]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/dbuf.c
OpenZFS 7614, 9064 - zfs device evacuation/removal
[FreeBSD/FreeBSD.git] / module / zfs / dbuf.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
24  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25  * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27  */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51
52 kstat_t *dbuf_ksp;
53
54 typedef struct dbuf_stats {
55         /*
56          * Various statistics about the size of the dbuf cache.
57          */
58         kstat_named_t cache_count;
59         kstat_named_t cache_size_bytes;
60         kstat_named_t cache_size_bytes_max;
61         /*
62          * Statistics regarding the bounds on the dbuf cache size.
63          */
64         kstat_named_t cache_target_bytes;
65         kstat_named_t cache_lowater_bytes;
66         kstat_named_t cache_hiwater_bytes;
67         /*
68          * Total number of dbuf cache evictions that have occurred.
69          */
70         kstat_named_t cache_total_evicts;
71         /*
72          * The distribution of dbuf levels in the dbuf cache and
73          * the total size of all dbufs at each level.
74          */
75         kstat_named_t cache_levels[DN_MAX_LEVELS];
76         kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
77         /*
78          * Statistics about the dbuf hash table.
79          */
80         kstat_named_t hash_hits;
81         kstat_named_t hash_misses;
82         kstat_named_t hash_collisions;
83         kstat_named_t hash_elements;
84         kstat_named_t hash_elements_max;
85         /*
86          * Number of sublists containing more than one dbuf in the dbuf
87          * hash table. Keep track of the longest hash chain.
88          */
89         kstat_named_t hash_chains;
90         kstat_named_t hash_chain_max;
91         /*
92          * Number of times a dbuf_create() discovers that a dbuf was
93          * already created and in the dbuf hash table.
94          */
95         kstat_named_t hash_insert_race;
96 } dbuf_stats_t;
97
98 dbuf_stats_t dbuf_stats = {
99         { "cache_count",                        KSTAT_DATA_UINT64 },
100         { "cache_size_bytes",                   KSTAT_DATA_UINT64 },
101         { "cache_size_bytes_max",               KSTAT_DATA_UINT64 },
102         { "cache_target_bytes",                 KSTAT_DATA_UINT64 },
103         { "cache_lowater_bytes",                KSTAT_DATA_UINT64 },
104         { "cache_hiwater_bytes",                KSTAT_DATA_UINT64 },
105         { "cache_total_evicts",                 KSTAT_DATA_UINT64 },
106         { { "cache_levels_N",                   KSTAT_DATA_UINT64 } },
107         { { "cache_levels_bytes_N",             KSTAT_DATA_UINT64 } },
108         { "hash_hits",                          KSTAT_DATA_UINT64 },
109         { "hash_misses",                        KSTAT_DATA_UINT64 },
110         { "hash_collisions",                    KSTAT_DATA_UINT64 },
111         { "hash_elements",                      KSTAT_DATA_UINT64 },
112         { "hash_elements_max",                  KSTAT_DATA_UINT64 },
113         { "hash_chains",                        KSTAT_DATA_UINT64 },
114         { "hash_chain_max",                     KSTAT_DATA_UINT64 },
115         { "hash_insert_race",                   KSTAT_DATA_UINT64 }
116 };
117
118 #define DBUF_STAT_INCR(stat, val)       \
119         atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
120 #define DBUF_STAT_DECR(stat, val)       \
121         DBUF_STAT_INCR(stat, -(val));
122 #define DBUF_STAT_BUMP(stat)            \
123         DBUF_STAT_INCR(stat, 1);
124 #define DBUF_STAT_BUMPDOWN(stat)        \
125         DBUF_STAT_INCR(stat, -1);
126 #define DBUF_STAT_MAX(stat, v) {                                        \
127         uint64_t _m;                                                    \
128         while ((v) > (_m = dbuf_stats.stat.value.ui64) &&               \
129             (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
130                 continue;                                               \
131 }
132
133 struct dbuf_hold_impl_data {
134         /* Function arguments */
135         dnode_t *dh_dn;
136         uint8_t dh_level;
137         uint64_t dh_blkid;
138         boolean_t dh_fail_sparse;
139         boolean_t dh_fail_uncached;
140         void *dh_tag;
141         dmu_buf_impl_t **dh_dbp;
142         /* Local variables */
143         dmu_buf_impl_t *dh_db;
144         dmu_buf_impl_t *dh_parent;
145         blkptr_t *dh_bp;
146         int dh_err;
147         dbuf_dirty_record_t *dh_dr;
148         int dh_depth;
149 };
150
151 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
152     dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
153         boolean_t fail_uncached,
154         void *tag, dmu_buf_impl_t **dbp, int depth);
155 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
156
157 uint_t zfs_dbuf_evict_key;
158
159 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
160 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
161
162 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
163     dmu_buf_evict_func_t *evict_func_sync,
164     dmu_buf_evict_func_t *evict_func_async,
165     dmu_buf_t **clear_on_evict_dbufp);
166
167 /*
168  * Global data structures and functions for the dbuf cache.
169  */
170 static kmem_cache_t *dbuf_kmem_cache;
171 static taskq_t *dbu_evict_taskq;
172
173 static kthread_t *dbuf_cache_evict_thread;
174 static kmutex_t dbuf_evict_lock;
175 static kcondvar_t dbuf_evict_cv;
176 static boolean_t dbuf_evict_thread_exit;
177
178 /*
179  * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
180  * are not currently held but have been recently released. These dbufs
181  * are not eligible for arc eviction until they are aged out of the cache.
182  * Dbufs are added to the dbuf cache once the last hold is released. If a
183  * dbuf is later accessed and still exists in the dbuf cache, then it will
184  * be removed from the cache and later re-added to the head of the cache.
185  * Dbufs that are aged out of the cache will be immediately destroyed and
186  * become eligible for arc eviction.
187  */
188 static multilist_t *dbuf_cache;
189 static refcount_t dbuf_cache_size;
190 unsigned long dbuf_cache_max_bytes = 0;
191
192 /* Set the default size of the dbuf cache to log2 fraction of arc size. */
193 int dbuf_cache_shift = 5;
194
195 /*
196  * The dbuf cache uses a three-stage eviction policy:
197  *      - A low water marker designates when the dbuf eviction thread
198  *      should stop evicting from the dbuf cache.
199  *      - When we reach the maximum size (aka mid water mark), we
200  *      signal the eviction thread to run.
201  *      - The high water mark indicates when the eviction thread
202  *      is unable to keep up with the incoming load and eviction must
203  *      happen in the context of the calling thread.
204  *
205  * The dbuf cache:
206  *                                                 (max size)
207  *                                      low water   mid water   hi water
208  * +----------------------------------------+----------+----------+
209  * |                                        |          |          |
210  * |                                        |          |          |
211  * |                                        |          |          |
212  * |                                        |          |          |
213  * +----------------------------------------+----------+----------+
214  *                                        stop        signal     evict
215  *                                      evicting     eviction   directly
216  *                                                    thread
217  *
218  * The high and low water marks indicate the operating range for the eviction
219  * thread. The low water mark is, by default, 90% of the total size of the
220  * cache and the high water mark is at 110% (both of these percentages can be
221  * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
222  * respectively). The eviction thread will try to ensure that the cache remains
223  * within this range by waking up every second and checking if the cache is
224  * above the low water mark. The thread can also be woken up by callers adding
225  * elements into the cache if the cache is larger than the mid water (i.e max
226  * cache size). Once the eviction thread is woken up and eviction is required,
227  * it will continue evicting buffers until it's able to reduce the cache size
228  * to the low water mark. If the cache size continues to grow and hits the high
229  * water mark, then callers adding elements to the cache will begin to evict
230  * directly from the cache until the cache is no longer above the high water
231  * mark.
232  */
233
234 /*
235  * The percentage above and below the maximum cache size.
236  */
237 uint_t dbuf_cache_hiwater_pct = 10;
238 uint_t dbuf_cache_lowater_pct = 10;
239
240 /* ARGSUSED */
241 static int
242 dbuf_cons(void *vdb, void *unused, int kmflag)
243 {
244         dmu_buf_impl_t *db = vdb;
245         bzero(db, sizeof (dmu_buf_impl_t));
246
247         mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
248         cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
249         multilist_link_init(&db->db_cache_link);
250         refcount_create(&db->db_holds);
251
252         return (0);
253 }
254
255 /* ARGSUSED */
256 static void
257 dbuf_dest(void *vdb, void *unused)
258 {
259         dmu_buf_impl_t *db = vdb;
260         mutex_destroy(&db->db_mtx);
261         cv_destroy(&db->db_changed);
262         ASSERT(!multilist_link_active(&db->db_cache_link));
263         refcount_destroy(&db->db_holds);
264 }
265
266 /*
267  * dbuf hash table routines
268  */
269 static dbuf_hash_table_t dbuf_hash_table;
270
271 static uint64_t dbuf_hash_count;
272
273 static uint64_t
274 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
275 {
276         uintptr_t osv = (uintptr_t)os;
277         uint64_t crc = -1ULL;
278
279         ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
280         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
281         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
282         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
283         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
284         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
285         crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
286
287         crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
288
289         return (crc);
290 }
291
292 #define DBUF_EQUAL(dbuf, os, obj, level, blkid)         \
293         ((dbuf)->db.db_object == (obj) &&               \
294         (dbuf)->db_objset == (os) &&                    \
295         (dbuf)->db_level == (level) &&                  \
296         (dbuf)->db_blkid == (blkid))
297
298 dmu_buf_impl_t *
299 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
300 {
301         dbuf_hash_table_t *h = &dbuf_hash_table;
302         uint64_t hv;
303         uint64_t idx;
304         dmu_buf_impl_t *db;
305
306         hv = dbuf_hash(os, obj, level, blkid);
307         idx = hv & h->hash_table_mask;
308
309         mutex_enter(DBUF_HASH_MUTEX(h, idx));
310         for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
311                 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
312                         mutex_enter(&db->db_mtx);
313                         if (db->db_state != DB_EVICTING) {
314                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
315                                 return (db);
316                         }
317                         mutex_exit(&db->db_mtx);
318                 }
319         }
320         mutex_exit(DBUF_HASH_MUTEX(h, idx));
321         return (NULL);
322 }
323
324 static dmu_buf_impl_t *
325 dbuf_find_bonus(objset_t *os, uint64_t object)
326 {
327         dnode_t *dn;
328         dmu_buf_impl_t *db = NULL;
329
330         if (dnode_hold(os, object, FTAG, &dn) == 0) {
331                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
332                 if (dn->dn_bonus != NULL) {
333                         db = dn->dn_bonus;
334                         mutex_enter(&db->db_mtx);
335                 }
336                 rw_exit(&dn->dn_struct_rwlock);
337                 dnode_rele(dn, FTAG);
338         }
339         return (db);
340 }
341
342 /*
343  * Insert an entry into the hash table.  If there is already an element
344  * equal to elem in the hash table, then the already existing element
345  * will be returned and the new element will not be inserted.
346  * Otherwise returns NULL.
347  */
348 static dmu_buf_impl_t *
349 dbuf_hash_insert(dmu_buf_impl_t *db)
350 {
351         dbuf_hash_table_t *h = &dbuf_hash_table;
352         objset_t *os = db->db_objset;
353         uint64_t obj = db->db.db_object;
354         int level = db->db_level;
355         uint64_t blkid, hv, idx;
356         dmu_buf_impl_t *dbf;
357         uint32_t i;
358
359         blkid = db->db_blkid;
360         hv = dbuf_hash(os, obj, level, blkid);
361         idx = hv & h->hash_table_mask;
362
363         mutex_enter(DBUF_HASH_MUTEX(h, idx));
364         for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
365             dbf = dbf->db_hash_next, i++) {
366                 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
367                         mutex_enter(&dbf->db_mtx);
368                         if (dbf->db_state != DB_EVICTING) {
369                                 mutex_exit(DBUF_HASH_MUTEX(h, idx));
370                                 return (dbf);
371                         }
372                         mutex_exit(&dbf->db_mtx);
373                 }
374         }
375
376         if (i > 0) {
377                 DBUF_STAT_BUMP(hash_collisions);
378                 if (i == 1)
379                         DBUF_STAT_BUMP(hash_chains);
380
381                 DBUF_STAT_MAX(hash_chain_max, i);
382         }
383
384         mutex_enter(&db->db_mtx);
385         db->db_hash_next = h->hash_table[idx];
386         h->hash_table[idx] = db;
387         mutex_exit(DBUF_HASH_MUTEX(h, idx));
388         atomic_inc_64(&dbuf_hash_count);
389         DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
390
391         return (NULL);
392 }
393
394 /*
395  * Remove an entry from the hash table.  It must be in the EVICTING state.
396  */
397 static void
398 dbuf_hash_remove(dmu_buf_impl_t *db)
399 {
400         dbuf_hash_table_t *h = &dbuf_hash_table;
401         uint64_t hv, idx;
402         dmu_buf_impl_t *dbf, **dbp;
403
404         hv = dbuf_hash(db->db_objset, db->db.db_object,
405             db->db_level, db->db_blkid);
406         idx = hv & h->hash_table_mask;
407
408         /*
409          * We mustn't hold db_mtx to maintain lock ordering:
410          * DBUF_HASH_MUTEX > db_mtx.
411          */
412         ASSERT(refcount_is_zero(&db->db_holds));
413         ASSERT(db->db_state == DB_EVICTING);
414         ASSERT(!MUTEX_HELD(&db->db_mtx));
415
416         mutex_enter(DBUF_HASH_MUTEX(h, idx));
417         dbp = &h->hash_table[idx];
418         while ((dbf = *dbp) != db) {
419                 dbp = &dbf->db_hash_next;
420                 ASSERT(dbf != NULL);
421         }
422         *dbp = db->db_hash_next;
423         db->db_hash_next = NULL;
424         if (h->hash_table[idx] &&
425             h->hash_table[idx]->db_hash_next == NULL)
426                 DBUF_STAT_BUMPDOWN(hash_chains);
427         mutex_exit(DBUF_HASH_MUTEX(h, idx));
428         atomic_dec_64(&dbuf_hash_count);
429 }
430
431 typedef enum {
432         DBVU_EVICTING,
433         DBVU_NOT_EVICTING
434 } dbvu_verify_type_t;
435
436 static void
437 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
438 {
439 #ifdef ZFS_DEBUG
440         int64_t holds;
441
442         if (db->db_user == NULL)
443                 return;
444
445         /* Only data blocks support the attachment of user data. */
446         ASSERT(db->db_level == 0);
447
448         /* Clients must resolve a dbuf before attaching user data. */
449         ASSERT(db->db.db_data != NULL);
450         ASSERT3U(db->db_state, ==, DB_CACHED);
451
452         holds = refcount_count(&db->db_holds);
453         if (verify_type == DBVU_EVICTING) {
454                 /*
455                  * Immediate eviction occurs when holds == dirtycnt.
456                  * For normal eviction buffers, holds is zero on
457                  * eviction, except when dbuf_fix_old_data() calls
458                  * dbuf_clear_data().  However, the hold count can grow
459                  * during eviction even though db_mtx is held (see
460                  * dmu_bonus_hold() for an example), so we can only
461                  * test the generic invariant that holds >= dirtycnt.
462                  */
463                 ASSERT3U(holds, >=, db->db_dirtycnt);
464         } else {
465                 if (db->db_user_immediate_evict == TRUE)
466                         ASSERT3U(holds, >=, db->db_dirtycnt);
467                 else
468                         ASSERT3U(holds, >, 0);
469         }
470 #endif
471 }
472
473 static void
474 dbuf_evict_user(dmu_buf_impl_t *db)
475 {
476         dmu_buf_user_t *dbu = db->db_user;
477
478         ASSERT(MUTEX_HELD(&db->db_mtx));
479
480         if (dbu == NULL)
481                 return;
482
483         dbuf_verify_user(db, DBVU_EVICTING);
484         db->db_user = NULL;
485
486 #ifdef ZFS_DEBUG
487         if (dbu->dbu_clear_on_evict_dbufp != NULL)
488                 *dbu->dbu_clear_on_evict_dbufp = NULL;
489 #endif
490
491         /*
492          * There are two eviction callbacks - one that we call synchronously
493          * and one that we invoke via a taskq.  The async one is useful for
494          * avoiding lock order reversals and limiting stack depth.
495          *
496          * Note that if we have a sync callback but no async callback,
497          * it's likely that the sync callback will free the structure
498          * containing the dbu.  In that case we need to take care to not
499          * dereference dbu after calling the sync evict func.
500          */
501         boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
502
503         if (dbu->dbu_evict_func_sync != NULL)
504                 dbu->dbu_evict_func_sync(dbu);
505
506         if (has_async) {
507                 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
508                     dbu, 0, &dbu->dbu_tqent);
509         }
510 }
511
512 boolean_t
513 dbuf_is_metadata(dmu_buf_impl_t *db)
514 {
515         /*
516          * Consider indirect blocks and spill blocks to be meta data.
517          */
518         if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
519                 return (B_TRUE);
520         } else {
521                 boolean_t is_metadata;
522
523                 DB_DNODE_ENTER(db);
524                 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
525                 DB_DNODE_EXIT(db);
526
527                 return (is_metadata);
528         }
529 }
530
531
532 /*
533  * This function *must* return indices evenly distributed between all
534  * sublists of the multilist. This is needed due to how the dbuf eviction
535  * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
536  * distributed between all sublists and uses this assumption when
537  * deciding which sublist to evict from and how much to evict from it.
538  */
539 unsigned int
540 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
541 {
542         dmu_buf_impl_t *db = obj;
543
544         /*
545          * The assumption here, is the hash value for a given
546          * dmu_buf_impl_t will remain constant throughout it's lifetime
547          * (i.e. it's objset, object, level and blkid fields don't change).
548          * Thus, we don't need to store the dbuf's sublist index
549          * on insertion, as this index can be recalculated on removal.
550          *
551          * Also, the low order bits of the hash value are thought to be
552          * distributed evenly. Otherwise, in the case that the multilist
553          * has a power of two number of sublists, each sublists' usage
554          * would not be evenly distributed.
