]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/spa_misc.c
Parallel pool import
[FreeBSD/FreeBSD.git] / module / zfs / spa_misc.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or https://opensource.org/licenses/CDDL-1.0.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
24  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  * Copyright 2013 Saso Kiselkov. All rights reserved.
27  * Copyright (c) 2017 Datto Inc.
28  * Copyright (c) 2017, Intel Corporation.
29  * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
30  * Copyright (c) 2023, Klara Inc.
31  */
32
33 #include <sys/zfs_context.h>
34 #include <sys/zfs_chksum.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zio.h>
37 #include <sys/zio_checksum.h>
38 #include <sys/zio_compress.h>
39 #include <sys/dmu.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/zap.h>
42 #include <sys/zil.h>
43 #include <sys/vdev_impl.h>
44 #include <sys/vdev_initialize.h>
45 #include <sys/vdev_trim.h>
46 #include <sys/vdev_file.h>
47 #include <sys/vdev_raidz.h>
48 #include <sys/metaslab.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dir.h>
55 #include <sys/dsl_prop.h>
56 #include <sys/fm/util.h>
57 #include <sys/dsl_scan.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/metaslab_impl.h>
60 #include <sys/arc.h>
61 #include <sys/brt.h>
62 #include <sys/ddt.h>
63 #include <sys/kstat.h>
64 #include "zfs_prop.h"
65 #include <sys/btree.h>
66 #include <sys/zfeature.h>
67 #include <sys/qat.h>
68 #include <sys/zstd/zstd.h>
69
70 /*
71  * SPA locking
72  *
73  * There are three basic locks for managing spa_t structures:
74  *
75  * spa_namespace_lock (global mutex)
76  *
77  *      This lock must be acquired to do any of the following:
78  *
79  *              - Lookup a spa_t by name
80  *              - Add or remove a spa_t from the namespace
81  *              - Increase spa_refcount from non-zero
82  *              - Check if spa_refcount is zero
83  *              - Rename a spa_t
84  *              - add/remove/attach/detach devices
85  *              - Held for the duration of create/destroy/export
86  *              - Held at the start and end of import
87  *
88  *      It does not need to handle recursion.  A create or destroy may
89  *      reference objects (files or zvols) in other pools, but by
90  *      definition they must have an existing reference, and will never need
91  *      to lookup a spa_t by name.
92  *
93  * spa_refcount (per-spa zfs_refcount_t protected by mutex)
94  *
95  *      This reference count keep track of any active users of the spa_t.  The
96  *      spa_t cannot be destroyed or freed while this is non-zero.  Internally,
97  *      the refcount is never really 'zero' - opening a pool implicitly keeps
98  *      some references in the DMU.  Internally we check against spa_minref, but
99  *      present the image of a zero/non-zero value to consumers.
100  *
101  * spa_config_lock[] (per-spa array of rwlocks)
102  *
103  *      This protects the spa_t from config changes, and must be held in
104  *      the following circumstances:
105  *
106  *              - RW_READER to perform I/O to the spa
107  *              - RW_WRITER to change the vdev config
108  *
109  * The locking order is fairly straightforward:
110  *
111  *              spa_namespace_lock      ->      spa_refcount
112  *
113  *      The namespace lock must be acquired to increase the refcount from 0
114  *      or to check if it is zero.
115  *
116  *              spa_refcount            ->      spa_config_lock[]
117  *
118  *      There must be at least one valid reference on the spa_t to acquire
119  *      the config lock.
120  *
121  *              spa_namespace_lock      ->      spa_config_lock[]
122  *
123  *      The namespace lock must always be taken before the config lock.
124  *
125  *
126  * The spa_namespace_lock can be acquired directly and is globally visible.
127  *
128  * The namespace is manipulated using the following functions, all of which
129  * require the spa_namespace_lock to be held.
130  *
131  *      spa_lookup()            Lookup a spa_t by name.
132  *
133  *      spa_add()               Create a new spa_t in the namespace.
134  *
135  *      spa_remove()            Remove a spa_t from the namespace.  This also
136  *                              frees up any memory associated with the spa_t.
137  *
138  *      spa_next()              Returns the next spa_t in the system, or the
139  *                              first if NULL is passed.
140  *
141  *      spa_evict_all()         Shutdown and remove all spa_t structures in
142  *                              the system.
143  *
144  *      spa_guid_exists()       Determine whether a pool/device guid exists.
145  *
146  * The spa_refcount is manipulated using the following functions:
147  *
148  *      spa_open_ref()          Adds a reference to the given spa_t.  Must be
149  *                              called with spa_namespace_lock held if the
150  *                              refcount is currently zero.
151  *
152  *      spa_close()             Remove a reference from the spa_t.  This will
153  *                              not free the spa_t or remove it from the
154  *                              namespace.  No locking is required.
155  *
156  *      spa_refcount_zero()     Returns true if the refcount is currently
157  *                              zero.  Must be called with spa_namespace_lock
158  *                              held.
159  *
160  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
161  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
162  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
163  *
164  * To read the configuration, it suffices to hold one of these locks as reader.
165  * To modify the configuration, you must hold all locks as writer.  To modify
166  * vdev state without altering the vdev tree's topology (e.g. online/offline),
167  * you must hold SCL_STATE and SCL_ZIO as writer.
168  *
169  * We use these distinct config locks to avoid recursive lock entry.
170  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
171  * block allocations (SCL_ALLOC), which may require reading space maps
172  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
173  *
174  * The spa config locks cannot be normal rwlocks because we need the
175  * ability to hand off ownership.  For example, SCL_ZIO is acquired
176  * by the issuing thread and later released by an interrupt thread.
177  * They do, however, obey the usual write-wanted semantics to prevent
178  * writer (i.e. system administrator) starvation.
179  *
180  * The lock acquisition rules are as follows:
181  *
182  * SCL_CONFIG
183  *      Protects changes to the vdev tree topology, such as vdev
184  *      add/remove/attach/detach.  Protects the dirty config list
185  *      (spa_config_dirty_list) and the set of spares and l2arc devices.
186  *
187  * SCL_STATE
188  *      Protects changes to pool state and vdev state, such as vdev
189  *      online/offline/fault/degrade/clear.  Protects the dirty state list
190  *      (spa_state_dirty_list) and global pool state (spa_state).
191  *
192  * SCL_ALLOC
193  *      Protects changes to metaslab groups and classes.
194  *      Held as reader by metaslab_alloc() and metaslab_claim().
195  *
196  * SCL_ZIO
197  *      Held by bp-level zios (those which have no io_vd upon entry)
198  *      to prevent changes to the vdev tree.  The bp-level zio implicitly
199  *      protects all of its vdev child zios, which do not hold SCL_ZIO.
200  *
201  * SCL_FREE
202  *      Protects changes to metaslab groups and classes.
203  *      Held as reader by metaslab_free().  SCL_FREE is distinct from
204  *      SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
205  *      blocks in zio_done() while another i/o that holds either
206  *      SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
207  *
208  * SCL_VDEV
209  *      Held as reader to prevent changes to the vdev tree during trivial
210  *      inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
211  *      other locks, and lower than all of them, to ensure that it's safe
212  *      to acquire regardless of caller context.
213  *
214  * In addition, the following rules apply:
215  *
216  * (a)  spa_props_lock protects pool properties, spa_config and spa_config_list.
217  *      The lock ordering is SCL_CONFIG > spa_props_lock.
218  *
219  * (b)  I/O operations on leaf vdevs.  For any zio operation that takes
220  *      an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
221  *      or zio_write_phys() -- the caller must ensure that the config cannot
222  *      cannot change in the interim, and that the vdev cannot be reopened.
223  *      SCL_STATE as reader suffices for both.
224  *
225  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
226  *
227  *      spa_vdev_enter()        Acquire the namespace lock and the config lock
228  *                              for writing.
229  *
230  *      spa_vdev_exit()         Release the config lock, wait for all I/O
231  *                              to complete, sync the updated configs to the
232  *                              cache, and release the namespace lock.
233  *
234  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
235  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
236  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
237  */
238
239 avl_tree_t spa_namespace_avl;
240 kmutex_t spa_namespace_lock;
241 kcondvar_t spa_namespace_cv;
242 static const int spa_max_replication_override = SPA_DVAS_PER_BP;
243
244 static kmutex_t spa_spare_lock;
245 static avl_tree_t spa_spare_avl;
246 static kmutex_t spa_l2cache_lock;
247 static avl_tree_t spa_l2cache_avl;
248
249 spa_mode_t spa_mode_global = SPA_MODE_UNINIT;
250
251 #ifdef ZFS_DEBUG
252 /*
253  * Everything except dprintf, set_error, spa, and indirect_remap is on
254  * by default in debug builds.
255  */
256 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
257     ZFS_DEBUG_INDIRECT_REMAP);
258 #else
259 int zfs_flags = 0;
260 #endif
261
262 /*
263  * zfs_recover can be set to nonzero to attempt to recover from
264  * otherwise-fatal errors, typically caused by on-disk corruption.  When
265  * set, calls to zfs_panic_recover() will turn into warning messages.
266  * This should only be used as a last resort, as it typically results
267  * in leaked space, or worse.
268  */
269 int zfs_recover = B_FALSE;
270
271 /*
272  * If destroy encounters an EIO while reading metadata (e.g. indirect
273  * blocks), space referenced by the missing metadata can not be freed.
274  * Normally this causes the background destroy to become "stalled", as
275  * it is unable to make forward progress.  While in this stalled state,
276  * all remaining space to free from the error-encountering filesystem is
277  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
278  * permanently leak the space from indirect blocks that can not be read,
279  * and continue to free everything else that it can.
280  *
281  * The default, "stalling" behavior is useful if the storage partially
282  * fails (i.e. some but not all i/os fail), and then later recovers.  In
283  * this case, we will be able to continue pool operations while it is
284  * partially failed, and when it recovers, we can continue to free the
285  * space, with no leaks.  However, note that this case is actually
286  * fairly rare.
287  *
288  * Typically pools either (a) fail completely (but perhaps temporarily,
289  * e.g. a top-level vdev going offline), or (b) have localized,
290  * permanent errors (e.g. disk returns the wrong data due to bit flip or
291  * firmware bug).  In case (a), this setting does not matter because the
292  * pool will be suspended and the sync thread will not be able to make
293  * forward progress regardless.  In case (b), because the error is
294  * permanent, the best we can do is leak the minimum amount of space,
295  * which is what setting this flag will do.  Therefore, it is reasonable
296  * for this flag to normally be set, but we chose the more conservative
297  * approach of not setting it, so that there is no possibility of
298  * leaking space in the "partial temporary" failure case.
299  */
300 int zfs_free_leak_on_eio = B_FALSE;
301
302 /*
303  * Expiration time in milliseconds. This value has two meanings. First it is
304  * used to determine when the spa_deadman() logic should fire. By default the
305  * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
306  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
307  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
308  * in one of three behaviors controlled by zfs_deadman_failmode.
309  */
310 uint64_t zfs_deadman_synctime_ms = 600000UL;  /* 10 min. */
311
312 /*
313  * This value controls the maximum amount of time zio_wait() will block for an
314  * outstanding IO.  By default this is 300 seconds at which point the "hung"
315  * behavior will be applied as described for zfs_deadman_synctime_ms.
316  */
317 uint64_t zfs_deadman_ziotime_ms = 300000UL;  /* 5 min. */
318
319 /*
320  * Check time in milliseconds. This defines the frequency at which we check
321  * for hung I/O.
322  */
323 uint64_t zfs_deadman_checktime_ms = 60000UL;  /* 1 min. */
324
325 /*
326  * By default the deadman is enabled.
327  */
328 int zfs_deadman_enabled = B_TRUE;
329
330 /*
331  * Controls the behavior of the deadman when it detects a "hung" I/O.
332  * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
333  *
334  * wait     - Wait for the "hung" I/O (default)
335  * continue - Attempt to recover from a "hung" I/O
336  * panic    - Panic the system
337  */
338 const char *zfs_deadman_failmode = "wait";
339
340 /*
341  * The worst case is single-sector max-parity RAID-Z blocks, in which
342  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
343  * times the size; so just assume that.  Add to this the fact that
344  * we can have up to 3 DVAs per bp, and one more factor of 2 because
345  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
346  * the worst case is:
347  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
348  */
349 uint_t spa_asize_inflation = 24;
350
351 /*
352  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
353  * the pool to be consumed (bounded by spa_max_slop).  This ensures that we
354  * don't run the pool completely out of space, due to unaccounted changes (e.g.
355  * to the MOS).  It also limits the worst-case time to allocate space.  If we
356  * have less than this amount of free space, most ZPL operations (e.g.  write,
357  * create) will return ENOSPC.  The ZIL metaslabs (spa_embedded_log_class) are
358  * also part of this 3.2% of space which can't be consumed by normal writes;
359  * the slop space "proper" (spa_get_slop_space()) is decreased by the embedded
360  * log space.
