]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/vdev.c
Checksum errors may not be counted
[FreeBSD/FreeBSD.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  * Copyright (c) 2019, Datto Inc. All rights reserved.
31  */
32
33 #include <sys/zfs_context.h>
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/spa.h>
36 #include <sys/spa_impl.h>
37 #include <sys/bpobj.h>
38 #include <sys/dmu.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/vdev_impl.h>
42 #include <sys/vdev_rebuild.h>
43 #include <sys/vdev_draid.h>
44 #include <sys/uberblock_impl.h>
45 #include <sys/metaslab.h>
46 #include <sys/metaslab_impl.h>
47 #include <sys/space_map.h>
48 #include <sys/space_reftree.h>
49 #include <sys/zio.h>
50 #include <sys/zap.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/arc.h>
53 #include <sys/zil.h>
54 #include <sys/dsl_scan.h>
55 #include <sys/vdev_raidz.h>
56 #include <sys/abd.h>
57 #include <sys/vdev_initialize.h>
58 #include <sys/vdev_trim.h>
59 #include <sys/zvol.h>
60 #include <sys/zfs_ratelimit.h>
61
62 /*
63  * One metaslab from each (normal-class) vdev is used by the ZIL.  These are
64  * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are
65  * part of the spa_embedded_log_class.  The metaslab with the most free space
66  * in each vdev is selected for this purpose when the pool is opened (or a
67  * vdev is added).  See vdev_metaslab_init().
68  *
69  * Log blocks can be allocated from the following locations.  Each one is tried
70  * in order until the allocation succeeds:
71  * 1. dedicated log vdevs, aka "slog" (spa_log_class)
72  * 2. embedded slog metaslabs (spa_embedded_log_class)
73  * 3. other metaslabs in normal vdevs (spa_normal_class)
74  *
75  * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer
76  * than this number of metaslabs in the vdev.  This ensures that we don't set
77  * aside an unreasonable amount of space for the ZIL.  If set to less than
78  * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced
79  * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab.
80  */
81 int zfs_embedded_slog_min_ms = 64;
82
83 /* default target for number of metaslabs per top-level vdev */
84 int zfs_vdev_default_ms_count = 200;
85
86 /* minimum number of metaslabs per top-level vdev */
87 int zfs_vdev_min_ms_count = 16;
88
89 /* practical upper limit of total metaslabs per top-level vdev */
90 int zfs_vdev_ms_count_limit = 1ULL << 17;
91
92 /* lower limit for metaslab size (512M) */
93 int zfs_vdev_default_ms_shift = 29;
94
95 /* upper limit for metaslab size (16G) */
96 int zfs_vdev_max_ms_shift = 34;
97
98 int vdev_validate_skip = B_FALSE;
99
100 /*
101  * Since the DTL space map of a vdev is not expected to have a lot of
102  * entries, we default its block size to 4K.
103  */
104 int zfs_vdev_dtl_sm_blksz = (1 << 12);
105
106 /*
107  * Rate limit slow IO (delay) events to this many per second.
108  */
109 unsigned int zfs_slow_io_events_per_second = 20;
110
111 /*
112  * Rate limit checksum events after this many checksum errors per second.
113  */
114 unsigned int zfs_checksum_events_per_second = 20;
115
116 /*
117  * Ignore errors during scrub/resilver.  Allows to work around resilver
118  * upon import when there are pool errors.
119  */
120 int zfs_scan_ignore_errors = 0;
121
122 /*
123  * vdev-wide space maps that have lots of entries written to them at
124  * the end of each transaction can benefit from a higher I/O bandwidth
125  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
126  */
127 int zfs_vdev_standard_sm_blksz = (1 << 17);
128
129 /*
130  * Tunable parameter for debugging or performance analysis. Setting this
131  * will cause pool corruption on power loss if a volatile out-of-order
132  * write cache is enabled.
133  */
134 int zfs_nocacheflush = 0;
135
136 uint64_t zfs_vdev_max_auto_ashift = ASHIFT_MAX;
137 uint64_t zfs_vdev_min_auto_ashift = ASHIFT_MIN;
138
139 /*PRINTFLIKE2*/
140 void
141 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
142 {
143         va_list adx;
144         char buf[256];
145
146         va_start(adx, fmt);
147         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
148         va_end(adx);
149
150         if (vd->vdev_path != NULL) {
151                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
152                     vd->vdev_path, buf);
153         } else {
154                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
155                     vd->vdev_ops->vdev_op_type,
156                     (u_longlong_t)vd->vdev_id,
157                     (u_longlong_t)vd->vdev_guid, buf);
158         }
159 }
160
161 void
162 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
163 {
164         char state[20];
165
166         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
167                 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
168                     vd->vdev_ops->vdev_op_type);
169                 return;
170         }
171
172         switch (vd->vdev_state) {
173         case VDEV_STATE_UNKNOWN:
174                 (void) snprintf(state, sizeof (state), "unknown");
175                 break;
176         case VDEV_STATE_CLOSED:
177                 (void) snprintf(state, sizeof (state), "closed");
178                 break;
179         case VDEV_STATE_OFFLINE:
180                 (void) snprintf(state, sizeof (state), "offline");
181                 break;
182         case VDEV_STATE_REMOVED:
183                 (void) snprintf(state, sizeof (state), "removed");
184                 break;
185         case VDEV_STATE_CANT_OPEN:
186                 (void) snprintf(state, sizeof (state), "can't open");
187                 break;
188         case VDEV_STATE_FAULTED:
189                 (void) snprintf(state, sizeof (state), "faulted");
190                 break;
191         case VDEV_STATE_DEGRADED:
192                 (void) snprintf(state, sizeof (state), "degraded");
193                 break;
194         case VDEV_STATE_HEALTHY:
195                 (void) snprintf(state, sizeof (state), "healthy");
196                 break;
197         default:
198                 (void) snprintf(state, sizeof (state), "<state %u>",
199                     (uint_t)vd->vdev_state);
200         }
201
202         zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
203             "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
204             vd->vdev_islog ? " (log)" : "",
205             (u_longlong_t)vd->vdev_guid,
206             vd->vdev_path ? vd->vdev_path : "N/A", state);
207
208         for (uint64_t i = 0; i < vd->vdev_children; i++)
209                 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
210 }
211
212 /*
213  * Virtual device management.
214  */
215
216 static vdev_ops_t *vdev_ops_table[] = {
217         &vdev_root_ops,
218         &vdev_raidz_ops,
219         &vdev_draid_ops,
220         &vdev_draid_spare_ops,
221         &vdev_mirror_ops,
222         &vdev_replacing_ops,
223         &vdev_spare_ops,
224         &vdev_disk_ops,
225         &vdev_file_ops,
226         &vdev_missing_ops,
227         &vdev_hole_ops,
228         &vdev_indirect_ops,
229         NULL
230 };
231
232 /*
233  * Given a vdev type, return the appropriate ops vector.
234  */
235 static vdev_ops_t *
236 vdev_getops(const char *type)
237 {
238         vdev_ops_t *ops, **opspp;
239
240         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
241                 if (strcmp(ops->vdev_op_type, type) == 0)
242                         break;
243
244         return (ops);
245 }
246
247 /*
248  * Given a vdev and a metaslab class, find which metaslab group we're
249  * interested in. All vdevs may belong to two different metaslab classes.
250  * Dedicated slog devices use only the primary metaslab group, rather than a
251  * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL.
252  */
253 metaslab_group_t *
254 vdev_get_mg(vdev_t *vd, metaslab_class_t *mc)
255 {
256         if (mc == spa_embedded_log_class(vd->vdev_spa) &&
257             vd->vdev_log_mg != NULL)
258                 return (vd->vdev_log_mg);
259         else
260                 return (vd->vdev_mg);
261 }
262
263 /* ARGSUSED */
264 void
265 vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
266     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
267 {
268         physical_rs->rs_start = logical_rs->rs_start;
269         physical_rs->rs_end = logical_rs->rs_end;
270 }
271
272 /*
273  * Derive the enumerated allocation bias from string input.
274  * String origin is either the per-vdev zap or zpool(8).
275  */
276 static vdev_alloc_bias_t
277 vdev_derive_alloc_bias(const char *bias)
278 {
279         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
280
281         if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
282                 alloc_bias = VDEV_BIAS_LOG;
283         else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
284                 alloc_bias = VDEV_BIAS_SPECIAL;
285         else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
286                 alloc_bias = VDEV_BIAS_DEDUP;
287
288         return (alloc_bias);
289 }
290
291 /*
292  * Default asize function: return the MAX of psize with the asize of
293  * all children.  This is what's used by anything other than RAID-Z.
294  */
295 uint64_t
296 vdev_default_asize(vdev_t *vd, uint64_t psize)
297 {
298         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
299         uint64_t csize;
300
301         for (int c = 0; c < vd->vdev_children; c++) {
302                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
303                 asize = MAX(asize, csize);
304         }
305
306         return (asize);
307 }
308
309 uint64_t
310 vdev_default_min_asize(vdev_t *vd)
311 {
312         return (vd->vdev_min_asize);
313 }
314
315 /*
316  * Get the minimum allocatable size. We define the allocatable size as
317  * the vdev's asize rounded to the nearest metaslab. This allows us to
318  * replace or attach devices which don't have the same physical size but
319  * can still satisfy the same number of allocations.
320  */
321 uint64_t
322 vdev_get_min_asize(vdev_t *vd)
323 {
324         vdev_t *pvd = vd->vdev_parent;
325
326         /*
327          * If our parent is NULL (inactive spare or cache) or is the root,
328          * just return our own asize.
329          */
330         if (pvd == NULL)
331                 return (vd->vdev_asize);
332
333         /*
334          * The top-level vdev just returns the allocatable size rounded
335          * to the nearest metaslab.
336          */
337         if (vd == vd->vdev_top)
338                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
339
340         return (pvd->vdev_ops->vdev_op_min_asize(pvd));
341 }
342
343 void
344 vdev_set_min_asize(vdev_t *vd)
345 {
346         vd->vdev_min_asize = vdev_get_min_asize(vd);
347
348         for (int c = 0; c < vd->vdev_children; c++)
349                 vdev_set_min_asize(vd->vdev_child[c]);
350 }
351
352 /*
353  * Get the minimal allocation size for the top-level vdev.
354  */
355 uint64_t
356 vdev_get_min_alloc(vdev_t *vd)
357 {
358         uint64_t min_alloc = 1ULL << vd->vdev_ashift;
359
360         if (vd->vdev_ops->vdev_op_min_alloc != NULL)
361                 min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd);
362
363         return (min_alloc);
364 }
365
366 /*
367  * Get the parity level for a top-level vdev.
368  */
369 uint64_t
370 vdev_get_nparity(vdev_t *vd)
371 {
372         uint64_t nparity = 0;
373
374         if (vd->vdev_ops->vdev_op_nparity != NULL)
375                 nparity = vd->vdev_ops->vdev_op_nparity(vd);
376
377         return (nparity);
378 }
379
380 /*
381  * Get the number of data disks for a top-level vdev.
