]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/dmu_recv.c
Vendor import of openzfs master @ 184df27eef0abdc7ab2105b21257f753834b936b
[FreeBSD/FreeBSD.git] / module / zfs / dmu_recv.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28  * Copyright (c) 2019, Klara Inc.
29  * Copyright (c) 2019, Allan Jude
30  */
31
32 #include <sys/dmu.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_recv.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/dbuf.h>
38 #include <sys/dnode.h>
39 #include <sys/zfs_context.h>
40 #include <sys/dmu_objset.h>
41 #include <sys/dmu_traverse.h>
42 #include <sys/dsl_dataset.h>
43 #include <sys/dsl_dir.h>
44 #include <sys/dsl_prop.h>
45 #include <sys/dsl_pool.h>
46 #include <sys/dsl_synctask.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/zap.h>
49 #include <sys/zvol.h>
50 #include <sys/zio_checksum.h>
51 #include <sys/zfs_znode.h>
52 #include <zfs_fletcher.h>
53 #include <sys/avl.h>
54 #include <sys/ddt.h>
55 #include <sys/zfs_onexit.h>
56 #include <sys/dmu_send.h>
57 #include <sys/dsl_destroy.h>
58 #include <sys/blkptr.h>
59 #include <sys/dsl_bookmark.h>
60 #include <sys/zfeature.h>
61 #include <sys/bqueue.h>
62 #include <sys/objlist.h>
63 #ifdef _KERNEL
64 #include <sys/zfs_vfsops.h>
65 #endif
66 #include <sys/zfs_file.h>
67
68 int zfs_recv_queue_length = SPA_MAXBLOCKSIZE;
69 int zfs_recv_queue_ff = 20;
70 int zfs_recv_write_batch_size = 1024 * 1024;
71
72 static char *dmu_recv_tag = "dmu_recv_tag";
73 const char *recv_clone_name = "%recv";
74
75 static int receive_read_payload_and_next_header(dmu_recv_cookie_t *ra, int len,
76     void *buf);
77
78 struct receive_record_arg {
79         dmu_replay_record_t header;
80         void *payload; /* Pointer to a buffer containing the payload */
81         /*
82          * If the record is a write, pointer to the arc_buf_t containing the
83          * payload.
84          */
85         arc_buf_t *arc_buf;
86         int payload_size;
87         uint64_t bytes_read; /* bytes read from stream when record created */
88         boolean_t eos_marker; /* Marks the end of the stream */
89         bqueue_node_t node;
90 };
91
92 struct receive_writer_arg {
93         objset_t *os;
94         boolean_t byteswap;
95         bqueue_t q;
96
97         /*
98          * These three args are used to signal to the main thread that we're
99          * done.
100          */
101         kmutex_t mutex;
102         kcondvar_t cv;
103         boolean_t done;
104
105         int err;
106         boolean_t resumable;
107         boolean_t raw;   /* DMU_BACKUP_FEATURE_RAW set */
108         boolean_t spill; /* DRR_FLAG_SPILL_BLOCK set */
109         boolean_t full;  /* this is a full send stream */
110         uint64_t last_object;
111         uint64_t last_offset;
112         uint64_t max_object; /* highest object ID referenced in stream */
113         uint64_t bytes_read; /* bytes read when current record created */
114
115         list_t write_batch;
116
117         /* Encryption parameters for the last received DRR_OBJECT_RANGE */
118         boolean_t or_crypt_params_present;
119         uint64_t or_firstobj;
120         uint64_t or_numslots;
121         uint8_t or_salt[ZIO_DATA_SALT_LEN];
122         uint8_t or_iv[ZIO_DATA_IV_LEN];
123         uint8_t or_mac[ZIO_DATA_MAC_LEN];
124         boolean_t or_byteorder;
125 };
126
127 typedef struct dmu_recv_begin_arg {
128         const char *drba_origin;
129         dmu_recv_cookie_t *drba_cookie;
130         cred_t *drba_cred;
131         proc_t *drba_proc;
132         dsl_crypto_params_t *drba_dcp;
133 } dmu_recv_begin_arg_t;
134
135 static void
136 byteswap_record(dmu_replay_record_t *drr)
137 {
138 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
139 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
140         drr->drr_type = BSWAP_32(drr->drr_type);
141         drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
142
143         switch (drr->drr_type) {
144         case DRR_BEGIN:
145                 DO64(drr_begin.drr_magic);
146                 DO64(drr_begin.drr_versioninfo);
147                 DO64(drr_begin.drr_creation_time);
148                 DO32(drr_begin.drr_type);
149                 DO32(drr_begin.drr_flags);
150                 DO64(drr_begin.drr_toguid);
151                 DO64(drr_begin.drr_fromguid);
152                 break;
153         case DRR_OBJECT:
154                 DO64(drr_object.drr_object);
155                 DO32(drr_object.drr_type);
156                 DO32(drr_object.drr_bonustype);
157                 DO32(drr_object.drr_blksz);
158                 DO32(drr_object.drr_bonuslen);
159                 DO32(drr_object.drr_raw_bonuslen);
160                 DO64(drr_object.drr_toguid);
161                 DO64(drr_object.drr_maxblkid);
162                 break;
163         case DRR_FREEOBJECTS:
164                 DO64(drr_freeobjects.drr_firstobj);
165                 DO64(drr_freeobjects.drr_numobjs);
166                 DO64(drr_freeobjects.drr_toguid);
167                 break;
168         case DRR_WRITE:
169                 DO64(drr_write.drr_object);
170                 DO32(drr_write.drr_type);
171                 DO64(drr_write.drr_offset);
172                 DO64(drr_write.drr_logical_size);
173                 DO64(drr_write.drr_toguid);
174                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
175                 DO64(drr_write.drr_key.ddk_prop);
176                 DO64(drr_write.drr_compressed_size);
177                 break;
178         case DRR_WRITE_BYREF:
179                 DO64(drr_write_byref.drr_object);
180                 DO64(drr_write_byref.drr_offset);
181                 DO64(drr_write_byref.drr_length);
182                 DO64(drr_write_byref.drr_toguid);
183                 DO64(drr_write_byref.drr_refguid);
184                 DO64(drr_write_byref.drr_refobject);
185                 DO64(drr_write_byref.drr_refoffset);
186                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
187                     drr_key.ddk_cksum);
188                 DO64(drr_write_byref.drr_key.ddk_prop);
189                 break;
190         case DRR_WRITE_EMBEDDED:
191                 DO64(drr_write_embedded.drr_object);
192                 DO64(drr_write_embedded.drr_offset);
193                 DO64(drr_write_embedded.drr_length);
194                 DO64(drr_write_embedded.drr_toguid);
195                 DO32(drr_write_embedded.drr_lsize);
196                 DO32(drr_write_embedded.drr_psize);
197                 break;
198         case DRR_FREE:
199                 DO64(drr_free.drr_object);
200                 DO64(drr_free.drr_offset);
201                 DO64(drr_free.drr_length);
202                 DO64(drr_free.drr_toguid);
203                 break;
204         case DRR_SPILL:
205                 DO64(drr_spill.drr_object);
206                 DO64(drr_spill.drr_length);
207                 DO64(drr_spill.drr_toguid);
208                 DO64(drr_spill.drr_compressed_size);
209                 DO32(drr_spill.drr_type);
210                 break;
211         case DRR_OBJECT_RANGE:
212                 DO64(drr_object_range.drr_firstobj);
213                 DO64(drr_object_range.drr_numslots);
214                 DO64(drr_object_range.drr_toguid);
215                 break;
216         case DRR_REDACT:
217                 DO64(drr_redact.drr_object);
218                 DO64(drr_redact.drr_offset);
219                 DO64(drr_redact.drr_length);
220                 DO64(drr_redact.drr_toguid);
221                 break;
222         case DRR_END:
223                 DO64(drr_end.drr_toguid);
224                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
225                 break;
226         default:
227                 break;
228         }
229
230         if (drr->drr_type != DRR_BEGIN) {
231                 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
232         }
233
234 #undef DO64
235 #undef DO32
236 }
237
238 static boolean_t
239 redact_snaps_contains(uint64_t *snaps, uint64_t num_snaps, uint64_t guid)
240 {
241         for (int i = 0; i < num_snaps; i++) {
242                 if (snaps[i] == guid)
243                         return (B_TRUE);
244         }
245         return (B_FALSE);
246 }
247
248 /*
249  * Check that the new stream we're trying to receive is redacted with respect to
250  * a subset of the snapshots that the origin was redacted with respect to.  For
251  * the reasons behind this, see the man page on redacted zfs sends and receives.
252  */
253 static boolean_t
254 compatible_redact_snaps(uint64_t *origin_snaps, uint64_t origin_num_snaps,
255     uint64_t *redact_snaps, uint64_t num_redact_snaps)
256 {
257         /*
258          * Short circuit the comparison; if we are redacted with respect to
259          * more snapshots than the origin, we can't be redacted with respect
260          * to a subset.
261          */
262         if (num_redact_snaps > origin_num_snaps) {
263                 return (B_FALSE);
264         }
265
266         for (int i = 0; i < num_redact_snaps; i++) {
267                 if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
268                     redact_snaps[i])) {
269                         return (B_FALSE);
270                 }
271         }
272         return (B_TRUE);
273 }
274
275 static boolean_t
276 redact_check(dmu_recv_begin_arg_t *drba, dsl_dataset_t *origin)
277 {
278         uint64_t *origin_snaps;
279         uint64_t origin_num_snaps;
280         dmu_recv_cookie_t *drc = drba->drba_cookie;
281         struct drr_begin *drrb = drc->drc_drrb;
282         int featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
283         int err = 0;
284         boolean_t ret = B_TRUE;
285         uint64_t *redact_snaps;
286         uint_t numredactsnaps;
287
288         /*
289          * If this is a full send stream, we're safe no matter what.
290          */
291         if (drrb->drr_fromguid == 0)
292                 return (ret);
293
294         VERIFY(dsl_dataset_get_uint64_array_feature(origin,
295             SPA_FEATURE_REDACTED_DATASETS, &origin_num_snaps, &origin_snaps));
296
297         if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
298             BEGINNV_REDACT_FROM_SNAPS, &redact_snaps, &numredactsnaps) ==
299             0) {
300                 /*
301                  * If the send stream was sent from the redaction bookmark or
302                  * the redacted version of the dataset, then we're safe.  Verify
303                  * that this is from the a compatible redaction bookmark or
304                  * redacted dataset.
305                  */
306                 if (!compatible_redact_snaps(origin_snaps, origin_num_snaps,
307                     redact_snaps, numredactsnaps)) {
308                         err = EINVAL;
309                 }
310         } else if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
311                 /*
312                  * If the stream is redacted, it must be redacted with respect
313                  * to a subset of what the origin is redacted with respect to.
314                  * See case number 2 in the zfs man page section on redacted zfs
315                  * send.
316                  */
317                 err = nvlist_lookup_uint64_array(drc->drc_begin_nvl,
318                     BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps);
319
320                 if (err != 0 || !compatible_redact_snaps(origin_snaps,
321                     origin_num_snaps, redact_snaps, numredactsnaps)) {
322                         err = EINVAL;
323                 }
324         } else if (!redact_snaps_contains(origin_snaps, origin_num_snaps,
325             drrb->drr_toguid)) {
326                 /*
327                  * If the stream isn't redacted but the origin is, this must be
328                  * one of the snapshots the origin is redacted with respect to.
329                  * See case number 1 in the zfs man page section on redacted zfs
330                  * send.
331                  */
332                 err = EINVAL;
333         }
334
335         if (err != 0)
336                 ret = B_FALSE;
337         return (ret);
338 }
339
340 /*
341  * If we previously received a stream with --large-block, we don't support
342  * receiving an incremental on top of it without --large-block.  This avoids
343  * forcing a read-modify-write or trying to re-aggregate a string of WRITE
344  * records.
345  */
346 static int
347 recv_check_large_blocks(dsl_dataset_t *ds, uint64_t featureflags)
348 {
349         if (dsl_dataset_feature_is_active(ds, SPA_FEATURE_LARGE_BLOCKS) &&
350             !(featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS))
351                 return (SET_ERROR(ZFS_ERR_STREAM_LARGE_BLOCK_MISMATCH));
352         return (0);
353 }
354
355 static int
356 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
357     uint64_t fromguid, uint64_t featureflags)
358 {
359         uint64_t val;
360         uint64_t children;
361         int error;
362         dsl_pool_t *dp = ds->ds_dir->dd_pool;
363         boolean_t encrypted = ds->ds_dir->dd_crypto_obj != 0;
364         boolean_t raw = (featureflags & DMU_BACKUP_FEATURE_RAW) != 0;
365         boolean_t embed = (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) != 0;
366
367         /* Temporary clone name must not exist. */
368         error = zap_lookup(dp->dp_meta_objset,
369             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
370             8, 1, &val);
371         if (error != ENOENT)
372                 return (error == 0 ? SET_ERROR(EBUSY) : error);
373
374         /* Resume state must not be set. */
375         if (dsl_dataset_has_resume_receive_state(ds))
376                 return (SET_ERROR(EBUSY));
377
378         /* New snapshot name must not exist. */
379         error = zap_lookup(dp->dp_meta_objset,
380             dsl_dataset_phys(ds)->ds_snapnames_zapobj,
381             drba->drba_cookie->drc_tosnap, 8, 1, &val);
382         if (error != ENOENT)
383                 return (error == 0 ? SET_ERROR(EEXIST) : error);
384
385         /* Must not have children if receiving a ZVOL. */
386         error = zap_count(dp->dp_meta_objset,
387             dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, &children);
388         if (error != 0)
389                 return (error);
390         if (drba->drba_cookie->drc_drrb->drr_type != DMU_OST_ZFS &&
391             children > 0)
392                 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
393
394         /*
395          * Check snapshot limit before receiving. We'll recheck again at the
396          * end, but might as well abort before receiving if we're already over
397          * the limit.
398          *
399          * Note that we do not check the file system limit with
400          * dsl_dir_fscount_check because the temporary %clones don't count
401          * against that limit.
402          */
403         error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
404             NULL, drba->drba_cred, drba->drba_proc);
405         if (error != 0)
406                 return (error);
407
408         if (fromguid != 0) {
409                 dsl_dataset_t *snap;
410                 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
411
412                 /* Can't perform a raw receive on top of a non-raw receive */
413                 if (!encrypted && raw)
414                         return (SET_ERROR(EINVAL));
415
416                 /* Encryption is incompatible with embedded data */
417                 if (encrypted && embed)
418                         return (SET_ERROR(EINVAL));
419
420                 /* Find snapshot in this dir that matches fromguid. */
421                 while (obj != 0) {
422                         error = dsl_dataset_hold_obj(dp, obj, FTAG,
423                             &snap);
424                         if (error != 0)
425                                 return (SET_ERROR(ENODEV));
426                         if (snap->ds_dir != ds->ds_dir) {
427                                 dsl_dataset_rele(snap, FTAG);
428                                 return (SET_ERROR(ENODEV));
429                         }
430                         if (dsl_dataset_phys(snap)->ds_guid == fromguid)
431                                 break;
432                         obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
433                         dsl_dataset_rele(snap, FTAG);
434                 }
435                 if (obj == 0)
436                         return (SET_ERROR(ENODEV));
437
438                 if (drba->drba_cookie->drc_force) {
439                         drba->drba_cookie->drc_fromsnapobj = obj;
440                 } else {
441                         /*
442                          * If we are not forcing, there must be no
443                          * changes since fromsnap. Raw sends have an
444                          * additional constraint that requires that
445                          * no "noop" snapshots exist between fromsnap
446                          * and tosnap for the IVset checking code to
447                          * work properly.