361  *
362  * Certain operations (e.g. file removal, most administrative actions) can
363  * use half the slop space.  They will only return ENOSPC if less than half
364  * the slop space is free.  Typically, once the pool has less than the slop
365  * space free, the user will use these operations to free up space in the pool.
366  * These are the operations that call dsl_pool_adjustedsize() with the netfree
367  * argument set to TRUE.
368  *
369  * Operations that are almost guaranteed to free up space in the absence of
370  * a pool checkpoint can use up to three quarters of the slop space
371  * (e.g zfs destroy).
372  *
373  * A very restricted set of operations are always permitted, regardless of
374  * the amount of free space.  These are the operations that call
375  * dsl_sync_task(ZFS_SPACE_CHECK_NONE). If these operations result in a net
376  * increase in the amount of space used, it is possible to run the pool
377  * completely out of space, causing it to be permanently read-only.
378  *
379  * Note that on very small pools, the slop space will be larger than
380  * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
381  * but we never allow it to be more than half the pool size.
382  *
383  * Further, on very large pools, the slop space will be smaller than
384  * 3.2%, to avoid reserving much more space than we actually need; bounded
385  * by spa_max_slop (128GB).
386  *
387  * See also the comments in zfs_space_check_t.
388  */
389 uint_t spa_slop_shift = 5;
390 static const uint64_t spa_min_slop = 128ULL * 1024 * 1024;
391 static const uint64_t spa_max_slop = 128ULL * 1024 * 1024 * 1024;
392
393 /*
394  * Number of allocators to use, per spa instance
395  */
396 static int spa_num_allocators = 4;
397
398 /*
399  * Spa active allocator.
400  * Valid values are zfs_active_allocator=<dynamic|cursor|new-dynamic>.
401  */
402 const char *zfs_active_allocator = "dynamic";
403
404 void
405 spa_load_failed(spa_t *spa, const char *fmt, ...)
406 {
407         va_list adx;
408         char buf[256];
409
410         va_start(adx, fmt);
411         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
412         va_end(adx);
413
414         zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
415             spa->spa_trust_config ? "trusted" : "untrusted", buf);
416 }
417
418 void
419 spa_load_note(spa_t *spa, const char *fmt, ...)
420 {
421         va_list adx;
422         char buf[256];
423
424         va_start(adx, fmt);
425         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
426         va_end(adx);
427
428         zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
429             spa->spa_trust_config ? "trusted" : "untrusted", buf);
430
431         spa_import_progress_set_notes_nolog(spa, "%s", buf);
432 }
433
434 /*
435  * By default dedup and user data indirects land in the special class
436  */
437 static int zfs_ddt_data_is_special = B_TRUE;
438 static int zfs_user_indirect_is_special = B_TRUE;
439
440 /*
441  * The percentage of special class final space reserved for metadata only.
442  * Once we allocate 100 - zfs_special_class_metadata_reserve_pct we only
443  * let metadata into the class.
444  */
445 static uint_t zfs_special_class_metadata_reserve_pct = 25;
446
447 /*
448  * ==========================================================================
449  * SPA config locking
450  * ==========================================================================
451  */
452 static void
453 spa_config_lock_init(spa_t *spa)
454 {
455         for (int i = 0; i < SCL_LOCKS; i++) {
456                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
457                 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
458                 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
459                 scl->scl_writer = NULL;
460                 scl->scl_write_wanted = 0;
461                 scl->scl_count = 0;
462         }
463 }
464
465 static void
466 spa_config_lock_destroy(spa_t *spa)
467 {
468         for (int i = 0; i < SCL_LOCKS; i++) {
469                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
470                 mutex_destroy(&scl->scl_lock);
471                 cv_destroy(&scl->scl_cv);
472                 ASSERT(scl->scl_writer == NULL);
473                 ASSERT(scl->scl_write_wanted == 0);
474                 ASSERT(scl->scl_count == 0);
475         }
476 }
477
478 int
479 spa_config_tryenter(spa_t *spa, int locks, const void *tag, krw_t rw)
480 {
481         for (int i = 0; i < SCL_LOCKS; i++) {
482                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
483                 if (!(locks & (1 << i)))
484                         continue;
485                 mutex_enter(&scl->scl_lock);
486                 if (rw == RW_READER) {
487                         if (scl->scl_writer || scl->scl_write_wanted) {
488                                 mutex_exit(&scl->scl_lock);
489                                 spa_config_exit(spa, locks & ((1 << i) - 1),
490                                     tag);
491                                 return (0);
492                         }
493                 } else {
494                         ASSERT(scl->scl_writer != curthread);
495                         if (scl->scl_count != 0) {
496                                 mutex_exit(&scl->scl_lock);
497                                 spa_config_exit(spa, locks & ((1 << i) - 1),
498                                     tag);
499                                 return (0);
500                         }
501                         scl->scl_writer = curthread;
502                 }
503                 scl->scl_count++;
504                 mutex_exit(&scl->scl_lock);
505         }
506         return (1);
507 }
508
509 static void
510 spa_config_enter_impl(spa_t *spa, int locks, const void *tag, krw_t rw,
511     int mmp_flag)
512 {
513         (void) tag;
514         int wlocks_held = 0;
515
516         ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
517
518         for (int i = 0; i < SCL_LOCKS; i++) {
519                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
520                 if (scl->scl_writer == curthread)
521                         wlocks_held |= (1 << i);
522                 if (!(locks & (1 << i)))
523                         continue;
524                 mutex_enter(&scl->scl_lock);
525                 if (rw == RW_READER) {
526                         while (scl->scl_writer ||
527                             (!mmp_flag && scl->scl_write_wanted)) {
528                                 cv_wait(&scl->scl_cv, &scl->scl_lock);
529                         }
530                 } else {
531                         ASSERT(scl->scl_writer != curthread);
532                         while (scl->scl_count != 0) {
533                                 scl->scl_write_wanted++;
534                                 cv_wait(&scl->scl_cv, &scl->scl_lock);
535                                 scl->scl_write_wanted--;
536                         }
537                         scl->scl_writer = curthread;
538                 }
539                 scl->scl_count++;
540                 mutex_exit(&scl->scl_lock);
541         }
542         ASSERT3U(wlocks_held, <=, locks);
543 }
544
545 void
546 spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw)
547 {
548         spa_config_enter_impl(spa, locks, tag, rw, 0);
549 }
550
551 /*
552  * The spa_config_enter_mmp() allows the mmp thread to cut in front of
553  * outstanding write lock requests. This is needed since the mmp updates are
554  * time sensitive and failure to service them promptly will result in a
555  * suspended pool. This pool suspension has been seen in practice when there is
556  * a single disk in a pool that is responding slowly and presumably about to
557  * fail.
558  */
559
560 void
561 spa_config_enter_mmp(spa_t *spa, int locks, const void *tag, krw_t rw)
562 {
563         spa_config_enter_impl(spa, locks, tag, rw, 1);
564 }
565
566 void
567 spa_config_exit(spa_t *spa, int locks, const void *tag)
568 {
569         (void) tag;
570         for (int i = SCL_LOCKS - 1; i >= 0; i--) {
571                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
572                 if (!(locks & (1 << i)))
573                         continue;
574                 mutex_enter(&scl->scl_lock);
575                 ASSERT(scl->scl_count > 0);
576                 if (--scl->scl_count == 0) {
577                         ASSERT(scl->scl_writer == NULL ||
578                             scl->scl_writer == curthread);
579                         scl->scl_writer = NULL; /* OK in either case */
580                         cv_broadcast(&scl->scl_cv);
581                 }
582                 mutex_exit(&scl->scl_lock);
583         }
584 }
585
586 int
587 spa_config_held(spa_t *spa, int locks, krw_t rw)
588 {
589         int locks_held = 0;
590
591         for (int i = 0; i < SCL_LOCKS; i++) {
592                 spa_config_lock_t *scl = &spa->spa_config_lock[i];
593                 if (!(locks & (1 << i)))
594                         continue;
595                 if ((rw == RW_READER && scl->scl_count != 0) ||
596                     (rw == RW_WRITER && scl->scl_writer == curthread))
597                         locks_held |= 1 << i;
598         }
599
600         return (locks_held);
601 }
602
603 /*
604  * ==========================================================================
605  * SPA namespace functions
606  * ==========================================================================
607  */
608
609 /*
610  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
611  * Returns NULL if no matching spa_t is found.
612  */
613 spa_t *
614 spa_lookup(const char *name)
615 {
616         static spa_t search;    /* spa_t is large; don't allocate on stack */
617         spa_t *spa;
618         avl_index_t where;
619         char *cp;
620
621         ASSERT(MUTEX_HELD(&spa_namespace_lock));
622
623 retry:
624         (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
625
626         /*
627          * If it's a full dataset name, figure out the pool name and
628          * just use that.
629          */
630         cp = strpbrk(search.spa_name, "/@#");
631         if (cp != NULL)
632                 *cp = '\0';
633
634         spa = avl_find(&spa_namespace_avl, &search, &where);
635         if (spa == NULL)
636                 return (NULL);
637
638         if (spa->spa_load_thread != NULL &&
639             spa->spa_load_thread != curthread) {
640                 cv_wait(&spa_namespace_cv, &spa_namespace_lock);
641                 goto retry;
642         }
643
644         return (spa);
645 }
646
647 /*
648  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
649  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
650  * looking for potentially hung I/Os.
651  */
652 void
653 spa_deadman(void *arg)
654 {
655         spa_t *spa = arg;
656
657         /* Disable the deadman if the pool is suspended. */
658         if (spa_suspended(spa))
659                 return;
660
661         zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
662             (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
663             (u_longlong_t)++spa->spa_deadman_calls);
664         if (zfs_deadman_enabled)
665                 vdev_deadman(spa->spa_root_vdev, FTAG);
666
667         spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
668             spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
669             MSEC_TO_TICK(zfs_deadman_checktime_ms));
670 }
671
672 static int
673 spa_log_sm_sort_by_txg(const void *va, const void *vb)
674 {
675         const spa_log_sm_t *a = va;
676         const spa_log_sm_t *b = vb;
677
678         return (TREE_CMP(a->sls_txg, b->sls_txg));
679 }
680
681 /*
682  * Create an uninitialized spa_t with the given name.  Requires
683  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
684  * exist by calling spa_lookup() first.
685  */
686 spa_t *
687 spa_add(const char *name, nvlist_t *config, const char *altroot)
688 {
689         spa_t *spa;
690         spa_config_dirent_t *dp;
691
692         ASSERT(MUTEX_HELD(&spa_namespace_lock));
693
694         spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
695
696         mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
697         mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
698         mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
699         mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
700         mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
701         mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
702         mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
703         mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
704         mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
705         mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
706         mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
707         mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
708         mutex_init(&spa->spa_flushed_ms_lock, NULL, MUTEX_DEFAULT, NULL);
709         mutex_init(&spa->spa_activities_lock, NULL, MUTEX_DEFAULT, NULL);
710
711         cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
712         cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
713         cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
714         cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
715         cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
716         cv_init(&spa->spa_activities_cv, NULL, CV_DEFAULT, NULL);
717         cv_init(&spa->spa_waiters_cv, NULL, CV_DEFAULT, NULL);
718
719         for (int t = 0; t < TXG_SIZE; t++)
720                 bplist_create(&spa->spa_free_bplist[t]);
721
722         (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
723         spa->spa_state = POOL_STATE_UNINITIALIZED;
724         spa->spa_freeze_txg = UINT64_MAX;
725         spa->spa_final_txg = UINT64_MAX;
726         spa->spa_load_max_txg = UINT64_MAX;
727         spa->spa_proc = &p0;
728         spa->spa_proc_state = SPA_PROC_NONE;
729         spa->spa_trust_config = B_TRUE;
730         spa->spa_hostid = zone_get_hostid(NULL);
731
732         spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
733         spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
734         spa_set_deadman_failmode(spa, zfs_deadman_failmode);
735         spa_set_allocator(spa, zfs_active_allocator);
736
737         zfs_refcount_create(&spa->spa_refcount);
738         spa_config_lock_init(spa);
739         spa_stats_init(spa);
740
741         ASSERT(MUTEX_HELD(&spa_namespace_lock));
742         avl_add(&spa_namespace_avl, spa);
743
744         /*
745          * Set the alternate root, if there is one.