382  */
383 uint64_t
384 vdev_get_ndisks(vdev_t *vd)
385 {
386         uint64_t ndisks = 1;
387
388         if (vd->vdev_ops->vdev_op_ndisks != NULL)
389                 ndisks = vd->vdev_ops->vdev_op_ndisks(vd);
390
391         return (ndisks);
392 }
393
394 vdev_t *
395 vdev_lookup_top(spa_t *spa, uint64_t vdev)
396 {
397         vdev_t *rvd = spa->spa_root_vdev;
398
399         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
400
401         if (vdev < rvd->vdev_children) {
402                 ASSERT(rvd->vdev_child[vdev] != NULL);
403                 return (rvd->vdev_child[vdev]);
404         }
405
406         return (NULL);
407 }
408
409 vdev_t *
410 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
411 {
412         vdev_t *mvd;
413
414         if (vd->vdev_guid == guid)
415                 return (vd);
416
417         for (int c = 0; c < vd->vdev_children; c++)
418                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
419                     NULL)
420                         return (mvd);
421
422         return (NULL);
423 }
424
425 static int
426 vdev_count_leaves_impl(vdev_t *vd)
427 {
428         int n = 0;
429
430         if (vd->vdev_ops->vdev_op_leaf)
431                 return (1);
432
433         for (int c = 0; c < vd->vdev_children; c++)
434                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
435
436         return (n);
437 }
438
439 int
440 vdev_count_leaves(spa_t *spa)
441 {
442         int rc;
443
444         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
445         rc = vdev_count_leaves_impl(spa->spa_root_vdev);
446         spa_config_exit(spa, SCL_VDEV, FTAG);
447
448         return (rc);
449 }
450
451 void
452 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
453 {
454         size_t oldsize, newsize;
455         uint64_t id = cvd->vdev_id;
456         vdev_t **newchild;
457
458         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
459         ASSERT(cvd->vdev_parent == NULL);
460
461         cvd->vdev_parent = pvd;
462
463         if (pvd == NULL)
464                 return;
465
466         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
467
468         oldsize = pvd->vdev_children * sizeof (vdev_t *);
469         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
470         newsize = pvd->vdev_children * sizeof (vdev_t *);
471
472         newchild = kmem_alloc(newsize, KM_SLEEP);
473         if (pvd->vdev_child != NULL) {
474                 bcopy(pvd->vdev_child, newchild, oldsize);
475                 kmem_free(pvd->vdev_child, oldsize);
476         }
477
478         pvd->vdev_child = newchild;
479         pvd->vdev_child[id] = cvd;
480
481         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
482         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
483
484         /*
485          * Walk up all ancestors to update guid sum.
486          */
487         for (; pvd != NULL; pvd = pvd->vdev_parent)
488                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
489
490         if (cvd->vdev_ops->vdev_op_leaf) {
491                 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
492                 cvd->vdev_spa->spa_leaf_list_gen++;
493         }
494 }
495
496 void
497 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
498 {
499         int c;
500         uint_t id = cvd->vdev_id;
501
502         ASSERT(cvd->vdev_parent == pvd);
503
504         if (pvd == NULL)
505                 return;
506
507         ASSERT(id < pvd->vdev_children);
508         ASSERT(pvd->vdev_child[id] == cvd);
509
510         pvd->vdev_child[id] = NULL;
511         cvd->vdev_parent = NULL;
512
513         for (c = 0; c < pvd->vdev_children; c++)
514                 if (pvd->vdev_child[c])
515                         break;
516
517         if (c == pvd->vdev_children) {
518                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
519                 pvd->vdev_child = NULL;
520                 pvd->vdev_children = 0;
521         }
522
523         if (cvd->vdev_ops->vdev_op_leaf) {
524                 spa_t *spa = cvd->vdev_spa;
525                 list_remove(&spa->spa_leaf_list, cvd);
526                 spa->spa_leaf_list_gen++;
527         }
528
529         /*
530          * Walk up all ancestors to update guid sum.
531          */
532         for (; pvd != NULL; pvd = pvd->vdev_parent)
533                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
534 }
535
536 /*
537  * Remove any holes in the child array.
538  */
539 void
540 vdev_compact_children(vdev_t *pvd)
541 {
542         vdev_t **newchild, *cvd;
543         int oldc = pvd->vdev_children;
544         int newc;
545
546         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
547
548         if (oldc == 0)
549                 return;
550
551         for (int c = newc = 0; c < oldc; c++)
552                 if (pvd->vdev_child[c])
553                         newc++;
554
555         if (newc > 0) {
556                 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
557
558                 for (int c = newc = 0; c < oldc; c++) {
559                         if ((cvd = pvd->vdev_child[c]) != NULL) {
560                                 newchild[newc] = cvd;
561                                 cvd->vdev_id = newc++;
562                         }
563                 }
564         } else {
565                 newchild = NULL;
566         }
567
568         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
569         pvd->vdev_child = newchild;
570         pvd->vdev_children = newc;
571 }
572
573 /*
574  * Allocate and minimally initialize a vdev_t.
575  */
576 vdev_t *
577 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
578 {
579         vdev_t *vd;
580         vdev_indirect_config_t *vic;
581
582         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
583         vic = &vd->vdev_indirect_config;
584
585         if (spa->spa_root_vdev == NULL) {
586                 ASSERT(ops == &vdev_root_ops);
587                 spa->spa_root_vdev = vd;
588                 spa->spa_load_guid = spa_generate_guid(NULL);
589         }
590
591         if (guid == 0 && ops != &vdev_hole_ops) {
592                 if (spa->spa_root_vdev == vd) {
593                         /*
594                          * The root vdev's guid will also be the pool guid,
595                          * which must be unique among all pools.
596                          */
597                         guid = spa_generate_guid(NULL);
598                 } else {
599                         /*
600                          * Any other vdev's guid must be unique within the pool.
601                          */
602                         guid = spa_generate_guid(spa);
603                 }
604                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
605         }
606
607         vd->vdev_spa = spa;
608         vd->vdev_id = id;
609         vd->vdev_guid = guid;
610         vd->vdev_guid_sum = guid;
611         vd->vdev_ops = ops;
612         vd->vdev_state = VDEV_STATE_CLOSED;
613         vd->vdev_ishole = (ops == &vdev_hole_ops);
614         vic->vic_prev_indirect_vdev = UINT64_MAX;
615
616         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
617         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
618         vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL,
619             0, 0);
620
621         /*
622          * Initialize rate limit structs for events.  We rate limit ZIO delay
623          * and checksum events so that we don't overwhelm ZED with thousands
624          * of events when a disk is acting up.
625          */
626         zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
627             1);
628         zfs_ratelimit_init(&vd->vdev_checksum_rl,
629             &zfs_checksum_events_per_second, 1);
630
631         list_link_init(&vd->vdev_config_dirty_node);
632         list_link_init(&vd->vdev_state_dirty_node);
633         list_link_init(&vd->vdev_initialize_node);
634         list_link_init(&vd->vdev_leaf_node);
635         list_link_init(&vd->vdev_trim_node);
636
637         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
638         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
639         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
640         mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
641
642         mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
643         mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
644         cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
645         cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
646
647         mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
648         mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
649         mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
650         cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
651         cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
652         cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
653
654         mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL);
655         cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL);
656
657         for (int t = 0; t < DTL_TYPES; t++) {
658                 vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0,
659                     0);
660         }
661
662         txg_list_create(&vd->vdev_ms_list, spa,
663             offsetof(struct metaslab, ms_txg_node));
664         txg_list_create(&vd->vdev_dtl_list, spa,
665             offsetof(struct vdev, vdev_dtl_node));
666         vd->vdev_stat.vs_timestamp = gethrtime();
667         vdev_queue_init(vd);
668         vdev_cache_init(vd);
669
670         return (vd);
671 }
672
673 /*
674  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
675  * creating a new vdev or loading an existing one - the behavior is slightly
676  * different for each case.
677  */
678 int
679 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
680     int alloctype)
681 {
682         vdev_ops_t *ops;
683         char *type;
684         uint64_t guid = 0, islog;
685         vdev_t *vd;
686         vdev_indirect_config_t *vic;
687         char *tmp = NULL;
688         int rc;
689         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
690         boolean_t top_level = (parent && !parent->vdev_parent);
691
692         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
693
694         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
695                 return (SET_ERROR(EINVAL));
696
697         if ((ops = vdev_getops(type)) == NULL)
698                 return (SET_ERROR(EINVAL));
699
700         /*
701          * If this is a load, get the vdev guid from the nvlist.
702          * Otherwise, vdev_alloc_common() will generate one for us.
703          */
704         if (alloctype == VDEV_ALLOC_LOAD) {
705                 uint64_t label_id;
706
707                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
708                     label_id != id)
709                         return (SET_ERROR(EINVAL));
710
711                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
712                         return (SET_ERROR(EINVAL));
713         } else if (alloctype == VDEV_ALLOC_SPARE) {
714                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
715                         return (SET_ERROR(EINVAL));
716         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
717                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
718                         return (SET_ERROR(EINVAL));
719         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
720                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
721                         return (SET_ERROR(EINVAL));
722         }
723
724         /*
725          * The first allocated vdev must be of type 'root'.
726          */
727         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
728                 return (SET_ERROR(EINVAL));
729
730         /*
731          * Determine whether we're a log vdev.
732          */
733         islog = 0;
734         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
735         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
736                 return (SET_ERROR(ENOTSUP));
737
738         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
739                 return (SET_ERROR(ENOTSUP));
740
741         if (top_level && alloctype == VDEV_ALLOC_ADD) {
742                 char *bias;
743
744                 /*
745                  * If creating a top-level vdev, check for allocation
746                  * classes input.
747                  */
748                 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
749                     &bias) == 0) {
750                         alloc_bias = vdev_derive_alloc_bias(bias);
751
752                         /* spa_vdev_add() expects feature to be enabled */
753                         if (spa->spa_load_state != SPA_LOAD_CREATE &&
754                             !spa_feature_is_enabled(spa,
755                             SPA_FEATURE_ALLOCATION_CLASSES)) {
756                                 return (SET_ERROR(ENOTSUP));
757                         }
758                 }
759
760                 /* spa_vdev_add() expects feature to be enabled */
761                 if (ops == &vdev_draid_ops &&
762                     spa->spa_load_state != SPA_LOAD_CREATE &&
763                     !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) {
764                         return (SET_ERROR(ENOTSUP));
765                 }
766         }
767
768         /*
769          * Initialize the vdev specific data.  This is done before calling
770          * vdev_alloc_common() since it may fail and this simplifies the
771          * error reporting and cleanup code paths.