448                          */
449                         if (dsl_dataset_modified_since_snap(ds, snap) ||
450                             (raw &&
451                             dsl_dataset_phys(ds)->ds_prev_snap_obj !=
452                             snap->ds_object)) {
453                                 dsl_dataset_rele(snap, FTAG);
454                                 return (SET_ERROR(ETXTBSY));
455                         }
456                         drba->drba_cookie->drc_fromsnapobj =
457                             ds->ds_prev->ds_object;
458                 }
459
460                 if (dsl_dataset_feature_is_active(snap,
461                     SPA_FEATURE_REDACTED_DATASETS) && !redact_check(drba,
462                     snap)) {
463                         dsl_dataset_rele(snap, FTAG);
464                         return (SET_ERROR(EINVAL));
465                 }
466
467                 error = recv_check_large_blocks(snap, featureflags);
468                 if (error != 0) {
469                         dsl_dataset_rele(snap, FTAG);
470                         return (error);
471                 }
472
473                 dsl_dataset_rele(snap, FTAG);
474         } else {
475                 /* if full, then must be forced */
476                 if (!drba->drba_cookie->drc_force)
477                         return (SET_ERROR(EEXIST));
478
479                 /*
480                  * We don't support using zfs recv -F to blow away
481                  * encrypted filesystems. This would require the
482                  * dsl dir to point to the old encryption key and
483                  * the new one at the same time during the receive.
484                  */
485                 if ((!encrypted && raw) || encrypted)
486                         return (SET_ERROR(EINVAL));
487
488                 /*
489                  * Perform the same encryption checks we would if
490                  * we were creating a new dataset from scratch.
491                  */
492                 if (!raw) {
493                         boolean_t will_encrypt;
494
495                         error = dmu_objset_create_crypt_check(
496                             ds->ds_dir->dd_parent, drba->drba_dcp,
497                             &will_encrypt);
498                         if (error != 0)
499                                 return (error);
500
501                         if (will_encrypt && embed)
502                                 return (SET_ERROR(EINVAL));
503                 }
504         }
505
506         return (0);
507 }
508
509 /*
510  * Check that any feature flags used in the data stream we're receiving are
511  * supported by the pool we are receiving into.
512  *
513  * Note that some of the features we explicitly check here have additional
514  * (implicit) features they depend on, but those dependencies are enforced
515  * through the zfeature_register() calls declaring the features that we
516  * explicitly check.
517  */
518 static int
519 recv_begin_check_feature_flags_impl(uint64_t featureflags, spa_t *spa)
520 {
521         /*
522          * Check if there are any unsupported feature flags.
523          */
524         if (!DMU_STREAM_SUPPORTED(featureflags)) {
525                 return (SET_ERROR(ZFS_ERR_UNKNOWN_SEND_STREAM_FEATURE));
526         }
527
528         /* Verify pool version supports SA if SA_SPILL feature set */
529         if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
530             spa_version(spa) < SPA_VERSION_SA)
531                 return (SET_ERROR(ENOTSUP));
532
533         /*
534          * LZ4 compressed, ZSTD compressed, embedded, mooched, large blocks,
535          * and large_dnodes in the stream can only be used if those pool
536          * features are enabled because we don't attempt to decompress /
537          * un-embed / un-mooch / split up the blocks / dnodes during the
538          * receive process.
539          */
540         if ((featureflags & DMU_BACKUP_FEATURE_LZ4) &&
541             !spa_feature_is_enabled(spa, SPA_FEATURE_LZ4_COMPRESS))
542                 return (SET_ERROR(ENOTSUP));
543         if ((featureflags & DMU_BACKUP_FEATURE_ZSTD) &&
544             !spa_feature_is_enabled(spa, SPA_FEATURE_ZSTD_COMPRESS))
545                 return (SET_ERROR(ENOTSUP));
546         if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
547             !spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA))
548                 return (SET_ERROR(ENOTSUP));
549         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
550             !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
551                 return (SET_ERROR(ENOTSUP));
552         if ((featureflags & DMU_BACKUP_FEATURE_LARGE_DNODE) &&
553             !spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
554                 return (SET_ERROR(ENOTSUP));
555
556         /*
557          * Receiving redacted streams requires that redacted datasets are
558          * enabled.
559          */
560         if ((featureflags & DMU_BACKUP_FEATURE_REDACTED) &&
561             !spa_feature_is_enabled(spa, SPA_FEATURE_REDACTED_DATASETS))
562                 return (SET_ERROR(ENOTSUP));
563
564         return (0);
565 }
566
567 static int
568 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
569 {
570         dmu_recv_begin_arg_t *drba = arg;
571         dsl_pool_t *dp = dmu_tx_pool(tx);
572         struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
573         uint64_t fromguid = drrb->drr_fromguid;
574         int flags = drrb->drr_flags;
575         ds_hold_flags_t dsflags = 0;
576         int error;
577         uint64_t featureflags = drba->drba_cookie->drc_featureflags;
578         dsl_dataset_t *ds;
579         const char *tofs = drba->drba_cookie->drc_tofs;
580
581         /* already checked */
582         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
583         ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
584
585         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
586             DMU_COMPOUNDSTREAM ||
587             drrb->drr_type >= DMU_OST_NUMTYPES ||
588             ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
589                 return (SET_ERROR(EINVAL));
590
591         error = recv_begin_check_feature_flags_impl(featureflags, dp->dp_spa);
592         if (error != 0)
593                 return (error);
594
595         /* Resumable receives require extensible datasets */
596         if (drba->drba_cookie->drc_resumable &&
597             !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
598                 return (SET_ERROR(ENOTSUP));
599
600         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
601                 /* raw receives require the encryption feature */
602                 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION))
603                         return (SET_ERROR(ENOTSUP));
604
605                 /* embedded data is incompatible with encryption and raw recv */
606                 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
607                         return (SET_ERROR(EINVAL));
608
609                 /* raw receives require spill block allocation flag */
610                 if (!(flags & DRR_FLAG_SPILL_BLOCK))
611                         return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
612         } else {
613                 dsflags |= DS_HOLD_FLAG_DECRYPT;
614         }
615
616         error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
617         if (error == 0) {
618                 /* target fs already exists; recv into temp clone */
619
620                 /* Can't recv a clone into an existing fs */
621                 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
622                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
623                         return (SET_ERROR(EINVAL));
624                 }
625
626                 error = recv_begin_check_existing_impl(drba, ds, fromguid,
627                     featureflags);
628                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
629         } else if (error == ENOENT) {
630                 /* target fs does not exist; must be a full backup or clone */
631                 char buf[ZFS_MAX_DATASET_NAME_LEN];
632                 objset_t *os;
633
634                 /*
635                  * If it's a non-clone incremental, we are missing the
636                  * target fs, so fail the recv.
637                  */
638                 if (fromguid != 0 && !((flags & DRR_FLAG_CLONE) ||
639                     drba->drba_origin))
640                         return (SET_ERROR(ENOENT));
641
642                 /*
643                  * If we're receiving a full send as a clone, and it doesn't
644                  * contain all the necessary free records and freeobject
645                  * records, reject it.
646                  */
647                 if (fromguid == 0 && drba->drba_origin != NULL &&
648                     !(flags & DRR_FLAG_FREERECORDS))
649                         return (SET_ERROR(EINVAL));
650
651                 /* Open the parent of tofs */
652                 ASSERT3U(strlen(tofs), <, sizeof (buf));
653                 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
654                 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
655                 if (error != 0)
656                         return (error);
657
658                 if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0 &&
659                     drba->drba_origin == NULL) {
660                         boolean_t will_encrypt;
661
662                         /*
663                          * Check that we aren't breaking any encryption rules
664                          * and that we have all the parameters we need to
665                          * create an encrypted dataset if necessary. If we are
666                          * making an encrypted dataset the stream can't have
667                          * embedded data.
668                          */
669                         error = dmu_objset_create_crypt_check(ds->ds_dir,
670                             drba->drba_dcp, &will_encrypt);
671                         if (error != 0) {
672                                 dsl_dataset_rele(ds, FTAG);
673                                 return (error);
674                         }
675
676                         if (will_encrypt &&
677                             (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
678                                 dsl_dataset_rele(ds, FTAG);
679                                 return (SET_ERROR(EINVAL));
680                         }
681                 }
682
683                 /*
684                  * Check filesystem and snapshot limits before receiving. We'll
685                  * recheck snapshot limits again at the end (we create the
686                  * filesystems and increment those counts during begin_sync).
687                  */
688                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
689                     ZFS_PROP_FILESYSTEM_LIMIT, NULL,
690                     drba->drba_cred, drba->drba_proc);
691                 if (error != 0) {
692                         dsl_dataset_rele(ds, FTAG);
693                         return (error);
694                 }
695
696                 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
697                     ZFS_PROP_SNAPSHOT_LIMIT, NULL,
698                     drba->drba_cred, drba->drba_proc);
699                 if (error != 0) {
700                         dsl_dataset_rele(ds, FTAG);
701                         return (error);
702                 }
703
704                 /* can't recv below anything but filesystems (eg. no ZVOLs) */
705                 error = dmu_objset_from_ds(ds, &os);
706                 if (error != 0) {
707                         dsl_dataset_rele(ds, FTAG);
708                         return (error);
709                 }
710                 if (dmu_objset_type(os) != DMU_OST_ZFS) {
711                         dsl_dataset_rele(ds, FTAG);
712                         return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
713                 }
714
715                 if (drba->drba_origin != NULL) {
716                         dsl_dataset_t *origin;
717                         error = dsl_dataset_hold_flags(dp, drba->drba_origin,
718                             dsflags, FTAG, &origin);
719                         if (error != 0) {
720                                 dsl_dataset_rele(ds, FTAG);
721                                 return (error);
722                         }
723                         if (!origin->ds_is_snapshot) {
724                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
725                                 dsl_dataset_rele(ds, FTAG);
726                                 return (SET_ERROR(EINVAL));
727                         }
728                         if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
729                             fromguid != 0) {
730                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
731                                 dsl_dataset_rele(ds, FTAG);
732                                 return (SET_ERROR(ENODEV));
733                         }
734
735                         if (origin->ds_dir->dd_crypto_obj != 0 &&
736                             (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)) {
737                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
738                                 dsl_dataset_rele(ds, FTAG);
739                                 return (SET_ERROR(EINVAL));
740                         }
741
742                         /*
743                          * If the origin is redacted we need to verify that this
744                          * send stream can safely be received on top of the
745                          * origin.
746                          */
747                         if (dsl_dataset_feature_is_active(origin,
748                             SPA_FEATURE_REDACTED_DATASETS)) {
749                                 if (!redact_check(drba, origin)) {
750                                         dsl_dataset_rele_flags(origin, dsflags,
751                                             FTAG);
752                                         dsl_dataset_rele_flags(ds, dsflags,
753                                             FTAG);
754                                         return (SET_ERROR(EINVAL));
755                                 }
756                         }
757
758                         error = recv_check_large_blocks(ds, featureflags);
759                         if (error != 0) {
760                                 dsl_dataset_rele_flags(origin, dsflags, FTAG);
761                                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
762                                 return (error);
763                         }
764
765                         dsl_dataset_rele_flags(origin, dsflags, FTAG);
766                 }
767
768                 dsl_dataset_rele(ds, FTAG);
769                 error = 0;
770         }
771         return (error);
772 }
773
774 static void
775 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
776 {
777         dmu_recv_begin_arg_t *drba = arg;
778         dsl_pool_t *dp = dmu_tx_pool(tx);
779         objset_t *mos = dp->dp_meta_objset;
780         dmu_recv_cookie_t *drc = drba->drba_cookie;
781         struct drr_begin *drrb = drc->drc_drrb;
782         const char *tofs = drc->drc_tofs;
783         uint64_t featureflags = drc->drc_featureflags;
784         dsl_dataset_t *ds, *newds;
785         objset_t *os;
786         uint64_t dsobj;
787         ds_hold_flags_t dsflags = 0;
788         int error;
789         uint64_t crflags = 0;
790         dsl_crypto_params_t dummy_dcp = { 0 };
791         dsl_crypto_params_t *dcp = drba->drba_dcp;
792
793         if (drrb->drr_flags & DRR_FLAG_CI_DATA)
794                 crflags |= DS_FLAG_CI_DATASET;
795
796         if ((featureflags & DMU_BACKUP_FEATURE_RAW) == 0)
797                 dsflags |= DS_HOLD_FLAG_DECRYPT;
798
799         /*
800          * Raw, non-incremental recvs always use a dummy dcp with
801          * the raw cmd set. Raw incremental recvs do not use a dcp
802          * since the encryption parameters are already set in stone.
803          */
804         if (dcp == NULL && drrb->drr_fromguid == 0 &&
805             drba->drba_origin == NULL) {
806                 ASSERT3P(dcp, ==, NULL);
807                 dcp = &dummy_dcp;
808
809                 if (featureflags & DMU_BACKUP_FEATURE_RAW)
810                         dcp->cp_cmd = DCP_CMD_RAW_RECV;
811         }
812
813         error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
814         if (error == 0) {
815                 /* create temporary clone */
816                 dsl_dataset_t *snap = NULL;
817
818                 if (drba->drba_cookie->drc_fromsnapobj != 0) {
819                         VERIFY0(dsl_dataset_hold_obj(dp,
820                             drba->drba_cookie->drc_fromsnapobj, FTAG, &snap));
821                         ASSERT3P(dcp, ==, NULL);
822                 }
823                 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
824                     snap, crflags, drba->drba_cred, dcp, tx);
825                 if (drba->drba_cookie->drc_fromsnapobj != 0)
826                         dsl_dataset_rele(snap, FTAG);
827                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
828         } else {
829                 dsl_dir_t *dd;
830                 const char *tail;
831                 dsl_dataset_t *origin = NULL;
832
833                 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
834
835                 if (drba->drba_origin != NULL) {
836                         VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
837                             FTAG, &origin));
838                         ASSERT3P(dcp, ==, NULL);
839                 }
840
841                 /* Create new dataset. */
842                 dsobj = dsl_dataset_create_sync(dd, strrchr(tofs, '/') + 1,
843                     origin, crflags, drba->drba_cred, dcp, tx);
844                 if (origin != NULL)
845                         dsl_dataset_rele(origin, FTAG);
846                 dsl_dir_rele(dd, FTAG);
847                 drc->drc_newfs = B_TRUE;
848         }
849         VERIFY0(dsl_dataset_own_obj_force(dp, dsobj, dsflags, dmu_recv_tag,
850             &newds));
851         if (dsl_dataset_feature_is_active(newds,
852             SPA_FEATURE_REDACTED_DATASETS)) {
853                 /*
854                  * If the origin dataset is redacted, the child will be redacted
855                  * when we create it.  We clear the new dataset's
856                  * redaction info; if it should be redacted, we'll fill
857                  * in its information later.
858                  */
859                 dsl_dataset_deactivate_feature(newds,
860                     SPA_FEATURE_REDACTED_DATASETS, tx);
861         }
862         VERIFY0(dmu_objset_from_ds(newds, &os));
863
864         if (drc->drc_resumable) {
865                 dsl_dataset_zapify(newds, tx);
866                 if (drrb->drr_fromguid != 0) {
867                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
868                             8, 1, &drrb->drr_fromguid, tx));
869                 }
870                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
871                     8, 1, &drrb->drr_toguid, tx));
872                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
873                     1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
874                 uint64_t one = 1;
875                 uint64_t zero = 0;
876                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
877                     8, 1, &one, tx));
878                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
879                     8, 1, &zero, tx));
880                 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
881                     8, 1, &zero, tx));
882                 if (featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) {
883                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_LARGEBLOCK,
884                             8, 1, &one, tx));
885                 }
886                 if (featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) {
887                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
888                             8, 1, &one, tx));
889                 }
890                 if (featureflags & DMU_BACKUP_FEATURE_COMPRESSED) {
891                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_COMPRESSOK,
892                             8, 1, &one, tx));
893                 }
894                 if (featureflags & DMU_BACKUP_FEATURE_RAW) {
895                         VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_RAWOK,
896                             8, 1, &one, tx));
897                 }
898
899                 uint64_t *redact_snaps;
900                 uint_t numredactsnaps;
901                 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
902                     BEGINNV_REDACT_FROM_SNAPS, &redact_snaps,
903                     &numredactsnaps) == 0) {
904                         VERIFY0(zap_add(mos, dsobj,
905                             DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS,
906                             sizeof (*redact_snaps), numredactsnaps,
907                             redact_snaps, tx));
908                 }
909         }
910
911         /*
912          * Usually the os->os_encrypted value is tied to the presence of a
913          * DSL Crypto Key object in the dd. However, that will not be received
914          * until dmu_recv_stream(), so we set the value manually for now.