746          */
747         if (altroot)
748                 spa->spa_root = spa_strdup(altroot);
749
750         /* Do not allow more allocators than CPUs. */
751         spa->spa_alloc_count = MIN(MAX(spa_num_allocators, 1), boot_ncpus);
752
753         spa->spa_allocs = kmem_zalloc(spa->spa_alloc_count *
754             sizeof (spa_alloc_t), KM_SLEEP);
755         for (int i = 0; i < spa->spa_alloc_count; i++) {
756                 mutex_init(&spa->spa_allocs[i].spaa_lock, NULL, MUTEX_DEFAULT,
757                     NULL);
758                 avl_create(&spa->spa_allocs[i].spaa_tree, zio_bookmark_compare,
759                     sizeof (zio_t), offsetof(zio_t, io_queue_node.a));
760         }
761
762         avl_create(&spa->spa_metaslabs_by_flushed, metaslab_sort_by_flushed,
763             sizeof (metaslab_t), offsetof(metaslab_t, ms_spa_txg_node));
764         avl_create(&spa->spa_sm_logs_by_txg, spa_log_sm_sort_by_txg,
765             sizeof (spa_log_sm_t), offsetof(spa_log_sm_t, sls_node));
766         list_create(&spa->spa_log_summary, sizeof (log_summary_entry_t),
767             offsetof(log_summary_entry_t, lse_node));
768
769         /*
770          * Every pool starts with the default cachefile
771          */
772         list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
773             offsetof(spa_config_dirent_t, scd_link));
774
775         dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
776         dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
777         list_insert_head(&spa->spa_config_list, dp);
778
779         VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
780             KM_SLEEP) == 0);
781
782         if (config != NULL) {
783                 nvlist_t *features;
784
785                 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
786                     &features) == 0) {
787                         VERIFY(nvlist_dup(features, &spa->spa_label_features,
788                             0) == 0);
789                 }
790
791                 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
792         }
793
794         if (spa->spa_label_features == NULL) {
795                 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
796                     KM_SLEEP) == 0);
797         }
798
799         spa->spa_min_ashift = INT_MAX;
800         spa->spa_max_ashift = 0;
801         spa->spa_min_alloc = INT_MAX;
802         spa->spa_gcd_alloc = INT_MAX;
803
804         /* Reset cached value */
805         spa->spa_dedup_dspace = ~0ULL;
806
807         /*
808          * As a pool is being created, treat all features as disabled by
809          * setting SPA_FEATURE_DISABLED for all entries in the feature
810          * refcount cache.
811          */
812         for (int i = 0; i < SPA_FEATURES; i++) {
813                 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
814         }
815
816         list_create(&spa->spa_leaf_list, sizeof (vdev_t),
817             offsetof(vdev_t, vdev_leaf_node));
818
819         return (spa);
820 }
821
822 /*
823  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
824  * spa_namespace_lock.  This is called only after the spa_t has been closed and
825  * deactivated.
826  */
827 void
828 spa_remove(spa_t *spa)
829 {
830         spa_config_dirent_t *dp;
831
832         ASSERT(MUTEX_HELD(&spa_namespace_lock));
833         ASSERT(spa_state(spa) == POOL_STATE_UNINITIALIZED);
834         ASSERT3U(zfs_refcount_count(&spa->spa_refcount), ==, 0);
835         ASSERT0(spa->spa_waiters);
836
837         nvlist_free(spa->spa_config_splitting);
838
839         avl_remove(&spa_namespace_avl, spa);
840
841         if (spa->spa_root)
842                 spa_strfree(spa->spa_root);
843
844         while ((dp = list_remove_head(&spa->spa_config_list)) != NULL) {
845                 if (dp->scd_path != NULL)
846                         spa_strfree(dp->scd_path);
847                 kmem_free(dp, sizeof (spa_config_dirent_t));
848         }
849
850         for (int i = 0; i < spa->spa_alloc_count; i++) {
851                 avl_destroy(&spa->spa_allocs[i].spaa_tree);
852                 mutex_destroy(&spa->spa_allocs[i].spaa_lock);
853         }
854         kmem_free(spa->spa_allocs, spa->spa_alloc_count *
855             sizeof (spa_alloc_t));
856
857         avl_destroy(&spa->spa_metaslabs_by_flushed);
858         avl_destroy(&spa->spa_sm_logs_by_txg);
859         list_destroy(&spa->spa_log_summary);
860         list_destroy(&spa->spa_config_list);
861         list_destroy(&spa->spa_leaf_list);
862
863         nvlist_free(spa->spa_label_features);
864         nvlist_free(spa->spa_load_info);
865         nvlist_free(spa->spa_feat_stats);
866         spa_config_set(spa, NULL);
867
868         zfs_refcount_destroy(&spa->spa_refcount);
869
870         spa_stats_destroy(spa);
871         spa_config_lock_destroy(spa);
872
873         for (int t = 0; t < TXG_SIZE; t++)
874                 bplist_destroy(&spa->spa_free_bplist[t]);
875
876         zio_checksum_templates_free(spa);
877
878         cv_destroy(&spa->spa_async_cv);
879         cv_destroy(&spa->spa_evicting_os_cv);
880         cv_destroy(&spa->spa_proc_cv);
881         cv_destroy(&spa->spa_scrub_io_cv);
882         cv_destroy(&spa->spa_suspend_cv);
883         cv_destroy(&spa->spa_activities_cv);
884         cv_destroy(&spa->spa_waiters_cv);
885
886         mutex_destroy(&spa->spa_flushed_ms_lock);
887         mutex_destroy(&spa->spa_async_lock);
888         mutex_destroy(&spa->spa_errlist_lock);
889         mutex_destroy(&spa->spa_errlog_lock);
890         mutex_destroy(&spa->spa_evicting_os_lock);
891         mutex_destroy(&spa->spa_history_lock);
892         mutex_destroy(&spa->spa_proc_lock);
893         mutex_destroy(&spa->spa_props_lock);
894         mutex_destroy(&spa->spa_cksum_tmpls_lock);
895         mutex_destroy(&spa->spa_scrub_lock);
896         mutex_destroy(&spa->spa_suspend_lock);
897         mutex_destroy(&spa->spa_vdev_top_lock);
898         mutex_destroy(&spa->spa_feat_stats_lock);
899         mutex_destroy(&spa->spa_activities_lock);
900
901         kmem_free(spa, sizeof (spa_t));
902 }
903
904 /*
905  * Given a pool, return the next pool in the namespace, or NULL if there is
906  * none.  If 'prev' is NULL, return the first pool.
907  */
908 spa_t *
909 spa_next(spa_t *prev)
910 {
911         ASSERT(MUTEX_HELD(&spa_namespace_lock));
912
913         if (prev)
914                 return (AVL_NEXT(&spa_namespace_avl, prev));
915         else
916                 return (avl_first(&spa_namespace_avl));
917 }
918
919 /*
920  * ==========================================================================
921  * SPA refcount functions
922  * ==========================================================================
923  */
924
925 /*
926  * Add a reference to the given spa_t.  Must have at least one reference, or
927  * have the namespace lock held.
928  */
929 void
930 spa_open_ref(spa_t *spa, const void *tag)
931 {
932         ASSERT(zfs_refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
933             MUTEX_HELD(&spa_namespace_lock) ||
934             spa->spa_load_thread == curthread);
935         (void) zfs_refcount_add(&spa->spa_refcount, tag);
936 }
937
938 /*
939  * Remove a reference to the given spa_t.  Must have at least one reference, or
940  * have the namespace lock held.
941  */
942 void
943 spa_close(spa_t *spa, const void *tag)
944 {
945         ASSERT(zfs_refcount_count(&spa->spa_refcount) > spa->spa_minref ||
946             MUTEX_HELD(&spa_namespace_lock) ||
947             spa->spa_load_thread == curthread);
948         (void) zfs_refcount_remove(&spa->spa_refcount, tag);
949 }
950
951 /*
952  * Remove a reference to the given spa_t held by a dsl dir that is
953  * being asynchronously released.  Async releases occur from a taskq
954  * performing eviction of dsl datasets and dirs.  The namespace lock
955  * isn't held and the hold by the object being evicted may contribute to
956  * spa_minref (e.g. dataset or directory released during pool export),
957  * so the asserts in spa_close() do not apply.
958  */
959 void
960 spa_async_close(spa_t *spa, const void *tag)
961 {
962         (void) zfs_refcount_remove(&spa->spa_refcount, tag);
963 }
964
965 /*
966  * Check to see if the spa refcount is zero.  Must be called with
967  * spa_namespace_lock held.  We really compare against spa_minref, which is the
968  * number of references acquired when opening a pool
969  */
970 boolean_t
971 spa_refcount_zero(spa_t *spa)
972 {
973         ASSERT(MUTEX_HELD(&spa_namespace_lock));
974
975         return (zfs_refcount_count(&spa->spa_refcount) == spa->spa_minref);
976 }
977
978 /*
979  * ==========================================================================
980  * SPA spare and l2cache tracking
981  * ==========================================================================
982  */
983
984 /*
985  * Hot spares and cache devices are tracked using the same code below,
986  * for 'auxiliary' devices.
987  */
988
989 typedef struct spa_aux {
990         uint64_t        aux_guid;
991         uint64_t        aux_pool;
992         avl_node_t      aux_avl;
993         int             aux_count;
994 } spa_aux_t;
995
996 static inline int
997 spa_aux_compare(const void *a, const void *b)
998 {
999         const spa_aux_t *sa = (const spa_aux_t *)a;
1000         const spa_aux_t *sb = (const spa_aux_t *)b;
1001
1002         return (TREE_CMP(sa->aux_guid, sb->aux_guid));
1003 }
1004
1005 static void
1006 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
1007 {
1008         avl_index_t where;
1009         spa_aux_t search;
1010         spa_aux_t *aux;
1011
1012         search.aux_guid = vd->vdev_guid;
1013         if ((aux = avl_find(avl, &search, &where)) != NULL) {
1014                 aux->aux_count++;
1015         } else {
1016                 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
1017                 aux->aux_guid = vd->vdev_guid;
1018                 aux->aux_count = 1;
1019                 avl_insert(avl, aux, where);
1020         }
1021 }
1022
1023 static void
1024 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
1025 {
1026         spa_aux_t search;
1027         spa_aux_t *aux;
1028         avl_index_t where;
1029
1030         search.aux_guid = vd->vdev_guid;
1031         aux = avl_find(avl, &search, &where);
1032
1033         ASSERT(aux != NULL);
1034
1035         if (--aux->aux_count == 0) {
1036                 avl_remove(avl, aux);
1037                 kmem_free(aux, sizeof (spa_aux_t));
1038         } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
1039                 aux->aux_pool = 0ULL;
1040         }
1041 }
1042
1043 static boolean_t
1044 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
1045 {
1046         spa_aux_t search, *found;
1047
1048         search.aux_guid = guid;
1049         found = avl_find(avl, &search, NULL);
1050
1051         if (pool) {
1052                 if (found)
1053                         *pool = found->aux_pool;
1054                 else
1055                         *pool = 0ULL;
1056         }
1057
1058         if (refcnt) {
1059                 if (found)
1060                         *refcnt = found->aux_count;
1061                 else
1062                         *refcnt = 0;
1063         }
1064
1065         return (found != NULL);
1066 }
1067
1068 static void
1069 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
1070 {
1071         spa_aux_t search, *found;
1072         avl_index_t where;
1073
1074         search.aux_guid = vd->vdev_guid;
1075         found = avl_find(avl, &search, &where);
1076         ASSERT(found != NULL);
1077         ASSERT(found->aux_pool == 0ULL);
1078
1079         found->aux_pool = spa_guid(vd->vdev_spa);
1080 }
1081
1082 /*
1083  * Spares are tracked globally due to the following constraints:
1084  *
1085  *      - A spare may be part of multiple pools.
1086  *      - A spare may be added to a pool even if it's actively in use within
1087  *        another pool.
1088  *      - A spare in use in any pool can only be the source of a replacement if
1089  *        the target is a spare in the same pool.
1090  *
1091  * We keep track of all spares on the system through the use of a reference
1092  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
1093  * spare, then we bump the reference count in the AVL tree.  In addition, we set
1094  * the 'vdev_isspare' member to indicate that the device is a spare (active or
1095  * inactive).  When a spare is made active (used to replace a device in the
1096  * pool), we also keep track of which pool its been made a part of.
1097  *
1098  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
1099  * called under the spa_namespace lock as part of vdev reconfiguration.  The
1100  * separate spare lock exists for the status query path, which does not need to
1101  * be completely consistent with respect to other vdev configuration changes.
1102  */
1103
1104 static int
1105 spa_spare_compare(const void *a, const void *b)
1106 {
1107         return (spa_aux_compare(a, b));
1108 }
1109
1110 void
1111 spa_spare_add(vdev_t *vd)
1112 {
1113         mutex_enter(&spa_spare_lock);
1114         ASSERT(!vd->vdev_isspare);
1115         spa_aux_add(vd, &spa_spare_avl);
1116         vd->vdev_isspare = B_TRUE;
1117         mutex_exit(&spa_spare_lock);
1118 }
1119
1120 void
1121 spa_spare_remove(vdev_t *vd)
1122 {
1123         mutex_enter(&spa_spare_lock);
1124         ASSERT(vd->vdev_isspare);
1125         spa_aux_remove(vd, &spa_spare_avl);
1126         vd->vdev_isspare = B_FALSE;
1127         mutex_exit(&spa_spare_lock);
1128 }
1129
1130 boolean_t
1131 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1132 {
1133         boolean_t found;
1134
1135         mutex_enter(&spa_spare_lock);
1136         found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1137         mutex_exit(&spa_spare_lock);
1138
1139         return (found);
1140 }
1141
1142 void
1143 spa_spare_activate(vdev_t *vd)
1144 {
1145         mutex_enter(&spa_spare_lock);
1146         ASSERT(vd->vdev_isspare);
1147         spa_aux_activate(vd, &spa_spare_avl);
1148         mutex_exit(&spa_spare_lock);
1149 }
1150
1151 /*
1152  * Level 2 ARC devices are tracked globally for the same reasons as spares.