555          */
556         return (dbuf_hash(db->db_objset, db->db.db_object,
557             db->db_level, db->db_blkid) %
558             multilist_get_num_sublists(ml));
559 }
560
561 static inline unsigned long
562 dbuf_cache_target_bytes(void)
563 {
564         return MIN(dbuf_cache_max_bytes,
565             arc_target_bytes() >> dbuf_cache_shift);
566 }
567
568 static inline uint64_t
569 dbuf_cache_hiwater_bytes(void)
570 {
571         uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
572         return (dbuf_cache_target +
573             (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
574 }
575
576 static inline uint64_t
577 dbuf_cache_lowater_bytes(void)
578 {
579         uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
580         return (dbuf_cache_target -
581             (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
582 }
583
584 static inline boolean_t
585 dbuf_cache_above_hiwater(void)
586 {
587         return (refcount_count(&dbuf_cache_size) > dbuf_cache_hiwater_bytes());
588 }
589
590 static inline boolean_t
591 dbuf_cache_above_lowater(void)
592 {
593         return (refcount_count(&dbuf_cache_size) > dbuf_cache_lowater_bytes());
594 }
595
596 /*
597  * Evict the oldest eligible dbuf from the dbuf cache.
598  */
599 static void
600 dbuf_evict_one(void)
601 {
602         int idx = multilist_get_random_index(dbuf_cache);
603         multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
604
605         ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
606
607         /*
608          * Set the thread's tsd to indicate that it's processing evictions.
609          * Once a thread stops evicting from the dbuf cache it will
610          * reset its tsd to NULL.
611          */
612         ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
613         (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
614
615         dmu_buf_impl_t *db = multilist_sublist_tail(mls);
616         while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
617                 db = multilist_sublist_prev(mls, db);
618         }
619
620         DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
621             multilist_sublist_t *, mls);
622
623         if (db != NULL) {
624                 multilist_sublist_remove(mls, db);
625                 multilist_sublist_unlock(mls);
626                 (void) refcount_remove_many(&dbuf_cache_size,
627                     db->db.db_size, db);
628                 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
629                 DBUF_STAT_BUMPDOWN(cache_count);
630                 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
631                     db->db.db_size);
632                 dbuf_destroy(db);
633                 DBUF_STAT_MAX(cache_size_bytes_max,
634                     refcount_count(&dbuf_cache_size));
635                 DBUF_STAT_BUMP(cache_total_evicts);
636         } else {
637                 multilist_sublist_unlock(mls);
638         }
639         (void) tsd_set(zfs_dbuf_evict_key, NULL);
640 }
641
642 /*
643  * The dbuf evict thread is responsible for aging out dbufs from the
644  * cache. Once the cache has reached it's maximum size, dbufs are removed
645  * and destroyed. The eviction thread will continue running until the size
646  * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
647  * out of the cache it is destroyed and becomes eligible for arc eviction.
648  */
649 /* ARGSUSED */
650 static void
651 dbuf_evict_thread(void *unused)
652 {
653         callb_cpr_t cpr;
654
655         CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
656
657         mutex_enter(&dbuf_evict_lock);
658         while (!dbuf_evict_thread_exit) {
659                 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
660                         CALLB_CPR_SAFE_BEGIN(&cpr);
661                         (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
662                             &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
663                         CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
664                 }
665                 mutex_exit(&dbuf_evict_lock);
666
667                 /*
668                  * Keep evicting as long as we're above the low water mark
669                  * for the cache. We do this without holding the locks to
670                  * minimize lock contention.
671                  */
672                 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
673                         dbuf_evict_one();
674                 }
675
676                 mutex_enter(&dbuf_evict_lock);
677         }
678
679         dbuf_evict_thread_exit = B_FALSE;
680         cv_broadcast(&dbuf_evict_cv);
681         CALLB_CPR_EXIT(&cpr);   /* drops dbuf_evict_lock */
682         thread_exit();
683 }
684
685 /*
686  * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
687  * If the dbuf cache is at its high water mark, then evict a dbuf from the
688  * dbuf cache using the callers context.
689  */
690 static void
691 dbuf_evict_notify(void)
692 {
693
694         /*
695          * We use thread specific data to track when a thread has
696          * started processing evictions. This allows us to avoid deeply
697          * nested stacks that would have a call flow similar to this:
698          *
699          * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
700          *      ^                                               |
701          *      |                                               |
702          *      +-----dbuf_destroy()<--dbuf_evict_one()<--------+
703          *
704          * The dbuf_eviction_thread will always have its tsd set until
705          * that thread exits. All other threads will only set their tsd
706          * if they are participating in the eviction process. This only
707          * happens if the eviction thread is unable to process evictions
708          * fast enough. To keep the dbuf cache size in check, other threads
709          * can evict from the dbuf cache directly. Those threads will set
710          * their tsd values so that we ensure that they only evict one dbuf
711          * from the dbuf cache.
712          */
713         if (tsd_get(zfs_dbuf_evict_key) != NULL)
714                 return;
715
716         /*
717          * We check if we should evict without holding the dbuf_evict_lock,
718          * because it's OK to occasionally make the wrong decision here,
719          * and grabbing the lock results in massive lock contention.
720          */
721         if (refcount_count(&dbuf_cache_size) > dbuf_cache_target_bytes()) {
722                 if (dbuf_cache_above_hiwater())
723                         dbuf_evict_one();
724                 cv_signal(&dbuf_evict_cv);
725         }
726 }
727
728 static int
729 dbuf_kstat_update(kstat_t *ksp, int rw)
730 {
731         dbuf_stats_t *ds = ksp->ks_data;
732
733         if (rw == KSTAT_WRITE) {
734                 return (SET_ERROR(EACCES));
735         } else {
736                 ds->cache_size_bytes.value.ui64 =
737                     refcount_count(&dbuf_cache_size);
738                 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
739                 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
740                 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
741                 ds->hash_elements.value.ui64 = dbuf_hash_count;
742         }
743
744         return (0);
745 }
746
747 void
748 dbuf_init(void)
749 {
750         uint64_t hsize = 1ULL << 16;
751         dbuf_hash_table_t *h = &dbuf_hash_table;
752         int i;
753
754         /*
755          * The hash table is big enough to fill all of physical memory
756          * with an average block size of zfs_arc_average_blocksize (default 8K).
757          * By default, the table will take up
758          * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
759          */
760         while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
761                 hsize <<= 1;
762
763 retry:
764         h->hash_table_mask = hsize - 1;
765 #if defined(_KERNEL) && defined(HAVE_SPL)
766         /*
767          * Large allocations which do not require contiguous pages
768          * should be using vmem_alloc() in the linux kernel
769          */
770         h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
771 #else
772         h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
773 #endif
774         if (h->hash_table == NULL) {
775                 /* XXX - we should really return an error instead of assert */
776                 ASSERT(hsize > (1ULL << 10));
777                 hsize >>= 1;
778                 goto retry;
779         }
780
781         dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
782             sizeof (dmu_buf_impl_t),
783             0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
784
785         for (i = 0; i < DBUF_MUTEXES; i++)
786                 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
787
788         dbuf_stats_init(h);
789
790         /*
791          * Setup the parameters for the dbuf cache. We set the size of the
792          * dbuf cache to 1/32nd (default) of the target size of the ARC. If
793          * the value has been specified as a module option and it's not
794          * greater than the target size of the ARC, then we honor that value.
795          */
796         if (dbuf_cache_max_bytes == 0 ||
797             dbuf_cache_max_bytes >= arc_target_bytes()) {
798                 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
799         }
800
801         /*
802          * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
803          * configuration is not required.
804          */
805         dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
806
807         dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
808             offsetof(dmu_buf_impl_t, db_cache_link),
809             dbuf_cache_multilist_index_func);
810         refcount_create(&dbuf_cache_size);
811
812         tsd_create(&zfs_dbuf_evict_key, NULL);
813         dbuf_evict_thread_exit = B_FALSE;
814         mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
815         cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
816         dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
817             NULL, 0, &p0, TS_RUN, minclsyspri);
818
819         dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
820             KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
821             KSTAT_FLAG_VIRTUAL);
822         if (dbuf_ksp != NULL) {
823                 dbuf_ksp->ks_data = &dbuf_stats;
824                 dbuf_ksp->ks_update = dbuf_kstat_update;
825                 kstat_install(dbuf_ksp);
826
827                 for (i = 0; i < DN_MAX_LEVELS; i++) {
828                         snprintf(dbuf_stats.cache_levels[i].name,
829                             KSTAT_STRLEN, "cache_level_%d", i);
830                         dbuf_stats.cache_levels[i].data_type =
831                             KSTAT_DATA_UINT64;
832                         snprintf(dbuf_stats.cache_levels_bytes[i].name,
833                             KSTAT_STRLEN, "cache_level_%d_bytes", i);
834                         dbuf_stats.cache_levels_bytes[i].data_type =
835                             KSTAT_DATA_UINT64;
836                 }
837         }
838 }
839
840 void
841 dbuf_fini(void)
842 {
843         dbuf_hash_table_t *h = &dbuf_hash_table;
844         int i;
845
846         dbuf_stats_destroy();
847
848         for (i = 0; i < DBUF_MUTEXES; i++)
849                 mutex_destroy(&h->hash_mutexes[i]);
850 #if defined(_KERNEL) && defined(HAVE_SPL)
851         /*
852          * Large allocations which do not require contiguous pages
853          * should be using vmem_free() in the linux kernel
854          */
855         vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
856 #else
857         kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
858 #endif
859         kmem_cache_destroy(dbuf_kmem_cache);
860         taskq_destroy(dbu_evict_taskq);
861
862         mutex_enter(&dbuf_evict_lock);
863         dbuf_evict_thread_exit = B_TRUE;
864         while (dbuf_evict_thread_exit) {
865                 cv_signal(&dbuf_evict_cv);
866                 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
867         }
868         mutex_exit(&dbuf_evict_lock);
869         tsd_destroy(&zfs_dbuf_evict_key);
870
871         mutex_destroy(&dbuf_evict_lock);
872         cv_destroy(&dbuf_evict_cv);
873
874         refcount_destroy(&dbuf_cache_size);
875         multilist_destroy(dbuf_cache);
876
877         if (dbuf_ksp != NULL) {
878                 kstat_delete(dbuf_ksp);
879                 dbuf_ksp = NULL;
880         }
881 }
882
883 /*
884  * Other stuff.
885  */
886
887 #ifdef ZFS_DEBUG
888 static void
889 dbuf_verify(dmu_buf_impl_t *db)
890 {
891         dnode_t *dn;
892         dbuf_dirty_record_t *dr;
893
894         ASSERT(MUTEX_HELD(&db->db_mtx));
895
896         if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
897                 return;
898
899         ASSERT(db->db_objset != NULL);
900         DB_DNODE_ENTER(db);
901         dn = DB_DNODE(db);
902         if (dn == NULL) {
903                 ASSERT(db->db_parent == NULL);
904                 ASSERT(db->db_blkptr == NULL);
905         } else {
906                 ASSERT3U(db->db.db_object, ==, dn->dn_object);
907                 ASSERT3P(db->db_objset, ==, dn->dn_objset);
908                 ASSERT3U(db->db_level, <, dn->dn_nlevels);
909                 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
910                     db->db_blkid == DMU_SPILL_BLKID ||
911                     !avl_is_empty(&dn->dn_dbufs));
912         }
913         if (db->db_blkid == DMU_BONUS_BLKID) {
914                 ASSERT(dn != NULL);
915                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
916                 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
917         } else if (db->db_blkid == DMU_SPILL_BLKID) {
918                 ASSERT(dn != NULL);
919                 ASSERT0(db->db.db_offset);
920         } else {
921                 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
922         }
923
924         for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
925                 ASSERT(dr->dr_dbuf == db);
926
927         for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
928                 ASSERT(dr->dr_dbuf == db);
929
930         /*
931          * We can't assert that db_size matches dn_datablksz because it
932          * can be momentarily different when another thread is doing
933          * dnode_set_blksz().
934          */
935         if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
936                 dr = db->db_data_pending;
937                 /*
938                  * It should only be modified in syncing context, so
939                  * make sure we only have one copy of the data.
940                  */
941                 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
942         }
943
944         /* verify db->db_blkptr */
945         if (db->db_blkptr) {
946                 if (db->db_parent == dn->dn_dbuf) {
947                         /* db is pointed to by the dnode */
948                         /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
949                         if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
950                                 ASSERT(db->db_parent == NULL);
951                         else
952                                 ASSERT(db->db_parent != NULL);
953                         if (db->db_blkid != DMU_SPILL_BLKID)
954                                 ASSERT3P(db->db_blkptr, ==,
955                                     &dn->dn_phys->dn_blkptr[db->db_blkid]);
956                 } else {
957                         /* db is pointed to by an indirect block */
958                         ASSERTV(int epb = db->db_parent->db.db_size >>
959                             SPA_BLKPTRSHIFT);
960                         ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
961                         ASSERT3U(db->db_parent->db.db_object, ==,
962                             db->db.db_object);
963                         /*
964                          * dnode_grow_indblksz() can make this fail if we don't
965                          * have the struct_rwlock.  XXX indblksz no longer
966                          * grows.  safe to do this now?
967                          */
968                         if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
969                                 ASSERT3P(db->db_blkptr, ==,
970                                     ((blkptr_t *)db->db_parent->db.db_data +
971                                     db->db_blkid % epb));
972                         }
973                 }
974         }
975         if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
976             (db->db_buf == NULL || db->db_buf->b_data) &&
977             db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
978             db->db_state != DB_FILL && !dn->dn_free_txg) {
979                 /*
980                  * If the blkptr isn't set but they have nonzero data,
981                  * it had better be dirty, otherwise we'll lose that
982                  * data when we evict this buffer.
983                  *
984                  * There is an exception to this rule for indirect blocks; in
985                  * this case, if the indirect block is a hole, we fill in a few
986                  * fields on each of the child blocks (importantly, birth time)
987                  * to prevent hole birth times from being lost when you
988                  * partially fill in a hole.
989                  */
990                 if (db->db_dirtycnt == 0) {
991                         if (db->db_level == 0) {
992                                 uint64_t *buf = db->db.db_data;
993                                 int i;
994
995                                 for (i = 0; i < db->db.db_size >> 3; i++) {
996                                         ASSERT(buf[i] == 0);
997                                 }
998                         } else {
999                                 blkptr_t *bps = db->db.db_data;
1000                                 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1001                                     db->db.db_size);
1002                                 /*
1003                                  * We want to verify that all the blkptrs in the
1004                                  * indirect block are holes, but we may have
1005                                  * automatically set up a few fields for them.
1006                                  * We iterate through each blkptr and verify
1007                                  * they only have those fields set.
1008                                  */
1009                                 for (int i = 0;
1010                                     i < db->db.db_size / sizeof (blkptr_t);
1011                                     i++) {
1012                                         blkptr_t *bp = &bps[i];
1013                                         ASSERT(ZIO_CHECKSUM_IS_ZERO(
1014                                             &bp->blk_cksum));
1015                                         ASSERT(
1016                                             DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1017                                             DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1018                                             DVA_IS_EMPTY(&bp->blk_dva[2]));
1019                                         ASSERT0(bp->blk_fill);
1020                                         ASSERT0(bp->blk_pad[0]);
1021                                         ASSERT0(bp->blk_pad[1]);
1022                                         ASSERT(!BP_IS_EMBEDDED(bp));
1023                                         ASSERT(BP_IS_HOLE(bp));
1024                                         ASSERT0(bp->blk_phys_birth);
1025                                 }
1026                         }
1027                 }
1028         }
1029         DB_DNODE_EXIT(db);
1030 }
1031 #endif
1032
1033 static void
1034 dbuf_clear_data(dmu_buf_impl_t *db)
1035 {
1036         ASSERT(MUTEX_HELD(&db->db_mtx));
1037         dbuf_evict_user(db);
1038         ASSERT3P(db->db_buf, ==, NULL);
1039         db->db.db_data = NULL;
1040         if (db->db_state != DB_NOFILL)
1041                 db->db_state = DB_UNCACHED;
1042 }
1043
1044 static void
1045 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1046 {
1047         ASSERT(MUTEX_HELD(&db->db_mtx));
1048         ASSERT(buf != NULL);
1049
1050         db->db_buf = buf;
1051         ASSERT(buf->b_data != NULL);
1052         db->db.db_data = buf->b_data;
1053 }
1054
1055 /*
1056  * Loan out an arc_buf for read.  Return the loaned arc_buf.
1057  */
1058 arc_buf_t *
1059 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1060 {
1061         arc_buf_t *abuf;
1062
1063         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1064         mutex_enter(&db->db_mtx);
1065         if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
1066                 int blksz = db->db.db_size;
1067                 spa_t *spa = db->db_objset->os_spa;
1068
1069                 mutex_exit(&db->db_mtx);
1070                 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1071                 bcopy(db->db.db_data, abuf->b_data, blksz);
1072         } else {
1073                 abuf = db->db_buf;
1074                 arc_loan_inuse_buf(abuf, db);
1075                 db->db_buf = NULL;
1076                 dbuf_clear_data(db);
1077                 mutex_exit(&db->db_mtx);
1078         }
1079         return (abuf);
1080 }
1081
1082 /*
1083  * Calculate which level n block references the data at the level 0 offset
1084  * provided.
1085  */
1086 uint64_t
1087 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1088 {
1089         if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1090                 /*
1091                  * The level n blkid is equal to the level 0 blkid divided by
1092                  * the number of level 0s in a level n block.
1093                  *
1094                  * The level 0 blkid is offset >> datablkshift =
1095                  * offset / 2^datablkshift.
1096                  *
1097                  * The number of level 0s in a level n is the number of block
1098                  * pointers in an indirect block, raised to the power of level.