915          */
916         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
917                 os->os_encrypted = B_TRUE;
918                 drba->drba_cookie->drc_raw = B_TRUE;
919         }
920
921         if (featureflags & DMU_BACKUP_FEATURE_REDACTED) {
922                 uint64_t *redact_snaps;
923                 uint_t numredactsnaps;
924                 VERIFY0(nvlist_lookup_uint64_array(drc->drc_begin_nvl,
925                     BEGINNV_REDACT_SNAPS, &redact_snaps, &numredactsnaps));
926                 dsl_dataset_activate_redaction(newds, redact_snaps,
927                     numredactsnaps, tx);
928         }
929
930         dmu_buf_will_dirty(newds->ds_dbuf, tx);
931         dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
932
933         /*
934          * If we actually created a non-clone, we need to create the objset
935          * in our new dataset. If this is a raw send we postpone this until
936          * dmu_recv_stream() so that we can allocate the metadnode with the
937          * properties from the DRR_BEGIN payload.
938          */
939         rrw_enter(&newds->ds_bp_rwlock, RW_READER, FTAG);
940         if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds)) &&
941             (featureflags & DMU_BACKUP_FEATURE_RAW) == 0) {
942                 (void) dmu_objset_create_impl(dp->dp_spa,
943                     newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
944         }
945         rrw_exit(&newds->ds_bp_rwlock, FTAG);
946
947         drba->drba_cookie->drc_ds = newds;
948         drba->drba_cookie->drc_os = os;
949
950         spa_history_log_internal_ds(newds, "receive", tx, " ");
951 }
952
953 static int
954 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
955 {
956         dmu_recv_begin_arg_t *drba = arg;
957         dmu_recv_cookie_t *drc = drba->drba_cookie;
958         dsl_pool_t *dp = dmu_tx_pool(tx);
959         struct drr_begin *drrb = drc->drc_drrb;
960         int error;
961         ds_hold_flags_t dsflags = 0;
962         dsl_dataset_t *ds;
963         const char *tofs = drc->drc_tofs;
964
965         /* already checked */
966         ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
967         ASSERT(drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING);
968
969         if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
970             DMU_COMPOUNDSTREAM ||
971             drrb->drr_type >= DMU_OST_NUMTYPES)
972                 return (SET_ERROR(EINVAL));
973
974         /*
975          * This is mostly a sanity check since we should have already done these
976          * checks during a previous attempt to receive the data.
977          */
978         error = recv_begin_check_feature_flags_impl(drc->drc_featureflags,
979             dp->dp_spa);
980         if (error != 0)
981                 return (error);
982
983         /* 6 extra bytes for /%recv */
984         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
985
986         (void) snprintf(recvname, sizeof (recvname), "%s/%s",
987             tofs, recv_clone_name);
988
989         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
990                 /* raw receives require spill block allocation flag */
991                 if (!(drrb->drr_flags & DRR_FLAG_SPILL_BLOCK))
992                         return (SET_ERROR(ZFS_ERR_SPILL_BLOCK_FLAG_MISSING));
993         } else {
994                 dsflags |= DS_HOLD_FLAG_DECRYPT;
995         }
996
997         if (dsl_dataset_hold_flags(dp, recvname, dsflags, FTAG, &ds) != 0) {
998                 /* %recv does not exist; continue in tofs */
999                 error = dsl_dataset_hold_flags(dp, tofs, dsflags, FTAG, &ds);
1000                 if (error != 0)
1001                         return (error);
1002         }
1003
1004         /* check that ds is marked inconsistent */
1005         if (!DS_IS_INCONSISTENT(ds)) {
1006                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1007                 return (SET_ERROR(EINVAL));
1008         }
1009
1010         /* check that there is resuming data, and that the toguid matches */
1011         if (!dsl_dataset_is_zapified(ds)) {
1012                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1013                 return (SET_ERROR(EINVAL));
1014         }
1015         uint64_t val;
1016         error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1017             DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1018         if (error != 0 || drrb->drr_toguid != val) {
1019                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1020                 return (SET_ERROR(EINVAL));
1021         }
1022
1023         /*
1024          * Check if the receive is still running.  If so, it will be owned.
1025          * Note that nothing else can own the dataset (e.g. after the receive
1026          * fails) because it will be marked inconsistent.
1027          */
1028         if (dsl_dataset_has_owner(ds)) {
1029                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1030                 return (SET_ERROR(EBUSY));
1031         }
1032
1033         /* There should not be any snapshots of this fs yet. */
1034         if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1035                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1036                 return (SET_ERROR(EINVAL));
1037         }
1038
1039         /*
1040          * Note: resume point will be checked when we process the first WRITE
1041          * record.
1042          */
1043
1044         /* check that the origin matches */
1045         val = 0;
1046         (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1047             DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1048         if (drrb->drr_fromguid != val) {
1049                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1050                 return (SET_ERROR(EINVAL));
1051         }
1052
1053         if (ds->ds_prev != NULL && drrb->drr_fromguid != 0)
1054                 drc->drc_fromsnapobj = ds->ds_prev->ds_object;
1055
1056         /*
1057          * If we're resuming, and the send is redacted, then the original send
1058          * must have been redacted, and must have been redacted with respect to
1059          * the same snapshots.
1060          */
1061         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_REDACTED) {
1062                 uint64_t num_ds_redact_snaps;
1063                 uint64_t *ds_redact_snaps;
1064
1065                 uint_t num_stream_redact_snaps;
1066                 uint64_t *stream_redact_snaps;
1067
1068                 if (nvlist_lookup_uint64_array(drc->drc_begin_nvl,
1069                     BEGINNV_REDACT_SNAPS, &stream_redact_snaps,
1070                     &num_stream_redact_snaps) != 0) {
1071                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1072                         return (SET_ERROR(EINVAL));
1073                 }
1074
1075                 if (!dsl_dataset_get_uint64_array_feature(ds,
1076                     SPA_FEATURE_REDACTED_DATASETS, &num_ds_redact_snaps,
1077                     &ds_redact_snaps)) {
1078                         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1079                         return (SET_ERROR(EINVAL));
1080                 }
1081
1082                 for (int i = 0; i < num_ds_redact_snaps; i++) {
1083                         if (!redact_snaps_contains(ds_redact_snaps,
1084                             num_ds_redact_snaps, stream_redact_snaps[i])) {
1085                                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1086                                 return (SET_ERROR(EINVAL));
1087                         }
1088                 }
1089         }
1090
1091         error = recv_check_large_blocks(ds, drc->drc_featureflags);
1092         if (error != 0) {
1093                 dsl_dataset_rele_flags(ds, dsflags, FTAG);
1094                 return (error);
1095         }
1096
1097         dsl_dataset_rele_flags(ds, dsflags, FTAG);
1098         return (0);
1099 }
1100
1101 static void
1102 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1103 {
1104         dmu_recv_begin_arg_t *drba = arg;
1105         dsl_pool_t *dp = dmu_tx_pool(tx);
1106         const char *tofs = drba->drba_cookie->drc_tofs;
1107         uint64_t featureflags = drba->drba_cookie->drc_featureflags;
1108         dsl_dataset_t *ds;
1109         ds_hold_flags_t dsflags = 0;
1110         /* 6 extra bytes for /%recv */
1111         char recvname[ZFS_MAX_DATASET_NAME_LEN + 6];
1112
1113         (void) snprintf(recvname, sizeof (recvname), "%s/%s", tofs,
1114             recv_clone_name);
1115
1116         if (featureflags & DMU_BACKUP_FEATURE_RAW) {
1117                 drba->drba_cookie->drc_raw = B_TRUE;
1118         } else {
1119                 dsflags |= DS_HOLD_FLAG_DECRYPT;
1120         }
1121
1122         if (dsl_dataset_own_force(dp, recvname, dsflags, dmu_recv_tag, &ds)
1123             != 0) {
1124                 /* %recv does not exist; continue in tofs */
1125                 VERIFY0(dsl_dataset_own_force(dp, tofs, dsflags, dmu_recv_tag,
1126                     &ds));
1127                 drba->drba_cookie->drc_newfs = B_TRUE;
1128         }
1129
1130         ASSERT(DS_IS_INCONSISTENT(ds));
1131         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
1132         ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) ||
1133             drba->drba_cookie->drc_raw);
1134         rrw_exit(&ds->ds_bp_rwlock, FTAG);
1135
1136         drba->drba_cookie->drc_ds = ds;
1137         VERIFY0(dmu_objset_from_ds(ds, &drba->drba_cookie->drc_os));
1138         drba->drba_cookie->drc_should_save = B_TRUE;
1139
1140         spa_history_log_internal_ds(ds, "resume receive", tx, " ");
1141 }
1142
1143 /*
1144  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1145  * succeeds; otherwise we will leak the holds on the datasets.
1146  */
1147 int
1148 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1149     boolean_t force, boolean_t resumable, nvlist_t *localprops,
1150     nvlist_t *hidden_args, char *origin, dmu_recv_cookie_t *drc,
1151     zfs_file_t *fp, offset_t *voffp)
1152 {
1153         dmu_recv_begin_arg_t drba = { 0 };
1154         int err;
1155
1156         bzero(drc, sizeof (dmu_recv_cookie_t));
1157         drc->drc_drr_begin = drr_begin;
1158         drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1159         drc->drc_tosnap = tosnap;
1160         drc->drc_tofs = tofs;
1161         drc->drc_force = force;
1162         drc->drc_resumable = resumable;
1163         drc->drc_cred = CRED();
1164         drc->drc_proc = curproc;
1165         drc->drc_clone = (origin != NULL);
1166
1167         if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1168                 drc->drc_byteswap = B_TRUE;
1169                 (void) fletcher_4_incremental_byteswap(drr_begin,
1170                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1171                 byteswap_record(drr_begin);
1172         } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1173                 (void) fletcher_4_incremental_native(drr_begin,
1174                     sizeof (dmu_replay_record_t), &drc->drc_cksum);
1175         } else {
1176                 return (SET_ERROR(EINVAL));
1177         }
1178
1179         drc->drc_fp = fp;
1180         drc->drc_voff = *voffp;
1181         drc->drc_featureflags =
1182             DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
1183
1184         uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
1185         void *payload = NULL;
1186         if (payloadlen != 0)
1187                 payload = kmem_alloc(payloadlen, KM_SLEEP);
1188
1189         err = receive_read_payload_and_next_header(drc, payloadlen,
1190             payload);
1191         if (err != 0) {
1192                 kmem_free(payload, payloadlen);
1193                 return (err);
1194         }
1195         if (payloadlen != 0) {
1196                 err = nvlist_unpack(payload, payloadlen, &drc->drc_begin_nvl,
1197                     KM_SLEEP);
1198                 kmem_free(payload, payloadlen);
1199                 if (err != 0) {
1200                         kmem_free(drc->drc_next_rrd,
1201                             sizeof (*drc->drc_next_rrd));
1202                         return (err);
1203                 }
1204         }
1205
1206         if (drc->drc_drrb->drr_flags & DRR_FLAG_SPILL_BLOCK)
1207                 drc->drc_spill = B_TRUE;
1208
1209         drba.drba_origin = origin;
1210         drba.drba_cookie = drc;
1211         drba.drba_cred = CRED();
1212         drba.drba_proc = curproc;
1213
1214         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
1215                 err = dsl_sync_task(tofs,
1216                     dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1217                     &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1218         } else {
1219
1220                 /*
1221                  * For non-raw, non-incremental, non-resuming receives the
1222                  * user can specify encryption parameters on the command line
1223                  * with "zfs recv -o". For these receives we create a dcp and
1224                  * pass it to the sync task. Creating the dcp will implicitly
1225                  * remove the encryption params from the localprops nvlist,
1226                  * which avoids errors when trying to set these normally
1227                  * read-only properties. Any other kind of receive that
1228                  * attempts to set these properties will fail as a result.
1229                  */
1230                 if ((DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1231                     DMU_BACKUP_FEATURE_RAW) == 0 &&
1232                     origin == NULL && drc->drc_drrb->drr_fromguid == 0) {
1233                         err = dsl_crypto_params_create_nvlist(DCP_CMD_NONE,
1234                             localprops, hidden_args, &drba.drba_dcp);
1235                 }
1236
1237                 if (err == 0) {
1238                         err = dsl_sync_task(tofs,
1239                             dmu_recv_begin_check, dmu_recv_begin_sync,
1240                             &drba, 5, ZFS_SPACE_CHECK_NORMAL);
1241                         dsl_crypto_params_free(drba.drba_dcp, !!err);
1242                 }
1243         }
1244
1245         if (err != 0) {
1246                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
1247                 nvlist_free(drc->drc_begin_nvl);
1248         }
1249         return (err);
1250 }
1251
1252 static int
1253 receive_read(dmu_recv_cookie_t *drc, int len, void *buf)
1254 {
1255         int done = 0;
1256
1257         /*
1258          * The code doesn't rely on this (lengths being multiples of 8).  See
1259          * comment in dump_bytes.
1260          */
1261         ASSERT(len % 8 == 0 ||
1262             (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) != 0);
1263
1264         while (done < len) {
1265                 ssize_t resid;
1266                 zfs_file_t *fp = drc->drc_fp;
1267                 int err = zfs_file_read(fp, (char *)buf + done,
1268                     len - done, &resid);
1269                 if (resid == len - done) {
1270                         /*
1271                          * Note: ECKSUM or ZFS_ERR_STREAM_TRUNCATED indicates
1272                          * that the receive was interrupted and can
1273                          * potentially be resumed.
1274                          */
1275                         err = SET_ERROR(ZFS_ERR_STREAM_TRUNCATED);
1276                 }
1277                 drc->drc_voff += len - done - resid;
1278                 done = len - resid;
1279                 if (err != 0)
1280                         return (err);
1281         }
1282
1283         drc->drc_bytes_read += len;
1284
1285         ASSERT3U(done, ==, len);
1286         return (0);
1287 }
1288
1289 static inline uint8_t
1290 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1291 {
1292         if (bonus_type == DMU_OT_SA) {
1293                 return (1);
1294         } else {
1295                 return (1 +
1296                     ((DN_OLD_MAX_BONUSLEN -
1297                     MIN(DN_OLD_MAX_BONUSLEN, bonus_size)) >> SPA_BLKPTRSHIFT));
1298         }
1299 }
1300
1301 static void
1302 save_resume_state(struct receive_writer_arg *rwa,
1303     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1304 {
1305         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1306
1307         if (!rwa->resumable)
1308                 return;
1309
1310         /*
1311          * We use ds_resume_bytes[] != 0 to indicate that we need to
1312          * update this on disk, so it must not be 0.
1313          */
1314         ASSERT(rwa->bytes_read != 0);
1315
1316         /*
1317          * We only resume from write records, which have a valid
1318          * (non-meta-dnode) object number.
1319          */
1320         ASSERT(object != 0);
1321
1322         /*
1323          * For resuming to work correctly, we must receive records in order,
1324          * sorted by object,offset.  This is checked by the callers, but
1325          * assert it here for good measure.