1153  * Cache devices currently only support one pool per cache device, and so
1154  * for these devices the aux reference count is currently unused beyond 1.
1155  */
1156
1157 static int
1158 spa_l2cache_compare(const void *a, const void *b)
1159 {
1160         return (spa_aux_compare(a, b));
1161 }
1162
1163 void
1164 spa_l2cache_add(vdev_t *vd)
1165 {
1166         mutex_enter(&spa_l2cache_lock);
1167         ASSERT(!vd->vdev_isl2cache);
1168         spa_aux_add(vd, &spa_l2cache_avl);
1169         vd->vdev_isl2cache = B_TRUE;
1170         mutex_exit(&spa_l2cache_lock);
1171 }
1172
1173 void
1174 spa_l2cache_remove(vdev_t *vd)
1175 {
1176         mutex_enter(&spa_l2cache_lock);
1177         ASSERT(vd->vdev_isl2cache);
1178         spa_aux_remove(vd, &spa_l2cache_avl);
1179         vd->vdev_isl2cache = B_FALSE;
1180         mutex_exit(&spa_l2cache_lock);
1181 }
1182
1183 boolean_t
1184 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1185 {
1186         boolean_t found;
1187
1188         mutex_enter(&spa_l2cache_lock);
1189         found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1190         mutex_exit(&spa_l2cache_lock);
1191
1192         return (found);
1193 }
1194
1195 void
1196 spa_l2cache_activate(vdev_t *vd)
1197 {
1198         mutex_enter(&spa_l2cache_lock);
1199         ASSERT(vd->vdev_isl2cache);
1200         spa_aux_activate(vd, &spa_l2cache_avl);
1201         mutex_exit(&spa_l2cache_lock);
1202 }
1203
1204 /*
1205  * ==========================================================================
1206  * SPA vdev locking
1207  * ==========================================================================
1208  */
1209
1210 /*
1211  * Lock the given spa_t for the purpose of adding or removing a vdev.
1212  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1213  * It returns the next transaction group for the spa_t.
1214  */
1215 uint64_t
1216 spa_vdev_enter(spa_t *spa)
1217 {
1218         mutex_enter(&spa->spa_vdev_top_lock);
1219         mutex_enter(&spa_namespace_lock);
1220
1221         vdev_autotrim_stop_all(spa);
1222
1223         return (spa_vdev_config_enter(spa));
1224 }
1225
1226 /*
1227  * The same as spa_vdev_enter() above but additionally takes the guid of
1228  * the vdev being detached.  When there is a rebuild in process it will be
1229  * suspended while the vdev tree is modified then resumed by spa_vdev_exit().
1230  * The rebuild is canceled if only a single child remains after the detach.
1231  */
1232 uint64_t
1233 spa_vdev_detach_enter(spa_t *spa, uint64_t guid)
1234 {
1235         mutex_enter(&spa->spa_vdev_top_lock);
1236         mutex_enter(&spa_namespace_lock);
1237
1238         vdev_autotrim_stop_all(spa);
1239
1240         if (guid != 0) {
1241                 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
1242                 if (vd) {
1243                         vdev_rebuild_stop_wait(vd->vdev_top);
1244                 }
1245         }
1246
1247         return (spa_vdev_config_enter(spa));
1248 }
1249
1250 /*
1251  * Internal implementation for spa_vdev_enter().  Used when a vdev
1252  * operation requires multiple syncs (i.e. removing a device) while
1253  * keeping the spa_namespace_lock held.
1254  */
1255 uint64_t
1256 spa_vdev_config_enter(spa_t *spa)
1257 {
1258         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1259
1260         spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1261
1262         return (spa_last_synced_txg(spa) + 1);
1263 }
1264
1265 /*
1266  * Used in combination with spa_vdev_config_enter() to allow the syncing
1267  * of multiple transactions without releasing the spa_namespace_lock.
1268  */
1269 void
1270 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error,
1271     const char *tag)
1272 {
1273         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1274
1275         int config_changed = B_FALSE;
1276
1277         ASSERT(txg > spa_last_synced_txg(spa));
1278
1279         spa->spa_pending_vdev = NULL;
1280
1281         /*
1282          * Reassess the DTLs.
1283          */
1284         vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE, B_FALSE);
1285
1286         if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1287                 config_changed = B_TRUE;
1288                 spa->spa_config_generation++;
1289         }
1290
1291         /*
1292          * Verify the metaslab classes.
1293          */
1294         ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1295         ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1296         ASSERT(metaslab_class_validate(spa_embedded_log_class(spa)) == 0);
1297         ASSERT(metaslab_class_validate(spa_special_class(spa)) == 0);
1298         ASSERT(metaslab_class_validate(spa_dedup_class(spa)) == 0);
1299
1300         spa_config_exit(spa, SCL_ALL, spa);
1301
1302         /*
1303          * Panic the system if the specified tag requires it.  This
1304          * is useful for ensuring that configurations are updated
1305          * transactionally.
1306          */
1307         if (zio_injection_enabled)
1308                 zio_handle_panic_injection(spa, tag, 0);
1309
1310         /*
1311          * Note: this txg_wait_synced() is important because it ensures
1312          * that there won't be more than one config change per txg.
1313          * This allows us to use the txg as the generation number.
1314          */
1315         if (error == 0)
1316                 txg_wait_synced(spa->spa_dsl_pool, txg);
1317
1318         if (vd != NULL) {
1319                 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1320                 if (vd->vdev_ops->vdev_op_leaf) {
1321                         mutex_enter(&vd->vdev_initialize_lock);
1322                         vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED,
1323                             NULL);
1324                         mutex_exit(&vd->vdev_initialize_lock);
1325
1326                         mutex_enter(&vd->vdev_trim_lock);
1327                         vdev_trim_stop(vd, VDEV_TRIM_CANCELED, NULL);
1328                         mutex_exit(&vd->vdev_trim_lock);
1329                 }
1330
1331                 /*
1332                  * The vdev may be both a leaf and top-level device.
1333                  */
1334                 vdev_autotrim_stop_wait(vd);
1335
1336                 spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
1337                 vdev_free(vd);
1338                 spa_config_exit(spa, SCL_STATE_ALL, spa);
1339         }
1340
1341         /*
1342          * If the config changed, update the config cache.
1343          */
1344         if (config_changed)
1345                 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1346 }
1347
1348 /*
1349  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1350  * locking of spa_vdev_enter(), we also want make sure the transactions have
1351  * synced to disk, and then update the global configuration cache with the new
1352  * information.
1353  */
1354 int
1355 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1356 {
1357         vdev_autotrim_restart(spa);
1358         vdev_rebuild_restart(spa);
1359
1360         spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1361         mutex_exit(&spa_namespace_lock);
1362         mutex_exit(&spa->spa_vdev_top_lock);
1363
1364         return (error);
1365 }
1366
1367 /*
1368  * Lock the given spa_t for the purpose of changing vdev state.
1369  */
1370 void
1371 spa_vdev_state_enter(spa_t *spa, int oplocks)
1372 {
1373         int locks = SCL_STATE_ALL | oplocks;
1374
1375         /*
1376          * Root pools may need to read of the underlying devfs filesystem
1377          * when opening up a vdev.  Unfortunately if we're holding the
1378          * SCL_ZIO lock it will result in a deadlock when we try to issue
1379          * the read from the root filesystem.  Instead we "prefetch"
1380          * the associated vnodes that we need prior to opening the
1381          * underlying devices and cache them so that we can prevent
1382          * any I/O when we are doing the actual open.
1383          */
1384         if (spa_is_root(spa)) {
1385                 int low = locks & ~(SCL_ZIO - 1);
1386                 int high = locks & ~low;
1387
1388                 spa_config_enter(spa, high, spa, RW_WRITER);
1389                 vdev_hold(spa->spa_root_vdev);
1390                 spa_config_enter(spa, low, spa, RW_WRITER);
1391         } else {
1392                 spa_config_enter(spa, locks, spa, RW_WRITER);
1393         }
1394         spa->spa_vdev_locks = locks;
1395 }
1396
1397 int
1398 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1399 {
1400         boolean_t config_changed = B_FALSE;
1401         vdev_t *vdev_top;
1402
1403         if (vd == NULL || vd == spa->spa_root_vdev) {
1404                 vdev_top = spa->spa_root_vdev;
1405         } else {
1406                 vdev_top = vd->vdev_top;
1407         }
1408
1409         if (vd != NULL || error == 0)
1410                 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE, B_FALSE);
1411
1412         if (vd != NULL) {
1413                 if (vd != spa->spa_root_vdev)
1414                         vdev_state_dirty(vdev_top);
1415
1416                 config_changed = B_TRUE;
1417                 spa->spa_config_generation++;
1418         }
1419
1420         if (spa_is_root(spa))
1421                 vdev_rele(spa->spa_root_vdev);
1422
1423         ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1424         spa_config_exit(spa, spa->spa_vdev_locks, spa);
1425
1426         /*
1427          * If anything changed, wait for it to sync.  This ensures that,
1428          * from the system administrator's perspective, zpool(8) commands
1429          * are synchronous.  This is important for things like zpool offline:
1430          * when the command completes, you expect no further I/O from ZFS.
1431          */
1432         if (vd != NULL)
1433                 txg_wait_synced(spa->spa_dsl_pool, 0);
1434
1435         /*
1436          * If the config changed, update the config cache.
1437          */
1438         if (config_changed) {
1439                 mutex_enter(&spa_namespace_lock);
1440                 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
1441                 mutex_exit(&spa_namespace_lock);
1442         }
1443
1444         return (error);
1445 }
1446
1447 /*
1448  * ==========================================================================
1449  * Miscellaneous functions
1450  * ==========================================================================
1451  */
1452
1453 void
1454 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1455 {
1456         if (!nvlist_exists(spa->spa_label_features, feature)) {
1457                 fnvlist_add_boolean(spa->spa_label_features, feature);
1458                 /*
1459                  * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1460                  * dirty the vdev config because lock SCL_CONFIG is not held.
1461                  * Thankfully, in this case we don't need to dirty the config
1462                  * because it will be written out anyway when we finish
1463                  * creating the pool.
1464                  */
1465                 if (tx->tx_txg != TXG_INITIAL)
1466                         vdev_config_dirty(spa->spa_root_vdev);
1467         }
1468 }
1469
1470 void
1471 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1472 {
1473         if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1474                 vdev_config_dirty(spa->spa_root_vdev);
1475 }
1476
1477 /*
1478  * Return the spa_t associated with given pool_guid, if it exists.  If
1479  * device_guid is non-zero, determine whether the pool exists *and* contains
1480  * a device with the specified device_guid.
1481  */
1482 spa_t *
1483 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1484 {
1485         spa_t *spa;
1486         avl_tree_t *t = &spa_namespace_avl;
1487
1488         ASSERT(MUTEX_HELD(&spa_namespace_lock));
1489
1490         for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1491                 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1492                         continue;
1493                 if (spa->spa_root_vdev == NULL)
1494                         continue;
1495                 if (spa_guid(spa) == pool_guid) {
1496                         if (device_guid == 0)
1497                                 break;
1498
1499                         if (vdev_lookup_by_guid(spa->spa_root_vdev,
1500                             device_guid) != NULL)
1501                                 break;
1502
1503                         /*
1504                          * Check any devices we may be in the process of adding.
1505                          */
1506                         if (spa->spa_pending_vdev) {
1507                                 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1508                                     device_guid) != NULL)
1509                                         break;
1510                         }
1511                 }
1512         }
1513
1514         return (spa);
1515 }
1516
1517 /*
1518  * Determine whether a pool with the given pool_guid exists.