1099                  * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1100                  * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1101                  *
1102                  * Thus, the level n blkid is: offset /
1103                  * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
1104                  * = offset / 2^(datablkshift + level *
1105                  *   (indblkshift - SPA_BLKPTRSHIFT))
1106                  * = offset >> (datablkshift + level *
1107                  *   (indblkshift - SPA_BLKPTRSHIFT))
1108                  */
1109
1110                 const unsigned exp = dn->dn_datablkshift +
1111                     level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1112
1113                 if (exp >= 8 * sizeof (offset)) {
1114                         /* This only happens on the highest indirection level */
1115                         ASSERT3U(level, ==, dn->dn_nlevels - 1);
1116                         return (0);
1117                 }
1118
1119                 ASSERT3U(exp, <, 8 * sizeof (offset));
1120
1121                 return (offset >> exp);
1122         } else {
1123                 ASSERT3U(offset, <, dn->dn_datablksz);
1124                 return (0);
1125         }
1126 }
1127
1128 static void
1129 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1130     arc_buf_t *buf, void *vdb)
1131 {
1132         dmu_buf_impl_t *db = vdb;
1133
1134         mutex_enter(&db->db_mtx);
1135         ASSERT3U(db->db_state, ==, DB_READ);
1136         /*
1137          * All reads are synchronous, so we must have a hold on the dbuf
1138          */
1139         ASSERT(refcount_count(&db->db_holds) > 0);
1140         ASSERT(db->db_buf == NULL);
1141         ASSERT(db->db.db_data == NULL);
1142         if (db->db_level == 0 && db->db_freed_in_flight) {
1143                 /* we were freed in flight; disregard any error */
1144                 if (buf == NULL) {
1145                         buf = arc_alloc_buf(db->db_objset->os_spa,
1146                             db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1147                 }
1148                 arc_release(buf, db);
1149                 bzero(buf->b_data, db->db.db_size);
1150                 arc_buf_freeze(buf);
1151                 db->db_freed_in_flight = FALSE;
1152                 dbuf_set_data(db, buf);
1153                 db->db_state = DB_CACHED;
1154         } else if (buf != NULL) {
1155                 dbuf_set_data(db, buf);
1156                 db->db_state = DB_CACHED;
1157         } else {
1158                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1159                 ASSERT3P(db->db_buf, ==, NULL);
1160                 db->db_state = DB_UNCACHED;
1161         }
1162         cv_broadcast(&db->db_changed);
1163         dbuf_rele_and_unlock(db, NULL);
1164 }
1165
1166 static int
1167 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1168 {
1169         dnode_t *dn;
1170         zbookmark_phys_t zb;
1171         uint32_t aflags = ARC_FLAG_NOWAIT;
1172         int err, zio_flags = 0;
1173
1174         DB_DNODE_ENTER(db);
1175         dn = DB_DNODE(db);
1176         ASSERT(!refcount_is_zero(&db->db_holds));
1177         /* We need the struct_rwlock to prevent db_blkptr from changing. */
1178         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1179         ASSERT(MUTEX_HELD(&db->db_mtx));
1180         ASSERT(db->db_state == DB_UNCACHED);
1181         ASSERT(db->db_buf == NULL);
1182
1183         if (db->db_blkid == DMU_BONUS_BLKID) {
1184                 /*
1185                  * The bonus length stored in the dnode may be less than
1186                  * the maximum available space in the bonus buffer.
1187                  */
1188                 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1189                 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1190                 arc_buf_t *dn_buf = (dn->dn_dbuf != NULL) ?
1191                     dn->dn_dbuf->db_buf : NULL;
1192
1193                 /* if the underlying dnode block is encrypted, decrypt it */
1194                 if (dn_buf != NULL && dn->dn_objset->os_encrypted &&
1195                     DMU_OT_IS_ENCRYPTED(dn->dn_bonustype) &&
1196                     (flags & DB_RF_NO_DECRYPT) == 0 &&
1197                     arc_is_encrypted(dn_buf)) {
1198                         SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1199                             DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1200                         err = arc_untransform(dn_buf, dn->dn_objset->os_spa,
1201                             &zb, B_TRUE);
1202                         if (err != 0) {
1203                                 DB_DNODE_EXIT(db);
1204                                 mutex_exit(&db->db_mtx);
1205                                 return (err);
1206                         }
1207                 }
1208
1209                 ASSERT3U(bonuslen, <=, db->db.db_size);
1210                 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1211                 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1212                 if (bonuslen < max_bonuslen)
1213                         bzero(db->db.db_data, max_bonuslen);
1214                 if (bonuslen)
1215                         bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1216                 DB_DNODE_EXIT(db);
1217                 db->db_state = DB_CACHED;
1218                 mutex_exit(&db->db_mtx);
1219                 return (0);
1220         }
1221
1222         /*
1223          * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1224          * processes the delete record and clears the bp while we are waiting
1225          * for the dn_mtx (resulting in a "no" from block_freed).
1226          */
1227         if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1228             (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1229             BP_IS_HOLE(db->db_blkptr)))) {
1230                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1231
1232                 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1233                     db->db.db_size));
1234                 bzero(db->db.db_data, db->db.db_size);
1235
1236                 if (db->db_blkptr != NULL && db->db_level > 0 &&
1237                     BP_IS_HOLE(db->db_blkptr) &&
1238                     db->db_blkptr->blk_birth != 0) {
1239                         blkptr_t *bps = db->db.db_data;
1240                         for (int i = 0; i < ((1 <<
1241                             DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1242                             i++) {
1243                                 blkptr_t *bp = &bps[i];
1244                                 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1245                                     1 << dn->dn_indblkshift);
1246                                 BP_SET_LSIZE(bp,
1247                                     BP_GET_LEVEL(db->db_blkptr) == 1 ?
1248                                     dn->dn_datablksz :
1249                                     BP_GET_LSIZE(db->db_blkptr));
1250                                 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1251                                 BP_SET_LEVEL(bp,
1252                                     BP_GET_LEVEL(db->db_blkptr) - 1);
1253                                 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1254                         }
1255                 }
1256                 DB_DNODE_EXIT(db);
1257                 db->db_state = DB_CACHED;
1258                 mutex_exit(&db->db_mtx);
1259                 return (0);
1260         }
1261
1262         DB_DNODE_EXIT(db);
1263
1264         db->db_state = DB_READ;
1265         mutex_exit(&db->db_mtx);
1266
1267         if (DBUF_IS_L2CACHEABLE(db))
1268                 aflags |= ARC_FLAG_L2CACHE;
1269
1270         SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1271             db->db.db_object, db->db_level, db->db_blkid);
1272
1273         /*
1274          * All bps of an encrypted os should have the encryption bit set.
1275          * If this is not true it indicates tampering and we report an error.
1276          */
1277         if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1278                 spa_log_error(db->db_objset->os_spa, &zb);
1279                 zfs_panic_recover("unencrypted block in encrypted "
1280                     "object set %llu", dmu_objset_id(db->db_objset));
1281                 return (SET_ERROR(EIO));
1282         }
1283
1284         dbuf_add_ref(db, NULL);
1285
1286         zio_flags = (flags & DB_RF_CANFAIL) ?
1287             ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1288
1289         if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1290                 zio_flags |= ZIO_FLAG_RAW;
1291
1292         err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1293             dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1294             &aflags, &zb);
1295
1296         return (err);
1297 }
1298
1299 /*
1300  * This is our just-in-time copy function.  It makes a copy of buffers that
1301  * have been modified in a previous transaction group before we access them in
1302  * the current active group.
1303  *
1304  * This function is used in three places: when we are dirtying a buffer for the
1305  * first time in a txg, when we are freeing a range in a dnode that includes
1306  * this buffer, and when we are accessing a buffer which was received compressed
1307  * and later referenced in a WRITE_BYREF record.
1308  *
1309  * Note that when we are called from dbuf_free_range() we do not put a hold on
1310  * the buffer, we just traverse the active dbuf list for the dnode.
1311  */
1312 static void
1313 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1314 {
1315         dbuf_dirty_record_t *dr = db->db_last_dirty;
1316
1317         ASSERT(MUTEX_HELD(&db->db_mtx));
1318         ASSERT(db->db.db_data != NULL);
1319         ASSERT(db->db_level == 0);
1320         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1321
1322         if (dr == NULL ||
1323             (dr->dt.dl.dr_data !=
1324             ((db->db_blkid  == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1325                 return;
1326
1327         /*
1328          * If the last dirty record for this dbuf has not yet synced
1329          * and its referencing the dbuf data, either:
1330          *      reset the reference to point to a new copy,
1331          * or (if there a no active holders)
1332          *      just null out the current db_data pointer.
1333          */
1334         ASSERT3U(dr->dr_txg, >=, txg - 2);
1335         if (db->db_blkid == DMU_BONUS_BLKID) {
1336                 dnode_t *dn = DB_DNODE(db);
1337                 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1338                 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1339                 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1340                 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1341         } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1342                 dnode_t *dn = DB_DNODE(db);
1343                 int size = arc_buf_size(db->db_buf);
1344                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1345                 spa_t *spa = db->db_objset->os_spa;
1346                 enum zio_compress compress_type =
1347                     arc_get_compression(db->db_buf);
1348
1349                 if (arc_is_encrypted(db->db_buf)) {
1350                         boolean_t byteorder;
1351                         uint8_t salt[ZIO_DATA_SALT_LEN];
1352                         uint8_t iv[ZIO_DATA_IV_LEN];
1353                         uint8_t mac[ZIO_DATA_MAC_LEN];
1354
1355                         arc_get_raw_params(db->db_buf, &byteorder, salt,
1356                             iv, mac);
1357                         dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1358                             dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1359                             mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1360                             compress_type);
1361                 } else if (compress_type != ZIO_COMPRESS_OFF) {
1362                         ASSERT3U(type, ==, ARC_BUFC_DATA);
1363                         dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1364                             size, arc_buf_lsize(db->db_buf), compress_type);
1365                 } else {
1366                         dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1367                 }
1368                 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1369         } else {
1370                 db->db_buf = NULL;
1371                 dbuf_clear_data(db);
1372         }
1373 }
1374
1375 int
1376 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1377 {
1378         int err = 0;
1379         boolean_t prefetch;
1380         dnode_t *dn;
1381
1382         /*
1383          * We don't have to hold the mutex to check db_state because it
1384          * can't be freed while we have a hold on the buffer.
1385          */
1386         ASSERT(!refcount_is_zero(&db->db_holds));
1387
1388         if (db->db_state == DB_NOFILL)
1389                 return (SET_ERROR(EIO));
1390
1391         DB_DNODE_ENTER(db);
1392         dn = DB_DNODE(db);
1393         if ((flags & DB_RF_HAVESTRUCT) == 0)
1394                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1395
1396         prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1397             (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1398             DBUF_IS_CACHEABLE(db);
1399
1400         mutex_enter(&db->db_mtx);
1401         if (db->db_state == DB_CACHED) {
1402                 spa_t *spa = dn->dn_objset->os_spa;
1403
1404                 /*
1405                  * If the arc buf is compressed or encrypted, we need to
1406                  * untransform it to read the data. This could happen during
1407                  * the "zfs receive" of a stream which is deduplicated and
1408                  * either raw or compressed. We do not need to do this if the
1409                  * caller wants raw encrypted data.
1410                  */
1411                 if (db->db_buf != NULL && (flags & DB_RF_NO_DECRYPT) == 0 &&
1412                     (arc_is_encrypted(db->db_buf) ||
1413                     arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1414                         zbookmark_phys_t zb;
1415
1416                         SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1417                             db->db.db_object, db->db_level, db->db_blkid);
1418                         dbuf_fix_old_data(db, spa_syncing_txg(spa));
1419                         err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1420                         dbuf_set_data(db, db->db_buf);
1421                 }
1422                 mutex_exit(&db->db_mtx);
1423                 if (prefetch)
1424                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1425                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1426                         rw_exit(&dn->dn_struct_rwlock);
1427                 DB_DNODE_EXIT(db);
1428                 DBUF_STAT_BUMP(hash_hits);
1429         } else if (db->db_state == DB_UNCACHED) {
1430                 spa_t *spa = dn->dn_objset->os_spa;
1431                 boolean_t need_wait = B_FALSE;
1432
1433                 if (zio == NULL &&
1434                     db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1435                         zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1436                         need_wait = B_TRUE;
1437                 }
1438                 err = dbuf_read_impl(db, zio, flags);
1439
1440                 /* dbuf_read_impl has dropped db_mtx for us */
1441
1442                 if (!err && prefetch)
1443                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1444
1445                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1446                         rw_exit(&dn->dn_struct_rwlock);
1447                 DB_DNODE_EXIT(db);
1448                 DBUF_STAT_BUMP(hash_misses);
1449
1450                 if (!err && need_wait)
1451                         err = zio_wait(zio);
1452         } else {
1453                 /*
1454                  * Another reader came in while the dbuf was in flight
1455                  * between UNCACHED and CACHED.  Either a writer will finish
1456                  * writing the buffer (sending the dbuf to CACHED) or the
1457                  * first reader's request will reach the read_done callback
1458                  * and send the dbuf to CACHED.  Otherwise, a failure
1459                  * occurred and the dbuf went to UNCACHED.
1460                  */
1461                 mutex_exit(&db->db_mtx);
1462                 if (prefetch)
1463                         dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1464                 if ((flags & DB_RF_HAVESTRUCT) == 0)
1465                         rw_exit(&dn->dn_struct_rwlock);
1466                 DB_DNODE_EXIT(db);
1467                 DBUF_STAT_BUMP(hash_misses);
1468
1469                 /* Skip the wait per the caller's request. */
1470                 mutex_enter(&db->db_mtx);
1471                 if ((flags & DB_RF_NEVERWAIT) == 0) {
1472                         while (db->db_state == DB_READ ||
1473                             db->db_state == DB_FILL) {
1474                                 ASSERT(db->db_state == DB_READ ||
1475                                     (flags & DB_RF_HAVESTRUCT) == 0);
1476                                 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1477                                     db, zio_t *, zio);
1478                                 cv_wait(&db->db_changed, &db->db_mtx);
1479                         }
1480                         if (db->db_state == DB_UNCACHED)
1481                                 err = SET_ERROR(EIO);
1482                 }
1483                 mutex_exit(&db->db_mtx);
1484         }
1485
1486         return (err);
1487 }
1488
1489 static void
1490 dbuf_noread(dmu_buf_impl_t *db)
1491 {
1492         ASSERT(!refcount_is_zero(&db->db_holds));
1493         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1494         mutex_enter(&db->db_mtx);
1495         while (db->db_state == DB_READ || db->db_state == DB_FILL)
1496                 cv_wait(&db->db_changed, &db->db_mtx);
1497         if (db->db_state == DB_UNCACHED) {
1498                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1499                 spa_t *spa = db->db_objset->os_spa;
1500
1501                 ASSERT(db->db_buf == NULL);
1502                 ASSERT(db->db.db_data == NULL);
1503                 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1504                 db->db_state = DB_FILL;
1505         } else if (db->db_state == DB_NOFILL) {
1506                 dbuf_clear_data(db);
1507         } else {
1508                 ASSERT3U(db->db_state, ==, DB_CACHED);
1509         }
1510         mutex_exit(&db->db_mtx);
1511 }
1512
1513 void
1514 dbuf_unoverride(dbuf_dirty_record_t *dr)
1515 {
1516         dmu_buf_impl_t *db = dr->dr_dbuf;
1517         blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1518         uint64_t txg = dr->dr_txg;
1519
1520         ASSERT(MUTEX_HELD(&db->db_mtx));
1521         /*
1522          * This assert is valid because dmu_sync() expects to be called by
1523          * a zilog's get_data while holding a range lock.  This call only
1524          * comes from dbuf_dirty() callers who must also hold a range lock.
1525          */
1526         ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1527         ASSERT(db->db_level == 0);
1528
1529         if (db->db_blkid == DMU_BONUS_BLKID ||
1530             dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1531                 return;
1532
1533         ASSERT(db->db_data_pending != dr);
1534
1535         /* free this block */
1536         if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1537                 zio_free(db->db_objset->os_spa, txg, bp);
1538
1539         dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1540         dr->dt.dl.dr_nopwrite = B_FALSE;
1541         dr->dt.dl.dr_raw = B_FALSE;
1542
1543         /*
1544          * Release the already-written buffer, so we leave it in
1545          * a consistent dirty state.  Note that all callers are
1546          * modifying the buffer, so they will immediately do
1547          * another (redundant) arc_release().  Therefore, leave
1548          * the buf thawed to save the effort of freezing &
1549          * immediately re-thawing it.
1550          */
1551         arc_release(dr->dt.dl.dr_data, db);
1552 }
1553
1554 /*
1555  * Evict (if its unreferenced) or clear (if its referenced) any level-0
1556  * data blocks in the free range, so that any future readers will find
1557  * empty blocks.
1558  */
1559 void
1560 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1561     dmu_tx_t *tx)
1562 {
1563         dmu_buf_impl_t *db_search;
1564         dmu_buf_impl_t *db, *db_next;
1565         uint64_t txg = tx->tx_txg;
1566         avl_index_t where;
1567
1568         if (end_blkid > dn->dn_maxblkid &&
1569             !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1570                 end_blkid = dn->dn_maxblkid;
1571         dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1572
1573         db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1574         db_search->db_level = 0;
1575         db_search->db_blkid = start_blkid;
1576         db_search->db_state = DB_SEARCH;
1577
1578         mutex_enter(&dn->dn_dbufs_mtx);
1579         db = avl_find(&dn->dn_dbufs, db_search, &where);
1580         ASSERT3P(db, ==, NULL);
1581
1582         db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1583
1584         for (; db != NULL; db = db_next) {
1585                 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1586                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1587
1588                 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1589                         break;
1590                 }
1591                 ASSERT3U(db->db_blkid, >=, start_blkid);
1592
1593                 /* found a level 0 buffer in the range */
1594                 mutex_enter(&db->db_mtx);
1595                 if (dbuf_undirty(db, tx)) {
1596                         /* mutex has been dropped and dbuf destroyed */
1597                         continue;
1598                 }
1599
1600                 if (db->db_state == DB_UNCACHED ||
1601                     db->db_state == DB_NOFILL ||
1602                     db->db_state == DB_EVICTING) {
1603                         ASSERT(db->db.db_data == NULL);
1604                         mutex_exit(&db->db_mtx);
1605                         continue;
1606                 }
1607                 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1608                         /* will be handled in dbuf_read_done or dbuf_rele */
1609                         db->db_freed_in_flight = TRUE;
1610                         mutex_exit(&db->db_mtx);
1611                         continue;
1612                 }
1613                 if (refcount_count(&db->db_holds) == 0) {
1614                         ASSERT(db->db_buf);
1615                         dbuf_destroy(db);
1616                         continue;
1617                 }
1618                 /* The dbuf is referenced */
1619
1620                 if (db->db_last_dirty != NULL) {
1621                         dbuf_dirty_record_t *dr = db->db_last_dirty;
1622
1623                         if (dr->dr_txg == txg) {
1624                                 /*
1625                                  * This buffer is "in-use", re-adjust the file
1626                                  * size to reflect that this buffer may
1627                                  * contain new data when we sync.