1326          */
1327         ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1328         ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1329             offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1330         ASSERT3U(rwa->bytes_read, >=,
1331             rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1332
1333         rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1334         rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1335         rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1336 }
1337
1338 static int
1339 receive_object_is_same_generation(objset_t *os, uint64_t object,
1340     dmu_object_type_t old_bonus_type, dmu_object_type_t new_bonus_type,
1341     const void *new_bonus, boolean_t *samegenp)
1342 {
1343         zfs_file_info_t zoi;
1344         int err;
1345
1346         dmu_buf_t *old_bonus_dbuf;
1347         err = dmu_bonus_hold(os, object, FTAG, &old_bonus_dbuf);
1348         if (err != 0)
1349                 return (err);
1350         err = dmu_get_file_info(os, old_bonus_type, old_bonus_dbuf->db_data,
1351             &zoi);
1352         dmu_buf_rele(old_bonus_dbuf, FTAG);
1353         if (err != 0)
1354                 return (err);
1355         uint64_t old_gen = zoi.zfi_generation;
1356
1357         err = dmu_get_file_info(os, new_bonus_type, new_bonus, &zoi);
1358         if (err != 0)
1359                 return (err);
1360         uint64_t new_gen = zoi.zfi_generation;
1361
1362         *samegenp = (old_gen == new_gen);
1363         return (0);
1364 }
1365
1366 static int
1367 receive_handle_existing_object(const struct receive_writer_arg *rwa,
1368     const struct drr_object *drro, const dmu_object_info_t *doi,
1369     const void *bonus_data,
1370     uint64_t *object_to_hold, uint32_t *new_blksz)
1371 {
1372         uint32_t indblksz = drro->drr_indblkshift ?
1373             1ULL << drro->drr_indblkshift : 0;
1374         int nblkptr = deduce_nblkptr(drro->drr_bonustype,
1375             drro->drr_bonuslen);
1376         uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1377             drro->drr_dn_slots : DNODE_MIN_SLOTS;
1378         boolean_t do_free_range = B_FALSE;
1379         int err;
1380
1381         *object_to_hold = drro->drr_object;
1382
1383         /* nblkptr should be bounded by the bonus size and type */
1384         if (rwa->raw && nblkptr != drro->drr_nblkptr)
1385                 return (SET_ERROR(EINVAL));
1386
1387         /*
1388          * After the previous send stream, the sending system may
1389          * have freed this object, and then happened to re-allocate
1390          * this object number in a later txg. In this case, we are
1391          * receiving a different logical file, and the block size may
1392          * appear to be different.  i.e. we may have a different
1393          * block size for this object than what the send stream says.
1394          * In this case we need to remove the object's contents,
1395          * so that its structure can be changed and then its contents
1396          * entirely replaced by subsequent WRITE records.
1397          *
1398          * If this is a -L (--large-block) incremental stream, and
1399          * the previous stream was not -L, the block size may appear
1400          * to increase.  i.e. we may have a smaller block size for
1401          * this object than what the send stream says.  In this case
1402          * we need to keep the object's contents and block size
1403          * intact, so that we don't lose parts of the object's
1404          * contents that are not changed by this incremental send
1405          * stream.
1406          *
1407          * We can distinguish between the two above cases by using
1408          * the ZPL's generation number (see
1409          * receive_object_is_same_generation()).  However, we only
1410          * want to rely on the generation number when absolutely
1411          * necessary, because with raw receives, the generation is
1412          * encrypted.  We also want to minimize dependence on the
1413          * ZPL, so that other types of datasets can also be received
1414          * (e.g. ZVOLs, although note that ZVOLS currently do not
1415          * reallocate their objects or change their structure).
1416          * Therefore, we check a number of different cases where we
1417          * know it is safe to discard the object's contents, before
1418          * using the ZPL's generation number to make the above
1419          * distinction.
1420          */
1421         if (drro->drr_blksz != doi->doi_data_block_size) {
1422                 if (rwa->raw) {
1423                         /*
1424                          * RAW streams always have large blocks, so
1425                          * we are sure that the data is not needed
1426                          * due to changing --large-block to be on.
1427                          * Which is fortunate since the bonus buffer
1428                          * (which contains the ZPL generation) is
1429                          * encrypted, and the key might not be
1430                          * loaded.
1431                          */
1432                         do_free_range = B_TRUE;
1433                 } else if (rwa->full) {
1434                         /*
1435                          * This is a full send stream, so it always
1436                          * replaces what we have.  Even if the
1437                          * generation numbers happen to match, this
1438                          * can not actually be the same logical file.
1439                          * This is relevant when receiving a full
1440                          * send as a clone.
1441                          */
1442                         do_free_range = B_TRUE;
1443                 } else if (drro->drr_type !=
1444                     DMU_OT_PLAIN_FILE_CONTENTS ||
1445                     doi->doi_type != DMU_OT_PLAIN_FILE_CONTENTS) {
1446                         /*
1447                          * PLAIN_FILE_CONTENTS are the only type of
1448                          * objects that have ever been stored with
1449                          * large blocks, so we don't need the special
1450                          * logic below.  ZAP blocks can shrink (when
1451                          * there's only one block), so we don't want
1452                          * to hit the error below about block size
1453                          * only increasing.
1454                          */
1455                         do_free_range = B_TRUE;
1456                 } else if (doi->doi_max_offset <=
1457                     doi->doi_data_block_size) {
1458                         /*
1459                          * There is only one block.  We can free it,
1460                          * because its contents will be replaced by a
1461                          * WRITE record.  This can not be the no-L ->
1462                          * -L case, because the no-L case would have
1463                          * resulted in multiple blocks.  If we
1464                          * supported -L -> no-L, it would not be safe
1465                          * to free the file's contents.  Fortunately,
1466                          * that is not allowed (see
1467                          * recv_check_large_blocks()).
1468                          */
1469                         do_free_range = B_TRUE;
1470                 } else {
1471                         boolean_t is_same_gen;
1472                         err = receive_object_is_same_generation(rwa->os,
1473                             drro->drr_object, doi->doi_bonus_type,
1474                             drro->drr_bonustype, bonus_data, &is_same_gen);
1475                         if (err != 0)
1476                                 return (SET_ERROR(EINVAL));
1477
1478                         if (is_same_gen) {
1479                                 /*
1480                                  * This is the same logical file, and
1481                                  * the block size must be increasing.
1482                                  * It could only decrease if
1483                                  * --large-block was changed to be
1484                                  * off, which is checked in
1485                                  * recv_check_large_blocks().
1486                                  */
1487                                 if (drro->drr_blksz <=
1488                                     doi->doi_data_block_size)
1489                                         return (SET_ERROR(EINVAL));
1490                                 /*
1491                                  * We keep the existing blocksize and
1492                                  * contents.
1493                                  */
1494                                 *new_blksz =
1495                                     doi->doi_data_block_size;
1496                         } else {
1497                                 do_free_range = B_TRUE;
1498                         }
1499                 }
1500         }
1501
1502         /* nblkptr can only decrease if the object was reallocated */
1503         if (nblkptr < doi->doi_nblkptr)
1504                 do_free_range = B_TRUE;
1505
1506         /* number of slots can only change on reallocation */
1507         if (dn_slots != doi->doi_dnodesize >> DNODE_SHIFT)
1508                 do_free_range = B_TRUE;
1509
1510         /*
1511          * For raw sends we also check a few other fields to
1512          * ensure we are preserving the objset structure exactly
1513          * as it was on the receive side:
1514          *     - A changed indirect block size
1515          *     - A smaller nlevels
1516          */
1517         if (rwa->raw) {
1518                 if (indblksz != doi->doi_metadata_block_size)
1519                         do_free_range = B_TRUE;
1520                 if (drro->drr_nlevels < doi->doi_indirection)
1521                         do_free_range = B_TRUE;
1522         }
1523
1524         if (do_free_range) {
1525                 err = dmu_free_long_range(rwa->os, drro->drr_object,
1526                     0, DMU_OBJECT_END);
1527                 if (err != 0)
1528                         return (SET_ERROR(EINVAL));
1529         }
1530
1531         /*
1532          * The dmu does not currently support decreasing nlevels
1533          * or changing the number of dnode slots on an object. For
1534          * non-raw sends, this does not matter and the new object
1535          * can just use the previous one's nlevels. For raw sends,
1536          * however, the structure of the received dnode (including
1537          * nlevels and dnode slots) must match that of the send
1538          * side. Therefore, instead of using dmu_object_reclaim(),
1539          * we must free the object completely and call
1540          * dmu_object_claim_dnsize() instead.
1541          */
1542         if ((rwa->raw && drro->drr_nlevels < doi->doi_indirection) ||
1543             dn_slots != doi->doi_dnodesize >> DNODE_SHIFT) {
1544                 err = dmu_free_long_object(rwa->os, drro->drr_object);
1545                 if (err != 0)
1546                         return (SET_ERROR(EINVAL));
1547
1548                 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1549                 *object_to_hold = DMU_NEW_OBJECT;
1550         }
1551
1552         /*
1553          * For raw receives, free everything beyond the new incoming
1554          * maxblkid. Normally this would be done with a DRR_FREE
1555          * record that would come after this DRR_OBJECT record is
1556          * processed. However, for raw receives we manually set the
1557          * maxblkid from the drr_maxblkid and so we must first free
1558          * everything above that blkid to ensure the DMU is always
1559          * consistent with itself. We will never free the first block
1560          * of the object here because a maxblkid of 0 could indicate
1561          * an object with a single block or one with no blocks. This
1562          * free may be skipped when dmu_free_long_range() was called
1563          * above since it covers the entire object's contents.
1564          */
1565         if (rwa->raw && *object_to_hold != DMU_NEW_OBJECT && !do_free_range) {
1566                 err = dmu_free_long_range(rwa->os, drro->drr_object,
1567                     (drro->drr_maxblkid + 1) * doi->doi_data_block_size,
1568                     DMU_OBJECT_END);
1569                 if (err != 0)
1570                         return (SET_ERROR(EINVAL));
1571         }
1572         return (0);
1573 }
1574
1575 noinline static int
1576 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1577     void *data)
1578 {
1579         dmu_object_info_t doi;
1580         dmu_tx_t *tx;
1581         int err;
1582         uint32_t new_blksz = drro->drr_blksz;
1583         uint8_t dn_slots = drro->drr_dn_slots != 0 ?
1584             drro->drr_dn_slots : DNODE_MIN_SLOTS;
1585
1586         if (drro->drr_type == DMU_OT_NONE ||
1587             !DMU_OT_IS_VALID(drro->drr_type) ||
1588             !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1589             drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1590             drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1591             P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1592             drro->drr_blksz < SPA_MINBLOCKSIZE ||
1593             drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1594             drro->drr_bonuslen >
1595             DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(rwa->os))) ||
1596             dn_slots >
1597             (spa_maxdnodesize(dmu_objset_spa(rwa->os)) >> DNODE_SHIFT)) {
1598                 return (SET_ERROR(EINVAL));
1599         }
1600
1601         if (rwa->raw) {
1602                 /*
1603                  * We should have received a DRR_OBJECT_RANGE record
1604                  * containing this block and stored it in rwa.
1605                  */
1606                 if (drro->drr_object < rwa->or_firstobj ||
1607                     drro->drr_object >= rwa->or_firstobj + rwa->or_numslots ||
1608                     drro->drr_raw_bonuslen < drro->drr_bonuslen ||
1609                     drro->drr_indblkshift > SPA_MAXBLOCKSHIFT ||
1610                     drro->drr_nlevels > DN_MAX_LEVELS ||
1611                     drro->drr_nblkptr > DN_MAX_NBLKPTR ||
1612                     DN_SLOTS_TO_BONUSLEN(dn_slots) <
1613                     drro->drr_raw_bonuslen)
1614                         return (SET_ERROR(EINVAL));
1615         } else {
1616                 /*
1617                  * The DRR_OBJECT_SPILL flag is valid when the DRR_BEGIN
1618                  * record indicates this by setting DRR_FLAG_SPILL_BLOCK.
1619                  */
1620                 if (((drro->drr_flags & ~(DRR_OBJECT_SPILL))) ||
1621                     (!rwa->spill && DRR_OBJECT_HAS_SPILL(drro->drr_flags))) {
1622                         return (SET_ERROR(EINVAL));
1623                 }
1624
1625                 if (drro->drr_raw_bonuslen != 0 || drro->drr_nblkptr != 0 ||
1626                     drro->drr_indblkshift != 0 || drro->drr_nlevels != 0) {
1627                         return (SET_ERROR(EINVAL));
1628                 }
1629         }
1630
1631         err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1632
1633         if (err != 0 && err != ENOENT && err != EEXIST)
1634                 return (SET_ERROR(EINVAL));
1635
1636         if (drro->drr_object > rwa->max_object)
1637                 rwa->max_object = drro->drr_object;
1638
1639         /*
1640          * If we are losing blkptrs or changing the block size this must
1641          * be a new file instance.  We must clear out the previous file
1642          * contents before we can change this type of metadata in the dnode.
1643          * Raw receives will also check that the indirect structure of the
1644          * dnode hasn't changed.
1645          */
1646         uint64_t object_to_hold;
1647         if (err == 0) {
1648                 err = receive_handle_existing_object(rwa, drro, &doi, data,
1649                     &object_to_hold, &new_blksz);
1650         } else if (err == EEXIST) {
1651                 /*
1652                  * The object requested is currently an interior slot of a
1653                  * multi-slot dnode. This will be resolved when the next txg
1654                  * is synced out, since the send stream will have told us
1655                  * to free this slot when we freed the associated dnode
1656                  * earlier in the stream.
1657                  */
1658                 txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1659
1660                 if (dmu_object_info(rwa->os, drro->drr_object, NULL) != ENOENT)
1661                         return (SET_ERROR(EINVAL));
1662
1663                 /* object was freed and we are about to allocate a new one */
1664                 object_to_hold = DMU_NEW_OBJECT;
1665         } else {
1666                 /* object is free and we are about to allocate a new one */
1667                 object_to_hold = DMU_NEW_OBJECT;
1668         }
1669
1670         /*
1671          * If this is a multi-slot dnode there is a chance that this
1672          * object will expand into a slot that is already used by
1673          * another object from the previous snapshot. We must free
1674          * these objects before we attempt to allocate the new dnode.
1675          */
1676         if (dn_slots > 1) {
1677                 boolean_t need_sync = B_FALSE;
1678
1679                 for (uint64_t slot = drro->drr_object + 1;
1680                     slot < drro->drr_object + dn_slots;
1681                     slot++) {
1682                         dmu_object_info_t slot_doi;
1683
1684                         err = dmu_object_info(rwa->os, slot, &slot_doi);
1685                         if (err == ENOENT || err == EEXIST)
1686                                 continue;
1687                         else if (err != 0)
1688                                 return (err);
1689
1690                         err = dmu_free_long_object(rwa->os, slot);
1691                         if (err != 0)
1692                                 return (err);
1693
1694                         need_sync = B_TRUE;
1695                 }
1696
1697                 if (need_sync)
1698                         txg_wait_synced(dmu_objset_pool(rwa->os), 0);
1699         }
1700
1701         tx = dmu_tx_create(rwa->os);
1702         dmu_tx_hold_bonus(tx, object_to_hold);
1703         dmu_tx_hold_write(tx, object_to_hold, 0, 0);
1704         err = dmu_tx_assign(tx, TXG_WAIT);
1705         if (err != 0) {
1706                 dmu_tx_abort(tx);
1707                 return (err);
1708         }
1709
1710         if (object_to_hold == DMU_NEW_OBJECT) {
1711                 /* Currently free, wants to be allocated */
1712                 err = dmu_object_claim_dnsize(rwa->os, drro->drr_object,
1713                     drro->drr_type, new_blksz,
1714                     drro->drr_bonustype, drro->drr_bonuslen,
1715                     dn_slots << DNODE_SHIFT, tx);
1716         } else if (drro->drr_type != doi.doi_type ||
1717             new_blksz != doi.doi_data_block_size ||
1718             drro->drr_bonustype != doi.doi_bonus_type ||
1719             drro->drr_bonuslen != doi.doi_bonus_size) {
1720                 /* Currently allocated, but with different properties */
1721                 err = dmu_object_reclaim_dnsize(rwa->os, drro->drr_object,
1722                     drro->drr_type, new_blksz,
1723                     drro->drr_bonustype, drro->drr_bonuslen,
1724                     dn_slots << DNODE_SHIFT, rwa->spill ?
1725                     DRR_OBJECT_HAS_SPILL(drro->drr_flags) : B_FALSE, tx);
1726         } else if (rwa->spill && !DRR_OBJECT_HAS_SPILL(drro->drr_flags)) {
1727                 /*
1728                  * Currently allocated, the existing version of this object
1729                  * may reference a spill block that is no longer allocated
1730                  * at the source and needs to be freed.