772          */
773         void *tsd = NULL;
774         if (ops->vdev_op_init != NULL) {
775                 rc = ops->vdev_op_init(spa, nv, &tsd);
776                 if (rc != 0) {
777                         return (rc);
778                 }
779         }
780
781         vd = vdev_alloc_common(spa, id, guid, ops);
782         vd->vdev_tsd = tsd;
783         vd->vdev_islog = islog;
784
785         if (top_level && alloc_bias != VDEV_BIAS_NONE)
786                 vd->vdev_alloc_bias = alloc_bias;
787
788         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
789                 vd->vdev_path = spa_strdup(vd->vdev_path);
790
791         /*
792          * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
793          * fault on a vdev and want it to persist across imports (like with
794          * zpool offline -f).
795          */
796         rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
797         if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
798                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
799                 vd->vdev_faulted = 1;
800                 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
801         }
802
803         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
804                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
805         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
806             &vd->vdev_physpath) == 0)
807                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
808
809         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
810             &vd->vdev_enc_sysfs_path) == 0)
811                 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
812
813         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
814                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
815
816         /*
817          * Set the whole_disk property.  If it's not specified, leave the value
818          * as -1.
819          */
820         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
821             &vd->vdev_wholedisk) != 0)
822                 vd->vdev_wholedisk = -1ULL;
823
824         vic = &vd->vdev_indirect_config;
825
826         ASSERT0(vic->vic_mapping_object);
827         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
828             &vic->vic_mapping_object);
829         ASSERT0(vic->vic_births_object);
830         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
831             &vic->vic_births_object);
832         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
833         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
834             &vic->vic_prev_indirect_vdev);
835
836         /*
837          * Look for the 'not present' flag.  This will only be set if the device
838          * was not present at the time of import.
839          */
840         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
841             &vd->vdev_not_present);
842
843         /*
844          * Get the alignment requirement.
845          */
846         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
847
848         /*
849          * Retrieve the vdev creation time.
850          */
851         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
852             &vd->vdev_crtxg);
853
854         /*
855          * If we're a top-level vdev, try to load the allocation parameters.
856          */
857         if (top_level &&
858             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
859                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
860                     &vd->vdev_ms_array);
861                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
862                     &vd->vdev_ms_shift);
863                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
864                     &vd->vdev_asize);
865                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
866                     &vd->vdev_removing);
867                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
868                     &vd->vdev_top_zap);
869         } else {
870                 ASSERT0(vd->vdev_top_zap);
871         }
872
873         if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
874                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
875                     alloctype == VDEV_ALLOC_ADD ||
876                     alloctype == VDEV_ALLOC_SPLIT ||
877                     alloctype == VDEV_ALLOC_ROOTPOOL);
878                 /* Note: metaslab_group_create() is now deferred */
879         }
880
881         if (vd->vdev_ops->vdev_op_leaf &&
882             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
883                 (void) nvlist_lookup_uint64(nv,
884                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
885         } else {
886                 ASSERT0(vd->vdev_leaf_zap);
887         }
888
889         /*
890          * If we're a leaf vdev, try to load the DTL object and other state.
891          */
892
893         if (vd->vdev_ops->vdev_op_leaf &&
894             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
895             alloctype == VDEV_ALLOC_ROOTPOOL)) {
896                 if (alloctype == VDEV_ALLOC_LOAD) {
897                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
898                             &vd->vdev_dtl_object);
899                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
900                             &vd->vdev_unspare);
901                 }
902
903                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
904                         uint64_t spare = 0;
905
906                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
907                             &spare) == 0 && spare)
908                                 spa_spare_add(vd);
909                 }
910
911                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
912                     &vd->vdev_offline);
913
914                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
915                     &vd->vdev_resilver_txg);
916
917                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG,
918                     &vd->vdev_rebuild_txg);
919
920                 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
921                         vdev_defer_resilver(vd);
922
923                 /*
924                  * In general, when importing a pool we want to ignore the
925                  * persistent fault state, as the diagnosis made on another
926                  * system may not be valid in the current context.  The only
927                  * exception is if we forced a vdev to a persistently faulted
928                  * state with 'zpool offline -f'.  The persistent fault will
929                  * remain across imports until cleared.
930                  *
931                  * Local vdevs will remain in the faulted state.
932                  */
933                 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
934                     spa_load_state(spa) == SPA_LOAD_IMPORT) {
935                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
936                             &vd->vdev_faulted);
937                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
938                             &vd->vdev_degraded);
939                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
940                             &vd->vdev_removed);
941
942                         if (vd->vdev_faulted || vd->vdev_degraded) {
943                                 char *aux;
944
945                                 vd->vdev_label_aux =
946                                     VDEV_AUX_ERR_EXCEEDED;
947                                 if (nvlist_lookup_string(nv,
948                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
949                                     strcmp(aux, "external") == 0)
950                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
951                                 else
952                                         vd->vdev_faulted = 0ULL;
953                         }
954                 }
955         }
956
957         /*
958          * Add ourselves to the parent's list of children.
959          */
960         vdev_add_child(parent, vd);
961
962         *vdp = vd;
963
964         return (0);
965 }
966
967 void
968 vdev_free(vdev_t *vd)
969 {
970         spa_t *spa = vd->vdev_spa;
971
972         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
973         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
974         ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
975         ASSERT3P(vd->vdev_rebuild_thread, ==, NULL);
976
977         /*
978          * Scan queues are normally destroyed at the end of a scan. If the
979          * queue exists here, that implies the vdev is being removed while
980          * the scan is still running.
981          */
982         if (vd->vdev_scan_io_queue != NULL) {
983                 mutex_enter(&vd->vdev_scan_io_queue_lock);
984                 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
985                 vd->vdev_scan_io_queue = NULL;
986                 mutex_exit(&vd->vdev_scan_io_queue_lock);
987         }
988
989         /*
990          * vdev_free() implies closing the vdev first.  This is simpler than
991          * trying to ensure complicated semantics for all callers.
992          */
993         vdev_close(vd);
994
995         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
996         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
997
998         /*
999          * Free all children.
1000          */
1001         for (int c = 0; c < vd->vdev_children; c++)
1002                 vdev_free(vd->vdev_child[c]);
1003
1004         ASSERT(vd->vdev_child == NULL);
1005         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
1006
1007         if (vd->vdev_ops->vdev_op_fini != NULL)
1008                 vd->vdev_ops->vdev_op_fini(vd);
1009
1010         /*
1011          * Discard allocation state.
1012          */
1013         if (vd->vdev_mg != NULL) {
1014                 vdev_metaslab_fini(vd);
1015                 metaslab_group_destroy(vd->vdev_mg);
1016                 vd->vdev_mg = NULL;
1017         }
1018         if (vd->vdev_log_mg != NULL) {
1019                 ASSERT0(vd->vdev_ms_count);
1020                 metaslab_group_destroy(vd->vdev_log_mg);
1021                 vd->vdev_log_mg = NULL;
1022         }
1023
1024         ASSERT0(vd->vdev_stat.vs_space);
1025         ASSERT0(vd->vdev_stat.vs_dspace);
1026         ASSERT0(vd->vdev_stat.vs_alloc);
1027
1028         /*
1029          * Remove this vdev from its parent's child list.
1030          */
1031         vdev_remove_child(vd->vdev_parent, vd);
1032
1033         ASSERT(vd->vdev_parent == NULL);
1034         ASSERT(!list_link_active(&vd->vdev_leaf_node));
1035
1036         /*
1037          * Clean up vdev structure.
1038          */
1039         vdev_queue_fini(vd);
1040         vdev_cache_fini(vd);
1041
1042         if (vd->vdev_path)
1043                 spa_strfree(vd->vdev_path);
1044         if (vd->vdev_devid)
1045                 spa_strfree(vd->vdev_devid);
1046         if (vd->vdev_physpath)
1047                 spa_strfree(vd->vdev_physpath);
1048
1049         if (vd->vdev_enc_sysfs_path)
1050                 spa_strfree(vd->vdev_enc_sysfs_path);
1051
1052         if (vd->vdev_fru)
1053                 spa_strfree(vd->vdev_fru);
1054
1055         if (vd->vdev_isspare)
1056                 spa_spare_remove(vd);
1057         if (vd->vdev_isl2cache)
1058                 spa_l2cache_remove(vd);
1059
1060         txg_list_destroy(&vd->vdev_ms_list);
1061         txg_list_destroy(&vd->vdev_dtl_list);
1062
1063         mutex_enter(&vd->vdev_dtl_lock);
1064         space_map_close(vd->vdev_dtl_sm);
1065         for (int t = 0; t < DTL_TYPES; t++) {
1066                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
1067                 range_tree_destroy(vd->vdev_dtl[t]);
1068         }
1069         mutex_exit(&vd->vdev_dtl_lock);
1070
1071         EQUIV(vd->vdev_indirect_births != NULL,
1072             vd->vdev_indirect_mapping != NULL);
1073         if (vd->vdev_indirect_births != NULL) {
1074                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
1075                 vdev_indirect_births_close(vd->vdev_indirect_births);
1076         }
1077
1078         if (vd->vdev_obsolete_sm != NULL) {
1079                 ASSERT(vd->vdev_removing ||
1080                     vd->vdev_ops == &vdev_indirect_ops);
1081                 space_map_close(vd->vdev_obsolete_sm);
1082                 vd->vdev_obsolete_sm = NULL;
1083         }
1084         range_tree_destroy(vd->vdev_obsolete_segments);
1085         rw_destroy(&vd->vdev_indirect_rwlock);
1086         mutex_destroy(&vd->vdev_obsolete_lock);
1087
1088         mutex_destroy(&vd->vdev_dtl_lock);
1089         mutex_destroy(&vd->vdev_stat_lock);
1090         mutex_destroy(&vd->vdev_probe_lock);
1091         mutex_destroy(&vd->vdev_scan_io_queue_lock);
1092
1093         mutex_destroy(&vd->vdev_initialize_lock);
1094         mutex_destroy(&vd->vdev_initialize_io_lock);
1095         cv_destroy(&vd->vdev_initialize_io_cv);
1096         cv_destroy(&vd->vdev_initialize_cv);
1097
1098         mutex_destroy(&vd->vdev_trim_lock);
1099         mutex_destroy(&vd->vdev_autotrim_lock);
1100         mutex_destroy(&vd->vdev_trim_io_lock);
1101         cv_destroy(&vd->vdev_trim_cv);
1102         cv_destroy(&vd->vdev_autotrim_cv);
1103         cv_destroy(&vd->vdev_trim_io_cv);
1104
1105         mutex_destroy(&vd->vdev_rebuild_lock);
1106         cv_destroy(&vd->vdev_rebuild_cv);
1107
1108         zfs_ratelimit_fini(&vd->vdev_delay_rl);
1109         zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1110
1111         if (vd == spa->spa_root_vdev)
1112                 spa->spa_root_vdev = NULL;
1113
1114         kmem_free(vd, sizeof (vdev_t));
1115 }
1116
1117 /*
1118  * Transfer top-level vdev state from svd to tvd.