1628                                  */
1629                                 if (db->db_blkid != DMU_SPILL_BLKID &&
1630                                     db->db_blkid > dn->dn_maxblkid)
1631                                         dn->dn_maxblkid = db->db_blkid;
1632                                 dbuf_unoverride(dr);
1633                         } else {
1634                                 /*
1635                                  * This dbuf is not dirty in the open context.
1636                                  * Either uncache it (if its not referenced in
1637                                  * the open context) or reset its contents to
1638                                  * empty.
1639                                  */
1640                                 dbuf_fix_old_data(db, txg);
1641                         }
1642                 }
1643                 /* clear the contents if its cached */
1644                 if (db->db_state == DB_CACHED) {
1645                         ASSERT(db->db.db_data != NULL);
1646                         arc_release(db->db_buf, db);
1647                         bzero(db->db.db_data, db->db.db_size);
1648                         arc_buf_freeze(db->db_buf);
1649                 }
1650
1651                 mutex_exit(&db->db_mtx);
1652         }
1653
1654         kmem_free(db_search, sizeof (dmu_buf_impl_t));
1655         mutex_exit(&dn->dn_dbufs_mtx);
1656 }
1657
1658 void
1659 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1660 {
1661         arc_buf_t *buf, *obuf;
1662         int osize = db->db.db_size;
1663         arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1664         dnode_t *dn;
1665
1666         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1667
1668         DB_DNODE_ENTER(db);
1669         dn = DB_DNODE(db);
1670
1671         /* XXX does *this* func really need the lock? */
1672         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1673
1674         /*
1675          * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1676          * is OK, because there can be no other references to the db
1677          * when we are changing its size, so no concurrent DB_FILL can
1678          * be happening.
1679          */
1680         /*
1681          * XXX we should be doing a dbuf_read, checking the return
1682          * value and returning that up to our callers
1683          */
1684         dmu_buf_will_dirty(&db->db, tx);
1685
1686         /* create the data buffer for the new block */
1687         buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1688
1689         /* copy old block data to the new block */
1690         obuf = db->db_buf;
1691         bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1692         /* zero the remainder */
1693         if (size > osize)
1694                 bzero((uint8_t *)buf->b_data + osize, size - osize);
1695
1696         mutex_enter(&db->db_mtx);
1697         dbuf_set_data(db, buf);
1698         arc_buf_destroy(obuf, db);
1699         db->db.db_size = size;
1700
1701         if (db->db_level == 0) {
1702                 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1703                 db->db_last_dirty->dt.dl.dr_data = buf;
1704         }
1705         mutex_exit(&db->db_mtx);
1706
1707         dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1708         DB_DNODE_EXIT(db);
1709 }
1710
1711 void
1712 dbuf_release_bp(dmu_buf_impl_t *db)
1713 {
1714         ASSERTV(objset_t *os = db->db_objset);
1715
1716         ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1717         ASSERT(arc_released(os->os_phys_buf) ||
1718             list_link_active(&os->os_dsl_dataset->ds_synced_link));
1719         ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1720
1721         (void) arc_release(db->db_buf, db);
1722 }
1723
1724 /*
1725  * We already have a dirty record for this TXG, and we are being
1726  * dirtied again.
1727  */
1728 static void
1729 dbuf_redirty(dbuf_dirty_record_t *dr)
1730 {
1731         dmu_buf_impl_t *db = dr->dr_dbuf;
1732
1733         ASSERT(MUTEX_HELD(&db->db_mtx));
1734
1735         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1736                 /*
1737                  * If this buffer has already been written out,
1738                  * we now need to reset its state.
1739                  */
1740                 dbuf_unoverride(dr);
1741                 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1742                     db->db_state != DB_NOFILL) {
1743                         /* Already released on initial dirty, so just thaw. */
1744                         ASSERT(arc_released(db->db_buf));
1745                         arc_buf_thaw(db->db_buf);
1746                 }
1747         }
1748 }
1749
1750 dbuf_dirty_record_t *
1751 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1752 {
1753         dnode_t *dn;
1754         objset_t *os;
1755         dbuf_dirty_record_t **drp, *dr;
1756         int drop_struct_lock = FALSE;
1757         int txgoff = tx->tx_txg & TXG_MASK;
1758
1759         ASSERT(tx->tx_txg != 0);
1760         ASSERT(!refcount_is_zero(&db->db_holds));
1761         DMU_TX_DIRTY_BUF(tx, db);
1762
1763         DB_DNODE_ENTER(db);
1764         dn = DB_DNODE(db);
1765         /*
1766          * Shouldn't dirty a regular buffer in syncing context.  Private
1767          * objects may be dirtied in syncing context, but only if they
1768          * were already pre-dirtied in open context.
1769          */
1770 #ifdef DEBUG
1771         if (dn->dn_objset->os_dsl_dataset != NULL) {
1772                 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1773                     RW_READER, FTAG);
1774         }
1775         ASSERT(!dmu_tx_is_syncing(tx) ||
1776             BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1777             DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1778             dn->dn_objset->os_dsl_dataset == NULL);
1779         if (dn->dn_objset->os_dsl_dataset != NULL)
1780                 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1781 #endif
1782         /*
1783          * We make this assert for private objects as well, but after we
1784          * check if we're already dirty.  They are allowed to re-dirty
1785          * in syncing context.
1786          */
1787         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1788             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1789             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1790
1791         mutex_enter(&db->db_mtx);
1792         /*
1793          * XXX make this true for indirects too?  The problem is that
1794          * transactions created with dmu_tx_create_assigned() from
1795          * syncing context don't bother holding ahead.
1796          */
1797         ASSERT(db->db_level != 0 ||
1798             db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1799             db->db_state == DB_NOFILL);
1800
1801         mutex_enter(&dn->dn_mtx);
1802         /*
1803          * Don't set dirtyctx to SYNC if we're just modifying this as we
1804          * initialize the objset.
1805          */
1806         if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1807                 if (dn->dn_objset->os_dsl_dataset != NULL) {
1808                         rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1809                             RW_READER, FTAG);
1810                 }
1811                 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1812                         dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1813                             DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1814                         ASSERT(dn->dn_dirtyctx_firstset == NULL);
1815                         dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1816                 }
1817                 if (dn->dn_objset->os_dsl_dataset != NULL) {
1818                         rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1819                             FTAG);
1820                 }
1821         }
1822
1823         if (tx->tx_txg > dn->dn_dirty_txg)
1824                 dn->dn_dirty_txg = tx->tx_txg;
1825         mutex_exit(&dn->dn_mtx);
1826
1827         if (db->db_blkid == DMU_SPILL_BLKID)
1828                 dn->dn_have_spill = B_TRUE;
1829
1830         /*
1831          * If this buffer is already dirty, we're done.
1832          */
1833         drp = &db->db_last_dirty;
1834         ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1835             db->db.db_object == DMU_META_DNODE_OBJECT);
1836         while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1837                 drp = &dr->dr_next;
1838         if (dr && dr->dr_txg == tx->tx_txg) {
1839                 DB_DNODE_EXIT(db);
1840
1841                 dbuf_redirty(dr);
1842                 mutex_exit(&db->db_mtx);
1843                 return (dr);
1844         }
1845
1846         /*
1847          * Only valid if not already dirty.
1848          */
1849         ASSERT(dn->dn_object == 0 ||
1850             dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1851             (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1852
1853         ASSERT3U(dn->dn_nlevels, >, db->db_level);
1854
1855         /*
1856          * We should only be dirtying in syncing context if it's the
1857          * mos or we're initializing the os or it's a special object.
1858          * However, we are allowed to dirty in syncing context provided
1859          * we already dirtied it in open context.  Hence we must make
1860          * this assertion only if we're not already dirty.
1861          */
1862         os = dn->dn_objset;
1863         VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1864 #ifdef DEBUG
1865         if (dn->dn_objset->os_dsl_dataset != NULL)
1866                 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1867         ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1868             os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1869         if (dn->dn_objset->os_dsl_dataset != NULL)
1870                 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1871 #endif
1872         ASSERT(db->db.db_size != 0);
1873
1874         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1875
1876         if (db->db_blkid != DMU_BONUS_BLKID) {
1877                 dmu_objset_willuse_space(os, db->db.db_size, tx);
1878         }
1879
1880         /*
1881          * If this buffer is dirty in an old transaction group we need
1882          * to make a copy of it so that the changes we make in this
1883          * transaction group won't leak out when we sync the older txg.
1884          */
1885         dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1886         list_link_init(&dr->dr_dirty_node);
1887         if (db->db_level == 0) {
1888                 void *data_old = db->db_buf;
1889
1890                 if (db->db_state != DB_NOFILL) {
1891                         if (db->db_blkid == DMU_BONUS_BLKID) {
1892                                 dbuf_fix_old_data(db, tx->tx_txg);
1893                                 data_old = db->db.db_data;
1894                         } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1895                                 /*
1896                                  * Release the data buffer from the cache so
1897                                  * that we can modify it without impacting
1898                                  * possible other users of this cached data
1899                                  * block.  Note that indirect blocks and
1900                                  * private objects are not released until the
1901                                  * syncing state (since they are only modified
1902                                  * then).
1903                                  */
1904                                 arc_release(db->db_buf, db);
1905                                 dbuf_fix_old_data(db, tx->tx_txg);
1906                                 data_old = db->db_buf;
1907                         }
1908                         ASSERT(data_old != NULL);
1909                 }
1910                 dr->dt.dl.dr_data = data_old;
1911         } else {
1912                 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1913                 list_create(&dr->dt.di.dr_children,
1914                     sizeof (dbuf_dirty_record_t),
1915                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
1916         }
1917         if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1918                 dr->dr_accounted = db->db.db_size;
1919         dr->dr_dbuf = db;
1920         dr->dr_txg = tx->tx_txg;
1921         dr->dr_next = *drp;
1922         *drp = dr;
1923
1924         /*
1925          * We could have been freed_in_flight between the dbuf_noread
1926          * and dbuf_dirty.  We win, as though the dbuf_noread() had
1927          * happened after the free.
1928          */
1929         if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1930             db->db_blkid != DMU_SPILL_BLKID) {
1931                 mutex_enter(&dn->dn_mtx);
1932                 if (dn->dn_free_ranges[txgoff] != NULL) {
1933                         range_tree_clear(dn->dn_free_ranges[txgoff],
1934                             db->db_blkid, 1);
1935                 }
1936                 mutex_exit(&dn->dn_mtx);
1937                 db->db_freed_in_flight = FALSE;
1938         }
1939
1940         /*
1941          * This buffer is now part of this txg
1942          */
1943         dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1944         db->db_dirtycnt += 1;
1945         ASSERT3U(db->db_dirtycnt, <=, 3);
1946
1947         mutex_exit(&db->db_mtx);
1948
1949         if (db->db_blkid == DMU_BONUS_BLKID ||
1950             db->db_blkid == DMU_SPILL_BLKID) {
1951                 mutex_enter(&dn->dn_mtx);
1952                 ASSERT(!list_link_active(&dr->dr_dirty_node));
1953                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1954                 mutex_exit(&dn->dn_mtx);
1955                 dnode_setdirty(dn, tx);
1956                 DB_DNODE_EXIT(db);
1957                 return (dr);
1958         }
1959
1960         /*
1961          * The dn_struct_rwlock prevents db_blkptr from changing
1962          * due to a write from syncing context completing
1963          * while we are running, so we want to acquire it before
1964          * looking at db_blkptr.
1965          */
1966         if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1967                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1968                 drop_struct_lock = TRUE;
1969         }
1970
1971         /*
1972          * We need to hold the dn_struct_rwlock to make this assertion,
1973          * because it protects dn_phys / dn_next_nlevels from changing.
1974          */
1975         ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1976             dn->dn_phys->dn_nlevels > db->db_level ||
1977             dn->dn_next_nlevels[txgoff] > db->db_level ||
1978             dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1979             dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1980
1981         /*
1982          * If we are overwriting a dedup BP, then unless it is snapshotted,
1983          * when we get to syncing context we will need to decrement its
1984          * refcount in the DDT.  Prefetch the relevant DDT block so that
1985          * syncing context won't have to wait for the i/o.
1986          */
1987         ddt_prefetch(os->os_spa, db->db_blkptr);
1988
1989         if (db->db_level == 0) {
1990                 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1991                 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1992         }
1993
1994         if (db->db_level+1 < dn->dn_nlevels) {
1995                 dmu_buf_impl_t *parent = db->db_parent;
1996                 dbuf_dirty_record_t *di;
1997                 int parent_held = FALSE;
1998
1999                 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2000                         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2001
2002                         parent = dbuf_hold_level(dn, db->db_level+1,
2003                             db->db_blkid >> epbs, FTAG);
2004                         ASSERT(parent != NULL);
2005                         parent_held = TRUE;
2006                 }
2007                 if (drop_struct_lock)
2008                         rw_exit(&dn->dn_struct_rwlock);
2009                 ASSERT3U(db->db_level+1, ==, parent->db_level);
2010                 di = dbuf_dirty(parent, tx);
2011                 if (parent_held)
2012                         dbuf_rele(parent, FTAG);
2013
2014                 mutex_enter(&db->db_mtx);
2015                 /*
2016                  * Since we've dropped the mutex, it's possible that
2017                  * dbuf_undirty() might have changed this out from under us.
2018                  */
2019                 if (db->db_last_dirty == dr ||
2020                     dn->dn_object == DMU_META_DNODE_OBJECT) {
2021                         mutex_enter(&di->dt.di.dr_mtx);
2022                         ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2023                         ASSERT(!list_link_active(&dr->dr_dirty_node));
2024                         list_insert_tail(&di->dt.di.dr_children, dr);
2025                         mutex_exit(&di->dt.di.dr_mtx);
2026                         dr->dr_parent = di;
2027                 }
2028                 mutex_exit(&db->db_mtx);
2029         } else {
2030                 ASSERT(db->db_level+1 == dn->dn_nlevels);
2031                 ASSERT(db->db_blkid < dn->dn_nblkptr);
2032                 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2033                 mutex_enter(&dn->dn_mtx);
2034                 ASSERT(!list_link_active(&dr->dr_dirty_node));
2035                 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2036                 mutex_exit(&dn->dn_mtx);
2037                 if (drop_struct_lock)
2038                         rw_exit(&dn->dn_struct_rwlock);
2039         }
2040
2041         dnode_setdirty(dn, tx);
2042         DB_DNODE_EXIT(db);
2043         return (dr);
2044 }
2045
2046 /*
2047  * Undirty a buffer in the transaction group referenced by the given
2048  * transaction.  Return whether this evicted the dbuf.
2049  */
2050 static boolean_t
2051 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2052 {
2053         dnode_t *dn;
2054         uint64_t txg = tx->tx_txg;
2055         dbuf_dirty_record_t *dr, **drp;
2056
2057         ASSERT(txg != 0);
2058
2059         /*
2060          * Due to our use of dn_nlevels below, this can only be called
2061          * in open context, unless we are operating on the MOS.
2062          * From syncing context, dn_nlevels may be different from the
2063          * dn_nlevels used when dbuf was dirtied.
2064          */
2065         ASSERT(db->db_objset ==
2066             dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2067             txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2068         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2069         ASSERT0(db->db_level);
2070         ASSERT(MUTEX_HELD(&db->db_mtx));
2071
2072         /*
2073          * If this buffer is not dirty, we're done.
2074          */
2075         for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2076                 if (dr->dr_txg <= txg)
2077                         break;
2078         if (dr == NULL || dr->dr_txg < txg)
2079                 return (B_FALSE);
2080         ASSERT(dr->dr_txg == txg);
2081         ASSERT(dr->dr_dbuf == db);
2082
2083         DB_DNODE_ENTER(db);
2084         dn = DB_DNODE(db);
2085
2086         dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2087
2088         ASSERT(db->db.db_size != 0);
2089
2090         dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2091             dr->dr_accounted, txg);
2092
2093         *drp = dr->dr_next;
2094
2095         /*
2096          * Note that there are three places in dbuf_dirty()
2097          * where this dirty record may be put on a list.
2098          * Make sure to do a list_remove corresponding to
2099          * every one of those list_insert calls.
2100          */
2101         if (dr->dr_parent) {
2102                 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2103                 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2104                 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2105         } else if (db->db_blkid == DMU_SPILL_BLKID ||
2106             db->db_level + 1 == dn->dn_nlevels) {
2107                 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2108                 mutex_enter(&dn->dn_mtx);
2109                 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2110                 mutex_exit(&dn->dn_mtx);
2111         }
2112         DB_DNODE_EXIT(db);
2113
2114         if (db->db_state != DB_NOFILL) {
2115                 dbuf_unoverride(dr);
2116
2117                 ASSERT(db->db_buf != NULL);
2118                 ASSERT(dr->dt.dl.dr_data != NULL);
2119                 if (dr->dt.dl.dr_data != db->db_buf)
2120                         arc_buf_destroy(dr->dt.dl.dr_data, db);
2121         }
2122
2123         kmem_free(dr, sizeof (dbuf_dirty_record_t));
2124
2125         ASSERT(db->db_dirtycnt > 0);
2126         db->db_dirtycnt -= 1;
2127
2128         if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2129                 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2130                 dbuf_destroy(db);
2131                 return (B_TRUE);
2132         }
2133
2134         return (B_FALSE);
2135 }
2136
2137 static void
2138 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2139 {
2140         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2141
2142         ASSERT(tx->tx_txg != 0);
2143         ASSERT(!refcount_is_zero(&db->db_holds));
2144
2145         /*
2146          * Quick check for dirtyness.  For already dirty blocks, this
2147          * reduces runtime of this function by >90%, and overall performance
2148          * by 50% for some workloads (e.g. file deletion with indirect blocks
2149          * cached).
2150          */
2151         mutex_enter(&db->db_mtx);
2152
2153         dbuf_dirty_record_t *dr;
2154         for (dr = db->db_last_dirty;
2155             dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2156                 /*
2157                  * It's possible that it is already dirty but not cached,
2158                  * because there are some calls to dbuf_dirty() that don't
2159                  * go through dmu_buf_will_dirty().