1731                  */
1732                 err = dmu_object_rm_spill(rwa->os, drro->drr_object, tx);
1733         }
1734
1735         if (err != 0) {
1736                 dmu_tx_commit(tx);
1737                 return (SET_ERROR(EINVAL));
1738         }
1739
1740         if (rwa->or_crypt_params_present) {
1741                 /*
1742                  * Set the crypt params for the buffer associated with this
1743                  * range of dnodes.  This causes the blkptr_t to have the
1744                  * same crypt params (byteorder, salt, iv, mac) as on the
1745                  * sending side.
1746                  *
1747                  * Since we are committing this tx now, it is possible for
1748                  * the dnode block to end up on-disk with the incorrect MAC,
1749                  * if subsequent objects in this block are received in a
1750                  * different txg.  However, since the dataset is marked as
1751                  * inconsistent, no code paths will do a non-raw read (or
1752                  * decrypt the block / verify the MAC). The receive code and
1753                  * scrub code can safely do raw reads and verify the
1754                  * checksum.  They don't need to verify the MAC.
1755                  */
1756                 dmu_buf_t *db = NULL;
1757                 uint64_t offset = rwa->or_firstobj * DNODE_MIN_SIZE;
1758
1759                 err = dmu_buf_hold_by_dnode(DMU_META_DNODE(rwa->os),
1760                     offset, FTAG, &db, DMU_READ_PREFETCH | DMU_READ_NO_DECRYPT);
1761                 if (err != 0) {
1762                         dmu_tx_commit(tx);
1763                         return (SET_ERROR(EINVAL));
1764                 }
1765
1766                 dmu_buf_set_crypt_params(db, rwa->or_byteorder,
1767                     rwa->or_salt, rwa->or_iv, rwa->or_mac, tx);
1768
1769                 dmu_buf_rele(db, FTAG);
1770
1771                 rwa->or_crypt_params_present = B_FALSE;
1772         }
1773
1774         dmu_object_set_checksum(rwa->os, drro->drr_object,
1775             drro->drr_checksumtype, tx);
1776         dmu_object_set_compress(rwa->os, drro->drr_object,
1777             drro->drr_compress, tx);
1778
1779         /* handle more restrictive dnode structuring for raw recvs */
1780         if (rwa->raw) {
1781                 /*
1782                  * Set the indirect block size, block shift, nlevels.
1783                  * This will not fail because we ensured all of the
1784                  * blocks were freed earlier if this is a new object.
1785                  * For non-new objects block size and indirect block
1786                  * shift cannot change and nlevels can only increase.
1787                  */
1788                 ASSERT3U(new_blksz, ==, drro->drr_blksz);
1789                 VERIFY0(dmu_object_set_blocksize(rwa->os, drro->drr_object,
1790                     drro->drr_blksz, drro->drr_indblkshift, tx));
1791                 VERIFY0(dmu_object_set_nlevels(rwa->os, drro->drr_object,
1792                     drro->drr_nlevels, tx));
1793
1794                 /*
1795                  * Set the maxblkid. This will always succeed because
1796                  * we freed all blocks beyond the new maxblkid above.
1797                  */
1798                 VERIFY0(dmu_object_set_maxblkid(rwa->os, drro->drr_object,
1799                     drro->drr_maxblkid, tx));
1800         }
1801
1802         if (data != NULL) {
1803                 dmu_buf_t *db;
1804                 dnode_t *dn;
1805                 uint32_t flags = DMU_READ_NO_PREFETCH;
1806
1807                 if (rwa->raw)
1808                         flags |= DMU_READ_NO_DECRYPT;
1809
1810                 VERIFY0(dnode_hold(rwa->os, drro->drr_object, FTAG, &dn));
1811                 VERIFY0(dmu_bonus_hold_by_dnode(dn, FTAG, &db, flags));
1812
1813                 dmu_buf_will_dirty(db, tx);
1814
1815                 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
1816                 bcopy(data, db->db_data, DRR_OBJECT_PAYLOAD_SIZE(drro));
1817
1818                 /*
1819                  * Raw bonus buffers have their byteorder determined by the
1820                  * DRR_OBJECT_RANGE record.
1821                  */
1822                 if (rwa->byteswap && !rwa->raw) {
1823                         dmu_object_byteswap_t byteswap =
1824                             DMU_OT_BYTESWAP(drro->drr_bonustype);
1825                         dmu_ot_byteswap[byteswap].ob_func(db->db_data,
1826                             DRR_OBJECT_PAYLOAD_SIZE(drro));
1827                 }
1828                 dmu_buf_rele(db, FTAG);
1829                 dnode_rele(dn, FTAG);
1830         }
1831         dmu_tx_commit(tx);
1832
1833         return (0);
1834 }
1835
1836 /* ARGSUSED */
1837 noinline static int
1838 receive_freeobjects(struct receive_writer_arg *rwa,
1839     struct drr_freeobjects *drrfo)
1840 {
1841         uint64_t obj;
1842         int next_err = 0;
1843
1844         if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
1845                 return (SET_ERROR(EINVAL));
1846
1847         for (obj = drrfo->drr_firstobj == 0 ? 1 : drrfo->drr_firstobj;
1848             obj < drrfo->drr_firstobj + drrfo->drr_numobjs &&
1849             obj < DN_MAX_OBJECT && next_err == 0;
1850             next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
1851                 dmu_object_info_t doi;
1852                 int err;
1853
1854                 err = dmu_object_info(rwa->os, obj, &doi);
1855                 if (err == ENOENT)
1856                         continue;
1857                 else if (err != 0)
1858                         return (err);
1859
1860                 err = dmu_free_long_object(rwa->os, obj);
1861
1862                 if (err != 0)
1863                         return (err);
1864         }
1865         if (next_err != ESRCH)
1866                 return (next_err);
1867         return (0);
1868 }
1869
1870 /*
1871  * Note: if this fails, the caller will clean up any records left on the
1872  * rwa->write_batch list.
1873  */
1874 static int
1875 flush_write_batch_impl(struct receive_writer_arg *rwa)
1876 {
1877         dnode_t *dn;
1878         int err;
1879
1880         if (dnode_hold(rwa->os, rwa->last_object, FTAG, &dn) != 0)
1881                 return (SET_ERROR(EINVAL));
1882
1883         struct receive_record_arg *last_rrd = list_tail(&rwa->write_batch);
1884         struct drr_write *last_drrw = &last_rrd->header.drr_u.drr_write;
1885
1886         struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
1887         struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
1888
1889         ASSERT3U(rwa->last_object, ==, last_drrw->drr_object);
1890         ASSERT3U(rwa->last_offset, ==, last_drrw->drr_offset);
1891
1892         dmu_tx_t *tx = dmu_tx_create(rwa->os);
1893         dmu_tx_hold_write_by_dnode(tx, dn, first_drrw->drr_offset,
1894             last_drrw->drr_offset - first_drrw->drr_offset +
1895             last_drrw->drr_logical_size);
1896         err = dmu_tx_assign(tx, TXG_WAIT);
1897         if (err != 0) {
1898                 dmu_tx_abort(tx);
1899                 dnode_rele(dn, FTAG);
1900                 return (err);
1901         }
1902
1903         struct receive_record_arg *rrd;
1904         while ((rrd = list_head(&rwa->write_batch)) != NULL) {
1905                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
1906                 arc_buf_t *abuf = rrd->arc_buf;
1907
1908                 ASSERT3U(drrw->drr_object, ==, rwa->last_object);
1909
1910                 if (rwa->byteswap && !arc_is_encrypted(abuf) &&
1911                     arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
1912                         dmu_object_byteswap_t byteswap =
1913                             DMU_OT_BYTESWAP(drrw->drr_type);
1914                         dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
1915                             DRR_WRITE_PAYLOAD_SIZE(drrw));
1916                 }
1917
1918                 /*
1919                  * If we are receiving an incremental large-block stream into
1920                  * a dataset that previously did a non-large-block receive,
1921                  * the WRITE record may be larger than the object's block
1922                  * size.  dmu_assign_arcbuf_by_dnode() handles this as long
1923                  * as the arcbuf is not compressed, so decompress it here if
1924                  * necessary.
1925                  */
1926                 if (drrw->drr_logical_size != dn->dn_datablksz &&
1927                     arc_get_compression(abuf) != ZIO_COMPRESS_OFF) {
1928                         ASSERT3U(drrw->drr_logical_size, >, dn->dn_datablksz);
1929                         zbookmark_phys_t zb = {
1930                                 .zb_objset = dmu_objset_id(rwa->os),
1931                                 .zb_object = rwa->last_object,
1932                                 .zb_level = 0,
1933                                 .zb_blkid =
1934                                     drrw->drr_offset >> dn->dn_datablkshift,
1935                         };
1936
1937                         /*
1938                          * The size of loaned arc bufs is counted in
1939                          * arc_loaned_bytes.  When we untransform
1940                          * (decompress) the buf, its size increases.  To
1941                          * ensure that arc_loaned_bytes remains accurate, we
1942                          * need to return (un-loan) the buf (with its
1943                          * compressed size) and then re-loan it (with its
1944                          * new, uncompressed size).
1945                          */
1946                         arc_return_buf(abuf, FTAG);
1947                         VERIFY0(arc_untransform(abuf, dmu_objset_spa(rwa->os),
1948                             &zb, B_FALSE));
1949                         arc_loan_inuse_buf(abuf, FTAG);
1950                 }
1951
1952                 err = dmu_assign_arcbuf_by_dnode(dn,
1953                     drrw->drr_offset, abuf, tx);
1954                 if (err != 0) {
1955                         /*
1956                          * This rrd is left on the list, so the caller will
1957                          * free it (and the arc_buf).
1958                          */
1959                         break;
1960                 }
1961
1962                 /*
1963                  * Note: If the receive fails, we want the resume stream to
1964                  * start with the same record that we last successfully
1965                  * received (as opposed to the next record), so that we can
1966                  * verify that we are resuming from the correct location.
1967                  */
1968                 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
1969
1970                 list_remove(&rwa->write_batch, rrd);
1971                 kmem_free(rrd, sizeof (*rrd));
1972         }
1973
1974         dmu_tx_commit(tx);
1975         dnode_rele(dn, FTAG);
1976         return (err);
1977 }
1978
1979 noinline static int
1980 flush_write_batch(struct receive_writer_arg *rwa)
1981 {
1982         if (list_is_empty(&rwa->write_batch))
1983                 return (0);
1984         int err = rwa->err;
1985         if (err == 0)
1986                 err = flush_write_batch_impl(rwa);
1987         if (err != 0) {
1988                 struct receive_record_arg *rrd;
1989                 while ((rrd = list_remove_head(&rwa->write_batch)) != NULL) {
1990                         dmu_return_arcbuf(rrd->arc_buf);
1991                         kmem_free(rrd, sizeof (*rrd));
1992                 }
1993         }
1994         ASSERT(list_is_empty(&rwa->write_batch));
1995         return (err);
1996 }
1997
1998 noinline static int
1999 receive_process_write_record(struct receive_writer_arg *rwa,
2000     struct receive_record_arg *rrd)
2001 {
2002         int err = 0;
2003
2004         ASSERT3U(rrd->header.drr_type, ==, DRR_WRITE);
2005         struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2006
2007         if (drrw->drr_offset + drrw->drr_logical_size < drrw->drr_offset ||
2008             !DMU_OT_IS_VALID(drrw->drr_type))
2009                 return (SET_ERROR(EINVAL));
2010
2011         /*
2012          * For resuming to work, records must be in increasing order
2013          * by (object, offset).
2014          */
2015         if (drrw->drr_object < rwa->last_object ||
2016             (drrw->drr_object == rwa->last_object &&
2017             drrw->drr_offset < rwa->last_offset)) {
2018                 return (SET_ERROR(EINVAL));
2019         }
2020
2021         struct receive_record_arg *first_rrd = list_head(&rwa->write_batch);
2022         struct drr_write *first_drrw = &first_rrd->header.drr_u.drr_write;
2023         uint64_t batch_size =
2024             MIN(zfs_recv_write_batch_size, DMU_MAX_ACCESS / 2);
2025         if (first_rrd != NULL &&
2026             (drrw->drr_object != first_drrw->drr_object ||
2027             drrw->drr_offset >= first_drrw->drr_offset + batch_size)) {
2028                 err = flush_write_batch(rwa);
2029                 if (err != 0)
2030                         return (err);
2031         }
2032
2033         rwa->last_object = drrw->drr_object;
2034         rwa->last_offset = drrw->drr_offset;
2035
2036         if (rwa->last_object > rwa->max_object)
2037                 rwa->max_object = rwa->last_object;
2038
2039         list_insert_tail(&rwa->write_batch, rrd);
2040         /*
2041          * Return EAGAIN to indicate that we will use this rrd again,
2042          * so the caller should not free it
2043          */
2044         return (EAGAIN);
2045 }
2046
2047 static int
2048 receive_write_embedded(struct receive_writer_arg *rwa,
2049     struct drr_write_embedded *drrwe, void *data)
2050 {
2051         dmu_tx_t *tx;
2052         int err;
2053
2054         if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2055                 return (SET_ERROR(EINVAL));
2056
2057         if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2058                 return (SET_ERROR(EINVAL));
2059
2060         if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2061                 return (SET_ERROR(EINVAL));
2062         if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2063                 return (SET_ERROR(EINVAL));
2064         if (rwa->raw)
2065                 return (SET_ERROR(EINVAL));
2066
2067         if (drrwe->drr_object > rwa->max_object)
2068                 rwa->max_object = drrwe->drr_object;
2069
2070         tx = dmu_tx_create(rwa->os);
2071
2072         dmu_tx_hold_write(tx, drrwe->drr_object,
2073             drrwe->drr_offset, drrwe->drr_length);
2074         err = dmu_tx_assign(tx, TXG_WAIT);
2075         if (err != 0) {
2076                 dmu_tx_abort(tx);
2077                 return (err);
2078         }
2079
2080         dmu_write_embedded(rwa->os, drrwe->drr_object,
2081             drrwe->drr_offset, data, drrwe->drr_etype,
2082             drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2083             rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2084
2085         /* See comment in restore_write. */
2086         save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2087         dmu_tx_commit(tx);
2088         return (0);
2089 }
2090
2091 static int
2092 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2093     arc_buf_t *abuf)
2094 {
2095         dmu_tx_t *tx;
2096         dmu_buf_t *db, *db_spill;
2097         int err;
2098
2099         if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2100             drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2101                 return (SET_ERROR(EINVAL));
2102
2103         /*
2104          * This is an unmodified spill block which was added to the stream
2105          * to resolve an issue with incorrectly removing spill blocks.  It
2106          * should be ignored by current versions of the code which support
2107          * the DRR_FLAG_SPILL_BLOCK flag.
2108          */
2109         if (rwa->spill && DRR_SPILL_IS_UNMODIFIED(drrs->drr_flags)) {
2110                 dmu_return_arcbuf(abuf);
2111                 return (0);
2112         }
2113
2114         if (rwa->raw) {
2115                 if (!DMU_OT_IS_VALID(drrs->drr_type) ||
2116                     drrs->drr_compressiontype >= ZIO_COMPRESS_FUNCTIONS ||
2117                     drrs->drr_compressed_size == 0)
2118                         return (SET_ERROR(EINVAL));
2119         }
2120
2121         if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2122                 return (SET_ERROR(EINVAL));
2123
2124         if (drrs->drr_object > rwa->max_object)
2125                 rwa->max_object = drrs->drr_object;
2126
2127         VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2128         if ((err = dmu_spill_hold_by_bonus(db, DMU_READ_NO_DECRYPT, FTAG,
2129             &db_spill)) != 0) {
2130                 dmu_buf_rele(db, FTAG);
2131                 return (err);
2132         }
2133
2134         tx = dmu_tx_create(rwa->os);
2135
2136         dmu_tx_hold_spill(tx, db->db_object);
2137
2138         err = dmu_tx_assign(tx, TXG_WAIT);
2139         if (err != 0) {
2140                 dmu_buf_rele(db, FTAG);
2141                 dmu_buf_rele(db_spill, FTAG);
2142                 dmu_tx_abort(tx);
2143                 return (err);
2144         }
2145
2146         /*
2147          * Spill blocks may both grow and shrink.  When a change in size
2148          * occurs any existing dbuf must be updated to match the logical
2149          * size of the provided arc_buf_t.