1119  */
1120 static void
1121 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1122 {
1123         spa_t *spa = svd->vdev_spa;
1124         metaslab_t *msp;
1125         vdev_t *vd;
1126         int t;
1127
1128         ASSERT(tvd == tvd->vdev_top);
1129
1130         tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1131         tvd->vdev_ms_array = svd->vdev_ms_array;
1132         tvd->vdev_ms_shift = svd->vdev_ms_shift;
1133         tvd->vdev_ms_count = svd->vdev_ms_count;
1134         tvd->vdev_top_zap = svd->vdev_top_zap;
1135
1136         svd->vdev_ms_array = 0;
1137         svd->vdev_ms_shift = 0;
1138         svd->vdev_ms_count = 0;
1139         svd->vdev_top_zap = 0;
1140
1141         if (tvd->vdev_mg)
1142                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1143         if (tvd->vdev_log_mg)
1144                 ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg);
1145         tvd->vdev_mg = svd->vdev_mg;
1146         tvd->vdev_log_mg = svd->vdev_log_mg;
1147         tvd->vdev_ms = svd->vdev_ms;
1148
1149         svd->vdev_mg = NULL;
1150         svd->vdev_log_mg = NULL;
1151         svd->vdev_ms = NULL;
1152
1153         if (tvd->vdev_mg != NULL)
1154                 tvd->vdev_mg->mg_vd = tvd;
1155         if (tvd->vdev_log_mg != NULL)
1156                 tvd->vdev_log_mg->mg_vd = tvd;
1157
1158         tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1159         svd->vdev_checkpoint_sm = NULL;
1160
1161         tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1162         svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1163
1164         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1165         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1166         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1167
1168         svd->vdev_stat.vs_alloc = 0;
1169         svd->vdev_stat.vs_space = 0;
1170         svd->vdev_stat.vs_dspace = 0;
1171
1172         /*
1173          * State which may be set on a top-level vdev that's in the
1174          * process of being removed.
1175          */
1176         ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1177         ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1178         ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1179         ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1180         ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1181         ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1182         ASSERT0(tvd->vdev_removing);
1183         ASSERT0(tvd->vdev_rebuilding);
1184         tvd->vdev_removing = svd->vdev_removing;
1185         tvd->vdev_rebuilding = svd->vdev_rebuilding;
1186         tvd->vdev_rebuild_config = svd->vdev_rebuild_config;
1187         tvd->vdev_indirect_config = svd->vdev_indirect_config;
1188         tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1189         tvd->vdev_indirect_births = svd->vdev_indirect_births;
1190         range_tree_swap(&svd->vdev_obsolete_segments,
1191             &tvd->vdev_obsolete_segments);
1192         tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1193         svd->vdev_indirect_config.vic_mapping_object = 0;
1194         svd->vdev_indirect_config.vic_births_object = 0;
1195         svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1196         svd->vdev_indirect_mapping = NULL;
1197         svd->vdev_indirect_births = NULL;
1198         svd->vdev_obsolete_sm = NULL;
1199         svd->vdev_removing = 0;
1200         svd->vdev_rebuilding = 0;
1201
1202         for (t = 0; t < TXG_SIZE; t++) {
1203                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1204                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1205                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1206                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1207                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1208                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1209         }
1210
1211         if (list_link_active(&svd->vdev_config_dirty_node)) {
1212                 vdev_config_clean(svd);
1213                 vdev_config_dirty(tvd);
1214         }
1215
1216         if (list_link_active(&svd->vdev_state_dirty_node)) {
1217                 vdev_state_clean(svd);
1218                 vdev_state_dirty(tvd);
1219         }
1220
1221         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1222         svd->vdev_deflate_ratio = 0;
1223
1224         tvd->vdev_islog = svd->vdev_islog;
1225         svd->vdev_islog = 0;
1226
1227         dsl_scan_io_queue_vdev_xfer(svd, tvd);
1228 }
1229
1230 static void
1231 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1232 {
1233         if (vd == NULL)
1234                 return;
1235
1236         vd->vdev_top = tvd;
1237
1238         for (int c = 0; c < vd->vdev_children; c++)
1239                 vdev_top_update(tvd, vd->vdev_child[c]);
1240 }
1241
1242 /*
1243  * Add a mirror/replacing vdev above an existing vdev.  There is no need to
1244  * call .vdev_op_init() since mirror/replacing vdevs do not have private state.
1245  */
1246 vdev_t *
1247 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1248 {
1249         spa_t *spa = cvd->vdev_spa;
1250         vdev_t *pvd = cvd->vdev_parent;
1251         vdev_t *mvd;
1252
1253         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1254
1255         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1256
1257         mvd->vdev_asize = cvd->vdev_asize;
1258         mvd->vdev_min_asize = cvd->vdev_min_asize;
1259         mvd->vdev_max_asize = cvd->vdev_max_asize;
1260         mvd->vdev_psize = cvd->vdev_psize;
1261         mvd->vdev_ashift = cvd->vdev_ashift;
1262         mvd->vdev_logical_ashift = cvd->vdev_logical_ashift;
1263         mvd->vdev_physical_ashift = cvd->vdev_physical_ashift;
1264         mvd->vdev_state = cvd->vdev_state;
1265         mvd->vdev_crtxg = cvd->vdev_crtxg;
1266
1267         vdev_remove_child(pvd, cvd);
1268         vdev_add_child(pvd, mvd);
1269         cvd->vdev_id = mvd->vdev_children;
1270         vdev_add_child(mvd, cvd);
1271         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1272
1273         if (mvd == mvd->vdev_top)
1274                 vdev_top_transfer(cvd, mvd);
1275
1276         return (mvd);
1277 }
1278
1279 /*
1280  * Remove a 1-way mirror/replacing vdev from the tree.
1281  */
1282 void
1283 vdev_remove_parent(vdev_t *cvd)
1284 {
1285         vdev_t *mvd = cvd->vdev_parent;
1286         vdev_t *pvd = mvd->vdev_parent;
1287
1288         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1289
1290         ASSERT(mvd->vdev_children == 1);
1291         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1292             mvd->vdev_ops == &vdev_replacing_ops ||
1293             mvd->vdev_ops == &vdev_spare_ops);
1294         cvd->vdev_ashift = mvd->vdev_ashift;
1295         cvd->vdev_logical_ashift = mvd->vdev_logical_ashift;
1296         cvd->vdev_physical_ashift = mvd->vdev_physical_ashift;
1297         vdev_remove_child(mvd, cvd);
1298         vdev_remove_child(pvd, mvd);
1299
1300         /*
1301          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1302          * Otherwise, we could have detached an offline device, and when we
1303          * go to import the pool we'll think we have two top-level vdevs,
1304          * instead of a different version of the same top-level vdev.
1305          */
1306         if (mvd->vdev_top == mvd) {
1307                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1308                 cvd->vdev_orig_guid = cvd->vdev_guid;
1309                 cvd->vdev_guid += guid_delta;
1310                 cvd->vdev_guid_sum += guid_delta;
1311
1312                 /*
1313                  * If pool not set for autoexpand, we need to also preserve
1314                  * mvd's asize to prevent automatic expansion of cvd.
1315                  * Otherwise if we are adjusting the mirror by attaching and
1316                  * detaching children of non-uniform sizes, the mirror could
1317                  * autoexpand, unexpectedly requiring larger devices to
1318                  * re-establish the mirror.
1319                  */
1320                 if (!cvd->vdev_spa->spa_autoexpand)
1321                         cvd->vdev_asize = mvd->vdev_asize;
1322         }
1323         cvd->vdev_id = mvd->vdev_id;
1324         vdev_add_child(pvd, cvd);
1325         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1326
1327         if (cvd == cvd->vdev_top)
1328                 vdev_top_transfer(mvd, cvd);
1329
1330         ASSERT(mvd->vdev_children == 0);
1331         vdev_free(mvd);
1332 }
1333
1334 void
1335 vdev_metaslab_group_create(vdev_t *vd)
1336 {
1337         spa_t *spa = vd->vdev_spa;
1338
1339         /*
1340          * metaslab_group_create was delayed until allocation bias was available
1341          */
1342         if (vd->vdev_mg == NULL) {
1343                 metaslab_class_t *mc;
1344
1345                 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1346                         vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1347
1348                 ASSERT3U(vd->vdev_islog, ==,
1349                     (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1350
1351                 switch (vd->vdev_alloc_bias) {
1352                 case VDEV_BIAS_LOG:
1353                         mc = spa_log_class(spa);
1354                         break;
1355                 case VDEV_BIAS_SPECIAL:
1356                         mc = spa_special_class(spa);
1357                         break;
1358                 case VDEV_BIAS_DEDUP:
1359                         mc = spa_dedup_class(spa);
1360                         break;
1361                 default:
1362                         mc = spa_normal_class(spa);
1363                 }
1364
1365                 vd->vdev_mg = metaslab_group_create(mc, vd,
1366                     spa->spa_alloc_count);
1367
1368                 if (!vd->vdev_islog) {
1369                         vd->vdev_log_mg = metaslab_group_create(
1370                             spa_embedded_log_class(spa), vd, 1);
1371                 }
1372
1373                 /*
1374                  * The spa ashift min/max only apply for the normal metaslab
1375                  * class. Class destination is late binding so ashift boundry
1376                  * setting had to wait until now.
1377                  */
1378                 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1379                     mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1380                         if (vd->vdev_ashift > spa->spa_max_ashift)
1381                                 spa->spa_max_ashift = vd->vdev_ashift;
1382                         if (vd->vdev_ashift < spa->spa_min_ashift)
1383                                 spa->spa_min_ashift = vd->vdev_ashift;
1384
1385                         uint64_t min_alloc = vdev_get_min_alloc(vd);
1386                         if (min_alloc < spa->spa_min_alloc)
1387                                 spa->spa_min_alloc = min_alloc;
1388                 }
1389         }
1390 }
1391
1392 int
1393 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1394 {
1395         spa_t *spa = vd->vdev_spa;
1396         uint64_t oldc = vd->vdev_ms_count;
1397         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1398         metaslab_t **mspp;
1399         int error;
1400         boolean_t expanding = (oldc != 0);
1401
1402         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1403
1404         /*
1405          * This vdev is not being allocated from yet or is a hole.
1406          */
1407         if (vd->vdev_ms_shift == 0)
1408                 return (0);
1409
1410         ASSERT(!vd->vdev_ishole);
1411
1412         ASSERT(oldc <= newc);
1413
1414         mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1415
1416         if (expanding) {
1417                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1418                 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1419         }
1420
1421         vd->vdev_ms = mspp;
1422         vd->vdev_ms_count = newc;
1423
1424         for (uint64_t m = oldc; m < newc; m++) {
1425                 uint64_t object = 0;
1426                 /*
1427                  * vdev_ms_array may be 0 if we are creating the "fake"
1428                  * metaslabs for an indirect vdev for zdb's leak detection.
