
4223         zio_t *zio;
4224         int wp_flag = 0;
4225
4226         ASSERT(dmu_tx_is_syncing(tx));
4227
4228         DB_DNODE_ENTER(db);
4229         dn = DB_DNODE(db);
4230         os = dn->dn_objset;
4231
4232         if (db->db_state != DB_NOFILL) {
4233                 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4234                         /*
4235                          * Private object buffers are released here rather
4236                          * than in dbuf_dirty() since they are only modified
4237                          * in the syncing context and we don't want the
4238                          * overhead of making multiple copies of the data.
4239                          */
4240                         if (BP_IS_HOLE(db->db_blkptr)) {
4241                                 arc_buf_thaw(data);
4242                         } else {
4243                                 dbuf_release_bp(db);
4244                         }
4245                         dbuf_remap(dn, db, tx);
4246                 }
4247         }
4248
4249         if (parent != dn->dn_dbuf) {
4250                 /* Our parent is an indirect block. */
4251                 /* We have a dirty parent that has been scheduled for write. */
4252                 ASSERT(parent && parent->db_data_pending);
4253                 /* Our parent's buffer is one level closer to the dnode. */
4254                 ASSERT(db->db_level == parent->db_level-1);
4255                 /*
4256                  * We're about to modify our parent's db_data by modifying
4257                  * our block pointer, so the parent must be released.
4258                  */
4259                 ASSERT(arc_released(parent->db_buf));
4260                 zio = parent->db_data_pending->dr_zio;
4261         } else {
4262                 /* Our parent is the dnode itself. */
4263                 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4264                     db->db_blkid != DMU_SPILL_BLKID) ||
4265                     (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4266                 if (db->db_blkid != DMU_SPILL_BLKID)
4267                         ASSERT3P(db->db_blkptr, ==,
4268                             &dn->dn_phys->dn_blkptr[db->db_blkid]);
4269                 zio = dn->dn_zio;
4270         }
4271
4272         ASSERT(db->db_level == 0 || data == db->db_buf);
4273         ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4274         ASSERT(zio);
4275
4276         SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4277             os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4278             db->db.db_object, db->db_level, db->db_blkid);
4279
4280         if (db->db_blkid == DMU_SPILL_BLKID)
4281                 wp_flag = WP_SPILL;
4282         wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4283
4284         dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4285         DB_DNODE_EXIT(db);
4286
4287         /*
4288          * We copy the blkptr now (rather than when we instantiate the dirty
4289          * record), because its value can change between open context and
4290          * syncing context. We do not need to hold dn_struct_rwlock to read
4291          * db_blkptr because we are in syncing context.
4292          */
4293         dr->dr_bp_copy = *db->db_blkptr;
4294
4295         if (db->db_level == 0 &&
4296             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4297                 /*
4298                  * The BP for this block has been provided by open context
4299                  * (by dmu_sync() or dmu_buf_write_embedded()).
4300                  */
4301                 abd_t *contents = (data != NULL) ?
4302                     abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4303
4304                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4305                     &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4306                     &zp, dbuf_write_override_ready, NULL, NULL,
4307                     dbuf_write_override_done,
4308                     dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4309                 mutex_enter(&db->db_mtx);
4310                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4311                 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4312                     dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4313                 mutex_exit(&db->db_mtx);
4314         } else if (db->db_state == DB_NOFILL) {
4315                 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4316                     zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4317                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4318                     &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4319                     dbuf_write_nofill_ready, NULL, NULL,
4320                     dbuf_write_nofill_done, db,
4321                     ZIO_PRIORITY_ASYNC_WRITE,
4322                     ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4323         } else {
4324                 ASSERT(arc_released(data));
4325
4326                 /*
4327                  * For indirect blocks, we want to setup the children
4328                  * ready callback so that we can properly handle an indirect
4329                  * block that only contains holes.
4330                  */
4331                 arc_write_done_func_t *children_ready_cb = NULL;
4332                 if (db->db_level != 0)
4333                         children_ready_cb = dbuf_write_children_ready;
4334
4335                 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4336                     &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4337                     &zp, dbuf_write_ready,
4338                     children_ready_cb, dbuf_write_physdone,
4339                     dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4340                     ZIO_FLAG_MUSTSUCCEED, &zb);
4341         }
4342 }
4343
4344 #if defined(_KERNEL)
4345 EXPORT_SYMBOL(dbuf_find);
4346 EXPORT_SYMBOL(dbuf_is_metadata);
4347 EXPORT_SYMBOL(dbuf_destroy);
4348 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4349 EXPORT_SYMBOL(dbuf_whichblock);
4350 EXPORT_SYMBOL(dbuf_read);
4351 EXPORT_SYMBOL(dbuf_unoverride);
4352 EXPORT_SYMBOL(dbuf_free_range);
4353 EXPORT_SYMBOL(dbuf_new_size);
4354 EXPORT_SYMBOL(dbuf_release_bp);
4355 EXPORT_SYMBOL(dbuf_dirty);
4356 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
4357 EXPORT_SYMBOL(dmu_buf_will_dirty);
4358 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4359 EXPORT_SYMBOL(dmu_buf_will_fill);
4360 EXPORT_SYMBOL(dmu_buf_fill_done);
4361 EXPORT_SYMBOL(dmu_buf_rele);
4362 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4363 EXPORT_SYMBOL(dbuf_prefetch);
4364 EXPORT_SYMBOL(dbuf_hold_impl);
4365 EXPORT_SYMBOL(dbuf_hold);
4366 EXPORT_SYMBOL(dbuf_hold_level);
4367 EXPORT_SYMBOL(dbuf_create_bonus);
4368 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4369 EXPORT_SYMBOL(dbuf_rm_spill);
4370 EXPORT_SYMBOL(dbuf_add_ref);
4371 EXPORT_SYMBOL(dbuf_rele);
4372 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4373 EXPORT_SYMBOL(dbuf_refcount);
4374 EXPORT_SYMBOL(dbuf_sync_list);
4375 EXPORT_SYMBOL(dmu_buf_set_user);
4376 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4377 EXPORT_SYMBOL(dmu_buf_get_user);
4378 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4379
4380 /* BEGIN CSTYLED */
4381 module_param(dbuf_cache_max_bytes, ulong, 0644);
4382 MODULE_PARM_DESC(dbuf_cache_max_bytes,
4383         "Maximum size in bytes of the dbuf cache.");
4384
4385 module_param(dbuf_cache_hiwater_pct, uint, 0644);
4386 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4387         "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4388         "directly.");
4389
4390 module_param(dbuf_cache_lowater_pct, uint, 0644);
4391 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4392         "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4393         "evicting dbufs.");
4394
4395 module_param(dbuf_cache_shift, int, 0644);
4396 MODULE_PARM_DESC(dbuf_cache_shift,
4397         "Set the size of the dbuf cache to a log2 fraction of arc size.");
4398 /* END CSTYLED */
4399 #endif