2150          */
2151         if (db_spill->db_size != drrs->drr_length) {
2152                 dmu_buf_will_fill(db_spill, tx);
2153                 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2154                     drrs->drr_length, tx));
2155         }
2156
2157         if (rwa->byteswap && !arc_is_encrypted(abuf) &&
2158             arc_get_compression(abuf) == ZIO_COMPRESS_OFF) {
2159                 dmu_object_byteswap_t byteswap =
2160                     DMU_OT_BYTESWAP(drrs->drr_type);
2161                 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2162                     DRR_SPILL_PAYLOAD_SIZE(drrs));
2163         }
2164
2165         dbuf_assign_arcbuf((dmu_buf_impl_t *)db_spill, abuf, tx);
2166
2167         dmu_buf_rele(db, FTAG);
2168         dmu_buf_rele(db_spill, FTAG);
2169
2170         dmu_tx_commit(tx);
2171         return (0);
2172 }
2173
2174 /* ARGSUSED */
2175 noinline static int
2176 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2177 {
2178         int err;
2179
2180         if (drrf->drr_length != -1ULL &&
2181             drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2182                 return (SET_ERROR(EINVAL));
2183
2184         if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2185                 return (SET_ERROR(EINVAL));
2186
2187         if (drrf->drr_object > rwa->max_object)
2188                 rwa->max_object = drrf->drr_object;
2189
2190         err = dmu_free_long_range(rwa->os, drrf->drr_object,
2191             drrf->drr_offset, drrf->drr_length);
2192
2193         return (err);
2194 }
2195
2196 static int
2197 receive_object_range(struct receive_writer_arg *rwa,
2198     struct drr_object_range *drror)
2199 {
2200         /*
2201          * By default, we assume this block is in our native format
2202          * (ZFS_HOST_BYTEORDER). We then take into account whether
2203          * the send stream is byteswapped (rwa->byteswap). Finally,
2204          * we need to byteswap again if this particular block was
2205          * in non-native format on the send side.
2206          */
2207         boolean_t byteorder = ZFS_HOST_BYTEORDER ^ rwa->byteswap ^
2208             !!DRR_IS_RAW_BYTESWAPPED(drror->drr_flags);
2209
2210         /*
2211          * Since dnode block sizes are constant, we should not need to worry
2212          * about making sure that the dnode block size is the same on the
2213          * sending and receiving sides for the time being. For non-raw sends,
2214          * this does not matter (and in fact we do not send a DRR_OBJECT_RANGE
2215          * record at all). Raw sends require this record type because the
2216          * encryption parameters are used to protect an entire block of bonus
2217          * buffers. If the size of dnode blocks ever becomes variable,
2218          * handling will need to be added to ensure that dnode block sizes
2219          * match on the sending and receiving side.
2220          */
2221         if (drror->drr_numslots != DNODES_PER_BLOCK ||
2222             P2PHASE(drror->drr_firstobj, DNODES_PER_BLOCK) != 0 ||
2223             !rwa->raw)
2224                 return (SET_ERROR(EINVAL));
2225
2226         if (drror->drr_firstobj > rwa->max_object)
2227                 rwa->max_object = drror->drr_firstobj;
2228
2229         /*
2230          * The DRR_OBJECT_RANGE handling must be deferred to receive_object()
2231          * so that the block of dnodes is not written out when it's empty,
2232          * and converted to a HOLE BP.
2233          */
2234         rwa->or_crypt_params_present = B_TRUE;
2235         rwa->or_firstobj = drror->drr_firstobj;
2236         rwa->or_numslots = drror->drr_numslots;
2237         bcopy(drror->drr_salt, rwa->or_salt, ZIO_DATA_SALT_LEN);
2238         bcopy(drror->drr_iv, rwa->or_iv, ZIO_DATA_IV_LEN);
2239         bcopy(drror->drr_mac, rwa->or_mac, ZIO_DATA_MAC_LEN);
2240         rwa->or_byteorder = byteorder;
2241
2242         return (0);
2243 }
2244
2245 /*
2246  * Until we have the ability to redact large ranges of data efficiently, we
2247  * process these records as frees.
2248  */
2249 /* ARGSUSED */
2250 noinline static int
2251 receive_redact(struct receive_writer_arg *rwa, struct drr_redact *drrr)
2252 {
2253         struct drr_free drrf = {0};
2254         drrf.drr_length = drrr->drr_length;
2255         drrf.drr_object = drrr->drr_object;
2256         drrf.drr_offset = drrr->drr_offset;
2257         drrf.drr_toguid = drrr->drr_toguid;
2258         return (receive_free(rwa, &drrf));
2259 }
2260
2261 /* used to destroy the drc_ds on error */
2262 static void
2263 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2264 {
2265         dsl_dataset_t *ds = drc->drc_ds;
2266         ds_hold_flags_t dsflags = (drc->drc_raw) ? 0 : DS_HOLD_FLAG_DECRYPT;
2267
2268         /*
2269          * Wait for the txg sync before cleaning up the receive. For
2270          * resumable receives, this ensures that our resume state has
2271          * been written out to disk. For raw receives, this ensures
2272          * that the user accounting code will not attempt to do anything
2273          * after we stopped receiving the dataset.
2274          */
2275         txg_wait_synced(ds->ds_dir->dd_pool, 0);
2276         ds->ds_objset->os_raw_receive = B_FALSE;
2277
2278         rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2279         if (drc->drc_resumable && drc->drc_should_save &&
2280             !BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2281                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2282                 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2283         } else {
2284                 char name[ZFS_MAX_DATASET_NAME_LEN];
2285                 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2286                 dsl_dataset_name(ds, name);
2287                 dsl_dataset_disown(ds, dsflags, dmu_recv_tag);
2288                 (void) dsl_destroy_head(name);
2289         }
2290 }
2291
2292 static void
2293 receive_cksum(dmu_recv_cookie_t *drc, int len, void *buf)
2294 {
2295         if (drc->drc_byteswap) {
2296                 (void) fletcher_4_incremental_byteswap(buf, len,
2297                     &drc->drc_cksum);
2298         } else {
2299                 (void) fletcher_4_incremental_native(buf, len, &drc->drc_cksum);
2300         }
2301 }
2302
2303 /*
2304  * Read the payload into a buffer of size len, and update the current record's
2305  * payload field.
2306  * Allocate drc->drc_next_rrd and read the next record's header into
2307  * drc->drc_next_rrd->header.
2308  * Verify checksum of payload and next record.
2309  */
2310 static int
2311 receive_read_payload_and_next_header(dmu_recv_cookie_t *drc, int len, void *buf)
2312 {
2313         int err;
2314
2315         if (len != 0) {
2316                 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2317                 err = receive_read(drc, len, buf);
2318                 if (err != 0)
2319                         return (err);
2320                 receive_cksum(drc, len, buf);
2321
2322                 /* note: rrd is NULL when reading the begin record's payload */
2323                 if (drc->drc_rrd != NULL) {
2324                         drc->drc_rrd->payload = buf;
2325                         drc->drc_rrd->payload_size = len;
2326                         drc->drc_rrd->bytes_read = drc->drc_bytes_read;
2327                 }
2328         } else {
2329                 ASSERT3P(buf, ==, NULL);
2330         }
2331
2332         drc->drc_prev_cksum = drc->drc_cksum;
2333
2334         drc->drc_next_rrd = kmem_zalloc(sizeof (*drc->drc_next_rrd), KM_SLEEP);
2335         err = receive_read(drc, sizeof (drc->drc_next_rrd->header),
2336             &drc->drc_next_rrd->header);
2337         drc->drc_next_rrd->bytes_read = drc->drc_bytes_read;
2338
2339         if (err != 0) {
2340                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2341                 drc->drc_next_rrd = NULL;
2342                 return (err);
2343         }
2344         if (drc->drc_next_rrd->header.drr_type == DRR_BEGIN) {
2345                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2346                 drc->drc_next_rrd = NULL;
2347                 return (SET_ERROR(EINVAL));
2348         }
2349
2350         /*
2351          * Note: checksum is of everything up to but not including the
2352          * checksum itself.
2353          */
2354         ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2355             ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2356         receive_cksum(drc,
2357             offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2358             &drc->drc_next_rrd->header);
2359
2360         zio_cksum_t cksum_orig =
2361             drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2362         zio_cksum_t *cksump =
2363             &drc->drc_next_rrd->header.drr_u.drr_checksum.drr_checksum;
2364
2365         if (drc->drc_byteswap)
2366                 byteswap_record(&drc->drc_next_rrd->header);
2367
2368         if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2369             !ZIO_CHECKSUM_EQUAL(drc->drc_cksum, *cksump)) {
2370                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
2371                 drc->drc_next_rrd = NULL;
2372                 return (SET_ERROR(ECKSUM));
2373         }
2374
2375         receive_cksum(drc, sizeof (cksum_orig), &cksum_orig);
2376
2377         return (0);
2378 }
2379
2380 /*
2381  * Issue the prefetch reads for any necessary indirect blocks.
2382  *
2383  * We use the object ignore list to tell us whether or not to issue prefetches
2384  * for a given object.  We do this for both correctness (in case the blocksize
2385  * of an object has changed) and performance (if the object doesn't exist, don't
2386  * needlessly try to issue prefetches).  We also trim the list as we go through
2387  * the stream to prevent it from growing to an unbounded size.
2388  *
2389  * The object numbers within will always be in sorted order, and any write
2390  * records we see will also be in sorted order, but they're not sorted with
2391  * respect to each other (i.e. we can get several object records before
2392  * receiving each object's write records).  As a result, once we've reached a
2393  * given object number, we can safely remove any reference to lower object
2394  * numbers in the ignore list. In practice, we receive up to 32 object records
2395  * before receiving write records, so the list can have up to 32 nodes in it.
2396  */
2397 /* ARGSUSED */
2398 static void
2399 receive_read_prefetch(dmu_recv_cookie_t *drc, uint64_t object, uint64_t offset,
2400     uint64_t length)
2401 {
2402         if (!objlist_exists(drc->drc_ignore_objlist, object)) {
2403                 dmu_prefetch(drc->drc_os, object, 1, offset, length,
2404                     ZIO_PRIORITY_SYNC_READ);
2405         }
2406 }
2407
2408 /*
2409  * Read records off the stream, issuing any necessary prefetches.
2410  */
2411 static int
2412 receive_read_record(dmu_recv_cookie_t *drc)
2413 {
2414         int err;
2415
2416         switch (drc->drc_rrd->header.drr_type) {
2417         case DRR_OBJECT:
2418         {
2419                 struct drr_object *drro =
2420                     &drc->drc_rrd->header.drr_u.drr_object;
2421                 uint32_t size = DRR_OBJECT_PAYLOAD_SIZE(drro);
2422                 void *buf = NULL;
2423                 dmu_object_info_t doi;
2424
2425                 if (size != 0)
2426                         buf = kmem_zalloc(size, KM_SLEEP);
2427
2428                 err = receive_read_payload_and_next_header(drc, size, buf);
2429                 if (err != 0) {
2430                         kmem_free(buf, size);
2431                         return (err);
2432                 }
2433                 err = dmu_object_info(drc->drc_os, drro->drr_object, &doi);
2434                 /*
2435                  * See receive_read_prefetch for an explanation why we're
2436                  * storing this object in the ignore_obj_list.
2437                  */
2438                 if (err == ENOENT || err == EEXIST ||
2439                     (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2440                         objlist_insert(drc->drc_ignore_objlist,
2441                             drro->drr_object);
2442                         err = 0;
2443                 }
2444                 return (err);
2445         }
2446         case DRR_FREEOBJECTS:
2447         {
2448                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2449                 return (err);
2450         }
2451         case DRR_WRITE:
2452         {
2453                 struct drr_write *drrw = &drc->drc_rrd->header.drr_u.drr_write;
2454                 arc_buf_t *abuf;
2455                 boolean_t is_meta = DMU_OT_IS_METADATA(drrw->drr_type);
2456
2457                 if (drc->drc_raw) {
2458                         boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2459                             !!DRR_IS_RAW_BYTESWAPPED(drrw->drr_flags) ^
2460                             drc->drc_byteswap;
2461
2462                         abuf = arc_loan_raw_buf(dmu_objset_spa(drc->drc_os),
2463                             drrw->drr_object, byteorder, drrw->drr_salt,
2464                             drrw->drr_iv, drrw->drr_mac, drrw->drr_type,
2465                             drrw->drr_compressed_size, drrw->drr_logical_size,
2466                             drrw->drr_compressiontype, 0);
2467                 } else if (DRR_WRITE_COMPRESSED(drrw)) {
2468                         ASSERT3U(drrw->drr_compressed_size, >, 0);
2469                         ASSERT3U(drrw->drr_logical_size, >=,
2470                             drrw->drr_compressed_size);
2471                         ASSERT(!is_meta);
2472                         abuf = arc_loan_compressed_buf(
2473                             dmu_objset_spa(drc->drc_os),
2474                             drrw->drr_compressed_size, drrw->drr_logical_size,
2475                             drrw->drr_compressiontype, 0);
2476                 } else {
2477                         abuf = arc_loan_buf(dmu_objset_spa(drc->drc_os),
2478                             is_meta, drrw->drr_logical_size);
2479                 }
2480
2481                 err = receive_read_payload_and_next_header(drc,
2482                     DRR_WRITE_PAYLOAD_SIZE(drrw), abuf->b_data);
2483                 if (err != 0) {
2484                         dmu_return_arcbuf(abuf);
2485                         return (err);
2486                 }
2487                 drc->drc_rrd->arc_buf = abuf;
2488                 receive_read_prefetch(drc, drrw->drr_object, drrw->drr_offset,
2489                     drrw->drr_logical_size);
2490                 return (err);
2491         }
2492         case DRR_WRITE_BYREF:
2493         {
2494                 struct drr_write_byref *drrwb =
2495                     &drc->drc_rrd->header.drr_u.drr_write_byref;
2496                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2497                 receive_read_prefetch(drc, drrwb->drr_object, drrwb->drr_offset,
2498                     drrwb->drr_length);
2499                 return (err);
2500         }
2501         case DRR_WRITE_EMBEDDED:
2502         {
2503                 struct drr_write_embedded *drrwe =
2504                     &drc->drc_rrd->header.drr_u.drr_write_embedded;
2505                 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2506                 void *buf = kmem_zalloc(size, KM_SLEEP);
2507
2508                 err = receive_read_payload_and_next_header(drc, size, buf);
2509                 if (err != 0) {
2510                         kmem_free(buf, size);
2511                         return (err);
2512                 }
2513
2514                 receive_read_prefetch(drc, drrwe->drr_object, drrwe->drr_offset,
2515                     drrwe->drr_length);
2516                 return (err);
2517         }
2518         case DRR_FREE:
2519         case DRR_REDACT:
2520         {
2521                 /*
2522                  * It might be beneficial to prefetch indirect blocks here, but
2523                  * we don't really have the data to decide for sure.