1429                  * See zdb_leak_init().
1430                  */
1431                 if (txg == 0 && vd->vdev_ms_array != 0) {
1432                         error = dmu_read(spa->spa_meta_objset,
1433                             vd->vdev_ms_array,
1434                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1435                             DMU_READ_PREFETCH);
1436                         if (error != 0) {
1437                                 vdev_dbgmsg(vd, "unable to read the metaslab "
1438                                     "array [error=%d]", error);
1439                                 return (error);
1440                         }
1441                 }
1442
1443                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1444                     &(vd->vdev_ms[m]));
1445                 if (error != 0) {
1446                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1447                             error);
1448                         return (error);
1449                 }
1450         }
1451
1452         /*
1453          * Find the emptiest metaslab on the vdev and mark it for use for
1454          * embedded slog by moving it from the regular to the log metaslab
1455          * group.
1456          */
1457         if (vd->vdev_mg->mg_class == spa_normal_class(spa) &&
1458             vd->vdev_ms_count > zfs_embedded_slog_min_ms &&
1459             avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) {
1460                 uint64_t slog_msid = 0;
1461                 uint64_t smallest = UINT64_MAX;
1462
1463                 /*
1464                  * Note, we only search the new metaslabs, because the old
1465                  * (pre-existing) ones may be active (e.g. have non-empty
1466                  * range_tree's), and we don't move them to the new
1467                  * metaslab_t.
1468                  */
1469                 for (uint64_t m = oldc; m < newc; m++) {
1470                         uint64_t alloc =
1471                             space_map_allocated(vd->vdev_ms[m]->ms_sm);
1472                         if (alloc < smallest) {
1473                                 slog_msid = m;
1474                                 smallest = alloc;
1475                         }
1476                 }
1477                 metaslab_t *slog_ms = vd->vdev_ms[slog_msid];
1478                 /*
1479                  * The metaslab was marked as dirty at the end of
1480                  * metaslab_init(). Remove it from the dirty list so that we
1481                  * can uninitialize and reinitialize it to the new class.
1482                  */
1483                 if (txg != 0) {
1484                         (void) txg_list_remove_this(&vd->vdev_ms_list,
1485                             slog_ms, txg);
1486                 }
1487                 uint64_t sm_obj = space_map_object(slog_ms->ms_sm);
1488                 metaslab_fini(slog_ms);
1489                 VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg,
1490                     &vd->vdev_ms[slog_msid]));
1491         }
1492
1493         if (txg == 0)
1494                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1495
1496         /*
1497          * If the vdev is being removed we don't activate
1498          * the metaslabs since we want to ensure that no new
1499          * allocations are performed on this device.
1500          */
1501         if (!expanding && !vd->vdev_removing) {
1502                 metaslab_group_activate(vd->vdev_mg);
1503                 if (vd->vdev_log_mg != NULL)
1504                         metaslab_group_activate(vd->vdev_log_mg);
1505         }
1506
1507         if (txg == 0)
1508                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1509
1510         /*
1511          * Regardless whether this vdev was just added or it is being
1512          * expanded, the metaslab count has changed. Recalculate the
1513          * block limit.
1514          */
1515         spa_log_sm_set_blocklimit(spa);
1516
1517         return (0);
1518 }
1519
1520 void
1521 vdev_metaslab_fini(vdev_t *vd)
1522 {
1523         if (vd->vdev_checkpoint_sm != NULL) {
1524                 ASSERT(spa_feature_is_active(vd->vdev_spa,
1525                     SPA_FEATURE_POOL_CHECKPOINT));
1526                 space_map_close(vd->vdev_checkpoint_sm);
1527                 /*
1528                  * Even though we close the space map, we need to set its
1529                  * pointer to NULL. The reason is that vdev_metaslab_fini()
1530                  * may be called multiple times for certain operations
1531                  * (i.e. when destroying a pool) so we need to ensure that
1532                  * this clause never executes twice. This logic is similar
1533                  * to the one used for the vdev_ms clause below.
1534                  */
1535                 vd->vdev_checkpoint_sm = NULL;
1536         }
1537
1538         if (vd->vdev_ms != NULL) {
1539                 metaslab_group_t *mg = vd->vdev_mg;
1540
1541                 metaslab_group_passivate(mg);
1542                 if (vd->vdev_log_mg != NULL) {
1543                         ASSERT(!vd->vdev_islog);
1544                         metaslab_group_passivate(vd->vdev_log_mg);
1545                 }
1546
1547                 uint64_t count = vd->vdev_ms_count;
1548                 for (uint64_t m = 0; m < count; m++) {
1549                         metaslab_t *msp = vd->vdev_ms[m];
1550                         if (msp != NULL)
1551                                 metaslab_fini(msp);
1552                 }
1553                 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1554                 vd->vdev_ms = NULL;
1555                 vd->vdev_ms_count = 0;
1556
1557                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1558                         ASSERT0(mg->mg_histogram[i]);
1559                         if (vd->vdev_log_mg != NULL)
1560                                 ASSERT0(vd->vdev_log_mg->mg_histogram[i]);
1561                 }
1562         }
1563         ASSERT0(vd->vdev_ms_count);
1564         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1565 }
1566
1567 typedef struct vdev_probe_stats {
1568         boolean_t       vps_readable;
1569         boolean_t       vps_writeable;
1570         int             vps_flags;
1571 } vdev_probe_stats_t;
1572
1573 static void
1574 vdev_probe_done(zio_t *zio)
1575 {
1576         spa_t *spa = zio->io_spa;
1577         vdev_t *vd = zio->io_vd;
1578         vdev_probe_stats_t *vps = zio->io_private;
1579
1580         ASSERT(vd->vdev_probe_zio != NULL);
1581
1582         if (zio->io_type == ZIO_TYPE_READ) {
1583                 if (zio->io_error == 0)
1584                         vps->vps_readable = 1;
1585                 if (zio->io_error == 0 && spa_writeable(spa)) {
1586                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1587                             zio->io_offset, zio->io_size, zio->io_abd,
1588                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1589                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1590                 } else {
1591                         abd_free(zio->io_abd);
1592                 }
1593         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1594                 if (zio->io_error == 0)
1595                         vps->vps_writeable = 1;
1596                 abd_free(zio->io_abd);
1597         } else if (zio->io_type == ZIO_TYPE_NULL) {
1598                 zio_t *pio;
1599                 zio_link_t *zl;
1600
1601                 vd->vdev_cant_read |= !vps->vps_readable;
1602                 vd->vdev_cant_write |= !vps->vps_writeable;
1603
1604                 if (vdev_readable(vd) &&
1605                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1606                         zio->io_error = 0;
1607                 } else {
1608                         ASSERT(zio->io_error != 0);
1609                         vdev_dbgmsg(vd, "failed probe");
1610                         (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1611                             spa, vd, NULL, NULL, 0);
1612                         zio->io_error = SET_ERROR(ENXIO);
1613                 }
1614
1615                 mutex_enter(&vd->vdev_probe_lock);
1616                 ASSERT(vd->vdev_probe_zio == zio);
1617                 vd->vdev_probe_zio = NULL;
1618                 mutex_exit(&vd->vdev_probe_lock);
1619
1620                 zl = NULL;
1621                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1622                         if (!vdev_accessible(vd, pio))
1623                                 pio->io_error = SET_ERROR(ENXIO);
1624
1625                 kmem_free(vps, sizeof (*vps));
1626         }
1627 }
1628
1629 /*
1630  * Determine whether this device is accessible.
1631  *
1632  * Read and write to several known locations: the pad regions of each
1633  * vdev label but the first, which we leave alone in case it contains
1634  * a VTOC.
1635  */
1636 zio_t *
1637 vdev_probe(vdev_t *vd, zio_t *zio)
1638 {
1639         spa_t *spa = vd->vdev_spa;
1640         vdev_probe_stats_t *vps = NULL;
1641         zio_t *pio;
1642
1643         ASSERT(vd->vdev_ops->vdev_op_leaf);
1644
1645         /*
1646          * Don't probe the probe.
1647          */
1648         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1649                 return (NULL);
1650
1651         /*
1652          * To prevent 'probe storms' when a device fails, we create
1653          * just one probe i/o at a time.  All zios that want to probe
1654          * this vdev will become parents of the probe io.
1655          */
1656         mutex_enter(&vd->vdev_probe_lock);
1657
1658         if ((pio = vd->vdev_probe_zio) == NULL) {
1659                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1660
1661                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1662                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1663                     ZIO_FLAG_TRYHARD;
1664
1665                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1666                         /*
1667                          * vdev_cant_read and vdev_cant_write can only
1668                          * transition from TRUE to FALSE when we have the
1669                          * SCL_ZIO lock as writer; otherwise they can only
1670                          * transition from FALSE to TRUE.  This ensures that
1671                          * any zio looking at these values can assume that
1672                          * failures persist for the life of the I/O.  That's
1673                          * important because when a device has intermittent
1674                          * connectivity problems, we want to ensure that
1675                          * they're ascribed to the device (ENXIO) and not
1676                          * the zio (EIO).
1677                          *
1678                          * Since we hold SCL_ZIO as writer here, clear both
1679                          * values so the probe can reevaluate from first
1680                          * principles.
1681                          */
1682                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1683                         vd->vdev_cant_read = B_FALSE;
1684                         vd->vdev_cant_write = B_FALSE;
1685                 }
1686
1687                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1688                     vdev_probe_done, vps,
1689                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1690
1691                 /*
1692                  * We can't change the vdev state in this context, so we
1693                  * kick off an async task to do it on our behalf.
1694                  */
1695                 if (zio != NULL) {
1696                         vd->vdev_probe_wanted = B_TRUE;
1697                         spa_async_request(spa, SPA_ASYNC_PROBE);
1698                 }
1699         }
1700
1701         if (zio != NULL)
1702                 zio_add_child(zio, pio);
1703
1704         mutex_exit(&vd->vdev_probe_lock);
1705
1706         if (vps == NULL) {
1707                 ASSERT(zio != NULL);
1708                 return (NULL);
1709         }
1710
1711         for (int l = 1; l < VDEV_LABELS; l++) {
1712                 zio_nowait(zio_read_phys(pio, vd,
1713                     vdev_label_offset(vd->vdev_psize, l,
1714                     offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE,
1715                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1716                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1717                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1718         }
1719
1720         if (zio == NULL)
1721                 return (pio);
1722
1723         zio_nowait(pio);
1724         return (NULL);
1725 }
1726
1727 static void
1728 vdev_load_child(void *arg)
1729 {
1730         vdev_t *vd = arg;
1731
1732         vd->vdev_load_error = vdev_load(vd);
1733 }
1734
1735 static void
1736 vdev_open_child(void *arg)
1737 {
1738         vdev_t *vd = arg;
1739
1740         vd->vdev_open_thread = curthread;
1741         vd->vdev_open_error = vdev_open(vd);
1742         vd->vdev_open_thread = NULL;
1743 }
1744
1745 static boolean_t
1746 vdev_uses_zvols(vdev_t *vd)
1747 {
1748 #ifdef _KERNEL
1749         if (zvol_is_zvol(vd->vdev_path))
1750                 return (B_TRUE);
1751 #endif
1752
1753         for (int c = 0; c < vd->vdev_children; c++)
1754                 if (vdev_uses_zvols(vd->vdev_child[c]))
1755                         return (B_TRUE);
1756
1757         return (B_FALSE);
1758 }
1759
1760 /*
1761  * Returns B_TRUE if the passed child should be opened.