2160                  */
2161                 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2162                         /* This dbuf is already dirty and cached. */
2163                         dbuf_redirty(dr);
2164                         mutex_exit(&db->db_mtx);
2165                         return;
2166                 }
2167         }
2168         mutex_exit(&db->db_mtx);
2169
2170         DB_DNODE_ENTER(db);
2171         if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2172                 flags |= DB_RF_HAVESTRUCT;
2173         DB_DNODE_EXIT(db);
2174         (void) dbuf_read(db, NULL, flags);
2175         (void) dbuf_dirty(db, tx);
2176 }
2177
2178 void
2179 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2180 {
2181         dmu_buf_will_dirty_impl(db_fake,
2182             DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2183 }
2184
2185 void
2186 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2187 {
2188         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2189
2190         db->db_state = DB_NOFILL;
2191
2192         dmu_buf_will_fill(db_fake, tx);
2193 }
2194
2195 void
2196 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2197 {
2198         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2199
2200         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2201         ASSERT(tx->tx_txg != 0);
2202         ASSERT(db->db_level == 0);
2203         ASSERT(!refcount_is_zero(&db->db_holds));
2204
2205         ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2206             dmu_tx_private_ok(tx));
2207
2208         dbuf_noread(db);
2209         (void) dbuf_dirty(db, tx);
2210 }
2211
2212 /*
2213  * This function is effectively the same as dmu_buf_will_dirty(), but
2214  * indicates the caller expects raw encrypted data in the db. It will
2215  * also set the raw flag on the created dirty record.
2216  */
2217 void
2218 dmu_buf_will_change_crypt_params(dmu_buf_t *db_fake, dmu_tx_t *tx)
2219 {
2220         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2221         dbuf_dirty_record_t *dr;
2222
2223         dmu_buf_will_dirty_impl(db_fake,
2224             DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2225
2226         dr = db->db_last_dirty;
2227         while (dr != NULL && dr->dr_txg > tx->tx_txg)
2228                 dr = dr->dr_next;
2229
2230         ASSERT3P(dr, !=, NULL);
2231         ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2232         dr->dt.dl.dr_raw = B_TRUE;
2233         db->db_objset->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
2234 }
2235
2236 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2237 /* ARGSUSED */
2238 void
2239 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2240 {
2241         mutex_enter(&db->db_mtx);
2242         DBUF_VERIFY(db);
2243
2244         if (db->db_state == DB_FILL) {
2245                 if (db->db_level == 0 && db->db_freed_in_flight) {
2246                         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2247                         /* we were freed while filling */
2248                         /* XXX dbuf_undirty? */
2249                         bzero(db->db.db_data, db->db.db_size);
2250                         db->db_freed_in_flight = FALSE;
2251                 }
2252                 db->db_state = DB_CACHED;
2253                 cv_broadcast(&db->db_changed);
2254         }
2255         mutex_exit(&db->db_mtx);
2256 }
2257
2258 void
2259 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2260     bp_embedded_type_t etype, enum zio_compress comp,
2261     int uncompressed_size, int compressed_size, int byteorder,
2262     dmu_tx_t *tx)
2263 {
2264         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2265         struct dirty_leaf *dl;
2266         dmu_object_type_t type;
2267
2268         if (etype == BP_EMBEDDED_TYPE_DATA) {
2269                 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2270                     SPA_FEATURE_EMBEDDED_DATA));
2271         }
2272
2273         DB_DNODE_ENTER(db);
2274         type = DB_DNODE(db)->dn_type;
2275         DB_DNODE_EXIT(db);
2276
2277         ASSERT0(db->db_level);
2278         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2279
2280         dmu_buf_will_not_fill(dbuf, tx);
2281
2282         ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2283         dl = &db->db_last_dirty->dt.dl;
2284         encode_embedded_bp_compressed(&dl->dr_overridden_by,
2285             data, comp, uncompressed_size, compressed_size);
2286         BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2287         BP_SET_TYPE(&dl->dr_overridden_by, type);
2288         BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2289         BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2290
2291         dl->dr_override_state = DR_OVERRIDDEN;
2292         dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2293 }
2294
2295 /*
2296  * Directly assign a provided arc buf to a given dbuf if it's not referenced
2297  * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2298  */
2299 void
2300 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2301 {
2302         ASSERT(!refcount_is_zero(&db->db_holds));
2303         ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2304         ASSERT(db->db_level == 0);
2305         ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2306         ASSERT(buf != NULL);
2307         ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2308         ASSERT(tx->tx_txg != 0);
2309
2310         arc_return_buf(buf, db);
2311         ASSERT(arc_released(buf));
2312
2313         mutex_enter(&db->db_mtx);
2314
2315         while (db->db_state == DB_READ || db->db_state == DB_FILL)
2316                 cv_wait(&db->db_changed, &db->db_mtx);
2317
2318         ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2319
2320         if (db->db_state == DB_CACHED &&
2321             refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2322                 /*
2323                  * In practice, we will never have a case where we have an
2324                  * encrypted arc buffer while additional holds exist on the
2325                  * dbuf. We don't handle this here so we simply assert that
2326                  * fact instead.
2327                  */
2328                 ASSERT(!arc_is_encrypted(buf));
2329                 mutex_exit(&db->db_mtx);
2330                 (void) dbuf_dirty(db, tx);
2331                 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2332                 arc_buf_destroy(buf, db);
2333                 xuio_stat_wbuf_copied();
2334                 return;
2335         }
2336
2337         xuio_stat_wbuf_nocopy();
2338         if (db->db_state == DB_CACHED) {
2339                 dbuf_dirty_record_t *dr = db->db_last_dirty;
2340
2341                 ASSERT(db->db_buf != NULL);
2342                 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2343                         ASSERT(dr->dt.dl.dr_data == db->db_buf);
2344                         IMPLY(arc_is_encrypted(buf), dr->dt.dl.dr_raw);
2345
2346                         if (!arc_released(db->db_buf)) {
2347                                 ASSERT(dr->dt.dl.dr_override_state ==
2348                                     DR_OVERRIDDEN);
2349                                 arc_release(db->db_buf, db);
2350                         }
2351                         dr->dt.dl.dr_data = buf;
2352                         arc_buf_destroy(db->db_buf, db);
2353                 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2354                         arc_release(db->db_buf, db);
2355                         arc_buf_destroy(db->db_buf, db);
2356                 }
2357                 db->db_buf = NULL;
2358         }
2359         ASSERT(db->db_buf == NULL);
2360         dbuf_set_data(db, buf);
2361         db->db_state = DB_FILL;
2362         mutex_exit(&db->db_mtx);
2363         (void) dbuf_dirty(db, tx);
2364         dmu_buf_fill_done(&db->db, tx);
2365 }
2366
2367 void
2368 dbuf_destroy(dmu_buf_impl_t *db)
2369 {
2370         dnode_t *dn;
2371         dmu_buf_impl_t *parent = db->db_parent;
2372         dmu_buf_impl_t *dndb;
2373
2374         ASSERT(MUTEX_HELD(&db->db_mtx));
2375         ASSERT(refcount_is_zero(&db->db_holds));
2376
2377         if (db->db_buf != NULL) {
2378                 arc_buf_destroy(db->db_buf, db);
2379                 db->db_buf = NULL;
2380         }
2381
2382         if (db->db_blkid == DMU_BONUS_BLKID) {
2383                 int slots = DB_DNODE(db)->dn_num_slots;
2384                 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2385                 if (db->db.db_data != NULL) {
2386                         kmem_free(db->db.db_data, bonuslen);
2387                         arc_space_return(bonuslen, ARC_SPACE_BONUS);
2388                         db->db_state = DB_UNCACHED;
2389                 }
2390         }
2391
2392         dbuf_clear_data(db);
2393
2394         if (multilist_link_active(&db->db_cache_link)) {
2395                 multilist_remove(dbuf_cache, db);
2396                 (void) refcount_remove_many(&dbuf_cache_size,
2397                     db->db.db_size, db);
2398                 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2399                 DBUF_STAT_BUMPDOWN(cache_count);
2400                 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2401                     db->db.db_size);
2402         }
2403
2404         ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2405         ASSERT(db->db_data_pending == NULL);
2406
2407         db->db_state = DB_EVICTING;
2408         db->db_blkptr = NULL;
2409
2410         /*
2411          * Now that db_state is DB_EVICTING, nobody else can find this via
2412          * the hash table.  We can now drop db_mtx, which allows us to
2413          * acquire the dn_dbufs_mtx.
2414          */
2415         mutex_exit(&db->db_mtx);
2416
2417         DB_DNODE_ENTER(db);
2418         dn = DB_DNODE(db);
2419         dndb = dn->dn_dbuf;
2420         if (db->db_blkid != DMU_BONUS_BLKID) {
2421                 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2422                 if (needlock)
2423                         mutex_enter(&dn->dn_dbufs_mtx);
2424                 avl_remove(&dn->dn_dbufs, db);
2425                 atomic_dec_32(&dn->dn_dbufs_count);
2426                 membar_producer();
2427                 DB_DNODE_EXIT(db);
2428                 if (needlock)
2429                         mutex_exit(&dn->dn_dbufs_mtx);
2430                 /*
2431                  * Decrementing the dbuf count means that the hold corresponding
2432                  * to the removed dbuf is no longer discounted in dnode_move(),
2433                  * so the dnode cannot be moved until after we release the hold.
2434                  * The membar_producer() ensures visibility of the decremented
2435                  * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2436                  * release any lock.
2437                  */
2438                 dnode_rele(dn, db);
2439                 db->db_dnode_handle = NULL;
2440
2441                 dbuf_hash_remove(db);
2442         } else {
2443                 DB_DNODE_EXIT(db);
2444         }
2445
2446         ASSERT(refcount_is_zero(&db->db_holds));
2447
2448         db->db_parent = NULL;
2449
2450         ASSERT(db->db_buf == NULL);
2451         ASSERT(db->db.db_data == NULL);
2452         ASSERT(db->db_hash_next == NULL);
2453         ASSERT(db->db_blkptr == NULL);
2454         ASSERT(db->db_data_pending == NULL);
2455         ASSERT(!multilist_link_active(&db->db_cache_link));
2456
2457         kmem_cache_free(dbuf_kmem_cache, db);
2458         arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2459
2460         /*
2461          * If this dbuf is referenced from an indirect dbuf,
2462          * decrement the ref count on the indirect dbuf.
2463          */
2464         if (parent && parent != dndb)
2465                 dbuf_rele(parent, db);
2466 }
2467
2468 /*
2469  * Note: While bpp will always be updated if the function returns success,
2470  * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2471  * this happens when the dnode is the meta-dnode, or {user|group|project}used
2472  * object.
2473  */
2474 __attribute__((always_inline))
2475 static inline int
2476 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2477     dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2478 {
2479         *parentp = NULL;
2480         *bpp = NULL;
2481
2482         ASSERT(blkid != DMU_BONUS_BLKID);
2483
2484         if (blkid == DMU_SPILL_BLKID) {
2485                 mutex_enter(&dn->dn_mtx);
2486                 if (dn->dn_have_spill &&
2487                     (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2488                         *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2489                 else
2490                         *bpp = NULL;
2491                 dbuf_add_ref(dn->dn_dbuf, NULL);
2492                 *parentp = dn->dn_dbuf;
2493                 mutex_exit(&dn->dn_mtx);
2494                 return (0);
2495         }
2496
2497         int nlevels =
2498             (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2499         int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2500
2501         ASSERT3U(level * epbs, <, 64);
2502         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2503         /*
2504          * This assertion shouldn't trip as long as the max indirect block size
2505          * is less than 1M.  The reason for this is that up to that point,
2506          * the number of levels required to address an entire object with blocks
2507          * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64.  In
2508          * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2509          * (i.e. we can address the entire object), objects will all use at most
2510          * N-1 levels and the assertion won't overflow.  However, once epbs is
2511          * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66.  Then, 4 levels will not be
2512          * enough to address an entire object, so objects will have 5 levels,
2513          * but then this assertion will overflow.
2514          *
2515          * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2516          * need to redo this logic to handle overflows.
2517          */
2518         ASSERT(level >= nlevels ||
2519             ((nlevels - level - 1) * epbs) +
2520             highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2521         if (level >= nlevels ||
2522             blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2523             ((nlevels - level - 1) * epbs)) ||
2524             (fail_sparse &&
2525             blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2526                 /* the buffer has no parent yet */
2527                 return (SET_ERROR(ENOENT));
2528         } else if (level < nlevels-1) {
2529                 /* this block is referenced from an indirect block */
2530                 int err;
2531                 if (dh == NULL) {
2532                         err = dbuf_hold_impl(dn, level+1,
2533                             blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2534                 } else {
2535                         __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2536                             blkid >> epbs, fail_sparse, FALSE, NULL,
2537                             parentp, dh->dh_depth + 1);
2538                         err = __dbuf_hold_impl(dh + 1);
2539                 }
2540                 if (err)
2541                         return (err);
2542                 err = dbuf_read(*parentp, NULL,
2543                     (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2544                 if (err) {
2545                         dbuf_rele(*parentp, NULL);
2546                         *parentp = NULL;
2547                         return (err);
2548                 }
2549                 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2550                     (blkid & ((1ULL << epbs) - 1));
2551                 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2552                         ASSERT(BP_IS_HOLE(*bpp));
2553                 return (0);
2554         } else {
2555                 /* the block is referenced from the dnode */
2556                 ASSERT3U(level, ==, nlevels-1);
2557                 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2558                     blkid < dn->dn_phys->dn_nblkptr);
2559                 if (dn->dn_dbuf) {
2560                         dbuf_add_ref(dn->dn_dbuf, NULL);
2561                         *parentp = dn->dn_dbuf;
2562                 }
2563                 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2564                 return (0);
2565         }
2566 }
2567
2568 static dmu_buf_impl_t *
2569 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2570     dmu_buf_impl_t *parent, blkptr_t *blkptr)
2571 {
2572         objset_t *os = dn->dn_objset;
2573         dmu_buf_impl_t *db, *odb;
2574
2575         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2576         ASSERT(dn->dn_type != DMU_OT_NONE);
2577
2578         db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2579
2580         db->db_objset = os;
2581         db->db.db_object = dn->dn_object;
2582         db->db_level = level;
2583         db->db_blkid = blkid;
2584         db->db_last_dirty = NULL;
2585         db->db_dirtycnt = 0;
2586         db->db_dnode_handle = dn->dn_handle;
2587         db->db_parent = parent;
2588         db->db_blkptr = blkptr;
2589
2590         db->db_user = NULL;
2591         db->db_user_immediate_evict = FALSE;
2592         db->db_freed_in_flight = FALSE;
2593         db->db_pending_evict = FALSE;
2594
2595         if (blkid == DMU_BONUS_BLKID) {
2596                 ASSERT3P(parent, ==, dn->dn_dbuf);
2597                 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2598                     (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2599                 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2600                 db->db.db_offset = DMU_BONUS_BLKID;
2601                 db->db_state = DB_UNCACHED;
2602                 /* the bonus dbuf is not placed in the hash table */
2603                 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2604                 return (db);
2605         } else if (blkid == DMU_SPILL_BLKID) {
2606                 db->db.db_size = (blkptr != NULL) ?
2607                     BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2608                 db->db.db_offset = 0;
2609         } else {
2610                 int blocksize =
2611                     db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2612                 db->db.db_size = blocksize;
2613                 db->db.db_offset = db->db_blkid * blocksize;
2614         }
2615
2616         /*
2617          * Hold the dn_dbufs_mtx while we get the new dbuf
2618          * in the hash table *and* added to the dbufs list.
2619          * This prevents a possible deadlock with someone
2620          * trying to look up this dbuf before its added to the
2621          * dn_dbufs list.
2622          */
2623         mutex_enter(&dn->dn_dbufs_mtx);
2624         db->db_state = DB_EVICTING;
2625         if ((odb = dbuf_hash_insert(db)) != NULL) {
2626                 /* someone else inserted it first */
2627                 kmem_cache_free(dbuf_kmem_cache, db);
2628                 mutex_exit(&dn->dn_dbufs_mtx);
2629                 DBUF_STAT_BUMP(hash_insert_race);
2630                 return (odb);
2631         }
2632         avl_add(&dn->dn_dbufs, db);
2633
2634         db->db_state = DB_UNCACHED;
2635         mutex_exit(&dn->dn_dbufs_mtx);
2636         arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2637
2638         if (parent && parent != dn->dn_dbuf)
2639                 dbuf_add_ref(parent, db);
2640
2641         ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2642             refcount_count(&dn->dn_holds) > 0);
2643         (void) refcount_add(&dn->dn_holds, db);
2644         atomic_inc_32(&dn->dn_dbufs_count);
2645
2646         dprintf_dbuf(db, "db=%p\n", db);
2647
2648         return (db);
2649 }
2650
2651 typedef struct dbuf_prefetch_arg {
2652         spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2653         zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2654         int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2655         int dpa_curlevel; /* The current level that we're reading */
2656         dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2657         zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2658         zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2659         arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2660 } dbuf_prefetch_arg_t;
2661
2662 /*
2663  * Actually issue the prefetch read for the block given.
2664  */
2665 static void
2666 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2667 {
2668         if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2669                 return;
2670
2671         int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2672         arc_flags_t aflags =
2673             dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2674
2675         /* dnodes are always read as raw and then converted later */
2676         if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2677             dpa->dpa_curlevel == 0)
2678                 zio_flags |= ZIO_FLAG_RAW;
2679
2680         ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2681         ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2682         ASSERT(dpa->dpa_zio != NULL);
2683         (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2684             dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2685 }
2686
2687 /*
2688  * Called when an indirect block above our prefetch target is read in.  This
2689  * will either read in the next indirect block down the tree or issue the actual
2690  * prefetch if the next block down is our target.
2691  */
2692 static void
2693 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2694     const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2695 {
2696         dbuf_prefetch_arg_t *dpa = private;
2697
2698         ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2699         ASSERT3S(dpa->dpa_curlevel, >, 0);
2700
2701         /*
2702          * The dpa_dnode is only valid if we are called with a NULL
2703          * zio. This indicates that the arc_read() returned without
2704          * first calling zio_read() to issue a physical read. Once
2705          * a physical read is made the dpa_dnode must be invalidated
2706          * as the locks guarding it may have been dropped. If the
2707          * dpa_dnode is still valid, then we want to add it to the dbuf
2708          * cache. To do so, we must hold the dbuf associated with the block
2709          * we just prefetched, read its contents so that we associate it
2710          * with an arc_buf_t, and then release it.