2524                  */
2525                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2526                 return (err);
2527         }
2528         case DRR_END:
2529         {
2530                 struct drr_end *drre = &drc->drc_rrd->header.drr_u.drr_end;
2531                 if (!ZIO_CHECKSUM_EQUAL(drc->drc_prev_cksum,
2532                     drre->drr_checksum))
2533                         return (SET_ERROR(ECKSUM));
2534                 return (0);
2535         }
2536         case DRR_SPILL:
2537         {
2538                 struct drr_spill *drrs = &drc->drc_rrd->header.drr_u.drr_spill;
2539                 arc_buf_t *abuf;
2540                 /* DRR_SPILL records are either raw or uncompressed */
2541                 if (drc->drc_raw) {
2542                         boolean_t byteorder = ZFS_HOST_BYTEORDER ^
2543                             !!DRR_IS_RAW_BYTESWAPPED(drrs->drr_flags) ^
2544                             drc->drc_byteswap;
2545
2546                         abuf = arc_loan_raw_buf(dmu_objset_spa(drc->drc_os),
2547                             drrs->drr_object, byteorder, drrs->drr_salt,
2548                             drrs->drr_iv, drrs->drr_mac, drrs->drr_type,
2549                             drrs->drr_compressed_size, drrs->drr_length,
2550                             drrs->drr_compressiontype, 0);
2551                 } else {
2552                         abuf = arc_loan_buf(dmu_objset_spa(drc->drc_os),
2553                             DMU_OT_IS_METADATA(drrs->drr_type),
2554                             drrs->drr_length);
2555                 }
2556                 err = receive_read_payload_and_next_header(drc,
2557                     DRR_SPILL_PAYLOAD_SIZE(drrs), abuf->b_data);
2558                 if (err != 0)
2559                         dmu_return_arcbuf(abuf);
2560                 else
2561                         drc->drc_rrd->arc_buf = abuf;
2562                 return (err);
2563         }
2564         case DRR_OBJECT_RANGE:
2565         {
2566                 err = receive_read_payload_and_next_header(drc, 0, NULL);
2567                 return (err);
2568
2569         }
2570         default:
2571                 return (SET_ERROR(EINVAL));
2572         }
2573 }
2574
2575
2576
2577 static void
2578 dprintf_drr(struct receive_record_arg *rrd, int err)
2579 {
2580 #ifdef ZFS_DEBUG
2581         switch (rrd->header.drr_type) {
2582         case DRR_OBJECT:
2583         {
2584                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2585                 dprintf("drr_type = OBJECT obj = %llu type = %u "
2586                     "bonustype = %u blksz = %u bonuslen = %u cksumtype = %u "
2587                     "compress = %u dn_slots = %u err = %d\n",
2588                     drro->drr_object, drro->drr_type,  drro->drr_bonustype,
2589                     drro->drr_blksz, drro->drr_bonuslen,
2590                     drro->drr_checksumtype, drro->drr_compress,
2591                     drro->drr_dn_slots, err);
2592                 break;
2593         }
2594         case DRR_FREEOBJECTS:
2595         {
2596                 struct drr_freeobjects *drrfo =
2597                     &rrd->header.drr_u.drr_freeobjects;
2598                 dprintf("drr_type = FREEOBJECTS firstobj = %llu "
2599                     "numobjs = %llu err = %d\n",
2600                     drrfo->drr_firstobj, drrfo->drr_numobjs, err);
2601                 break;
2602         }
2603         case DRR_WRITE:
2604         {
2605                 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2606                 dprintf("drr_type = WRITE obj = %llu type = %u offset = %llu "
2607                     "lsize = %llu cksumtype = %u flags = %u "
2608                     "compress = %u psize = %llu err = %d\n",
2609                     drrw->drr_object, drrw->drr_type, drrw->drr_offset,
2610                     drrw->drr_logical_size, drrw->drr_checksumtype,
2611                     drrw->drr_flags, drrw->drr_compressiontype,
2612                     drrw->drr_compressed_size, err);
2613                 break;
2614         }
2615         case DRR_WRITE_BYREF:
2616         {
2617                 struct drr_write_byref *drrwbr =
2618                     &rrd->header.drr_u.drr_write_byref;
2619                 dprintf("drr_type = WRITE_BYREF obj = %llu offset = %llu "
2620                     "length = %llu toguid = %llx refguid = %llx "
2621                     "refobject = %llu refoffset = %llu cksumtype = %u "
2622                     "flags = %u err = %d\n",
2623                     drrwbr->drr_object, drrwbr->drr_offset,
2624                     drrwbr->drr_length, drrwbr->drr_toguid,
2625                     drrwbr->drr_refguid, drrwbr->drr_refobject,
2626                     drrwbr->drr_refoffset, drrwbr->drr_checksumtype,
2627                     drrwbr->drr_flags, err);
2628                 break;
2629         }
2630         case DRR_WRITE_EMBEDDED:
2631         {
2632                 struct drr_write_embedded *drrwe =
2633                     &rrd->header.drr_u.drr_write_embedded;
2634                 dprintf("drr_type = WRITE_EMBEDDED obj = %llu offset = %llu "
2635                     "length = %llu compress = %u etype = %u lsize = %u "
2636                     "psize = %u err = %d\n",
2637                     drrwe->drr_object, drrwe->drr_offset, drrwe->drr_length,
2638                     drrwe->drr_compression, drrwe->drr_etype,
2639                     drrwe->drr_lsize, drrwe->drr_psize, err);
2640                 break;
2641         }
2642         case DRR_FREE:
2643         {
2644                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2645                 dprintf("drr_type = FREE obj = %llu offset = %llu "
2646                     "length = %lld err = %d\n",
2647                     drrf->drr_object, drrf->drr_offset, drrf->drr_length,
2648                     err);
2649                 break;
2650         }
2651         case DRR_SPILL:
2652         {
2653                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2654                 dprintf("drr_type = SPILL obj = %llu length = %llu "
2655                     "err = %d\n", drrs->drr_object, drrs->drr_length, err);
2656                 break;
2657         }
2658         case DRR_OBJECT_RANGE:
2659         {
2660                 struct drr_object_range *drror =
2661                     &rrd->header.drr_u.drr_object_range;
2662                 dprintf("drr_type = OBJECT_RANGE firstobj = %llu "
2663                     "numslots = %llu flags = %u err = %d\n",
2664                     drror->drr_firstobj, drror->drr_numslots,
2665                     drror->drr_flags, err);
2666                 break;
2667         }
2668         default:
2669                 return;
2670         }
2671 #endif
2672 }
2673
2674 /*
2675  * Commit the records to the pool.
2676  */
2677 static int
2678 receive_process_record(struct receive_writer_arg *rwa,
2679     struct receive_record_arg *rrd)
2680 {
2681         int err;
2682
2683         /* Processing in order, therefore bytes_read should be increasing. */
2684         ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2685         rwa->bytes_read = rrd->bytes_read;
2686
2687         if (rrd->header.drr_type != DRR_WRITE) {
2688                 err = flush_write_batch(rwa);
2689                 if (err != 0) {
2690                         if (rrd->arc_buf != NULL) {
2691                                 dmu_return_arcbuf(rrd->arc_buf);
2692                                 rrd->arc_buf = NULL;
2693                                 rrd->payload = NULL;
2694                         } else if (rrd->payload != NULL) {
2695                                 kmem_free(rrd->payload, rrd->payload_size);
2696                                 rrd->payload = NULL;
2697                         }
2698
2699                         return (err);
2700                 }
2701         }
2702
2703         switch (rrd->header.drr_type) {
2704         case DRR_OBJECT:
2705         {
2706                 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2707                 err = receive_object(rwa, drro, rrd->payload);
2708                 kmem_free(rrd->payload, rrd->payload_size);
2709                 rrd->payload = NULL;
2710                 break;
2711         }
2712         case DRR_FREEOBJECTS:
2713         {
2714                 struct drr_freeobjects *drrfo =
2715                     &rrd->header.drr_u.drr_freeobjects;
2716                 err = receive_freeobjects(rwa, drrfo);
2717                 break;
2718         }
2719         case DRR_WRITE:
2720         {
2721                 err = receive_process_write_record(rwa, rrd);
2722                 if (err != EAGAIN) {
2723                         /*
2724                          * On success, receive_process_write_record() returns
2725                          * EAGAIN to indicate that we do not want to free
2726                          * the rrd or arc_buf.
2727                          */
2728                         ASSERT(err != 0);
2729                         dmu_return_arcbuf(rrd->arc_buf);
2730                         rrd->arc_buf = NULL;
2731                 }
2732                 break;
2733         }
2734         case DRR_WRITE_EMBEDDED:
2735         {
2736                 struct drr_write_embedded *drrwe =
2737                     &rrd->header.drr_u.drr_write_embedded;
2738                 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2739                 kmem_free(rrd->payload, rrd->payload_size);
2740                 rrd->payload = NULL;
2741                 break;
2742         }
2743         case DRR_FREE:
2744         {
2745                 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2746                 err = receive_free(rwa, drrf);
2747                 break;
2748         }
2749         case DRR_SPILL:
2750         {
2751                 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2752                 err = receive_spill(rwa, drrs, rrd->arc_buf);
2753                 if (err != 0)
2754                         dmu_return_arcbuf(rrd->arc_buf);
2755                 rrd->arc_buf = NULL;
2756                 rrd->payload = NULL;
2757                 break;
2758         }
2759         case DRR_OBJECT_RANGE:
2760         {
2761                 struct drr_object_range *drror =
2762                     &rrd->header.drr_u.drr_object_range;
2763                 err = receive_object_range(rwa, drror);
2764                 break;
2765         }
2766         case DRR_REDACT:
2767         {
2768                 struct drr_redact *drrr = &rrd->header.drr_u.drr_redact;
2769                 err = receive_redact(rwa, drrr);
2770                 break;
2771         }
2772         default:
2773                 err = (SET_ERROR(EINVAL));
2774         }
2775
2776         if (err != 0)
2777                 dprintf_drr(rrd, err);
2778
2779         return (err);
2780 }
2781
2782 /*
2783  * dmu_recv_stream's worker thread; pull records off the queue, and then call
2784  * receive_process_record  When we're done, signal the main thread and exit.
2785  */
2786 static void
2787 receive_writer_thread(void *arg)
2788 {
2789         struct receive_writer_arg *rwa = arg;
2790         struct receive_record_arg *rrd;
2791         fstrans_cookie_t cookie = spl_fstrans_mark();
2792
2793         for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2794             rrd = bqueue_dequeue(&rwa->q)) {
2795                 /*
2796                  * If there's an error, the main thread will stop putting things
2797                  * on the queue, but we need to clear everything in it before we
2798                  * can exit.
2799                  */
2800                 int err = 0;
2801                 if (rwa->err == 0) {
2802                         err = receive_process_record(rwa, rrd);
2803                 } else if (rrd->arc_buf != NULL) {
2804                         dmu_return_arcbuf(rrd->arc_buf);
2805                         rrd->arc_buf = NULL;
2806                         rrd->payload = NULL;
2807                 } else if (rrd->payload != NULL) {
2808                         kmem_free(rrd->payload, rrd->payload_size);
2809                         rrd->payload = NULL;
2810                 }
2811                 /*
2812                  * EAGAIN indicates that this record has been saved (on
2813                  * raw->write_batch), and will be used again, so we don't
2814                  * free it.
2815                  */
2816                 if (err != EAGAIN) {
2817                         if (rwa->err == 0)
2818                                 rwa->err = err;
2819                         kmem_free(rrd, sizeof (*rrd));
2820                 }
2821         }
2822         kmem_free(rrd, sizeof (*rrd));
2823
2824         int err = flush_write_batch(rwa);
2825         if (rwa->err == 0)
2826                 rwa->err = err;
2827
2828         mutex_enter(&rwa->mutex);
2829         rwa->done = B_TRUE;
2830         cv_signal(&rwa->cv);
2831         mutex_exit(&rwa->mutex);
2832         spl_fstrans_unmark(cookie);
2833         thread_exit();
2834 }
2835
2836 static int
2837 resume_check(dmu_recv_cookie_t *drc, nvlist_t *begin_nvl)
2838 {
2839         uint64_t val;
2840         objset_t *mos = dmu_objset_pool(drc->drc_os)->dp_meta_objset;
2841         uint64_t dsobj = dmu_objset_id(drc->drc_os);
2842         uint64_t resume_obj, resume_off;
2843
2844         if (nvlist_lookup_uint64(begin_nvl,
2845             "resume_object", &resume_obj) != 0 ||
2846             nvlist_lookup_uint64(begin_nvl,
2847             "resume_offset", &resume_off) != 0) {
2848                 return (SET_ERROR(EINVAL));
2849         }
2850         VERIFY0(zap_lookup(mos, dsobj,
2851             DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2852         if (resume_obj != val)
2853                 return (SET_ERROR(EINVAL));
2854         VERIFY0(zap_lookup(mos, dsobj,
2855             DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2856         if (resume_off != val)
2857                 return (SET_ERROR(EINVAL));
2858
2859         return (0);
2860 }
2861
2862 /*
2863  * Read in the stream's records, one by one, and apply them to the pool.  There
2864  * are two threads involved; the thread that calls this function will spin up a
2865  * worker thread, read the records off the stream one by one, and issue
2866  * prefetches for any necessary indirect blocks.  It will then push the records
2867  * onto an internal blocking queue.  The worker thread will pull the records off
2868  * the queue, and actually write the data into the DMU.  This way, the worker
2869  * thread doesn't have to wait for reads to complete, since everything it needs
2870  * (the indirect blocks) will be prefetched.
2871  *
2872  * NB: callers *must* call dmu_recv_end() if this succeeds.
2873  */
2874 int
2875 dmu_recv_stream(dmu_recv_cookie_t *drc, offset_t *voffp)
2876 {
2877         int err = 0;
2878         struct receive_writer_arg *rwa = kmem_zalloc(sizeof (*rwa), KM_SLEEP);
2879
2880         if (dsl_dataset_is_zapified(drc->drc_ds)) {
2881                 uint64_t bytes;
2882                 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2883                     drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2884                     sizeof (bytes), 1, &bytes);
2885                 drc->drc_bytes_read += bytes;
2886         }
2887
2888         drc->drc_ignore_objlist = objlist_create();
2889
2890         /* these were verified in dmu_recv_begin */
2891         ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2892             DMU_SUBSTREAM);
2893         ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2894
2895         ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2896         ASSERT0(drc->drc_os->os_encrypted &&
2897             (drc->drc_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA));
2898
2899         /* handle DSL encryption key payload */
2900         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RAW) {
2901                 nvlist_t *keynvl = NULL;
2902
2903                 ASSERT(drc->drc_os->os_encrypted);
2904                 ASSERT(drc->drc_raw);
2905
2906                 err = nvlist_lookup_nvlist(drc->drc_begin_nvl, "crypt_keydata",
2907                     &keynvl);
2908                 if (err != 0)
2909                         goto out;
2910
2911                 /*
2912                  * If this is a new dataset we set the key immediately.
2913                  * Otherwise we don't want to change the key until we
2914                  * are sure the rest of the receive succeeded so we stash
2915                  * the keynvl away until then.
2916                  */
2917                 err = dsl_crypto_recv_raw(spa_name(drc->drc_os->os_spa),
2918                     drc->drc_ds->ds_object, drc->drc_fromsnapobj,
2919                     drc->drc_drrb->drr_type, keynvl, drc->drc_newfs);
2920                 if (err != 0)
2921                         goto out;
2922
2923                 /* see comment in dmu_recv_end_sync() */
2924                 drc->drc_ivset_guid = 0;
2925                 (void) nvlist_lookup_uint64(keynvl, "to_ivset_guid",
2926                     &drc->drc_ivset_guid);
2927
2928                 if (!drc->drc_newfs)
2929                         drc->drc_keynvl = fnvlist_dup(keynvl);
2930         }
2931
2932         if (drc->drc_featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2933                 err = resume_check(drc, drc->drc_begin_nvl);
2934                 if (err != 0)
2935                         goto out;
2936         }
2937
2938         /*
2939          * If we failed before this point we will clean up any new resume
2940          * state that was created. Now that we've gotten past the initial
2941          * checks we are ok to retain that resume state.