1519  */
1520 boolean_t
1521 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1522 {
1523         return (spa_by_guid(pool_guid, device_guid) != NULL);
1524 }
1525
1526 char *
1527 spa_strdup(const char *s)
1528 {
1529         size_t len;
1530         char *new;
1531
1532         len = strlen(s);
1533         new = kmem_alloc(len + 1, KM_SLEEP);
1534         memcpy(new, s, len + 1);
1535
1536         return (new);
1537 }
1538
1539 void
1540 spa_strfree(char *s)
1541 {
1542         kmem_free(s, strlen(s) + 1);
1543 }
1544
1545 uint64_t
1546 spa_generate_guid(spa_t *spa)
1547 {
1548         uint64_t guid;
1549
1550         if (spa != NULL) {
1551                 do {
1552                         (void) random_get_pseudo_bytes((void *)&guid,
1553                             sizeof (guid));
1554                 } while (guid == 0 || spa_guid_exists(spa_guid(spa), guid));
1555         } else {
1556                 do {
1557                         (void) random_get_pseudo_bytes((void *)&guid,
1558                             sizeof (guid));
1559                 } while (guid == 0 || spa_guid_exists(guid, 0));
1560         }
1561
1562         return (guid);
1563 }
1564
1565 void
1566 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1567 {
1568         char type[256];
1569         const char *checksum = NULL;
1570         const char *compress = NULL;
1571
1572         if (bp != NULL) {
1573                 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1574                         dmu_object_byteswap_t bswap =
1575                             DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1576                         (void) snprintf(type, sizeof (type), "bswap %s %s",
1577                             DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1578                             "metadata" : "data",
1579                             dmu_ot_byteswap[bswap].ob_name);
1580                 } else {
1581                         (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1582                             sizeof (type));
1583                 }
1584                 if (!BP_IS_EMBEDDED(bp)) {
1585                         checksum =
1586                             zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1587                 }
1588                 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1589         }
1590
1591         SNPRINTF_BLKPTR(kmem_scnprintf, ' ', buf, buflen, bp, type, checksum,
1592             compress);
1593 }
1594
1595 void
1596 spa_freeze(spa_t *spa)
1597 {
1598         uint64_t freeze_txg = 0;
1599
1600         spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1601         if (spa->spa_freeze_txg == UINT64_MAX) {
1602                 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1603                 spa->spa_freeze_txg = freeze_txg;
1604         }
1605         spa_config_exit(spa, SCL_ALL, FTAG);
1606         if (freeze_txg != 0)
1607                 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1608 }
1609
1610 void
1611 zfs_panic_recover(const char *fmt, ...)
1612 {
1613         va_list adx;
1614
1615         va_start(adx, fmt);
1616         vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1617         va_end(adx);
1618 }
1619
1620 /*
1621  * This is a stripped-down version of strtoull, suitable only for converting
1622  * lowercase hexadecimal numbers that don't overflow.
1623  */
1624 uint64_t
1625 zfs_strtonum(const char *str, char **nptr)
1626 {
1627         uint64_t val = 0;
1628         char c;
1629         int digit;
1630
1631         while ((c = *str) != '\0') {
1632                 if (c >= '0' && c <= '9')
1633                         digit = c - '0';
1634                 else if (c >= 'a' && c <= 'f')
1635                         digit = 10 + c - 'a';
1636                 else
1637                         break;
1638
1639                 val *= 16;
1640                 val += digit;
1641
1642                 str++;
1643         }
1644
1645         if (nptr)
1646                 *nptr = (char *)str;
1647
1648         return (val);
1649 }
1650
1651 void
1652 spa_activate_allocation_classes(spa_t *spa, dmu_tx_t *tx)
1653 {
1654         /*
1655          * We bump the feature refcount for each special vdev added to the pool
1656          */
1657         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_ALLOCATION_CLASSES));
1658         spa_feature_incr(spa, SPA_FEATURE_ALLOCATION_CLASSES, tx);
1659 }
1660
1661 /*
1662  * ==========================================================================
1663  * Accessor functions
1664  * ==========================================================================
1665  */
1666
1667 boolean_t
1668 spa_shutting_down(spa_t *spa)
1669 {
1670         return (spa->spa_async_suspended);
1671 }
1672
1673 dsl_pool_t *
1674 spa_get_dsl(spa_t *spa)
1675 {
1676         return (spa->spa_dsl_pool);
1677 }
1678
1679 boolean_t
1680 spa_is_initializing(spa_t *spa)
1681 {
1682         return (spa->spa_is_initializing);
1683 }
1684
1685 boolean_t
1686 spa_indirect_vdevs_loaded(spa_t *spa)
1687 {
1688         return (spa->spa_indirect_vdevs_loaded);
1689 }
1690
1691 blkptr_t *
1692 spa_get_rootblkptr(spa_t *spa)
1693 {
1694         return (&spa->spa_ubsync.ub_rootbp);
1695 }
1696
1697 void
1698 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1699 {
1700         spa->spa_uberblock.ub_rootbp = *bp;
1701 }
1702
1703 void
1704 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1705 {
1706         if (spa->spa_root == NULL)
1707                 buf[0] = '\0';
1708         else
1709                 (void) strlcpy(buf, spa->spa_root, buflen);
1710 }
1711
1712 uint32_t
1713 spa_sync_pass(spa_t *spa)
1714 {
1715         return (spa->spa_sync_pass);
1716 }
1717
1718 char *
1719 spa_name(spa_t *spa)
1720 {
1721         return (spa->spa_name);
1722 }
1723
1724 uint64_t
1725 spa_guid(spa_t *spa)
1726 {
1727         dsl_pool_t *dp = spa_get_dsl(spa);
1728         uint64_t guid;
1729
1730         /*
1731          * If we fail to parse the config during spa_load(), we can go through
1732          * the error path (which posts an ereport) and end up here with no root
1733          * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1734          * this case.
1735          */
1736         if (spa->spa_root_vdev == NULL)
1737                 return (spa->spa_config_guid);
1738
1739         guid = spa->spa_last_synced_guid != 0 ?
1740             spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1741
1742         /*
1743          * Return the most recently synced out guid unless we're
1744          * in syncing context.
1745          */
1746         if (dp && dsl_pool_sync_context(dp))
1747                 return (spa->spa_root_vdev->vdev_guid);
1748         else
1749                 return (guid);
1750 }
1751
1752 uint64_t
1753 spa_load_guid(spa_t *spa)
1754 {
1755         /*
1756          * This is a GUID that exists solely as a reference for the
1757          * purposes of the arc.  It is generated at load time, and
1758          * is never written to persistent storage.
1759          */
1760         return (spa->spa_load_guid);
1761 }
1762
1763 uint64_t
1764 spa_last_synced_txg(spa_t *spa)
1765 {
1766         return (spa->spa_ubsync.ub_txg);
1767 }
1768
1769 uint64_t
1770 spa_first_txg(spa_t *spa)
1771 {
1772         return (spa->spa_first_txg);
1773 }
1774
1775 uint64_t
1776 spa_syncing_txg(spa_t *spa)
1777 {
1778         return (spa->spa_syncing_txg);
1779 }
1780
1781 /*
1782  * Return the last txg where data can be dirtied. The final txgs
1783  * will be used to just clear out any deferred frees that remain.
1784  */
1785 uint64_t
1786 spa_final_dirty_txg(spa_t *spa)
1787 {
1788         return (spa->spa_final_txg - TXG_DEFER_SIZE);
1789 }
1790
1791 pool_state_t
1792 spa_state(spa_t *spa)
1793 {
1794         return (spa->spa_state);
1795 }
1796
1797 spa_load_state_t
1798 spa_load_state(spa_t *spa)
1799 {
1800         return (spa->spa_load_state);
1801 }
1802
1803 uint64_t
1804 spa_freeze_txg(spa_t *spa)
1805 {
1806         return (spa->spa_freeze_txg);
1807 }
1808
1809 /*
1810  * Return the inflated asize for a logical write in bytes. This is used by the
1811  * DMU to calculate the space a logical write will require on disk.
1812  * If lsize is smaller than the largest physical block size allocatable on this
1813  * pool we use its value instead, since the write will end up using the whole
1814  * block anyway.
1815  */
1816 uint64_t
1817 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1818 {
1819         if (lsize == 0)
1820                 return (0);     /* No inflation needed */
1821         return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1822 }
1823
1824 /*
1825  * Return the amount of slop space in bytes.  It is typically 1/32 of the pool
1826  * (3.2%), minus the embedded log space.  On very small pools, it may be
1827  * slightly larger than this.  On very large pools, it will be capped to
1828  * the value of spa_max_slop.  The embedded log space is not included in
1829  * spa_dspace.  By subtracting it, the usable space (per "zfs list") is a
1830  * constant 97% of the total space, regardless of metaslab size (assuming the
1831  * default spa_slop_shift=5 and a non-tiny pool).
1832  *
1833  * See the comment above spa_slop_shift for more details.
1834  */
1835 uint64_t
1836 spa_get_slop_space(spa_t *spa)
1837 {
1838         uint64_t space = 0;
1839         uint64_t slop = 0;
1840
1841         /*
1842          * Make sure spa_dedup_dspace has been set.
1843          */
1844         if (spa->spa_dedup_dspace == ~0ULL)
1845                 spa_update_dspace(spa);
1846
1847         /*
1848          * spa_get_dspace() includes the space only logically "used" by
1849          * deduplicated data, so since it's not useful to reserve more
1850          * space with more deduplicated data, we subtract that out here.
1851          */
1852         space =
1853             spa_get_dspace(spa) - spa->spa_dedup_dspace - brt_get_dspace(spa);
1854         slop = MIN(space >> spa_slop_shift, spa_max_slop);
1855
1856         /*
1857          * Subtract the embedded log space, but no more than half the (3.2%)
1858          * unusable space.  Note, the "no more than half" is only relevant if
1859          * zfs_embedded_slog_min_ms >> spa_slop_shift < 2, which is not true by
1860          * default.
1861          */
1862         uint64_t embedded_log =
1863             metaslab_class_get_dspace(spa_embedded_log_class(spa));
1864         slop -= MIN(embedded_log, slop >> 1);
1865
1866         /*
1867          * Slop space should be at least spa_min_slop, but no more than half
1868          * the entire pool.
1869          */
1870         slop = MAX(slop, MIN(space >> 1, spa_min_slop));
1871         return (slop);
1872 }
1873
1874 uint64_t
1875 spa_get_dspace(spa_t *spa)
1876 {
1877         return (spa->spa_dspace);
1878 }
1879
1880 uint64_t
1881 spa_get_checkpoint_space(spa_t *spa)
1882 {
1883         return (spa->spa_checkpoint_info.sci_dspace);
1884 }
1885
1886 void
1887 spa_update_dspace(spa_t *spa)
1888 {
1889         spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1890             ddt_get_dedup_dspace(spa) + brt_get_dspace(spa);
1891         if (spa->spa_nonallocating_dspace > 0) {
1892                 /*
1893                  * Subtract the space provided by all non-allocating vdevs that
1894                  * contribute to dspace.  If a file is overwritten, its old
1895                  * blocks are freed and new blocks are allocated.  If there are
1896                  * no snapshots of the file, the available space should remain
1897                  * the same.  The old blocks could be freed from the
1898                  * non-allocating vdev, but the new blocks must be allocated on
1899                  * other (allocating) vdevs.  By reserving the entire size of
1900                  * the non-allocating vdevs (including allocated space), we
1901                  * ensure that there will be enough space on the allocating
1902                  * vdevs for this file overwrite to succeed.
1903                  *
1904                  * Note that the DMU/DSL doesn't actually know or care
1905                  * how much space is allocated (it does its own tracking
1906                  * of how much space has been logically used).  So it
1907                  * doesn't matter that the data we are moving may be
1908                  * allocated twice (on the old device and the new device).
1909                  */
1910                 ASSERT3U(spa->spa_dspace, >=, spa->spa_nonallocating_dspace);
1911                 spa->spa_dspace -= spa->spa_nonallocating_dspace;
1912         }
1913 }
1914
1915 /*
1916  * Return the failure mode that has been set to this pool. The default
1917  * behavior will be to block all I/Os when a complete failure occurs.
1918  */
1919 uint64_t
1920 spa_get_failmode(spa_t *spa)
1921 {
1922         return (spa->spa_failmode);
1923 }
1924
1925 boolean_t
1926 spa_suspended(spa_t *spa)
1927 {
1928         return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1929 }
1930
1931 uint64_t
1932 spa_version(spa_t *spa)
1933 {
1934         return (spa->spa_ubsync.ub_version);
1935 }
1936
1937 boolean_t
1938 spa_deflate(spa_t *spa)
1939 {
1940         return (spa->spa_deflate);
1941 }
1942
1943 metaslab_class_t *
1944 spa_normal_class(spa_t *spa)
1945 {
1946         return (spa->spa_normal_class);
1947 }
1948
1949 metaslab_class_t *
1950 spa_log_class(spa_t *spa)
1951 {
1952         return (spa->spa_log_class);
1953 }
1954
1955 metaslab_class_t *
1956 spa_embedded_log_class(spa_t *spa)
1957 {
1958         return (spa->spa_embedded_log_class);
1959 }
1960
1961 metaslab_class_t *
1962 spa_special_class(spa_t *spa)
1963 {
1964         return (spa->spa_special_class);
1965 }
1966
1967 metaslab_class_t *
1968 spa_dedup_class(spa_t *spa)
1969 {
1970         return (spa->spa_dedup_class);
1971 }
1972
1973 /*
1974  * Locate an appropriate allocation class
1975  */
1976 metaslab_class_t *
1977 spa_preferred_class(spa_t *spa, uint64_t size, dmu_object_type_t objtype,
1978     uint_t level, uint_t special_smallblk)
1979 {
1980         /*
1981          * ZIL allocations determine their class in zio_alloc_zil().