2711          */
2712         if (zio != NULL) {
2713                 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2714                 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2715                         ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2716                 } else {
2717                         ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2718                 }
2719                 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2720
2721                 dpa->dpa_dnode = NULL;
2722         } else if (dpa->dpa_dnode != NULL) {
2723                 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2724                     (dpa->dpa_epbs * (dpa->dpa_curlevel -
2725                     dpa->dpa_zb.zb_level));
2726                 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2727                     dpa->dpa_curlevel, curblkid, FTAG);
2728                 (void) dbuf_read(db, NULL,
2729                     DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2730                 dbuf_rele(db, FTAG);
2731         }
2732
2733         if (abuf == NULL) {
2734                 kmem_free(dpa, sizeof (*dpa));
2735                 return;
2736         }
2737
2738         dpa->dpa_curlevel--;
2739         uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2740             (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2741         blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2742             P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2743
2744         if (BP_IS_HOLE(bp)) {
2745                 kmem_free(dpa, sizeof (*dpa));
2746         } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2747                 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2748                 dbuf_issue_final_prefetch(dpa, bp);
2749                 kmem_free(dpa, sizeof (*dpa));
2750         } else {
2751                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2752                 zbookmark_phys_t zb;
2753
2754                 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2755                 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2756                         iter_aflags |= ARC_FLAG_L2CACHE;
2757
2758                 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2759
2760                 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2761                     dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2762
2763                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2764                     bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2765                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2766                     &iter_aflags, &zb);
2767         }
2768
2769         arc_buf_destroy(abuf, private);
2770 }
2771
2772 /*
2773  * Issue prefetch reads for the given block on the given level.  If the indirect
2774  * blocks above that block are not in memory, we will read them in
2775  * asynchronously.  As a result, this call never blocks waiting for a read to
2776  * complete. Note that the prefetch might fail if the dataset is encrypted and
2777  * the encryption key is unmapped before the IO completes.
2778  */
2779 void
2780 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2781     arc_flags_t aflags)
2782 {
2783         blkptr_t bp;
2784         int epbs, nlevels, curlevel;
2785         uint64_t curblkid;
2786
2787         ASSERT(blkid != DMU_BONUS_BLKID);
2788         ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2789
2790         if (blkid > dn->dn_maxblkid)
2791                 return;
2792
2793         if (dnode_block_freed(dn, blkid))
2794                 return;
2795
2796         /*
2797          * This dnode hasn't been written to disk yet, so there's nothing to
2798          * prefetch.
2799          */
2800         nlevels = dn->dn_phys->dn_nlevels;
2801         if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2802                 return;
2803
2804         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2805         if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2806                 return;
2807
2808         dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2809             level, blkid);
2810         if (db != NULL) {
2811                 mutex_exit(&db->db_mtx);
2812                 /*
2813                  * This dbuf already exists.  It is either CACHED, or
2814                  * (we assume) about to be read or filled.
2815                  */
2816                 return;
2817         }
2818
2819         /*
2820          * Find the closest ancestor (indirect block) of the target block
2821          * that is present in the cache.  In this indirect block, we will
2822          * find the bp that is at curlevel, curblkid.
2823          */
2824         curlevel = level;
2825         curblkid = blkid;
2826         while (curlevel < nlevels - 1) {
2827                 int parent_level = curlevel + 1;
2828                 uint64_t parent_blkid = curblkid >> epbs;
2829                 dmu_buf_impl_t *db;
2830
2831                 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2832                     FALSE, TRUE, FTAG, &db) == 0) {
2833                         blkptr_t *bpp = db->db_buf->b_data;
2834                         bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2835                         dbuf_rele(db, FTAG);
2836                         break;
2837                 }
2838
2839                 curlevel = parent_level;
2840                 curblkid = parent_blkid;
2841         }
2842
2843         if (curlevel == nlevels - 1) {
2844                 /* No cached indirect blocks found. */
2845                 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2846                 bp = dn->dn_phys->dn_blkptr[curblkid];
2847         }
2848         if (BP_IS_HOLE(&bp))
2849                 return;
2850
2851         ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2852
2853         zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2854             ZIO_FLAG_CANFAIL);
2855
2856         dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2857         dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
2858         SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2859             dn->dn_object, level, blkid);
2860         dpa->dpa_curlevel = curlevel;
2861         dpa->dpa_prio = prio;
2862         dpa->dpa_aflags = aflags;
2863         dpa->dpa_spa = dn->dn_objset->os_spa;
2864         dpa->dpa_dnode = dn;
2865         dpa->dpa_epbs = epbs;
2866         dpa->dpa_zio = pio;
2867
2868         /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2869         if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2870                 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
2871
2872         /*
2873          * If we have the indirect just above us, no need to do the asynchronous
2874          * prefetch chain; we'll just run the last step ourselves.  If we're at
2875          * a higher level, though, we want to issue the prefetches for all the
2876          * indirect blocks asynchronously, so we can go on with whatever we were
2877          * doing.
2878          */
2879         if (curlevel == level) {
2880                 ASSERT3U(curblkid, ==, blkid);
2881                 dbuf_issue_final_prefetch(dpa, &bp);
2882                 kmem_free(dpa, sizeof (*dpa));
2883         } else {
2884                 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2885                 zbookmark_phys_t zb;
2886
2887                 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2888                 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
2889                         iter_aflags |= ARC_FLAG_L2CACHE;
2890
2891                 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2892                     dn->dn_object, curlevel, curblkid);
2893                 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2894                     &bp, dbuf_prefetch_indirect_done, dpa, prio,
2895                     ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2896                     &iter_aflags, &zb);
2897         }
2898         /*
2899          * We use pio here instead of dpa_zio since it's possible that
2900          * dpa may have already been freed.
2901          */
2902         zio_nowait(pio);
2903 }
2904
2905 #define DBUF_HOLD_IMPL_MAX_DEPTH        20
2906
2907 /*
2908  * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
2909  * the case of encrypted, compressed and uncompressed buffers by
2910  * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
2911  * arc_alloc_compressed_buf() or arc_alloc_buf().*
2912  *
2913  * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
2914  */
2915 noinline static void
2916 dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
2917 {
2918         dnode_t *dn = dh->dh_dn;
2919         dmu_buf_impl_t *db = dh->dh_db;
2920         dbuf_dirty_record_t *dr = dh->dh_dr;
2921         arc_buf_t *data = dr->dt.dl.dr_data;
2922
2923         enum zio_compress compress_type = arc_get_compression(data);
2924
2925         if (arc_is_encrypted(data)) {
2926                 boolean_t byteorder;
2927                 uint8_t salt[ZIO_DATA_SALT_LEN];
2928                 uint8_t iv[ZIO_DATA_IV_LEN];
2929                 uint8_t mac[ZIO_DATA_MAC_LEN];
2930
2931                 arc_get_raw_params(data, &byteorder, salt, iv, mac);
2932                 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
2933                     dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
2934                     dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
2935                     compress_type));
2936         } else if (compress_type != ZIO_COMPRESS_OFF) {
2937                 dbuf_set_data(db, arc_alloc_compressed_buf(
2938                     dn->dn_objset->os_spa, db, arc_buf_size(data),
2939                     arc_buf_lsize(data), compress_type));
2940         } else {
2941                 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
2942                     DBUF_GET_BUFC_TYPE(db), db->db.db_size));
2943         }
2944
2945         bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
2946 }
2947
2948 /*
2949  * Returns with db_holds incremented, and db_mtx not held.
2950  * Note: dn_struct_rwlock must be held.
2951  */
2952 static int
2953 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2954 {
2955         ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2956         dh->dh_parent = NULL;
2957
2958         ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2959         ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2960         ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2961
2962         *(dh->dh_dbp) = NULL;
2963
2964         /* dbuf_find() returns with db_mtx held */
2965         dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2966             dh->dh_level, dh->dh_blkid);
2967
2968         if (dh->dh_db == NULL) {
2969                 dh->dh_bp = NULL;
2970
2971                 if (dh->dh_fail_uncached)
2972                         return (SET_ERROR(ENOENT));
2973
2974                 ASSERT3P(dh->dh_parent, ==, NULL);
2975                 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2976                     dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
2977                 if (dh->dh_fail_sparse) {
2978                         if (dh->dh_err == 0 &&
2979                             dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2980                                 dh->dh_err = SET_ERROR(ENOENT);
2981                         if (dh->dh_err) {
2982                                 if (dh->dh_parent)
2983                                         dbuf_rele(dh->dh_parent, NULL);
2984                                 return (dh->dh_err);
2985                         }
2986                 }
2987                 if (dh->dh_err && dh->dh_err != ENOENT)
2988                         return (dh->dh_err);
2989                 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2990                     dh->dh_parent, dh->dh_bp);
2991         }
2992
2993         if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2994                 mutex_exit(&dh->dh_db->db_mtx);
2995                 return (SET_ERROR(ENOENT));
2996         }
2997
2998         if (dh->dh_db->db_buf != NULL) {
2999                 arc_buf_access(dh->dh_db->db_buf);
3000                 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
3001         }
3002
3003         ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
3004
3005         /*
3006          * If this buffer is currently syncing out, and we are are
3007          * still referencing it from db_data, we need to make a copy
3008          * of it in case we decide we want to dirty it again in this txg.
3009          */
3010         if (dh->dh_db->db_level == 0 &&
3011             dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
3012             dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
3013             dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
3014                 dh->dh_dr = dh->dh_db->db_data_pending;
3015                 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
3016                         dbuf_hold_copy(dh);
3017         }
3018
3019         if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3020                 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
3021                 multilist_remove(dbuf_cache, dh->dh_db);
3022                 (void) refcount_remove_many(&dbuf_cache_size,
3023                     dh->dh_db->db.db_size, dh->dh_db);
3024                 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3025                 DBUF_STAT_BUMPDOWN(cache_count);
3026                 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3027                     dh->dh_db->db.db_size);
3028         }
3029         (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
3030         DBUF_VERIFY(dh->dh_db);
3031         mutex_exit(&dh->dh_db->db_mtx);
3032
3033         /* NOTE: we can't rele the parent until after we drop the db_mtx */
3034         if (dh->dh_parent)
3035                 dbuf_rele(dh->dh_parent, NULL);
3036
3037         ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3038         ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3039         ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3040         *(dh->dh_dbp) = dh->dh_db;
3041
3042         return (0);
3043 }
3044
3045 /*
3046  * The following code preserves the recursive function dbuf_hold_impl()
3047  * but moves the local variables AND function arguments to the heap to
3048  * minimize the stack frame size.  Enough space is initially allocated
3049  * on the stack for 20 levels of recursion.
3050  */
3051 int
3052 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3053     boolean_t fail_sparse, boolean_t fail_uncached,
3054     void *tag, dmu_buf_impl_t **dbp)
3055 {
3056         struct dbuf_hold_impl_data *dh;
3057         int error;
3058
3059         dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
3060             DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
3061         __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
3062             fail_uncached, tag, dbp, 0);
3063
3064         error = __dbuf_hold_impl(dh);
3065
3066         kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
3067             DBUF_HOLD_IMPL_MAX_DEPTH);
3068
3069         return (error);
3070 }
3071
3072 static void
3073 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
3074     dnode_t *dn, uint8_t level, uint64_t blkid,
3075     boolean_t fail_sparse, boolean_t fail_uncached,
3076     void *tag, dmu_buf_impl_t **dbp, int depth)
3077 {
3078         dh->dh_dn = dn;
3079         dh->dh_level = level;
3080         dh->dh_blkid = blkid;
3081
3082         dh->dh_fail_sparse = fail_sparse;
3083         dh->dh_fail_uncached = fail_uncached;
3084
3085         dh->dh_tag = tag;
3086         dh->dh_dbp = dbp;
3087
3088         dh->dh_db = NULL;
3089         dh->dh_parent = NULL;
3090         dh->dh_bp = NULL;
3091         dh->dh_err = 0;
3092         dh->dh_dr = NULL;
3093
3094         dh->dh_depth = depth;
3095 }
3096
3097 dmu_buf_impl_t *
3098 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3099 {
3100         return (dbuf_hold_level(dn, 0, blkid, tag));
3101 }
3102
3103 dmu_buf_impl_t *
3104 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3105 {
3106         dmu_buf_impl_t *db;
3107         int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3108         return (err ? NULL : db);
3109 }
3110
3111 void
3112 dbuf_create_bonus(dnode_t *dn)
3113 {
3114         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3115
3116         ASSERT(dn->dn_bonus == NULL);
3117         dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3118 }
3119
3120 int
3121 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3122 {
3123         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3124         dnode_t *dn;
3125
3126         if (db->db_blkid != DMU_SPILL_BLKID)
3127                 return (SET_ERROR(ENOTSUP));
3128         if (blksz == 0)
3129                 blksz = SPA_MINBLOCKSIZE;
3130         ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3131         blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3132
3133         DB_DNODE_ENTER(db);
3134         dn = DB_DNODE(db);
3135         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3136         dbuf_new_size(db, blksz, tx);
3137         rw_exit(&dn->dn_struct_rwlock);
3138         DB_DNODE_EXIT(db);
3139
3140         return (0);
3141 }
3142
3143 void
3144 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3145 {
3146         dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3147 }
3148
3149 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3150 void
3151 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3152 {
3153         int64_t holds = refcount_add(&db->db_holds, tag);
3154         VERIFY3S(holds, >, 1);
3155 }
3156
3157 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3158 boolean_t
3159 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3160     void *tag)
3161 {
3162         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3163         dmu_buf_impl_t *found_db;
3164         boolean_t result = B_FALSE;
3165
3166         if (blkid == DMU_BONUS_BLKID)
3167                 found_db = dbuf_find_bonus(os, obj);
3168         else
3169                 found_db = dbuf_find(os, obj, 0, blkid);
3170
3171         if (found_db != NULL) {
3172                 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3173                         (void) refcount_add(&db->db_holds, tag);
3174                         result = B_TRUE;
3175                 }
3176                 mutex_exit(&found_db->db_mtx);
3177         }
3178         return (result);
3179 }
3180
3181 /*
3182  * If you call dbuf_rele() you had better not be referencing the dnode handle
3183  * unless you have some other direct or indirect hold on the dnode. (An indirect
3184  * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3185  * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3186  * dnode's parent dbuf evicting its dnode handles.
3187  */
3188 void
3189 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3190 {
3191         mutex_enter(&db->db_mtx);
3192         dbuf_rele_and_unlock(db, tag);
3193 }
3194
3195 void
3196 dmu_buf_rele(dmu_buf_t *db, void *tag)
3197 {
3198         dbuf_rele((dmu_buf_impl_t *)db, tag);
3199 }
3200
3201 /*
3202  * dbuf_rele() for an already-locked dbuf.  This is necessary to allow
3203  * db_dirtycnt and db_holds to be updated atomically.
3204  */
3205 void
3206 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
3207 {
3208         int64_t holds;
3209
3210         ASSERT(MUTEX_HELD(&db->db_mtx));
3211         DBUF_VERIFY(db);
3212
3213         /*
3214          * Remove the reference to the dbuf before removing its hold on the
3215          * dnode so we can guarantee in dnode_move() that a referenced bonus
3216          * buffer has a corresponding dnode hold.
3217          */
3218         holds = refcount_remove(&db->db_holds, tag);
3219         ASSERT(holds >= 0);
3220
3221         /*
3222          * We can't freeze indirects if there is a possibility that they
3223          * may be modified in the current syncing context.
3224          */
3225         if (db->db_buf != NULL &&
3226             holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3227                 arc_buf_freeze(db->db_buf);
3228         }
3229
3230         if (holds == db->db_dirtycnt &&
3231             db->db_level == 0 && db->db_user_immediate_evict)
3232                 dbuf_evict_user(db);
3233
3234         if (holds == 0) {
3235                 if (db->db_blkid == DMU_BONUS_BLKID) {
3236                         dnode_t *dn;
3237                         boolean_t evict_dbuf = db->db_pending_evict;
3238
3239                         /*
3240                          * If the dnode moves here, we cannot cross this
3241                          * barrier until the move completes.
3242                          */
3243                         DB_DNODE_ENTER(db);
3244
3245                         dn = DB_DNODE(db);
3246                         atomic_dec_32(&dn->dn_dbufs_count);
3247
3248                         /*
3249                          * Decrementing the dbuf count means that the bonus
3250                          * buffer's dnode hold is no longer discounted in
3251                          * dnode_move(). The dnode cannot move until after
3252                          * the dnode_rele() below.
3253                          */
3254                         DB_DNODE_EXIT(db);
3255
3256                         /*
3257                          * Do not reference db after its lock is dropped.
3258                          * Another thread may evict it.
3259                          */
3260                         mutex_exit(&db->db_mtx);
3261
3262                         if (evict_dbuf)
3263                                 dnode_evict_bonus(dn);
3264
3265                         dnode_rele(dn, db);
3266                 } else if (db->db_buf == NULL) {
3267                         /*
3268                          * This is a special case: we never associated this
3269                          * dbuf with any data allocated from the ARC.
3270                          */
3271                         ASSERT(db->db_state == DB_UNCACHED ||
3272                             db->db_state == DB_NOFILL);
3273                         dbuf_destroy(db);
3274                 } else if (arc_released(db->db_buf)) {
3275                         /*
3276                          * This dbuf has anonymous data associated with it.