2942          */
2943         drc->drc_should_save = B_TRUE;
2944
2945         (void) bqueue_init(&rwa->q, zfs_recv_queue_ff,
2946             MAX(zfs_recv_queue_length, 2 * zfs_max_recordsize),
2947             offsetof(struct receive_record_arg, node));
2948         cv_init(&rwa->cv, NULL, CV_DEFAULT, NULL);
2949         mutex_init(&rwa->mutex, NULL, MUTEX_DEFAULT, NULL);
2950         rwa->os = drc->drc_os;
2951         rwa->byteswap = drc->drc_byteswap;
2952         rwa->resumable = drc->drc_resumable;
2953         rwa->raw = drc->drc_raw;
2954         rwa->spill = drc->drc_spill;
2955         rwa->full = (drc->drc_drr_begin->drr_u.drr_begin.drr_fromguid == 0);
2956         rwa->os->os_raw_receive = drc->drc_raw;
2957         list_create(&rwa->write_batch, sizeof (struct receive_record_arg),
2958             offsetof(struct receive_record_arg, node.bqn_node));
2959
2960         (void) thread_create(NULL, 0, receive_writer_thread, rwa, 0, curproc,
2961             TS_RUN, minclsyspri);
2962         /*
2963          * We're reading rwa->err without locks, which is safe since we are the
2964          * only reader, and the worker thread is the only writer.  It's ok if we
2965          * miss a write for an iteration or two of the loop, since the writer
2966          * thread will keep freeing records we send it until we send it an eos
2967          * marker.
2968          *
2969          * We can leave this loop in 3 ways:  First, if rwa->err is
2970          * non-zero.  In that case, the writer thread will free the rrd we just
2971          * pushed.  Second, if  we're interrupted; in that case, either it's the
2972          * first loop and drc->drc_rrd was never allocated, or it's later, and
2973          * drc->drc_rrd has been handed off to the writer thread who will free
2974          * it.  Finally, if receive_read_record fails or we're at the end of the
2975          * stream, then we free drc->drc_rrd and exit.
2976          */
2977         while (rwa->err == 0) {
2978                 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2979                         err = SET_ERROR(EINTR);
2980                         break;
2981                 }
2982
2983                 ASSERT3P(drc->drc_rrd, ==, NULL);
2984                 drc->drc_rrd = drc->drc_next_rrd;
2985                 drc->drc_next_rrd = NULL;
2986                 /* Allocates and loads header into drc->drc_next_rrd */
2987                 err = receive_read_record(drc);
2988
2989                 if (drc->drc_rrd->header.drr_type == DRR_END || err != 0) {
2990                         kmem_free(drc->drc_rrd, sizeof (*drc->drc_rrd));
2991                         drc->drc_rrd = NULL;
2992                         break;
2993                 }
2994
2995                 bqueue_enqueue(&rwa->q, drc->drc_rrd,
2996                     sizeof (struct receive_record_arg) +
2997                     drc->drc_rrd->payload_size);
2998                 drc->drc_rrd = NULL;
2999         }
3000
3001         ASSERT3P(drc->drc_rrd, ==, NULL);
3002         drc->drc_rrd = kmem_zalloc(sizeof (*drc->drc_rrd), KM_SLEEP);
3003         drc->drc_rrd->eos_marker = B_TRUE;
3004         bqueue_enqueue_flush(&rwa->q, drc->drc_rrd, 1);
3005
3006         mutex_enter(&rwa->mutex);
3007         while (!rwa->done) {
3008                 /*
3009                  * We need to use cv_wait_sig() so that any process that may
3010                  * be sleeping here can still fork.
3011                  */
3012                 (void) cv_wait_sig(&rwa->cv, &rwa->mutex);
3013         }
3014         mutex_exit(&rwa->mutex);
3015
3016         /*
3017          * If we are receiving a full stream as a clone, all object IDs which
3018          * are greater than the maximum ID referenced in the stream are
3019          * by definition unused and must be freed.
3020          */
3021         if (drc->drc_clone && drc->drc_drrb->drr_fromguid == 0) {
3022                 uint64_t obj = rwa->max_object + 1;
3023                 int free_err = 0;
3024                 int next_err = 0;
3025
3026                 while (next_err == 0) {
3027                         free_err = dmu_free_long_object(rwa->os, obj);
3028                         if (free_err != 0 && free_err != ENOENT)
3029                                 break;
3030
3031                         next_err = dmu_object_next(rwa->os, &obj, FALSE, 0);
3032                 }
3033
3034                 if (err == 0) {
3035                         if (free_err != 0 && free_err != ENOENT)
3036                                 err = free_err;
3037                         else if (next_err != ESRCH)
3038                                 err = next_err;
3039                 }
3040         }
3041
3042         cv_destroy(&rwa->cv);
3043         mutex_destroy(&rwa->mutex);
3044         bqueue_destroy(&rwa->q);
3045         list_destroy(&rwa->write_batch);
3046         if (err == 0)
3047                 err = rwa->err;
3048
3049 out:
3050         /*
3051          * If we hit an error before we started the receive_writer_thread
3052          * we need to clean up the next_rrd we create by processing the
3053          * DRR_BEGIN record.
3054          */
3055         if (drc->drc_next_rrd != NULL)
3056                 kmem_free(drc->drc_next_rrd, sizeof (*drc->drc_next_rrd));
3057
3058         /*
3059          * The objset will be invalidated by dmu_recv_end() when we do
3060          * dsl_dataset_clone_swap_sync_impl().
3061          */
3062         drc->drc_os = NULL;
3063
3064         kmem_free(rwa, sizeof (*rwa));
3065         nvlist_free(drc->drc_begin_nvl);
3066
3067         if (err != 0) {
3068                 /*
3069                  * Clean up references. If receive is not resumable,
3070                  * destroy what we created, so we don't leave it in
3071                  * the inconsistent state.
3072                  */
3073                 dmu_recv_cleanup_ds(drc);
3074                 nvlist_free(drc->drc_keynvl);
3075         }
3076
3077         objlist_destroy(drc->drc_ignore_objlist);
3078         drc->drc_ignore_objlist = NULL;
3079         *voffp = drc->drc_voff;
3080         return (err);
3081 }
3082
3083 static int
3084 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
3085 {
3086         dmu_recv_cookie_t *drc = arg;
3087         dsl_pool_t *dp = dmu_tx_pool(tx);
3088         int error;
3089
3090         ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
3091
3092         if (!drc->drc_newfs) {
3093                 dsl_dataset_t *origin_head;
3094
3095                 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
3096                 if (error != 0)
3097                         return (error);
3098                 if (drc->drc_force) {
3099                         /*
3100                          * We will destroy any snapshots in tofs (i.e. before
3101                          * origin_head) that are after the origin (which is
3102                          * the snap before drc_ds, because drc_ds can not
3103                          * have any snaps of its own).
3104                          */
3105                         uint64_t obj;
3106
3107                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3108                         while (obj !=
3109                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3110                                 dsl_dataset_t *snap;
3111                                 error = dsl_dataset_hold_obj(dp, obj, FTAG,
3112                                     &snap);
3113                                 if (error != 0)
3114                                         break;
3115                                 if (snap->ds_dir != origin_head->ds_dir)
3116                                         error = SET_ERROR(EINVAL);
3117                                 if (error == 0)  {
3118                                         error = dsl_destroy_snapshot_check_impl(
3119                                             snap, B_FALSE);
3120                                 }
3121                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3122                                 dsl_dataset_rele(snap, FTAG);
3123                                 if (error != 0)
3124                                         break;
3125                         }
3126                         if (error != 0) {
3127                                 dsl_dataset_rele(origin_head, FTAG);
3128                                 return (error);
3129                         }
3130                 }
3131                 if (drc->drc_keynvl != NULL) {
3132                         error = dsl_crypto_recv_raw_key_check(drc->drc_ds,
3133                             drc->drc_keynvl, tx);
3134                         if (error != 0) {
3135                                 dsl_dataset_rele(origin_head, FTAG);
3136                                 return (error);
3137                         }
3138                 }
3139
3140                 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
3141                     origin_head, drc->drc_force, drc->drc_owner, tx);
3142                 if (error != 0) {
3143                         dsl_dataset_rele(origin_head, FTAG);
3144                         return (error);
3145                 }
3146                 error = dsl_dataset_snapshot_check_impl(origin_head,
3147                     drc->drc_tosnap, tx, B_TRUE, 1,
3148                     drc->drc_cred, drc->drc_proc);
3149                 dsl_dataset_rele(origin_head, FTAG);
3150                 if (error != 0)
3151                         return (error);
3152
3153                 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
3154         } else {
3155                 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
3156                     drc->drc_tosnap, tx, B_TRUE, 1,
3157                     drc->drc_cred, drc->drc_proc);
3158         }
3159         return (error);
3160 }
3161
3162 static void
3163 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
3164 {
3165         dmu_recv_cookie_t *drc = arg;
3166         dsl_pool_t *dp = dmu_tx_pool(tx);
3167         boolean_t encrypted = drc->drc_ds->ds_dir->dd_crypto_obj != 0;
3168         uint64_t newsnapobj;
3169
3170         spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
3171             tx, "snap=%s", drc->drc_tosnap);
3172         drc->drc_ds->ds_objset->os_raw_receive = B_FALSE;
3173
3174         if (!drc->drc_newfs) {
3175                 dsl_dataset_t *origin_head;
3176
3177                 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
3178                     &origin_head));
3179
3180                 if (drc->drc_force) {
3181                         /*
3182                          * Destroy any snapshots of drc_tofs (origin_head)
3183                          * after the origin (the snap before drc_ds).
3184                          */
3185                         uint64_t obj;
3186
3187                         obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3188                         while (obj !=
3189                             dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3190                                 dsl_dataset_t *snap;
3191                                 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3192                                     &snap));
3193                                 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3194                                 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3195                                 dsl_destroy_snapshot_sync_impl(snap,
3196                                     B_FALSE, tx);
3197                                 dsl_dataset_rele(snap, FTAG);
3198                         }
3199                 }
3200                 if (drc->drc_keynvl != NULL) {
3201                         dsl_crypto_recv_raw_key_sync(drc->drc_ds,
3202                             drc->drc_keynvl, tx);
3203                         nvlist_free(drc->drc_keynvl);
3204                         drc->drc_keynvl = NULL;
3205                 }
3206
3207                 VERIFY3P(drc->drc_ds->ds_prev, ==,
3208                     origin_head->ds_prev);
3209
3210                 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3211                     origin_head, tx);
3212                 /*
3213                  * The objset was evicted by dsl_dataset_clone_swap_sync_impl,
3214                  * so drc_os is no longer valid.
3215                  */
3216                 drc->drc_os = NULL;
3217
3218                 dsl_dataset_snapshot_sync_impl(origin_head,
3219                     drc->drc_tosnap, tx);
3220
3221                 /* set snapshot's creation time and guid */
3222                 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3223                 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3224                     drc->drc_drrb->drr_creation_time;
3225                 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3226                     drc->drc_drrb->drr_toguid;
3227                 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3228                     ~DS_FLAG_INCONSISTENT;
3229
3230                 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3231                 dsl_dataset_phys(origin_head)->ds_flags &=
3232                     ~DS_FLAG_INCONSISTENT;
3233
3234                 newsnapobj =
3235                     dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3236
3237                 dsl_dataset_rele(origin_head, FTAG);
3238                 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3239
3240                 if (drc->drc_owner != NULL)
3241                         VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3242         } else {
3243                 dsl_dataset_t *ds = drc->drc_ds;
3244
3245                 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3246
3247                 /* set snapshot's creation time and guid */
3248                 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3249                 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3250                     drc->drc_drrb->drr_creation_time;
3251                 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3252                     drc->drc_drrb->drr_toguid;
3253                 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3254                     ~DS_FLAG_INCONSISTENT;
3255
3256                 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3257                 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3258                 if (dsl_dataset_has_resume_receive_state(ds)) {
3259                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3260                             DS_FIELD_RESUME_FROMGUID, tx);
3261                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3262                             DS_FIELD_RESUME_OBJECT, tx);
3263                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3264                             DS_FIELD_RESUME_OFFSET, tx);
3265                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3266                             DS_FIELD_RESUME_BYTES, tx);
3267                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3268                             DS_FIELD_RESUME_TOGUID, tx);
3269                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3270                             DS_FIELD_RESUME_TONAME, tx);
3271                         (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3272                             DS_FIELD_RESUME_REDACT_BOOKMARK_SNAPS, tx);
3273                 }
3274                 newsnapobj =
3275                     dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3276         }
3277
3278         /*
3279          * If this is a raw receive, the crypt_keydata nvlist will include
3280          * a to_ivset_guid for us to set on the new snapshot. This value
3281          * will override the value generated by the snapshot code. However,
3282          * this value may not be present, because older implementations of
3283          * the raw send code did not include this value, and we are still
3284          * allowed to receive them if the zfs_disable_ivset_guid_check
3285          * tunable is set, in which case we will leave the newly-generated
3286          * value.
3287          */
3288         if (drc->drc_raw && drc->drc_ivset_guid != 0) {
3289                 dmu_object_zapify(dp->dp_meta_objset, newsnapobj,
3290                     DMU_OT_DSL_DATASET, tx);
3291                 VERIFY0(zap_update(dp->dp_meta_objset, newsnapobj,
3292                     DS_FIELD_IVSET_GUID, sizeof (uint64_t), 1,
3293                     &drc->drc_ivset_guid, tx));
3294         }
3295
3296         /*
3297          * Release the hold from dmu_recv_begin.  This must be done before
3298          * we return to open context, so that when we free the dataset's dnode
3299          * we can evict its bonus buffer. Since the dataset may be destroyed
3300          * at this point (and therefore won't have a valid pointer to the spa)
3301          * we release the key mapping manually here while we do have a valid
3302          * pointer, if it exists.
3303          */
3304         if (!drc->drc_raw && encrypted) {
3305                 (void) spa_keystore_remove_mapping(dmu_tx_pool(tx)->dp_spa,
3306                     drc->drc_ds->ds_object, drc->drc_ds);
3307         }
3308         dsl_dataset_disown(drc->drc_ds, 0, dmu_recv_tag);
3309         drc->drc_ds = NULL;
3310 }
3311
3312 static int dmu_recv_end_modified_blocks = 3;
3313
3314 static int
3315 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3316 {
3317 #ifdef _KERNEL
3318         /*
3319          * We will be destroying the ds; make sure its origin is unmounted if
3320          * necessary.
3321          */
3322         char name[ZFS_MAX_DATASET_NAME_LEN];
3323         dsl_dataset_name(drc->drc_ds, name);
3324         zfs_destroy_unmount_origin(name);
3325 #endif
3326
3327         return (dsl_sync_task(drc->drc_tofs,
3328             dmu_recv_end_check, dmu_recv_end_sync, drc,
3329             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3330 }
3331
3332 static int
3333 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3334 {
3335         return (dsl_sync_task(drc->drc_tofs,
3336             dmu_recv_end_check, dmu_recv_end_sync, drc,
3337             dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL));
3338 }
3339
3340 int
3341 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3342 {
3343         int error;
3344
3345         drc->drc_owner = owner;
3346
3347         if (drc->drc_newfs)
3348                 error = dmu_recv_new_end(drc);
3349         else
3350                 error = dmu_recv_existing_end(drc);
3351
3352         if (error != 0) {
3353                 dmu_recv_cleanup_ds(drc);
3354                 nvlist_free(drc->drc_keynvl);
3355         } else {
3356                 if (drc->drc_newfs) {
3357                         zvol_create_minor(drc->drc_tofs);
3358                 }
3359                 char *snapname = kmem_asprintf("%s@%s",
3360                     drc->drc_tofs, drc->drc_tosnap);
3361                 zvol_create_minor(snapname);
3362                 kmem_strfree(snapname);
3363         }
3364         return (error);
3365 }
3366
3367 /*
3368  * Return TRUE if this objset is currently being received into.
3369  */
3370 boolean_t
3371 dmu_objset_is_receiving(objset_t *os)
3372 {
3373         return (os->os_dsl_dataset != NULL &&
3374             os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3375 }
3376
3377 /* BEGIN CSTYLED */
3378 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_length, INT, ZMOD_RW,
3379         "Maximum receive queue length");
3380
3381 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, queue_ff, INT, ZMOD_RW,
3382         "Receive queue fill fraction");
3383
3384 ZFS_MODULE_PARAM(zfs_recv, zfs_recv_, write_batch_size, INT, ZMOD_RW,
3385         "Maximum amount of writes to batch into one transaction");
3386 /* END CSTYLED */