1982          */
1983         ASSERT(objtype != DMU_OT_INTENT_LOG);
1984
1985         boolean_t has_special_class = spa->spa_special_class->mc_groups != 0;
1986
1987         if (DMU_OT_IS_DDT(objtype)) {
1988                 if (spa->spa_dedup_class->mc_groups != 0)
1989                         return (spa_dedup_class(spa));
1990                 else if (has_special_class && zfs_ddt_data_is_special)
1991                         return (spa_special_class(spa));
1992                 else
1993                         return (spa_normal_class(spa));
1994         }
1995
1996         /* Indirect blocks for user data can land in special if allowed */
1997         if (level > 0 && (DMU_OT_IS_FILE(objtype) || objtype == DMU_OT_ZVOL)) {
1998                 if (has_special_class && zfs_user_indirect_is_special)
1999                         return (spa_special_class(spa));
2000                 else
2001                         return (spa_normal_class(spa));
2002         }
2003
2004         if (DMU_OT_IS_METADATA(objtype) || level > 0) {
2005                 if (has_special_class)
2006                         return (spa_special_class(spa));
2007                 else
2008                         return (spa_normal_class(spa));
2009         }
2010
2011         /*
2012          * Allow small file blocks in special class in some cases (like
2013          * for the dRAID vdev feature). But always leave a reserve of
2014          * zfs_special_class_metadata_reserve_pct exclusively for metadata.
2015          */
2016         if (DMU_OT_IS_FILE(objtype) &&
2017             has_special_class && size <= special_smallblk) {
2018                 metaslab_class_t *special = spa_special_class(spa);
2019                 uint64_t alloc = metaslab_class_get_alloc(special);
2020                 uint64_t space = metaslab_class_get_space(special);
2021                 uint64_t limit =
2022                     (space * (100 - zfs_special_class_metadata_reserve_pct))
2023                     / 100;
2024
2025                 if (alloc < limit)
2026                         return (special);
2027         }
2028
2029         return (spa_normal_class(spa));
2030 }
2031
2032 void
2033 spa_evicting_os_register(spa_t *spa, objset_t *os)
2034 {
2035         mutex_enter(&spa->spa_evicting_os_lock);
2036         list_insert_head(&spa->spa_evicting_os_list, os);
2037         mutex_exit(&spa->spa_evicting_os_lock);
2038 }
2039
2040 void
2041 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
2042 {
2043         mutex_enter(&spa->spa_evicting_os_lock);
2044         list_remove(&spa->spa_evicting_os_list, os);
2045         cv_broadcast(&spa->spa_evicting_os_cv);
2046         mutex_exit(&spa->spa_evicting_os_lock);
2047 }
2048
2049 void
2050 spa_evicting_os_wait(spa_t *spa)
2051 {
2052         mutex_enter(&spa->spa_evicting_os_lock);
2053         while (!list_is_empty(&spa->spa_evicting_os_list))
2054                 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
2055         mutex_exit(&spa->spa_evicting_os_lock);
2056
2057         dmu_buf_user_evict_wait();
2058 }
2059
2060 int
2061 spa_max_replication(spa_t *spa)
2062 {
2063         /*
2064          * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
2065          * handle BPs with more than one DVA allocated.  Set our max
2066          * replication level accordingly.
2067          */
2068         if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
2069                 return (1);
2070         return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
2071 }
2072
2073 int
2074 spa_prev_software_version(spa_t *spa)
2075 {
2076         return (spa->spa_prev_software_version);
2077 }
2078
2079 uint64_t
2080 spa_deadman_synctime(spa_t *spa)
2081 {
2082         return (spa->spa_deadman_synctime);
2083 }
2084
2085 spa_autotrim_t
2086 spa_get_autotrim(spa_t *spa)
2087 {
2088         return (spa->spa_autotrim);
2089 }
2090
2091 uint64_t
2092 spa_deadman_ziotime(spa_t *spa)
2093 {
2094         return (spa->spa_deadman_ziotime);
2095 }
2096
2097 uint64_t
2098 spa_get_deadman_failmode(spa_t *spa)
2099 {
2100         return (spa->spa_deadman_failmode);
2101 }
2102
2103 void
2104 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
2105 {
2106         if (strcmp(failmode, "wait") == 0)
2107                 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2108         else if (strcmp(failmode, "continue") == 0)
2109                 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
2110         else if (strcmp(failmode, "panic") == 0)
2111                 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
2112         else
2113                 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
2114 }
2115
2116 void
2117 spa_set_deadman_ziotime(hrtime_t ns)
2118 {
2119         spa_t *spa = NULL;
2120
2121         if (spa_mode_global != SPA_MODE_UNINIT) {
2122                 mutex_enter(&spa_namespace_lock);
2123                 while ((spa = spa_next(spa)) != NULL)
2124                         spa->spa_deadman_ziotime = ns;
2125                 mutex_exit(&spa_namespace_lock);
2126         }
2127 }
2128
2129 void
2130 spa_set_deadman_synctime(hrtime_t ns)
2131 {
2132         spa_t *spa = NULL;
2133
2134         if (spa_mode_global != SPA_MODE_UNINIT) {
2135                 mutex_enter(&spa_namespace_lock);
2136                 while ((spa = spa_next(spa)) != NULL)
2137                         spa->spa_deadman_synctime = ns;
2138                 mutex_exit(&spa_namespace_lock);
2139         }
2140 }
2141
2142 uint64_t
2143 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
2144 {
2145         uint64_t asize = DVA_GET_ASIZE(dva);
2146         uint64_t dsize = asize;
2147
2148         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2149
2150         if (asize != 0 && spa->spa_deflate) {
2151                 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2152                 if (vd != NULL)
2153                         dsize = (asize >> SPA_MINBLOCKSHIFT) *
2154                             vd->vdev_deflate_ratio;
2155         }
2156
2157         return (dsize);
2158 }
2159
2160 uint64_t
2161 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
2162 {
2163         uint64_t dsize = 0;
2164
2165         for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2166                 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2167
2168         return (dsize);
2169 }
2170
2171 uint64_t
2172 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
2173 {
2174         uint64_t dsize = 0;
2175
2176         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2177
2178         for (int d = 0; d < BP_GET_NDVAS(bp); d++)
2179                 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
2180
2181         spa_config_exit(spa, SCL_VDEV, FTAG);
2182
2183         return (dsize);
2184 }
2185
2186 uint64_t
2187 spa_dirty_data(spa_t *spa)
2188 {
2189         return (spa->spa_dsl_pool->dp_dirty_total);
2190 }
2191
2192 /*
2193  * ==========================================================================
2194  * SPA Import Progress Routines
2195  * ==========================================================================
2196  */
2197
2198 typedef struct spa_import_progress {
2199         uint64_t                pool_guid;      /* unique id for updates */
2200         char                    *pool_name;
2201         spa_load_state_t        spa_load_state;
2202         char                    *spa_load_notes;
2203         uint64_t                mmp_sec_remaining;      /* MMP activity check */
2204         uint64_t                spa_load_max_txg;       /* rewind txg */
2205         procfs_list_node_t      smh_node;
2206 } spa_import_progress_t;
2207
2208 spa_history_list_t *spa_import_progress_list = NULL;
2209
2210 static int
2211 spa_import_progress_show_header(struct seq_file *f)
2212 {
2213         seq_printf(f, "%-20s %-14s %-14s %-12s %-16s %s\n", "pool_guid",
2214             "load_state", "multihost_secs", "max_txg",
2215             "pool_name", "notes");
2216         return (0);
2217 }
2218
2219 static int
2220 spa_import_progress_show(struct seq_file *f, void *data)
2221 {
2222         spa_import_progress_t *sip = (spa_import_progress_t *)data;
2223
2224         seq_printf(f, "%-20llu %-14llu %-14llu %-12llu %-16s %s\n",
2225             (u_longlong_t)sip->pool_guid, (u_longlong_t)sip->spa_load_state,
2226             (u_longlong_t)sip->mmp_sec_remaining,
2227             (u_longlong_t)sip->spa_load_max_txg,
2228             (sip->pool_name ? sip->pool_name : "-"),
2229             (sip->spa_load_notes ? sip->spa_load_notes : "-"));
2230
2231         return (0);
2232 }
2233
2234 /* Remove oldest elements from list until there are no more than 'size' left */
2235 static void
2236 spa_import_progress_truncate(spa_history_list_t *shl, unsigned int size)
2237 {
2238         spa_import_progress_t *sip;
2239         while (shl->size > size) {
2240                 sip = list_remove_head(&shl->procfs_list.pl_list);
2241                 if (sip->pool_name)
2242                         spa_strfree(sip->pool_name);
2243                 if (sip->spa_load_notes)
2244                         kmem_strfree(sip->spa_load_notes);
2245                 kmem_free(sip, sizeof (spa_import_progress_t));
2246                 shl->size--;
2247         }
2248
2249         IMPLY(size == 0, list_is_empty(&shl->procfs_list.pl_list));
2250 }
2251
2252 static void
2253 spa_import_progress_init(void)
2254 {
2255         spa_import_progress_list = kmem_zalloc(sizeof (spa_history_list_t),
2256             KM_SLEEP);
2257
2258         spa_import_progress_list->size = 0;
2259
2260         spa_import_progress_list->procfs_list.pl_private =
2261             spa_import_progress_list;
2262
2263         procfs_list_install("zfs",
2264             NULL,
2265             "import_progress",
2266             0644,
2267             &spa_import_progress_list->procfs_list,
2268             spa_import_progress_show,
2269             spa_import_progress_show_header,
2270             NULL,
2271             offsetof(spa_import_progress_t, smh_node));
2272 }
2273
2274 static void
2275 spa_import_progress_destroy(void)
2276 {
2277         spa_history_list_t *shl = spa_import_progress_list;
2278         procfs_list_uninstall(&shl->procfs_list);
2279         spa_import_progress_truncate(shl, 0);
2280         procfs_list_destroy(&shl->procfs_list);
2281         kmem_free(shl, sizeof (spa_history_list_t));
2282 }
2283
2284 int
2285 spa_import_progress_set_state(uint64_t pool_guid,
2286     spa_load_state_t load_state)
2287 {
2288         spa_history_list_t *shl = spa_import_progress_list;
2289         spa_import_progress_t *sip;
2290         int error = ENOENT;
2291
2292         if (shl->size == 0)
2293                 return (0);
2294
2295         mutex_enter(&shl->procfs_list.pl_lock);
2296         for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2297             sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2298                 if (sip->pool_guid == pool_guid) {
2299                         sip->spa_load_state = load_state;
2300                         if (sip->spa_load_notes != NULL) {
2301                                 kmem_strfree(sip->spa_load_notes);
2302                                 sip->spa_load_notes = NULL;
2303                         }
2304                         error = 0;
2305                         break;
2306                 }
2307         }
2308         mutex_exit(&shl->procfs_list.pl_lock);
2309
2310         return (error);
2311 }
2312
2313 static void
2314 spa_import_progress_set_notes_impl(spa_t *spa, boolean_t log_dbgmsg,
2315     const char *fmt, va_list adx)
2316 {
2317         spa_history_list_t *shl = spa_import_progress_list;
2318         spa_import_progress_t *sip;
2319         uint64_t pool_guid = spa_guid(spa);
2320
2321         if (shl->size == 0)
2322                 return;
2323
2324         char *notes = kmem_vasprintf(fmt, adx);
2325
2326         mutex_enter(&shl->procfs_list.pl_lock);
2327         for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2328             sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2329                 if (sip->pool_guid == pool_guid) {
2330                         if (sip->spa_load_notes != NULL) {
2331                                 kmem_strfree(sip->spa_load_notes);
2332                                 sip->spa_load_notes = NULL;
2333                         }
2334                         sip->spa_load_notes = notes;
2335                         if (log_dbgmsg)
2336                                 zfs_dbgmsg("'%s' %s", sip->pool_name, notes);
2337                         notes = NULL;
2338                         break;
2339                 }
2340         }
2341         mutex_exit(&shl->procfs_list.pl_lock);
2342         if (notes != NULL)
2343                 kmem_strfree(notes);
2344 }
2345
2346 void
2347 spa_import_progress_set_notes(spa_t *spa, const char *fmt, ...)
2348 {
2349         va_list adx;
2350
2351         va_start(adx, fmt);
2352         spa_import_progress_set_notes_impl(spa, B_TRUE, fmt, adx);
2353         va_end(adx);
2354 }
2355
2356 void
2357 spa_import_progress_set_notes_nolog(spa_t *spa, const char *fmt, ...)