3277                          */
3278                         dbuf_destroy(db);
3279                 } else {
3280                         boolean_t do_arc_evict = B_FALSE;
3281                         blkptr_t bp;
3282                         spa_t *spa = dmu_objset_spa(db->db_objset);
3283
3284                         if (!DBUF_IS_CACHEABLE(db) &&
3285                             db->db_blkptr != NULL &&
3286                             !BP_IS_HOLE(db->db_blkptr) &&
3287                             !BP_IS_EMBEDDED(db->db_blkptr)) {
3288                                 do_arc_evict = B_TRUE;
3289                                 bp = *db->db_blkptr;
3290                         }
3291
3292                         if (!DBUF_IS_CACHEABLE(db) ||
3293                             db->db_pending_evict) {
3294                                 dbuf_destroy(db);
3295                         } else if (!multilist_link_active(&db->db_cache_link)) {
3296                                 multilist_insert(dbuf_cache, db);
3297                                 (void) refcount_add_many(&dbuf_cache_size,
3298                                     db->db.db_size, db);
3299                                 DBUF_STAT_BUMP(cache_levels[db->db_level]);
3300                                 DBUF_STAT_BUMP(cache_count);
3301                                 DBUF_STAT_INCR(cache_levels_bytes[db->db_level],
3302                                     db->db.db_size);
3303                                 DBUF_STAT_MAX(cache_size_bytes_max,
3304                                     refcount_count(&dbuf_cache_size));
3305                                 mutex_exit(&db->db_mtx);
3306
3307                                 dbuf_evict_notify();
3308                         }
3309
3310                         if (do_arc_evict)
3311                                 arc_freed(spa, &bp);
3312                 }
3313         } else {
3314                 mutex_exit(&db->db_mtx);
3315         }
3316
3317 }
3318
3319 #pragma weak dmu_buf_refcount = dbuf_refcount
3320 uint64_t
3321 dbuf_refcount(dmu_buf_impl_t *db)
3322 {
3323         return (refcount_count(&db->db_holds));
3324 }
3325
3326 void *
3327 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3328     dmu_buf_user_t *new_user)
3329 {
3330         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3331
3332         mutex_enter(&db->db_mtx);
3333         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3334         if (db->db_user == old_user)
3335                 db->db_user = new_user;
3336         else
3337                 old_user = db->db_user;
3338         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3339         mutex_exit(&db->db_mtx);
3340
3341         return (old_user);
3342 }
3343
3344 void *
3345 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3346 {
3347         return (dmu_buf_replace_user(db_fake, NULL, user));
3348 }
3349
3350 void *
3351 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3352 {
3353         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3354
3355         db->db_user_immediate_evict = TRUE;
3356         return (dmu_buf_set_user(db_fake, user));
3357 }
3358
3359 void *
3360 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3361 {
3362         return (dmu_buf_replace_user(db_fake, user, NULL));
3363 }
3364
3365 void *
3366 dmu_buf_get_user(dmu_buf_t *db_fake)
3367 {
3368         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3369
3370         dbuf_verify_user(db, DBVU_NOT_EVICTING);
3371         return (db->db_user);
3372 }
3373
3374 void
3375 dmu_buf_user_evict_wait()
3376 {
3377         taskq_wait(dbu_evict_taskq);
3378 }
3379
3380 blkptr_t *
3381 dmu_buf_get_blkptr(dmu_buf_t *db)
3382 {
3383         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3384         return (dbi->db_blkptr);
3385 }
3386
3387 objset_t *
3388 dmu_buf_get_objset(dmu_buf_t *db)
3389 {
3390         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3391         return (dbi->db_objset);
3392 }
3393
3394 dnode_t *
3395 dmu_buf_dnode_enter(dmu_buf_t *db)
3396 {
3397         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3398         DB_DNODE_ENTER(dbi);
3399         return (DB_DNODE(dbi));
3400 }
3401
3402 void
3403 dmu_buf_dnode_exit(dmu_buf_t *db)
3404 {
3405         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3406         DB_DNODE_EXIT(dbi);
3407 }
3408
3409 static void
3410 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3411 {
3412         /* ASSERT(dmu_tx_is_syncing(tx) */
3413         ASSERT(MUTEX_HELD(&db->db_mtx));
3414
3415         if (db->db_blkptr != NULL)
3416                 return;
3417
3418         if (db->db_blkid == DMU_SPILL_BLKID) {
3419                 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3420                 BP_ZERO(db->db_blkptr);
3421                 return;
3422         }
3423         if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3424                 /*
3425                  * This buffer was allocated at a time when there was
3426                  * no available blkptrs from the dnode, or it was
3427                  * inappropriate to hook it in (i.e., nlevels mis-match).
3428                  */
3429                 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3430                 ASSERT(db->db_parent == NULL);
3431                 db->db_parent = dn->dn_dbuf;
3432                 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3433                 DBUF_VERIFY(db);
3434         } else {
3435                 dmu_buf_impl_t *parent = db->db_parent;
3436                 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3437
3438                 ASSERT(dn->dn_phys->dn_nlevels > 1);
3439                 if (parent == NULL) {
3440                         mutex_exit(&db->db_mtx);
3441                         rw_enter(&dn->dn_struct_rwlock, RW_READER);
3442                         parent = dbuf_hold_level(dn, db->db_level + 1,
3443                             db->db_blkid >> epbs, db);
3444                         rw_exit(&dn->dn_struct_rwlock);
3445                         mutex_enter(&db->db_mtx);
3446                         db->db_parent = parent;
3447                 }
3448                 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3449                     (db->db_blkid & ((1ULL << epbs) - 1));
3450                 DBUF_VERIFY(db);
3451         }
3452 }
3453
3454 /*
3455  * Ensure the dbuf's data is untransformed if the associated dirty
3456  * record requires it. This is used by dbuf_sync_leaf() to ensure
3457  * that a dnode block is decrypted before we write new data to it.
3458  * For raw writes we assert that the buffer is already encrypted.
3459  */
3460 static void
3461 dbuf_check_crypt(dbuf_dirty_record_t *dr)
3462 {
3463         int err;
3464         dmu_buf_impl_t *db = dr->dr_dbuf;
3465
3466         ASSERT(MUTEX_HELD(&db->db_mtx));
3467
3468         if (!dr->dt.dl.dr_raw && arc_is_encrypted(db->db_buf)) {
3469                 zbookmark_phys_t zb;
3470
3471                 /*
3472                  * Unfortunately, there is currently no mechanism for
3473                  * syncing context to handle decryption errors. An error
3474                  * here is only possible if an attacker maliciously
3475                  * changed a dnode block and updated the associated
3476                  * checksums going up the block tree.
3477                  */
3478                 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3479                     db->db.db_object, db->db_level, db->db_blkid);
3480                 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3481                     &zb, B_TRUE);
3482                 if (err)
3483                         panic("Invalid dnode block MAC");
3484         } else if (dr->dt.dl.dr_raw) {
3485                 /*
3486                  * Writing raw encrypted data requires the db's arc buffer
3487                  * to be converted to raw by the caller.
3488                  */
3489                 ASSERT(arc_is_encrypted(db->db_buf));
3490         }
3491 }
3492
3493 /*
3494  * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3495  * is critical the we not allow the compiler to inline this function in to
3496  * dbuf_sync_list() thereby drastically bloating the stack usage.
3497  */
3498 noinline static void
3499 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3500 {
3501         dmu_buf_impl_t *db = dr->dr_dbuf;
3502         dnode_t *dn;
3503         zio_t *zio;
3504
3505         ASSERT(dmu_tx_is_syncing(tx));
3506
3507         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3508
3509         mutex_enter(&db->db_mtx);
3510
3511         ASSERT(db->db_level > 0);
3512         DBUF_VERIFY(db);
3513
3514         /* Read the block if it hasn't been read yet. */
3515         if (db->db_buf == NULL) {
3516                 mutex_exit(&db->db_mtx);
3517                 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3518                 mutex_enter(&db->db_mtx);
3519         }
3520         ASSERT3U(db->db_state, ==, DB_CACHED);
3521         ASSERT(db->db_buf != NULL);
3522
3523         DB_DNODE_ENTER(db);
3524         dn = DB_DNODE(db);
3525         /* Indirect block size must match what the dnode thinks it is. */
3526         ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3527         dbuf_check_blkptr(dn, db);
3528         DB_DNODE_EXIT(db);
3529
3530         /* Provide the pending dirty record to child dbufs */
3531         db->db_data_pending = dr;
3532
3533         mutex_exit(&db->db_mtx);
3534
3535         dbuf_write(dr, db->db_buf, tx);
3536
3537         zio = dr->dr_zio;
3538         mutex_enter(&dr->dt.di.dr_mtx);
3539         dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3540         ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3541         mutex_exit(&dr->dt.di.dr_mtx);
3542         zio_nowait(zio);
3543 }
3544
3545 /*
3546  * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3547  * critical the we not allow the compiler to inline this function in to
3548  * dbuf_sync_list() thereby drastically bloating the stack usage.
3549  */
3550 noinline static void
3551 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3552 {
3553         arc_buf_t **datap = &dr->dt.dl.dr_data;
3554         dmu_buf_impl_t *db = dr->dr_dbuf;
3555         dnode_t *dn;
3556         objset_t *os;
3557         uint64_t txg = tx->tx_txg;
3558
3559         ASSERT(dmu_tx_is_syncing(tx));
3560
3561         dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3562
3563         mutex_enter(&db->db_mtx);
3564         /*
3565          * To be synced, we must be dirtied.  But we
3566          * might have been freed after the dirty.
3567          */
3568         if (db->db_state == DB_UNCACHED) {
3569                 /* This buffer has been freed since it was dirtied */
3570                 ASSERT(db->db.db_data == NULL);
3571         } else if (db->db_state == DB_FILL) {
3572                 /* This buffer was freed and is now being re-filled */
3573                 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3574         } else {
3575                 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3576         }
3577         DBUF_VERIFY(db);
3578
3579         DB_DNODE_ENTER(db);
3580         dn = DB_DNODE(db);
3581
3582         if (db->db_blkid == DMU_SPILL_BLKID) {
3583                 mutex_enter(&dn->dn_mtx);
3584                 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3585                         /*
3586                          * In the previous transaction group, the bonus buffer
3587                          * was entirely used to store the attributes for the
3588                          * dnode which overrode the dn_spill field.  However,
3589                          * when adding more attributes to the file a spill
3590                          * block was required to hold the extra attributes.
3591                          *
3592                          * Make sure to clear the garbage left in the dn_spill
3593                          * field from the previous attributes in the bonus
3594                          * buffer.  Otherwise, after writing out the spill
3595                          * block to the new allocated dva, it will free
3596                          * the old block pointed to by the invalid dn_spill.
3597                          */
3598                         db->db_blkptr = NULL;
3599                 }
3600                 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3601                 mutex_exit(&dn->dn_mtx);
3602         }
3603
3604         /*
3605          * If this is a bonus buffer, simply copy the bonus data into the
3606          * dnode.  It will be written out when the dnode is synced (and it
3607          * will be synced, since it must have been dirty for dbuf_sync to
3608          * be called).
3609          */
3610         if (db->db_blkid == DMU_BONUS_BLKID) {
3611                 dbuf_dirty_record_t **drp;
3612
3613                 ASSERT(*datap != NULL);
3614                 ASSERT0(db->db_level);
3615                 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3616                     DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3617                 bcopy(*datap, DN_BONUS(dn->dn_phys),
3618                     DN_MAX_BONUS_LEN(dn->dn_phys));
3619                 DB_DNODE_EXIT(db);
3620
3621                 if (*datap != db->db.db_data) {
3622                         int slots = DB_DNODE(db)->dn_num_slots;
3623                         int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3624                         kmem_free(*datap, bonuslen);
3625                         arc_space_return(bonuslen, ARC_SPACE_BONUS);
3626                 }
3627                 db->db_data_pending = NULL;
3628                 drp = &db->db_last_dirty;
3629                 while (*drp != dr)
3630                         drp = &(*drp)->dr_next;
3631                 ASSERT(dr->dr_next == NULL);
3632                 ASSERT(dr->dr_dbuf == db);
3633                 *drp = dr->dr_next;
3634                 if (dr->dr_dbuf->db_level != 0) {
3635                         mutex_destroy(&dr->dt.di.dr_mtx);
3636                         list_destroy(&dr->dt.di.dr_children);
3637                 }
3638                 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3639                 ASSERT(db->db_dirtycnt > 0);
3640                 db->db_dirtycnt -= 1;
3641                 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3642                 return;
3643         }
3644
3645         os = dn->dn_objset;
3646
3647         /*
3648          * This function may have dropped the db_mtx lock allowing a dmu_sync
3649          * operation to sneak in. As a result, we need to ensure that we
3650          * don't check the dr_override_state until we have returned from
3651          * dbuf_check_blkptr.
3652          */
3653         dbuf_check_blkptr(dn, db);
3654
3655         /*
3656          * If this buffer is in the middle of an immediate write,
3657          * wait for the synchronous IO to complete.
3658          */
3659         while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3660                 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3661                 cv_wait(&db->db_changed, &db->db_mtx);
3662                 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3663         }
3664
3665         /*
3666          * If this is a dnode block, ensure it is appropriately encrypted
3667          * or decrypted, depending on what we are writing to it this txg.
3668          */
3669         if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3670                 dbuf_check_crypt(dr);
3671
3672         if (db->db_state != DB_NOFILL &&
3673             dn->dn_object != DMU_META_DNODE_OBJECT &&
3674             refcount_count(&db->db_holds) > 1 &&
3675             dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3676             *datap == db->db_buf) {
3677                 /*
3678                  * If this buffer is currently "in use" (i.e., there
3679                  * are active holds and db_data still references it),
3680                  * then make a copy before we start the write so that
3681                  * any modifications from the open txg will not leak
3682                  * into this write.
3683                  *
3684                  * NOTE: this copy does not need to be made for
3685                  * objects only modified in the syncing context (e.g.
3686                  * DNONE_DNODE blocks).
3687                  */
3688                 int psize = arc_buf_size(*datap);
3689                 int lsize = arc_buf_lsize(*datap);
3690                 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3691                 enum zio_compress compress_type = arc_get_compression(*datap);
3692
3693                 if (arc_is_encrypted(*datap)) {
3694                         boolean_t byteorder;
3695                         uint8_t salt[ZIO_DATA_SALT_LEN];
3696                         uint8_t iv[ZIO_DATA_IV_LEN];
3697                         uint8_t mac[ZIO_DATA_MAC_LEN];
3698
3699                         arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3700                         *datap = arc_alloc_raw_buf(os->os_spa, db,
3701                             dmu_objset_id(os), byteorder, salt, iv, mac,
3702                             dn->dn_type, psize, lsize, compress_type);
3703                 } else if (compress_type != ZIO_COMPRESS_OFF) {
3704                         ASSERT3U(type, ==, ARC_BUFC_DATA);
3705                         *datap = arc_alloc_compressed_buf(os->os_spa, db,
3706                             psize, lsize, compress_type);
3707                 } else {
3708                         *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3709                 }
3710                 bcopy(db->db.db_data, (*datap)->b_data, psize);
3711         }
3712         db->db_data_pending = dr;
3713
3714         mutex_exit(&db->db_mtx);
3715
3716         dbuf_write(dr, *datap, tx);
3717
3718         ASSERT(!list_link_active(&dr->dr_dirty_node));
3719         if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3720                 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3721                 DB_DNODE_EXIT(db);
3722         } else {
3723                 /*
3724                  * Although zio_nowait() does not "wait for an IO", it does
3725                  * initiate the IO. If this is an empty write it seems plausible
3726                  * that the IO could actually be completed before the nowait
3727                  * returns. We need to DB_DNODE_EXIT() first in case
3728                  * zio_nowait() invalidates the dbuf.
3729                  */
3730                 DB_DNODE_EXIT(db);
3731                 zio_nowait(dr->dr_zio);
3732         }
3733 }
3734
3735 void
3736 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3737 {
3738         dbuf_dirty_record_t *dr;
3739
3740         while ((dr = list_head(list))) {
3741                 if (dr->dr_zio != NULL) {
3742                         /*
3743                          * If we find an already initialized zio then we
3744                          * are processing the meta-dnode, and we have finished.
3745                          * The dbufs for all dnodes are put back on the list
3746                          * during processing, so that we can zio_wait()
3747                          * these IOs after initiating all child IOs.
3748                          */
3749                         ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3750                             DMU_META_DNODE_OBJECT);
3751                         break;
3752                 }
3753                 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3754                     dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3755                         VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3756                 }
3757                 list_remove(list, dr);
3758                 if (dr->dr_dbuf->db_level > 0)
3759                         dbuf_sync_indirect(dr, tx);
3760                 else
3761                         dbuf_sync_leaf(dr, tx);
3762         }
3763 }
3764
3765 /* ARGSUSED */
3766 static void
3767 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3768 {
3769         dmu_buf_impl_t *db = vdb;
3770         dnode_t *dn;
3771         blkptr_t *bp = zio->io_bp;
3772         blkptr_t *bp_orig = &zio->io_bp_orig;
3773         spa_t *spa = zio->io_spa;
3774         int64_t delta;
3775         uint64_t fill = 0;
3776         int i;
3777
3778         ASSERT3P(db->db_blkptr, !=, NULL);
3779         ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3780
3781         DB_DNODE_ENTER(db);
3782         dn = DB_DNODE(db);
3783         delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3784         dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3785         zio->io_prev_space_delta = delta;
3786
3787         if (bp->blk_birth != 0) {
3788                 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3789                     BP_GET_TYPE(bp) == dn->dn_type) ||
3790                     (db->db_blkid == DMU_SPILL_BLKID &&
3791                     BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3792                     BP_IS_EMBEDDED(bp));
3793                 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3794         }
3795
3796         mutex_enter(&db->db_mtx);
3797
3798 #ifdef ZFS_DEBUG
3799         if (db->db_blkid == DMU_SPILL_BLKID) {
3800                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3801                 ASSERT(!(BP_IS_HOLE(bp)) &&
3802                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3803         }
3804 #endif
3805
3806         if (db->db_level == 0) {
3807                 mutex_enter(&dn->dn_mtx);
3808                 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3809                     db->db_blkid != DMU_SPILL_BLKID)
3810                         dn->dn_phys->dn_maxblkid = db->db_blkid;
3811                 mutex_exit(&dn->dn_mtx);
3812
3813                 if (dn->dn_type == DMU_OT_DNODE) {
3814                         i = 0;
3815                         while (i < db->db.db_size) {
3816                                 dnode_phys_t *dnp =
3817                                     (void *)(((char *)db->db.db_data) + i);
3818
3819                                 i += DNODE_MIN_SIZE;
3820                                 if (dnp->dn_type != DMU_OT_NONE) {
3821                                         fill++;
3822                                         i += dnp->dn_extra_slots *
3823                                             DNODE_MIN_SIZE;
3824                                 }
3825                         }
3826                 } else {
3827                         if (BP_IS_HOLE(bp)) {
3828                                 fill = 0;
3829                         } else {
3830                                 fill = 1;
3831                         }
3832                 }
3833         } else {
3834                 blkptr_t *ibp = db->db.db_data;
3835                 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3836                 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3837                         if (BP_IS_HOLE(ibp))
3838                                 continue;
3839                         fill += BP_GET_FILL(ibp);
3840                 }
3841         }
3842         DB_DNODE_EXIT(db);
3843
3844         if (!BP_IS_EMBEDDED(bp))
3845                 BP_SET_FILL(bp, fill);
3846
3847         mutex_exit(&db->db_mtx);
3848
3849         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3850         *db->db_blkptr = *bp;
3851         rw_exit(&dn->dn_struct_rwlock);
3852 }
3853
3854 /* ARGSUSED */
3855 /*
3856  * This function gets called just prior to running through the compression
3857  * stage of the zio pipeline. If we're an indirect block comprised of only
3858  * holes, then we want this indirect to be compressed away to a hole. In
3859  * order to do that we must zero out any information about the holes that
3860  * this indirect points to prior to before we try to compress it.