1762  */
1763 static boolean_t
1764 vdev_default_open_children_func(vdev_t *vd)
1765 {
1766         return (B_TRUE);
1767 }
1768
1769 /*
1770  * Open the requested child vdevs.  If any of the leaf vdevs are using
1771  * a ZFS volume then do the opens in a single thread.  This avoids a
1772  * deadlock when the current thread is holding the spa_namespace_lock.
1773  */
1774 static void
1775 vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func)
1776 {
1777         int children = vd->vdev_children;
1778
1779         taskq_t *tq = taskq_create("vdev_open", children, minclsyspri,
1780             children, children, TASKQ_PREPOPULATE);
1781         vd->vdev_nonrot = B_TRUE;
1782
1783         for (int c = 0; c < children; c++) {
1784                 vdev_t *cvd = vd->vdev_child[c];
1785
1786                 if (open_func(cvd) == B_FALSE)
1787                         continue;
1788
1789                 if (tq == NULL || vdev_uses_zvols(vd)) {
1790                         cvd->vdev_open_error = vdev_open(cvd);
1791                 } else {
1792                         VERIFY(taskq_dispatch(tq, vdev_open_child,
1793                             cvd, TQ_SLEEP) != TASKQID_INVALID);
1794                 }
1795
1796                 vd->vdev_nonrot &= cvd->vdev_nonrot;
1797         }
1798
1799         if (tq != NULL) {
1800                 taskq_wait(tq);
1801                 taskq_destroy(tq);
1802         }
1803 }
1804
1805 /*
1806  * Open all child vdevs.
1807  */
1808 void
1809 vdev_open_children(vdev_t *vd)
1810 {
1811         vdev_open_children_impl(vd, vdev_default_open_children_func);
1812 }
1813
1814 /*
1815  * Conditionally open a subset of child vdevs.
1816  */
1817 void
1818 vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func)
1819 {
1820         vdev_open_children_impl(vd, open_func);
1821 }
1822
1823 /*
1824  * Compute the raidz-deflation ratio.  Note, we hard-code
1825  * in 128k (1 << 17) because it is the "typical" blocksize.
1826  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1827  * otherwise it would inconsistently account for existing bp's.
1828  */
1829 static void
1830 vdev_set_deflate_ratio(vdev_t *vd)
1831 {
1832         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1833                 vd->vdev_deflate_ratio = (1 << 17) /
1834                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1835         }
1836 }
1837
1838 /*
1839  * Maximize performance by inflating the configured ashift for top level
1840  * vdevs to be as close to the physical ashift as possible while maintaining
1841  * administrator defined limits and ensuring it doesn't go below the
1842  * logical ashift.
1843  */
1844 static void
1845 vdev_ashift_optimize(vdev_t *vd)
1846 {
1847         ASSERT(vd == vd->vdev_top);
1848
1849         if (vd->vdev_ashift < vd->vdev_physical_ashift) {
1850                 vd->vdev_ashift = MIN(
1851                     MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift),
1852                     MAX(zfs_vdev_min_auto_ashift,
1853                     vd->vdev_physical_ashift));
1854         } else {
1855                 /*
1856                  * If the logical and physical ashifts are the same, then
1857                  * we ensure that the top-level vdev's ashift is not smaller
1858                  * than our minimum ashift value. For the unusual case
1859                  * where logical ashift > physical ashift, we can't cap
1860                  * the calculated ashift based on max ashift as that
1861                  * would cause failures.
1862                  * We still check if we need to increase it to match
1863                  * the min ashift.
1864                  */
1865                 vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift,
1866                     vd->vdev_ashift);
1867         }
1868 }
1869
1870 /*
1871  * Prepare a virtual device for access.
1872  */
1873 int
1874 vdev_open(vdev_t *vd)
1875 {
1876         spa_t *spa = vd->vdev_spa;
1877         int error;
1878         uint64_t osize = 0;
1879         uint64_t max_osize = 0;
1880         uint64_t asize, max_asize, psize;
1881         uint64_t logical_ashift = 0;
1882         uint64_t physical_ashift = 0;
1883
1884         ASSERT(vd->vdev_open_thread == curthread ||
1885             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1886         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1887             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1888             vd->vdev_state == VDEV_STATE_OFFLINE);
1889
1890         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1891         vd->vdev_cant_read = B_FALSE;
1892         vd->vdev_cant_write = B_FALSE;
1893         vd->vdev_min_asize = vdev_get_min_asize(vd);
1894
1895         /*
1896          * If this vdev is not removed, check its fault status.  If it's
1897          * faulted, bail out of the open.
1898          */
1899         if (!vd->vdev_removed && vd->vdev_faulted) {
1900                 ASSERT(vd->vdev_children == 0);
1901                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1902                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1903                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1904                     vd->vdev_label_aux);
1905                 return (SET_ERROR(ENXIO));
1906         } else if (vd->vdev_offline) {
1907                 ASSERT(vd->vdev_children == 0);
1908                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1909                 return (SET_ERROR(ENXIO));
1910         }
1911
1912         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize,
1913             &logical_ashift, &physical_ashift);
1914         /*
1915          * Physical volume size should never be larger than its max size, unless
1916          * the disk has shrunk while we were reading it or the device is buggy
1917          * or damaged: either way it's not safe for use, bail out of the open.
1918          */
1919         if (osize > max_osize) {
1920                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1921                     VDEV_AUX_OPEN_FAILED);
1922                 return (SET_ERROR(ENXIO));
1923         }
1924
1925         /*
1926          * Reset the vdev_reopening flag so that we actually close
1927          * the vdev on error.
1928          */
1929         vd->vdev_reopening = B_FALSE;
1930         if (zio_injection_enabled && error == 0)
1931                 error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO));
1932
1933         if (error) {
1934                 if (vd->vdev_removed &&
1935                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1936                         vd->vdev_removed = B_FALSE;
1937
1938                 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1939                         vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1940                             vd->vdev_stat.vs_aux);
1941                 } else {
1942                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1943                             vd->vdev_stat.vs_aux);
1944                 }
1945                 return (error);
1946         }
1947
1948         vd->vdev_removed = B_FALSE;
1949
1950         /*
1951          * Recheck the faulted flag now that we have confirmed that
1952          * the vdev is accessible.  If we're faulted, bail.
1953          */
1954         if (vd->vdev_faulted) {
1955                 ASSERT(vd->vdev_children == 0);
1956                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1957                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1958                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1959                     vd->vdev_label_aux);
1960                 return (SET_ERROR(ENXIO));
1961         }
1962
1963         if (vd->vdev_degraded) {
1964                 ASSERT(vd->vdev_children == 0);
1965                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1966                     VDEV_AUX_ERR_EXCEEDED);
1967         } else {
1968                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1969         }
1970
1971         /*
1972          * For hole or missing vdevs we just return success.
1973          */
1974         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1975                 return (0);
1976
1977         for (int c = 0; c < vd->vdev_children; c++) {
1978                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1979                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1980                             VDEV_AUX_NONE);
1981                         break;
1982                 }
1983         }
1984
1985         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1986         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1987
1988         if (vd->vdev_children == 0) {
1989                 if (osize < SPA_MINDEVSIZE) {
1990                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1991                             VDEV_AUX_TOO_SMALL);
1992                         return (SET_ERROR(EOVERFLOW));
1993                 }
1994                 psize = osize;
1995                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1996                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1997                     VDEV_LABEL_END_SIZE);
1998         } else {
1999                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
2000                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
2001                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2002                             VDEV_AUX_TOO_SMALL);
2003                         return (SET_ERROR(EOVERFLOW));
2004                 }
2005                 psize = 0;
2006                 asize = osize;
2007                 max_asize = max_osize;
2008         }
2009
2010         /*
2011          * If the vdev was expanded, record this so that we can re-create the
2012          * uberblock rings in labels {2,3}, during the next sync.
2013          */
2014         if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
2015                 vd->vdev_copy_uberblocks = B_TRUE;
2016
2017         vd->vdev_psize = psize;
2018
2019         /*
2020          * Make sure the allocatable size hasn't shrunk too much.
2021          */
2022         if (asize < vd->vdev_min_asize) {
2023                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2024                     VDEV_AUX_BAD_LABEL);
2025                 return (SET_ERROR(EINVAL));
2026         }
2027
2028         /*
2029          * We can always set the logical/physical ashift members since
2030          * their values are only used to calculate the vdev_ashift when
2031          * the device is first added to the config. These values should
2032          * not be used for anything else since they may change whenever
2033          * the device is reopened and we don't store them in the label.
2034          */
2035         vd->vdev_physical_ashift =
2036             MAX(physical_ashift, vd->vdev_physical_ashift);
2037         vd->vdev_logical_ashift = MAX(logical_ashift,
2038             vd->vdev_logical_ashift);
2039
2040         if (vd->vdev_asize == 0) {
2041                 /*
2042                  * This is the first-ever open, so use the computed values.
2043                  * For compatibility, a different ashift can be requested.
2044                  */
2045                 vd->vdev_asize = asize;
2046                 vd->vdev_max_asize = max_asize;
2047
2048                 /*
2049                  * If the vdev_ashift was not overriden at creation time,
2050                  * then set it the logical ashift and optimize the ashift.
2051                  */
2052                 if (vd->vdev_ashift == 0) {
2053                         vd->vdev_ashift = vd->vdev_logical_ashift;
2054
2055                         if (vd->vdev_logical_ashift > ASHIFT_MAX) {
2056                                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2057                                     VDEV_AUX_ASHIFT_TOO_BIG);
2058                                 return (SET_ERROR(EDOM));
2059                         }
2060
2061                         if (vd->vdev_top == vd) {
2062                                 vdev_ashift_optimize(vd);
2063                         }
2064                 }
2065                 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
2066                     vd->vdev_ashift > ASHIFT_MAX)) {
2067                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2068                             VDEV_AUX_BAD_ASHIFT);
2069                         return (SET_ERROR(EDOM));
2070                 }
2071         } else {
2072                 /*
2073                  * Make sure the alignment required hasn't increased.