2358 {
2359         va_list adx;
2360
2361         va_start(adx, fmt);
2362         spa_import_progress_set_notes_impl(spa, B_FALSE, fmt, adx);
2363         va_end(adx);
2364 }
2365
2366 int
2367 spa_import_progress_set_max_txg(uint64_t pool_guid, uint64_t load_max_txg)
2368 {
2369         spa_history_list_t *shl = spa_import_progress_list;
2370         spa_import_progress_t *sip;
2371         int error = ENOENT;
2372
2373         if (shl->size == 0)
2374                 return (0);
2375
2376         mutex_enter(&shl->procfs_list.pl_lock);
2377         for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2378             sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2379                 if (sip->pool_guid == pool_guid) {
2380                         sip->spa_load_max_txg = load_max_txg;
2381                         error = 0;
2382                         break;
2383                 }
2384         }
2385         mutex_exit(&shl->procfs_list.pl_lock);
2386
2387         return (error);
2388 }
2389
2390 int
2391 spa_import_progress_set_mmp_check(uint64_t pool_guid,
2392     uint64_t mmp_sec_remaining)
2393 {
2394         spa_history_list_t *shl = spa_import_progress_list;
2395         spa_import_progress_t *sip;
2396         int error = ENOENT;
2397
2398         if (shl->size == 0)
2399                 return (0);
2400
2401         mutex_enter(&shl->procfs_list.pl_lock);
2402         for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2403             sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2404                 if (sip->pool_guid == pool_guid) {
2405                         sip->mmp_sec_remaining = mmp_sec_remaining;
2406                         error = 0;
2407                         break;
2408                 }
2409         }
2410         mutex_exit(&shl->procfs_list.pl_lock);
2411
2412         return (error);
2413 }
2414
2415 /*
2416  * A new import is in progress, add an entry.
2417  */
2418 void
2419 spa_import_progress_add(spa_t *spa)
2420 {
2421         spa_history_list_t *shl = spa_import_progress_list;
2422         spa_import_progress_t *sip;
2423         const char *poolname = NULL;
2424
2425         sip = kmem_zalloc(sizeof (spa_import_progress_t), KM_SLEEP);
2426         sip->pool_guid = spa_guid(spa);
2427
2428         (void) nvlist_lookup_string(spa->spa_config, ZPOOL_CONFIG_POOL_NAME,
2429             &poolname);
2430         if (poolname == NULL)
2431                 poolname = spa_name(spa);
2432         sip->pool_name = spa_strdup(poolname);
2433         sip->spa_load_state = spa_load_state(spa);
2434         sip->spa_load_notes = NULL;
2435
2436         mutex_enter(&shl->procfs_list.pl_lock);
2437         procfs_list_add(&shl->procfs_list, sip);
2438         shl->size++;
2439         mutex_exit(&shl->procfs_list.pl_lock);
2440 }
2441
2442 void
2443 spa_import_progress_remove(uint64_t pool_guid)
2444 {
2445         spa_history_list_t *shl = spa_import_progress_list;
2446         spa_import_progress_t *sip;
2447
2448         mutex_enter(&shl->procfs_list.pl_lock);
2449         for (sip = list_tail(&shl->procfs_list.pl_list); sip != NULL;
2450             sip = list_prev(&shl->procfs_list.pl_list, sip)) {
2451                 if (sip->pool_guid == pool_guid) {
2452                         if (sip->pool_name)
2453                                 spa_strfree(sip->pool_name);
2454                         if (sip->spa_load_notes)
2455                                 spa_strfree(sip->spa_load_notes);
2456                         list_remove(&shl->procfs_list.pl_list, sip);
2457                         shl->size--;
2458                         kmem_free(sip, sizeof (spa_import_progress_t));
2459                         break;
2460                 }
2461         }
2462         mutex_exit(&shl->procfs_list.pl_lock);
2463 }
2464
2465 /*
2466  * ==========================================================================
2467  * Initialization and Termination
2468  * ==========================================================================
2469  */
2470
2471 static int
2472 spa_name_compare(const void *a1, const void *a2)
2473 {
2474         const spa_t *s1 = a1;
2475         const spa_t *s2 = a2;
2476         int s;
2477
2478         s = strcmp(s1->spa_name, s2->spa_name);
2479
2480         return (TREE_ISIGN(s));
2481 }
2482
2483 void
2484 spa_boot_init(void)
2485 {
2486         spa_config_load();
2487 }
2488
2489 void
2490 spa_init(spa_mode_t mode)
2491 {
2492         mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
2493         mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
2494         mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
2495         cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
2496
2497         avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
2498             offsetof(spa_t, spa_avl));
2499
2500         avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
2501             offsetof(spa_aux_t, aux_avl));
2502
2503         avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
2504             offsetof(spa_aux_t, aux_avl));
2505
2506         spa_mode_global = mode;
2507
2508 #ifndef _KERNEL
2509         if (spa_mode_global != SPA_MODE_READ && dprintf_find_string("watch")) {
2510                 struct sigaction sa;
2511
2512                 sa.sa_flags = SA_SIGINFO;
2513                 sigemptyset(&sa.sa_mask);
2514                 sa.sa_sigaction = arc_buf_sigsegv;
2515
2516                 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
2517                         perror("could not enable watchpoints: "
2518                             "sigaction(SIGSEGV, ...) = ");
2519                 } else {
2520                         arc_watch = B_TRUE;
2521                 }
2522         }
2523 #endif
2524
2525         fm_init();
2526         zfs_refcount_init();
2527         unique_init();
2528         zfs_btree_init();
2529         metaslab_stat_init();
2530         brt_init();
2531         ddt_init();
2532         zio_init();
2533         dmu_init();
2534         zil_init();
2535         vdev_mirror_stat_init();
2536         vdev_raidz_math_init();
2537         vdev_file_init();
2538         zfs_prop_init();
2539         chksum_init();
2540         zpool_prop_init();
2541         zpool_feature_init();
2542         spa_config_load();
2543         vdev_prop_init();
2544         l2arc_start();
2545         scan_init();
2546         qat_init();
2547         spa_import_progress_init();
2548 }
2549
2550 void
2551 spa_fini(void)
2552 {
2553         l2arc_stop();
2554
2555         spa_evict_all();
2556
2557         vdev_file_fini();
2558         vdev_mirror_stat_fini();
2559         vdev_raidz_math_fini();
2560         chksum_fini();
2561         zil_fini();
2562         dmu_fini();
2563         zio_fini();
2564         ddt_fini();
2565         brt_fini();
2566         metaslab_stat_fini();
2567         zfs_btree_fini();
2568         unique_fini();
2569         zfs_refcount_fini();
2570         fm_fini();
2571         scan_fini();
2572         qat_fini();
2573         spa_import_progress_destroy();
2574
2575         avl_destroy(&spa_namespace_avl);
2576         avl_destroy(&spa_spare_avl);
2577         avl_destroy(&spa_l2cache_avl);
2578
2579         cv_destroy(&spa_namespace_cv);
2580         mutex_destroy(&spa_namespace_lock);
2581         mutex_destroy(&spa_spare_lock);
2582         mutex_destroy(&spa_l2cache_lock);
2583 }
2584
2585 /*
2586  * Return whether this pool has a dedicated slog device. No locking needed.
2587  * It's not a problem if the wrong answer is returned as it's only for
2588  * performance and not correctness.
2589  */
2590 boolean_t
2591 spa_has_slogs(spa_t *spa)
2592 {
2593         return (spa->spa_log_class->mc_groups != 0);
2594 }
2595
2596 spa_log_state_t
2597 spa_get_log_state(spa_t *spa)
2598 {
2599         return (spa->spa_log_state);
2600 }
2601
2602 void
2603 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2604 {
2605         spa->spa_log_state = state;
2606 }
2607
2608 boolean_t
2609 spa_is_root(spa_t *spa)
2610 {
2611         return (spa->spa_is_root);
2612 }
2613
2614 boolean_t
2615 spa_writeable(spa_t *spa)
2616 {
2617         return (!!(spa->spa_mode & SPA_MODE_WRITE) && spa->spa_trust_config);
2618 }
2619
2620 /*
2621  * Returns true if there is a pending sync task in any of the current
2622  * syncing txg, the current quiescing txg, or the current open txg.
2623  */
2624 boolean_t
2625 spa_has_pending_synctask(spa_t *spa)
2626 {
2627         return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks) ||
2628             !txg_all_lists_empty(&spa->spa_dsl_pool->dp_early_sync_tasks));
2629 }
2630
2631 spa_mode_t
2632 spa_mode(spa_t *spa)
2633 {
2634         return (spa->spa_mode);
2635 }
2636
2637 uint64_t
2638 spa_bootfs(spa_t *spa)
2639 {
2640         return (spa->spa_bootfs);
2641 }
2642
2643 uint64_t
2644 spa_delegation(spa_t *spa)
2645 {
2646         return (spa->spa_delegation);
2647 }
2648
2649 objset_t *
2650 spa_meta_objset(spa_t *spa)
2651 {
2652         return (spa->spa_meta_objset);
2653 }
2654
2655 enum zio_checksum
2656 spa_dedup_checksum(spa_t *spa)
2657 {
2658         return (spa->spa_dedup_checksum);
2659 }
2660
2661 /*
2662  * Reset pool scan stat per scan pass (or reboot).
2663  */
2664 void
2665 spa_scan_stat_init(spa_t *spa)
2666 {
2667         /* data not stored on disk */
2668         spa->spa_scan_pass_start = gethrestime_sec();
2669         if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2670                 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2671         else
2672                 spa->spa_scan_pass_scrub_pause = 0;
2673
2674         if (dsl_errorscrub_is_paused(spa->spa_dsl_pool->dp_scan))
2675                 spa->spa_scan_pass_errorscrub_pause = spa->spa_scan_pass_start;
2676         else
2677                 spa->spa_scan_pass_errorscrub_pause = 0;
2678
2679         spa->spa_scan_pass_scrub_spent_paused = 0;
2680         spa->spa_scan_pass_exam = 0;
2681         spa->spa_scan_pass_issued = 0;
2682
2683         // error scrub stats
2684         spa->spa_scan_pass_errorscrub_spent_paused = 0;
2685 }
2686
2687 /*
2688  * Get scan stats for zpool status reports
2689  */
2690 int
2691 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2692 {
2693         dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2694
2695         if (scn == NULL || (scn->scn_phys.scn_func == POOL_SCAN_NONE &&
2696             scn->errorscrub_phys.dep_func == POOL_SCAN_NONE))
2697                 return (SET_ERROR(ENOENT));
2698
2699         memset(ps, 0, sizeof (pool_scan_stat_t));
2700
2701         /* data stored on disk */
2702         ps->pss_func = scn->scn_phys.scn_func;
2703         ps->pss_state = scn->scn_phys.scn_state;
2704         ps->pss_start_time = scn->scn_phys.scn_start_time;
2705         ps->pss_end_time = scn->scn_phys.scn_end_time;
2706         ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2707         ps->pss_examined = scn->scn_phys.scn_examined;
2708         ps->pss_skipped = scn->scn_phys.scn_skipped;
2709         ps->pss_processed = scn->scn_phys.scn_processed;
2710         ps->pss_errors = scn->scn_phys.scn_errors;
2711
2712         /* data not stored on disk */
2713         ps->pss_pass_exam = spa->spa_scan_pass_exam;
2714         ps->pss_pass_start = spa->spa_scan_pass_start;
2715         ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2716         ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2717         ps->pss_pass_issued = spa->spa_scan_pass_issued;
2718         ps->pss_issued =
2719             scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2720
2721         /* error scrub data stored on disk */
2722         ps->pss_error_scrub_func = scn->errorscrub_phys.dep_func;
2723         ps->pss_error_scrub_state = scn->errorscrub_phys.dep_state;
2724         ps->pss_error_scrub_start = scn->errorscrub_phys.dep_start_time;
2725         ps->pss_error_scrub_end = scn->errorscrub_phys.dep_end_time;
2726         ps->pss_error_scrub_examined = scn->errorscrub_phys.dep_examined;
2727         ps->pss_error_scrub_to_be_examined =
2728             scn->errorscrub_phys.dep_to_examine;
2729
2730         /* error scrub data not stored on disk */
2731         ps->pss_pass_error_scrub_pause = spa->spa_scan_pass_errorscrub_pause;
2732
2733         return (0);
2734 }
2735
2736 int
2737 spa_maxblocksize(spa_t *spa)
2738 {
2739         if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2740                 return (SPA_MAXBLOCKSIZE);
2741         else
2742                 return (SPA_OLD_MAXBLOCKSIZE);
2743 }
2744
2745
2746 /*
2747  * Returns the txg that the last device removal completed. No indirect mappings
2748  * have been added since this txg.
2749  */
2750 uint64_t
2751 spa_get_last_removal_txg(spa_t *spa)
2752 {
2753         uint64_t vdevid;
2754         uint64_t ret = -1ULL;
2755
2756         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2757         /*
2758          * sr_prev_indirect_vdev is only modified while holding all the
2759          * config locks, so it is sufficient to hold SCL_VDEV as reader when
2760          * examining it.
2761          */
2762         vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2763
2764         while (vdevid != -1ULL) {
2765                 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2766                 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2767
2768                 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2769
2770                 /*
2771                  * If the removal did not remap any data, we don't care.