3861  */
3862 static void
3863 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3864 {
3865         dmu_buf_impl_t *db = vdb;
3866         dnode_t *dn;
3867         blkptr_t *bp;
3868         unsigned int epbs, i;
3869
3870         ASSERT3U(db->db_level, >, 0);
3871         DB_DNODE_ENTER(db);
3872         dn = DB_DNODE(db);
3873         epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3874         ASSERT3U(epbs, <, 31);
3875
3876         /* Determine if all our children are holes */
3877         for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3878                 if (!BP_IS_HOLE(bp))
3879                         break;
3880         }
3881
3882         /*
3883          * If all the children are holes, then zero them all out so that
3884          * we may get compressed away.
3885          */
3886         if (i == 1ULL << epbs) {
3887                 /*
3888                  * We only found holes. Grab the rwlock to prevent
3889                  * anybody from reading the blocks we're about to
3890                  * zero out.
3891                  */
3892                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3893                 bzero(db->db.db_data, db->db.db_size);
3894                 rw_exit(&dn->dn_struct_rwlock);
3895         }
3896         DB_DNODE_EXIT(db);
3897 }
3898
3899 /*
3900  * The SPA will call this callback several times for each zio - once
3901  * for every physical child i/o (zio->io_phys_children times).  This
3902  * allows the DMU to monitor the progress of each logical i/o.  For example,
3903  * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3904  * block.  There may be a long delay before all copies/fragments are completed,
3905  * so this callback allows us to retire dirty space gradually, as the physical
3906  * i/os complete.
3907  */
3908 /* ARGSUSED */
3909 static void
3910 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3911 {
3912         dmu_buf_impl_t *db = arg;
3913         objset_t *os = db->db_objset;
3914         dsl_pool_t *dp = dmu_objset_pool(os);
3915         dbuf_dirty_record_t *dr;
3916         int delta = 0;
3917
3918         dr = db->db_data_pending;
3919         ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3920
3921         /*
3922          * The callback will be called io_phys_children times.  Retire one
3923          * portion of our dirty space each time we are called.  Any rounding
3924          * error will be cleaned up by dsl_pool_sync()'s call to
3925          * dsl_pool_undirty_space().
3926          */
3927         delta = dr->dr_accounted / zio->io_phys_children;
3928         dsl_pool_undirty_space(dp, delta, zio->io_txg);
3929 }
3930
3931 /* ARGSUSED */
3932 static void
3933 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3934 {
3935         dmu_buf_impl_t *db = vdb;
3936         blkptr_t *bp_orig = &zio->io_bp_orig;
3937         blkptr_t *bp = db->db_blkptr;
3938         objset_t *os = db->db_objset;
3939         dmu_tx_t *tx = os->os_synctx;
3940         dbuf_dirty_record_t **drp, *dr;
3941
3942         ASSERT0(zio->io_error);
3943         ASSERT(db->db_blkptr == bp);
3944
3945         /*
3946          * For nopwrites and rewrites we ensure that the bp matches our
3947          * original and bypass all the accounting.
3948          */
3949         if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3950                 ASSERT(BP_EQUAL(bp, bp_orig));
3951         } else {
3952                 dsl_dataset_t *ds = os->os_dsl_dataset;
3953                 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3954                 dsl_dataset_block_born(ds, bp, tx);
3955         }
3956
3957         mutex_enter(&db->db_mtx);
3958
3959         DBUF_VERIFY(db);
3960
3961         drp = &db->db_last_dirty;
3962         while ((dr = *drp) != db->db_data_pending)
3963                 drp = &dr->dr_next;
3964         ASSERT(!list_link_active(&dr->dr_dirty_node));
3965         ASSERT(dr->dr_dbuf == db);
3966         ASSERT(dr->dr_next == NULL);
3967         *drp = dr->dr_next;
3968
3969 #ifdef ZFS_DEBUG
3970         if (db->db_blkid == DMU_SPILL_BLKID) {
3971                 dnode_t *dn;
3972
3973                 DB_DNODE_ENTER(db);
3974                 dn = DB_DNODE(db);
3975                 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3976                 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3977                     db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3978                 DB_DNODE_EXIT(db);
3979         }
3980 #endif
3981
3982         if (db->db_level == 0) {
3983                 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3984                 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3985                 if (db->db_state != DB_NOFILL) {
3986                         if (dr->dt.dl.dr_data != db->db_buf)
3987                                 arc_buf_destroy(dr->dt.dl.dr_data, db);
3988                 }
3989         } else {
3990                 dnode_t *dn;
3991
3992                 DB_DNODE_ENTER(db);
3993                 dn = DB_DNODE(db);
3994                 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3995                 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3996                 if (!BP_IS_HOLE(db->db_blkptr)) {
3997                         ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3998                             SPA_BLKPTRSHIFT);
3999                         ASSERT3U(db->db_blkid, <=,
4000                             dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4001                         ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4002                             db->db.db_size);
4003                 }
4004                 DB_DNODE_EXIT(db);
4005                 mutex_destroy(&dr->dt.di.dr_mtx);
4006                 list_destroy(&dr->dt.di.dr_children);
4007         }
4008         kmem_free(dr, sizeof (dbuf_dirty_record_t));
4009
4010         cv_broadcast(&db->db_changed);
4011         ASSERT(db->db_dirtycnt > 0);
4012         db->db_dirtycnt -= 1;
4013         db->db_data_pending = NULL;
4014         dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
4015 }
4016
4017 static void
4018 dbuf_write_nofill_ready(zio_t *zio)
4019 {
4020         dbuf_write_ready(zio, NULL, zio->io_private);
4021 }
4022
4023 static void
4024 dbuf_write_nofill_done(zio_t *zio)
4025 {
4026         dbuf_write_done(zio, NULL, zio->io_private);
4027 }
4028
4029 static void
4030 dbuf_write_override_ready(zio_t *zio)
4031 {
4032         dbuf_dirty_record_t *dr = zio->io_private;
4033         dmu_buf_impl_t *db = dr->dr_dbuf;
4034
4035         dbuf_write_ready(zio, NULL, db);
4036 }
4037
4038 static void
4039 dbuf_write_override_done(zio_t *zio)
4040 {
4041         dbuf_dirty_record_t *dr = zio->io_private;
4042         dmu_buf_impl_t *db = dr->dr_dbuf;
4043         blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4044
4045         mutex_enter(&db->db_mtx);
4046         if (!BP_EQUAL(zio->io_bp, obp)) {
4047                 if (!BP_IS_HOLE(obp))
4048                         dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4049                 arc_release(dr->dt.dl.dr_data, db);
4050         }
4051         mutex_exit(&db->db_mtx);
4052
4053         dbuf_write_done(zio, NULL, db);
4054
4055         if (zio->io_abd != NULL)
4056                 abd_put(zio->io_abd);
4057 }
4058
4059 typedef struct dbuf_remap_impl_callback_arg {
4060         objset_t        *drica_os;
4061         uint64_t        drica_blk_birth;
4062         dmu_tx_t        *drica_tx;
4063 } dbuf_remap_impl_callback_arg_t;
4064
4065 static void
4066 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4067     void *arg)
4068 {
4069         dbuf_remap_impl_callback_arg_t *drica = arg;
4070         objset_t *os = drica->drica_os;
4071         spa_t *spa = dmu_objset_spa(os);
4072         dmu_tx_t *tx = drica->drica_tx;
4073
4074         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4075
4076         if (os == spa_meta_objset(spa)) {
4077                 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4078         } else {
4079                 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4080                     size, drica->drica_blk_birth, tx);
4081         }
4082 }
4083
4084 static void
4085 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
4086 {
4087         blkptr_t bp_copy = *bp;
4088         spa_t *spa = dmu_objset_spa(dn->dn_objset);
4089         dbuf_remap_impl_callback_arg_t drica;
4090
4091         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4092
4093         drica.drica_os = dn->dn_objset;
4094         drica.drica_blk_birth = bp->blk_birth;
4095         drica.drica_tx = tx;
4096         if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4097             &drica)) {
4098                 /*
4099                  * The struct_rwlock prevents dbuf_read_impl() from
4100                  * dereferencing the BP while we are changing it.  To
4101                  * avoid lock contention, only grab it when we are actually
4102                  * changing the BP.
4103                  */
4104                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4105                 *bp = bp_copy;
4106                 rw_exit(&dn->dn_struct_rwlock);
4107         }
4108 }
4109
4110 /*
4111  * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4112  * to remap a copy of every bp in the dbuf.
4113  */
4114 boolean_t
4115 dbuf_can_remap(const dmu_buf_impl_t *db)
4116 {
4117         spa_t *spa = dmu_objset_spa(db->db_objset);
4118         blkptr_t *bp = db->db.db_data;
4119         boolean_t ret = B_FALSE;
4120
4121         ASSERT3U(db->db_level, >, 0);
4122         ASSERT3S(db->db_state, ==, DB_CACHED);
4123
4124         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4125
4126         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4127         for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4128                 blkptr_t bp_copy = bp[i];
4129                 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4130                         ret = B_TRUE;
4131                         break;
4132                 }
4133         }
4134         spa_config_exit(spa, SCL_VDEV, FTAG);
4135
4136         return (ret);
4137 }
4138
4139 boolean_t
4140 dnode_needs_remap(const dnode_t *dn)
4141 {
4142         spa_t *spa = dmu_objset_spa(dn->dn_objset);
4143         boolean_t ret = B_FALSE;
4144
4145         if (dn->dn_phys->dn_nlevels == 0) {
4146                 return (B_FALSE);
4147         }
4148
4149         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4150
4151         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4152         for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4153                 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4154                 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4155                         ret = B_TRUE;
4156                         break;
4157                 }
4158         }
4159         spa_config_exit(spa, SCL_VDEV, FTAG);
4160
4161         return (ret);
4162 }
4163
4164 /*
4165  * Remap any existing BP's to concrete vdevs, if possible.
4166  */
4167 static void
4168 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4169 {
4170         spa_t *spa = dmu_objset_spa(db->db_objset);
4171         ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4172
4173         if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4174                 return;
4175
4176         if (db->db_level > 0) {
4177                 blkptr_t *bp = db->db.db_data;
4178                 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4179                         dbuf_remap_impl(dn, &bp[i], tx);
4180                 }
4181         } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4182                 dnode_phys_t *dnp = db->db.db_data;
4183                 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4184                     DMU_OT_DNODE);
4185                 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4186                     i += dnp[i].dn_extra_slots + 1) {
4187                         for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4188                                 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
4189                         }
4190                 }
4191         }
4192 }
4193
4194
4195 /* Issue I/O to commit a dirty buffer to disk. */
4196 static void
4197 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4198 {
4199         dmu_buf_impl_t *db = dr->dr_dbuf;
4200         dnode_t *dn;
4201         objset_t *os;
4202         dmu_buf_impl_t *parent = db->db_parent;
4203         uint64_t txg = tx->tx_txg;
4204         zbookmark_phys_t zb;
4205         zio_prop_t zp;
4206         zio_t *zio;
4207         int wp_flag = 0;
4208
4209         ASSERT(dmu_tx_is_syncing(tx));
4210
4211         DB_DNODE_ENTER(db);
4212         dn = DB_DNODE(db);
4213         os = dn->dn_objset;
4214
4215         if (db->db_state != DB_NOFILL) {
4216                 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4217                         /*
4218                          * Private object buffers are released here rather
4219                          * than in dbuf_dirty() since they are only modified
4220                          * in the syncing context and we don't want the
4221                          * overhead of making multiple copies of the data.
4222                          */
4223                         if (BP_IS_HOLE(db->db_blkptr)) {
4224                                 arc_buf_thaw(data);
4225                         } else {
4226                                 dbuf_release_bp(db);
4227                         }
4228                         dbuf_remap(dn, db, tx);
4229                 }
4230         }
4231
4232         if (parent != dn->dn_dbuf) {
4233                 /* Our parent is an indirect block. */
4234                 /* We have a dirty parent that has been scheduled for write. */
4235                 ASSERT(parent && parent->db_data_pending);
4236                 /* Our parent's buffer is one level closer to the dnode. */
4237                 ASSERT(db->db_level == parent->db_level-1);
4238                 /*
4239                  * We're about to modify our parent's db_data by modifying
4240                  * our block pointer, so the parent must be released.
4241                  */
4242                 ASSERT(arc_released(parent->db_buf));
4243                 zio = parent->db_data_pending->dr_zio;
4244         } else {
4245                 /* Our parent is the dnode itself. */
4246                 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4247                     db->db_blkid != DMU_SPILL_BLKID) ||
4248                     (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4249                 if (db->db_blkid != DMU_SPILL_BLKID)
4250                         ASSERT3P(db->db_blkptr, ==,
4251                             &dn->dn_phys->dn_blkptr[db->db_blkid]);
4252                 zio = dn->dn_zio;
4253         }
4254
4255         ASSERT(db->db_level == 0 || data == db->db_buf);
4256         ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4257         ASSERT(zio);
4258
4259         SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4260             os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4261             db->db.db_object, db->db_level, db->db_blkid);
4262
4263         if (db->db_blkid == DMU_SPILL_BLKID)
4264                 wp_flag = WP_SPILL;
4265         wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4266
4267         dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4268         DB_DNODE_EXIT(db);
4269
4270         /*
4271          * We copy the blkptr now (rather than when we instantiate the dirty
4272          * record), because its value can change between open context and
4273          * syncing context. We do not need to hold dn_struct_rwlock to read
4274          * db_blkptr because we are in syncing context.
4275          */
4276         dr->dr_bp_copy = *db->db_blkptr;
4277
4278         if (db->db_level == 0 &&
4279             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4280                 /*
4281                  * The BP for this block has been provided by open context
4282                  * (by dmu_sync() or dmu_buf_write_embedded()).
4283                  */
4284                 abd_t *contents = (data != NULL) ?
4285                     abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4286
4287                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4288                     &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4289                     &zp, dbuf_write_override_ready, NULL, NULL,
4290                     dbuf_write_override_done,
4291                     dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4292                 mutex_enter(&db->db_mtx);
4293                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4294                 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4295                     dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4296                 mutex_exit(&db->db_mtx);
4297         } else if (db->db_state == DB_NOFILL) {
4298                 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4299                     zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4300                 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4301                     &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4302                     dbuf_write_nofill_ready, NULL, NULL,
4303                     dbuf_write_nofill_done, db,
4304                     ZIO_PRIORITY_ASYNC_WRITE,
4305                     ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4306         } else {
4307                 ASSERT(arc_released(data));
4308
4309                 /*
4310                  * For indirect blocks, we want to setup the children
4311                  * ready callback so that we can properly handle an indirect
4312                  * block that only contains holes.
4313                  */
4314                 arc_write_done_func_t *children_ready_cb = NULL;
4315                 if (db->db_level != 0)
4316                         children_ready_cb = dbuf_write_children_ready;
4317
4318                 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4319                     &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4320                     &zp, dbuf_write_ready,
4321                     children_ready_cb, dbuf_write_physdone,
4322                     dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4323                     ZIO_FLAG_MUSTSUCCEED, &zb);
4324         }
4325 }
4326
4327 #if defined(_KERNEL) && defined(HAVE_SPL)
4328 EXPORT_SYMBOL(dbuf_find);
4329 EXPORT_SYMBOL(dbuf_is_metadata);
4330 EXPORT_SYMBOL(dbuf_destroy);
4331 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4332 EXPORT_SYMBOL(dbuf_whichblock);
4333 EXPORT_SYMBOL(dbuf_read);
4334 EXPORT_SYMBOL(dbuf_unoverride);
4335 EXPORT_SYMBOL(dbuf_free_range);
4336 EXPORT_SYMBOL(dbuf_new_size);
4337 EXPORT_SYMBOL(dbuf_release_bp);
4338 EXPORT_SYMBOL(dbuf_dirty);
4339 EXPORT_SYMBOL(dmu_buf_will_change_crypt_params);
4340 EXPORT_SYMBOL(dmu_buf_will_dirty);
4341 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4342 EXPORT_SYMBOL(dmu_buf_will_fill);
4343 EXPORT_SYMBOL(dmu_buf_fill_done);
4344 EXPORT_SYMBOL(dmu_buf_rele);
4345 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4346 EXPORT_SYMBOL(dbuf_prefetch);
4347 EXPORT_SYMBOL(dbuf_hold_impl);
4348 EXPORT_SYMBOL(dbuf_hold);
4349 EXPORT_SYMBOL(dbuf_hold_level);
4350 EXPORT_SYMBOL(dbuf_create_bonus);
4351 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4352 EXPORT_SYMBOL(dbuf_rm_spill);
4353 EXPORT_SYMBOL(dbuf_add_ref);
4354 EXPORT_SYMBOL(dbuf_rele);
4355 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4356 EXPORT_SYMBOL(dbuf_refcount);
4357 EXPORT_SYMBOL(dbuf_sync_list);
4358 EXPORT_SYMBOL(dmu_buf_set_user);
4359 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4360 EXPORT_SYMBOL(dmu_buf_get_user);
4361 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4362
4363 /* BEGIN CSTYLED */
4364 module_param(dbuf_cache_max_bytes, ulong, 0644);
4365 MODULE_PARM_DESC(dbuf_cache_max_bytes,
4366         "Maximum size in bytes of the dbuf cache.");
4367
4368 module_param(dbuf_cache_hiwater_pct, uint, 0644);
4369 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4370         "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4371         "directly.");
4372
4373 module_param(dbuf_cache_lowater_pct, uint, 0644);
4374 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4375         "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4376         "evicting dbufs.");
4377
4378 module_param(dbuf_cache_shift, int, 0644);
4379 MODULE_PARM_DESC(dbuf_cache_shift,
4380         "Set the size of the dbuf cache to a log2 fraction of arc size.");
4381 /* END CSTYLED */
4382 #endif