2074                  */
2075                 if (vd->vdev_ashift > vd->vdev_top->vdev_ashift &&
2076                     vd->vdev_ops->vdev_op_leaf) {
2077                         (void) zfs_ereport_post(
2078                             FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
2079                             spa, vd, NULL, NULL, 0);
2080                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2081                             VDEV_AUX_BAD_LABEL);
2082                         return (SET_ERROR(EDOM));
2083                 }
2084                 vd->vdev_max_asize = max_asize;
2085         }
2086
2087         /*
2088          * If all children are healthy we update asize if either:
2089          * The asize has increased, due to a device expansion caused by dynamic
2090          * LUN growth or vdev replacement, and automatic expansion is enabled;
2091          * making the additional space available.
2092          *
2093          * The asize has decreased, due to a device shrink usually caused by a
2094          * vdev replace with a smaller device. This ensures that calculations
2095          * based of max_asize and asize e.g. esize are always valid. It's safe
2096          * to do this as we've already validated that asize is greater than
2097          * vdev_min_asize.
2098          */
2099         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
2100             ((asize > vd->vdev_asize &&
2101             (vd->vdev_expanding || spa->spa_autoexpand)) ||
2102             (asize < vd->vdev_asize)))
2103                 vd->vdev_asize = asize;
2104
2105         vdev_set_min_asize(vd);
2106
2107         /*
2108          * Ensure we can issue some IO before declaring the
2109          * vdev open for business.
2110          */
2111         if (vd->vdev_ops->vdev_op_leaf &&
2112             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
2113                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
2114                     VDEV_AUX_ERR_EXCEEDED);
2115                 return (error);
2116         }
2117
2118         /*
2119          * Track the the minimum allocation size.
2120          */
2121         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
2122             vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
2123                 uint64_t min_alloc = vdev_get_min_alloc(vd);
2124                 if (min_alloc < spa->spa_min_alloc)
2125                         spa->spa_min_alloc = min_alloc;
2126         }
2127
2128         /*
2129          * If this is a leaf vdev, assess whether a resilver is needed.
2130          * But don't do this if we are doing a reopen for a scrub, since
2131          * this would just restart the scrub we are already doing.
2132          */
2133         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen)
2134                 dsl_scan_assess_vdev(spa->spa_dsl_pool, vd);
2135
2136         return (0);
2137 }
2138
2139 static void
2140 vdev_validate_child(void *arg)
2141 {
2142         vdev_t *vd = arg;
2143
2144         vd->vdev_validate_thread = curthread;
2145         vd->vdev_validate_error = vdev_validate(vd);
2146         vd->vdev_validate_thread = NULL;
2147 }
2148
2149 /*
2150  * Called once the vdevs are all opened, this routine validates the label
2151  * contents. This needs to be done before vdev_load() so that we don't
2152  * inadvertently do repair I/Os to the wrong device.
2153  *
2154  * This function will only return failure if one of the vdevs indicates that it
2155  * has since been destroyed or exported.  This is only possible if
2156  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
2157  * will be updated but the function will return 0.
2158  */
2159 int
2160 vdev_validate(vdev_t *vd)
2161 {
2162         spa_t *spa = vd->vdev_spa;
2163         taskq_t *tq = NULL;
2164         nvlist_t *label;
2165         uint64_t guid = 0, aux_guid = 0, top_guid;
2166         uint64_t state;
2167         nvlist_t *nvl;
2168         uint64_t txg;
2169         int children = vd->vdev_children;
2170
2171         if (vdev_validate_skip)
2172                 return (0);
2173
2174         if (children > 0) {
2175                 tq = taskq_create("vdev_validate", children, minclsyspri,
2176                     children, children, TASKQ_PREPOPULATE);
2177         }
2178
2179         for (uint64_t c = 0; c < children; c++) {
2180                 vdev_t *cvd = vd->vdev_child[c];
2181
2182                 if (tq == NULL || vdev_uses_zvols(cvd)) {
2183                         vdev_validate_child(cvd);
2184                 } else {
2185                         VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd,
2186                             TQ_SLEEP) != TASKQID_INVALID);
2187                 }
2188         }
2189         if (tq != NULL) {
2190                 taskq_wait(tq);
2191                 taskq_destroy(tq);
2192         }
2193         for (int c = 0; c < children; c++) {
2194                 int error = vd->vdev_child[c]->vdev_validate_error;
2195
2196                 if (error != 0)
2197                         return (SET_ERROR(EBADF));
2198         }
2199
2200
2201         /*
2202          * If the device has already failed, or was marked offline, don't do
2203          * any further validation.  Otherwise, label I/O will fail and we will
2204          * overwrite the previous state.
2205          */
2206         if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
2207                 return (0);
2208
2209         /*
2210          * If we are performing an extreme rewind, we allow for a label that
2211          * was modified at a point after the current txg.
2212          * If config lock is not held do not check for the txg. spa_sync could
2213          * be updating the vdev's label before updating spa_last_synced_txg.
2214          */
2215         if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
2216             spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
2217                 txg = UINT64_MAX;
2218         else
2219                 txg = spa_last_synced_txg(spa);
2220
2221         if ((label = vdev_label_read_config(vd, txg)) == NULL) {
2222                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2223                     VDEV_AUX_BAD_LABEL);
2224                 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
2225                     "txg %llu", (u_longlong_t)txg);
2226                 return (0);
2227         }
2228
2229         /*
2230          * Determine if this vdev has been split off into another
2231          * pool.  If so, then refuse to open it.
2232          */
2233         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
2234             &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
2235                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2236                     VDEV_AUX_SPLIT_POOL);
2237                 nvlist_free(label);
2238                 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
2239                 return (0);
2240         }
2241
2242         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
2243                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2244                     VDEV_AUX_CORRUPT_DATA);
2245                 nvlist_free(label);
2246                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2247                     ZPOOL_CONFIG_POOL_GUID);
2248                 return (0);
2249         }
2250
2251         /*
2252          * If config is not trusted then ignore the spa guid check. This is
2253          * necessary because if the machine crashed during a re-guid the new
2254          * guid might have been written to all of the vdev labels, but not the
2255          * cached config. The check will be performed again once we have the
2256          * trusted config from the MOS.
2257          */
2258         if (spa->spa_trust_config && guid != spa_guid(spa)) {
2259                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2260                     VDEV_AUX_CORRUPT_DATA);
2261                 nvlist_free(label);
2262                 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
2263                     "match config (%llu != %llu)", (u_longlong_t)guid,
2264                     (u_longlong_t)spa_guid(spa));
2265                 return (0);
2266         }
2267
2268         if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
2269             != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
2270             &aux_guid) != 0)
2271                 aux_guid = 0;
2272
2273         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
2274                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2275                     VDEV_AUX_CORRUPT_DATA);
2276                 nvlist_free(label);
2277                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2278                     ZPOOL_CONFIG_GUID);
2279                 return (0);
2280         }
2281
2282         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
2283             != 0) {
2284                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2285                     VDEV_AUX_CORRUPT_DATA);
2286                 nvlist_free(label);
2287                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2288                     ZPOOL_CONFIG_TOP_GUID);
2289                 return (0);
2290         }
2291
2292         /*
2293          * If this vdev just became a top-level vdev because its sibling was
2294          * detached, it will have adopted the parent's vdev guid -- but the
2295          * label may or may not be on disk yet. Fortunately, either version
2296          * of the label will have the same top guid, so if we're a top-level
2297          * vdev, we can safely compare to that instead.
2298          * However, if the config comes from a cachefile that failed to update
2299          * after the detach, a top-level vdev will appear as a non top-level
2300          * vdev in the config. Also relax the constraints if we perform an
2301          * extreme rewind.
2302          *
2303          * If we split this vdev off instead, then we also check the
2304          * original pool's guid. We don't want to consider the vdev
2305          * corrupt if it is partway through a split operation.
2306          */
2307         if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2308                 boolean_t mismatch = B_FALSE;
2309                 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2310                         if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2311                                 mismatch = B_TRUE;
2312                 } else {
2313                         if (vd->vdev_guid != top_guid &&
2314                             vd->vdev_top->vdev_guid != guid)
2315                                 mismatch = B_TRUE;
2316                 }
2317
2318                 if (mismatch) {
2319                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2320                             VDEV_AUX_CORRUPT_DATA);
2321                         nvlist_free(label);
2322                         vdev_dbgmsg(vd, "vdev_validate: config guid "
2323                             "doesn't match label guid");
2324                         vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2325                             (u_longlong_t)vd->vdev_guid,
2326                             (u_longlong_t)vd->vdev_top->vdev_guid);
2327                         vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2328                             "aux_guid %llu", (u_longlong_t)guid,
2329                             (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2330                         return (0);
2331                 }
2332         }
2333
2334         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2335             &state) != 0) {
2336                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2337                     VDEV_AUX_CORRUPT_DATA);
2338                 nvlist_free(label);
2339                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2340                     ZPOOL_CONFIG_POOL_STATE);
2341                 return (0);
2342         }
2343
2344         nvlist_free(label);
2345
2346         /*
2347          * If this is a verbatim import, no need to check the
2348          * state of the pool.
2349          */
2350         if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2351             spa_load_state(spa) == SPA_LOAD_OPEN &&
2352             state != POOL_STATE_ACTIVE) {
2353                 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2354                     "for spa %s", (u_longlong_t)state, spa->spa_name);
2355                 return (SET_ERROR(EBADF));
2356         }
2357
2358         /*
2359          * If we were able to open and validate a vdev that was
2360          * previously marked permanently unavailable, clear that state
2361          * now.
2362          */
2363         if (vd->vdev_not_present)
2364                 vd->vdev_not_present = 0;
2365
2366         return (0);
2367 }
2368
2369 static void
2370 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2371 {
2372         if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2373                 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2374                         zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2375                             "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2376                             dvd->vdev_path, svd->vdev_path);
2377                         spa_strfree(dvd->vdev_path);
2378                         dvd->vdev_path = spa_strdup(svd->vdev_path);
2379                 }
2380         } else if (svd->vdev_path != NULL) {
2381                 dvd->vdev_path = spa_strdup(svd->vdev_path);
2382                 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2383                     (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2384         }
2385 }
2386
2387 /*
2388  * Recursively copy vdev paths from one vdev to another. Source and destination
2389  * vdev trees must have same geometry otherwise return error. Intended to copy
2390  * paths from userland config into MOS config.