2772                  */
2773                 if (vdev_indirect_births_count(vib) != 0) {
2774                         ret = vdev_indirect_births_last_entry_txg(vib);
2775                         break;
2776                 }
2777
2778                 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2779         }
2780         spa_config_exit(spa, SCL_VDEV, FTAG);
2781
2782         IMPLY(ret != -1ULL,
2783             spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2784
2785         return (ret);
2786 }
2787
2788 int
2789 spa_maxdnodesize(spa_t *spa)
2790 {
2791         if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2792                 return (DNODE_MAX_SIZE);
2793         else
2794                 return (DNODE_MIN_SIZE);
2795 }
2796
2797 boolean_t
2798 spa_multihost(spa_t *spa)
2799 {
2800         return (spa->spa_multihost ? B_TRUE : B_FALSE);
2801 }
2802
2803 uint32_t
2804 spa_get_hostid(spa_t *spa)
2805 {
2806         return (spa->spa_hostid);
2807 }
2808
2809 boolean_t
2810 spa_trust_config(spa_t *spa)
2811 {
2812         return (spa->spa_trust_config);
2813 }
2814
2815 uint64_t
2816 spa_missing_tvds_allowed(spa_t *spa)
2817 {
2818         return (spa->spa_missing_tvds_allowed);
2819 }
2820
2821 space_map_t *
2822 spa_syncing_log_sm(spa_t *spa)
2823 {
2824         return (spa->spa_syncing_log_sm);
2825 }
2826
2827 void
2828 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2829 {
2830         spa->spa_missing_tvds = missing;
2831 }
2832
2833 /*
2834  * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2835  */
2836 const char *
2837 spa_state_to_name(spa_t *spa)
2838 {
2839         ASSERT3P(spa, !=, NULL);
2840
2841         /*
2842          * it is possible for the spa to exist, without root vdev
2843          * as the spa transitions during import/export
2844          */
2845         vdev_t *rvd = spa->spa_root_vdev;
2846         if (rvd == NULL) {
2847                 return ("TRANSITIONING");
2848         }
2849         vdev_state_t state = rvd->vdev_state;
2850         vdev_aux_t aux = rvd->vdev_stat.vs_aux;
2851
2852         if (spa_suspended(spa))
2853                 return ("SUSPENDED");
2854
2855         switch (state) {
2856         case VDEV_STATE_CLOSED:
2857         case VDEV_STATE_OFFLINE:
2858                 return ("OFFLINE");
2859         case VDEV_STATE_REMOVED:
2860                 return ("REMOVED");
2861         case VDEV_STATE_CANT_OPEN:
2862                 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2863                         return ("FAULTED");
2864                 else if (aux == VDEV_AUX_SPLIT_POOL)
2865                         return ("SPLIT");
2866                 else
2867                         return ("UNAVAIL");
2868         case VDEV_STATE_FAULTED:
2869                 return ("FAULTED");
2870         case VDEV_STATE_DEGRADED:
2871                 return ("DEGRADED");
2872         case VDEV_STATE_HEALTHY:
2873                 return ("ONLINE");
2874         default:
2875                 break;
2876         }
2877
2878         return ("UNKNOWN");
2879 }
2880
2881 boolean_t
2882 spa_top_vdevs_spacemap_addressable(spa_t *spa)
2883 {
2884         vdev_t *rvd = spa->spa_root_vdev;
2885         for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2886                 if (!vdev_is_spacemap_addressable(rvd->vdev_child[c]))
2887                         return (B_FALSE);
2888         }
2889         return (B_TRUE);
2890 }
2891
2892 boolean_t
2893 spa_has_checkpoint(spa_t *spa)
2894 {
2895         return (spa->spa_checkpoint_txg != 0);
2896 }
2897
2898 boolean_t
2899 spa_importing_readonly_checkpoint(spa_t *spa)
2900 {
2901         return ((spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT) &&
2902             spa->spa_mode == SPA_MODE_READ);
2903 }
2904
2905 uint64_t
2906 spa_min_claim_txg(spa_t *spa)
2907 {
2908         uint64_t checkpoint_txg = spa->spa_uberblock.ub_checkpoint_txg;
2909
2910         if (checkpoint_txg != 0)
2911                 return (checkpoint_txg + 1);
2912
2913         return (spa->spa_first_txg);
2914 }
2915
2916 /*
2917  * If there is a checkpoint, async destroys may consume more space from
2918  * the pool instead of freeing it. In an attempt to save the pool from
2919  * getting suspended when it is about to run out of space, we stop
2920  * processing async destroys.
2921  */
2922 boolean_t
2923 spa_suspend_async_destroy(spa_t *spa)
2924 {
2925         dsl_pool_t *dp = spa_get_dsl(spa);
2926
2927         uint64_t unreserved = dsl_pool_unreserved_space(dp,
2928             ZFS_SPACE_CHECK_EXTRA_RESERVED);
2929         uint64_t used = dsl_dir_phys(dp->dp_root_dir)->dd_used_bytes;
2930         uint64_t avail = (unreserved > used) ? (unreserved - used) : 0;
2931
2932         if (spa_has_checkpoint(spa) && avail == 0)
2933                 return (B_TRUE);
2934
2935         return (B_FALSE);
2936 }
2937
2938 #if defined(_KERNEL)
2939
2940 int
2941 param_set_deadman_failmode_common(const char *val)
2942 {
2943         spa_t *spa = NULL;
2944         char *p;
2945
2946         if (val == NULL)
2947                 return (SET_ERROR(EINVAL));
2948
2949         if ((p = strchr(val, '\n')) != NULL)
2950                 *p = '\0';
2951
2952         if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2953             strcmp(val, "panic"))
2954                 return (SET_ERROR(EINVAL));
2955
2956         if (spa_mode_global != SPA_MODE_UNINIT) {
2957                 mutex_enter(&spa_namespace_lock);
2958                 while ((spa = spa_next(spa)) != NULL)
2959                         spa_set_deadman_failmode(spa, val);
2960                 mutex_exit(&spa_namespace_lock);
2961         }
2962
2963         return (0);
2964 }
2965 #endif
2966
2967 /* Namespace manipulation */
2968 EXPORT_SYMBOL(spa_lookup);
2969 EXPORT_SYMBOL(spa_add);
2970 EXPORT_SYMBOL(spa_remove);
2971 EXPORT_SYMBOL(spa_next);
2972
2973 /* Refcount functions */
2974 EXPORT_SYMBOL(spa_open_ref);
2975 EXPORT_SYMBOL(spa_close);
2976 EXPORT_SYMBOL(spa_refcount_zero);
2977
2978 /* Pool configuration lock */
2979 EXPORT_SYMBOL(spa_config_tryenter);
2980 EXPORT_SYMBOL(spa_config_enter);
2981 EXPORT_SYMBOL(spa_config_exit);
2982 EXPORT_SYMBOL(spa_config_held);
2983
2984 /* Pool vdev add/remove lock */
2985 EXPORT_SYMBOL(spa_vdev_enter);
2986 EXPORT_SYMBOL(spa_vdev_exit);
2987
2988 /* Pool vdev state change lock */
2989 EXPORT_SYMBOL(spa_vdev_state_enter);
2990 EXPORT_SYMBOL(spa_vdev_state_exit);
2991
2992 /* Accessor functions */
2993 EXPORT_SYMBOL(spa_shutting_down);
2994 EXPORT_SYMBOL(spa_get_dsl);
2995 EXPORT_SYMBOL(spa_get_rootblkptr);
2996 EXPORT_SYMBOL(spa_set_rootblkptr);
2997 EXPORT_SYMBOL(spa_altroot);
2998 EXPORT_SYMBOL(spa_sync_pass);
2999 EXPORT_SYMBOL(spa_name);
3000 EXPORT_SYMBOL(spa_guid);
3001 EXPORT_SYMBOL(spa_last_synced_txg);
3002 EXPORT_SYMBOL(spa_first_txg);
3003 EXPORT_SYMBOL(spa_syncing_txg);
3004 EXPORT_SYMBOL(spa_version);
3005 EXPORT_SYMBOL(spa_state);
3006 EXPORT_SYMBOL(spa_load_state);
3007 EXPORT_SYMBOL(spa_freeze_txg);
3008 EXPORT_SYMBOL(spa_get_dspace);
3009 EXPORT_SYMBOL(spa_update_dspace);
3010 EXPORT_SYMBOL(spa_deflate);
3011 EXPORT_SYMBOL(spa_normal_class);
3012 EXPORT_SYMBOL(spa_log_class);
3013 EXPORT_SYMBOL(spa_special_class);
3014 EXPORT_SYMBOL(spa_preferred_class);
3015 EXPORT_SYMBOL(spa_max_replication);
3016 EXPORT_SYMBOL(spa_prev_software_version);
3017 EXPORT_SYMBOL(spa_get_failmode);
3018 EXPORT_SYMBOL(spa_suspended);
3019 EXPORT_SYMBOL(spa_bootfs);
3020 EXPORT_SYMBOL(spa_delegation);
3021 EXPORT_SYMBOL(spa_meta_objset);
3022 EXPORT_SYMBOL(spa_maxblocksize);
3023 EXPORT_SYMBOL(spa_maxdnodesize);
3024
3025 /* Miscellaneous support routines */
3026 EXPORT_SYMBOL(spa_guid_exists);
3027 EXPORT_SYMBOL(spa_strdup);
3028 EXPORT_SYMBOL(spa_strfree);
3029 EXPORT_SYMBOL(spa_generate_guid);
3030 EXPORT_SYMBOL(snprintf_blkptr);
3031 EXPORT_SYMBOL(spa_freeze);
3032 EXPORT_SYMBOL(spa_upgrade);
3033 EXPORT_SYMBOL(spa_evict_all);
3034 EXPORT_SYMBOL(spa_lookup_by_guid);
3035 EXPORT_SYMBOL(spa_has_spare);
3036 EXPORT_SYMBOL(dva_get_dsize_sync);
3037 EXPORT_SYMBOL(bp_get_dsize_sync);
3038 EXPORT_SYMBOL(bp_get_dsize);
3039 EXPORT_SYMBOL(spa_has_slogs);
3040 EXPORT_SYMBOL(spa_is_root);
3041 EXPORT_SYMBOL(spa_writeable);
3042 EXPORT_SYMBOL(spa_mode);
3043 EXPORT_SYMBOL(spa_namespace_lock);
3044 EXPORT_SYMBOL(spa_trust_config);
3045 EXPORT_SYMBOL(spa_missing_tvds_allowed);
3046 EXPORT_SYMBOL(spa_set_missing_tvds);
3047 EXPORT_SYMBOL(spa_state_to_name);
3048 EXPORT_SYMBOL(spa_importing_readonly_checkpoint);
3049 EXPORT_SYMBOL(spa_min_claim_txg);
3050 EXPORT_SYMBOL(spa_suspend_async_destroy);
3051 EXPORT_SYMBOL(spa_has_checkpoint);
3052 EXPORT_SYMBOL(spa_top_vdevs_spacemap_addressable);
3053
3054 ZFS_MODULE_PARAM(zfs, zfs_, flags, UINT, ZMOD_RW,
3055         "Set additional debugging flags");
3056
3057 ZFS_MODULE_PARAM(zfs, zfs_, recover, INT, ZMOD_RW,
3058         "Set to attempt to recover from fatal errors");
3059
3060 ZFS_MODULE_PARAM(zfs, zfs_, free_leak_on_eio, INT, ZMOD_RW,
3061         "Set to ignore IO errors during free and permanently leak the space");
3062
3063 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, checktime_ms, U64, ZMOD_RW,
3064         "Dead I/O check interval in milliseconds");
3065
3066 ZFS_MODULE_PARAM(zfs_deadman, zfs_deadman_, enabled, INT, ZMOD_RW,
3067         "Enable deadman timer");
3068
3069 ZFS_MODULE_PARAM(zfs_spa, spa_, asize_inflation, UINT, ZMOD_RW,
3070         "SPA size estimate multiplication factor");
3071
3072 ZFS_MODULE_PARAM(zfs, zfs_, ddt_data_is_special, INT, ZMOD_RW,
3073         "Place DDT data into the special class");
3074
3075 ZFS_MODULE_PARAM(zfs, zfs_, user_indirect_is_special, INT, ZMOD_RW,
3076         "Place user data indirect blocks into the special class");
3077
3078 /* BEGIN CSTYLED */
3079 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, failmode,
3080         param_set_deadman_failmode, param_get_charp, ZMOD_RW,
3081         "Failmode for deadman timer");
3082
3083 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, synctime_ms,
3084         param_set_deadman_synctime, spl_param_get_u64, ZMOD_RW,
3085         "Pool sync expiration time in milliseconds");
3086
3087 ZFS_MODULE_PARAM_CALL(zfs_deadman, zfs_deadman_, ziotime_ms,
3088         param_set_deadman_ziotime, spl_param_get_u64, ZMOD_RW,
3089         "IO expiration time in milliseconds");
3090
3091 ZFS_MODULE_PARAM(zfs, zfs_, special_class_metadata_reserve_pct, UINT, ZMOD_RW,
3092         "Small file blocks in special vdevs depends on this much "
3093         "free space available");
3094 /* END CSTYLED */
3095
3096 ZFS_MODULE_PARAM_CALL(zfs_spa, spa_, slop_shift, param_set_slop_shift,
3097         param_get_uint, ZMOD_RW, "Reserved free space in pool");
3098
3099 ZFS_MODULE_PARAM(zfs, spa_, num_allocators, INT, ZMOD_RW,
3100         "Number of allocators per spa, capped by ncpus");