2391  */
2392 int
2393 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2394 {
2395         if ((svd->vdev_ops == &vdev_missing_ops) ||
2396             (svd->vdev_ishole && dvd->vdev_ishole) ||
2397             (dvd->vdev_ops == &vdev_indirect_ops))
2398                 return (0);
2399
2400         if (svd->vdev_ops != dvd->vdev_ops) {
2401                 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2402                     svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2403                 return (SET_ERROR(EINVAL));
2404         }
2405
2406         if (svd->vdev_guid != dvd->vdev_guid) {
2407                 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2408                     "%llu)", (u_longlong_t)svd->vdev_guid,
2409                     (u_longlong_t)dvd->vdev_guid);
2410                 return (SET_ERROR(EINVAL));
2411         }
2412
2413         if (svd->vdev_children != dvd->vdev_children) {
2414                 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2415                     "%llu != %llu", (u_longlong_t)svd->vdev_children,
2416                     (u_longlong_t)dvd->vdev_children);
2417                 return (SET_ERROR(EINVAL));
2418         }
2419
2420         for (uint64_t i = 0; i < svd->vdev_children; i++) {
2421                 int error = vdev_copy_path_strict(svd->vdev_child[i],
2422                     dvd->vdev_child[i]);
2423                 if (error != 0)
2424                         return (error);
2425         }
2426
2427         if (svd->vdev_ops->vdev_op_leaf)
2428                 vdev_copy_path_impl(svd, dvd);
2429
2430         return (0);
2431 }
2432
2433 static void
2434 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2435 {
2436         ASSERT(stvd->vdev_top == stvd);
2437         ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2438
2439         for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2440                 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2441         }
2442
2443         if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2444                 return;
2445
2446         /*
2447          * The idea here is that while a vdev can shift positions within
2448          * a top vdev (when replacing, attaching mirror, etc.) it cannot
2449          * step outside of it.
2450          */
2451         vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2452
2453         if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2454                 return;
2455
2456         ASSERT(vd->vdev_ops->vdev_op_leaf);
2457
2458         vdev_copy_path_impl(vd, dvd);
2459 }
2460
2461 /*
2462  * Recursively copy vdev paths from one root vdev to another. Source and
2463  * destination vdev trees may differ in geometry. For each destination leaf
2464  * vdev, search a vdev with the same guid and top vdev id in the source.
2465  * Intended to copy paths from userland config into MOS config.
2466  */
2467 void
2468 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2469 {
2470         uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2471         ASSERT(srvd->vdev_ops == &vdev_root_ops);
2472         ASSERT(drvd->vdev_ops == &vdev_root_ops);
2473
2474         for (uint64_t i = 0; i < children; i++) {
2475                 vdev_copy_path_search(srvd->vdev_child[i],
2476                     drvd->vdev_child[i]);
2477         }
2478 }
2479
2480 /*
2481  * Close a virtual device.
2482  */
2483 void
2484 vdev_close(vdev_t *vd)
2485 {
2486         vdev_t *pvd = vd->vdev_parent;
2487         spa_t *spa __maybe_unused = vd->vdev_spa;
2488
2489         ASSERT(vd != NULL);
2490         ASSERT(vd->vdev_open_thread == curthread ||
2491             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2492
2493         /*
2494          * If our parent is reopening, then we are as well, unless we are
2495          * going offline.
2496          */
2497         if (pvd != NULL && pvd->vdev_reopening)
2498                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2499
2500         vd->vdev_ops->vdev_op_close(vd);
2501
2502         vdev_cache_purge(vd);
2503
2504         /*
2505          * We record the previous state before we close it, so that if we are
2506          * doing a reopen(), we don't generate FMA ereports if we notice that
2507          * it's still faulted.
2508          */
2509         vd->vdev_prevstate = vd->vdev_state;
2510
2511         if (vd->vdev_offline)
2512                 vd->vdev_state = VDEV_STATE_OFFLINE;
2513         else
2514                 vd->vdev_state = VDEV_STATE_CLOSED;
2515         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2516 }
2517
2518 void
2519 vdev_hold(vdev_t *vd)
2520 {
2521         spa_t *spa = vd->vdev_spa;
2522
2523         ASSERT(spa_is_root(spa));
2524         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2525                 return;
2526
2527         for (int c = 0; c < vd->vdev_children; c++)
2528                 vdev_hold(vd->vdev_child[c]);
2529
2530         if (vd->vdev_ops->vdev_op_leaf)
2531                 vd->vdev_ops->vdev_op_hold(vd);
2532 }
2533
2534 void
2535 vdev_rele(vdev_t *vd)
2536 {
2537         ASSERT(spa_is_root(vd->vdev_spa));
2538         for (int c = 0; c < vd->vdev_children; c++)
2539                 vdev_rele(vd->vdev_child[c]);
2540
2541         if (vd->vdev_ops->vdev_op_leaf)
2542                 vd->vdev_ops->vdev_op_rele(vd);
2543 }
2544
2545 /*
2546  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2547  * reopen leaf vdevs which had previously been opened as they might deadlock
2548  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2549  * If the leaf has never been opened then open it, as usual.
2550  */
2551 void
2552 vdev_reopen(vdev_t *vd)
2553 {
2554         spa_t *spa = vd->vdev_spa;
2555
2556         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2557
2558         /* set the reopening flag unless we're taking the vdev offline */
2559         vd->vdev_reopening = !vd->vdev_offline;
2560         vdev_close(vd);
2561         (void) vdev_open(vd);
2562
2563         /*
2564          * Call vdev_validate() here to make sure we have the same device.
2565          * Otherwise, a device with an invalid label could be successfully
2566          * opened in response to vdev_reopen().
2567          */
2568         if (vd->vdev_aux) {
2569                 (void) vdev_validate_aux(vd);
2570                 if (vdev_readable(vd) && vdev_writeable(vd) &&
2571                     vd->vdev_aux == &spa->spa_l2cache) {
2572                         /*
2573                          * In case the vdev is present we should evict all ARC
2574                          * buffers and pointers to log blocks and reclaim their
2575                          * space before restoring its contents to L2ARC.
2576                          */
2577                         if (l2arc_vdev_present(vd)) {
2578                                 l2arc_rebuild_vdev(vd, B_TRUE);
2579                         } else {
2580                                 l2arc_add_vdev(spa, vd);
2581                         }
2582                         spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
2583                         spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2584                 }
2585         } else {
2586                 (void) vdev_validate(vd);
2587         }
2588
2589         /*
2590          * Reassess parent vdev's health.
2591          */
2592         vdev_propagate_state(vd);
2593 }
2594
2595 int
2596 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2597 {
2598         int error;
2599
2600         /*
2601          * Normally, partial opens (e.g. of a mirror) are allowed.
2602          * For a create, however, we want to fail the request if
2603          * there are any components we can't open.
2604          */
2605         error = vdev_open(vd);
2606
2607         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2608                 vdev_close(vd);
2609                 return (error ? error : SET_ERROR(ENXIO));
2610         }
2611
2612         /*
2613          * Recursively load DTLs and initialize all labels.
2614          */
2615         if ((error = vdev_dtl_load(vd)) != 0 ||
2616             (error = vdev_label_init(vd, txg, isreplacing ?
2617             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2618                 vdev_close(vd);
2619                 return (error);
2620         }
2621
2622         return (0);
2623 }
2624
2625 void
2626 vdev_metaslab_set_size(vdev_t *vd)
2627 {
2628         uint64_t asize = vd->vdev_asize;
2629         uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2630         uint64_t ms_shift;
2631
2632         /*
2633          * There are two dimensions to the metaslab sizing calculation:
2634          * the size of the metaslab and the count of metaslabs per vdev.
2635          *
2636          * The default values used below are a good balance between memory
2637          * usage (larger metaslab size means more memory needed for loaded
2638          * metaslabs; more metaslabs means more memory needed for the
2639          * metaslab_t structs), metaslab load time (larger metaslabs take
2640          * longer to load), and metaslab sync time (more metaslabs means
2641          * more time spent syncing all of them).
2642          *
2643          * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2644          * The range of the dimensions are as follows:
2645          *
2646          *      2^29 <= ms_size  <= 2^34
2647          *        16 <= ms_count <= 131,072
2648          *
2649          * On the lower end of vdev sizes, we aim for metaslabs sizes of
2650          * at least 512MB (2^29) to minimize fragmentation effects when
2651          * testing with smaller devices.  However, the count constraint
2652          * of at least 16 metaslabs will override this minimum size goal.
2653          *
2654          * On the upper end of vdev sizes, we aim for a maximum metaslab
2655          * size of 16GB.  However, we will cap the total count to 2^17
2656          * metaslabs to keep our memory footprint in check and let the
2657          * metaslab size grow from there if that limit is hit.
2658          *
2659          * The net effect of applying above constrains is summarized below.
2660          *
2661          *   vdev size       metaslab count
2662          *  --------------|-----------------
2663          *      < 8GB        ~16
2664          *  8GB   - 100GB   one per 512MB
2665          *  100GB - 3TB     ~200
2666          *  3TB   - 2PB     one per 16GB
2667          *      > 2PB       ~131,072
2668          *  --------------------------------
2669          *
2670          *  Finally, note that all of the above calculate the initial
2671          *  number of metaslabs. Expanding a top-level vdev will result
2672          *  in additional metaslabs being allocated making it possible
2673          *  to exceed the zfs_vdev_ms_count_limit.
2674          */
2675
2676         if (ms_count < zfs_vdev_min_ms_count)
2677                 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2678         else if (ms_count > zfs_vdev_default_ms_count)
2679                 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2680         else
2681                 ms_shift = zfs_vdev_default_ms_shift;
2682
2683         if (ms_shift < SPA_MAXBLOCKSHIFT) {
2684                 ms_shift = SPA_MAXBLOCKSHIFT;
2685         } else if (ms_shift > zfs_vdev_max_ms_shift) {
2686                 ms_shift = zfs_vdev_max_ms_shift;
2687                 /* cap the total count to constrain memory footprint */
2688                 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2689                         ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2690         }
2691
2692         vd->vdev_ms_shift = ms_shift;
2693         ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2694 }
2695
2696 void
2697 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2698 {
2699         ASSERT(vd == vd->vdev_top);
2700         /* indirect vdevs don't have metaslabs or dtls */
2701         ASSERT(vdev_is_concrete(vd) || flags == 0);
2702         ASSERT(ISP2(flags));
2703         ASSERT(spa_writeable(vd->vdev_spa));
2704
2705         if (flags & VDD_METASLAB)
2706                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2707
2708         if (flags & VDD_DTL)
2709                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2710
2711         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2712 }
2713
2714 void
2715 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2716 {
2717         for (int c = 0; c < vd->vdev_children; c++)
2718                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2719
2720         if (vd->vdev_ops->vdev_op_leaf)
2721                 vdev_dirty(vd->vdev_top, flags, vd, txg);
2722 }
2723
2724 /*
2725  * DTLs.
2726  *
2727  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2728  * the vdev has less than perfect replication.  There are four kinds of DTL:
2729  *
2730  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2731  *
2732  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2733  *
2734  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2735  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2736  *      txgs that was scrubbed.
2737  *
2738  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2739  *      persistent errors or just some device being offline.
2740  *      Unlike the other three, the DTL_OUTAGE map is not generally
2741  *      maintained; it's only computed when needed, typically to
2742  *      determine whether a device can be detached.
2743  *
2744  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2745  * either has the data or it doesn't.
2746  *
2747  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2748  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2749  * if any child is less than fully replicated, then so is its parent.
2750  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2751  * comprising only those txgs which appear in 'maxfaults' or more children;
2752  * those are the txgs we don't have enough replication to read.  For example,
2753  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2754  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2755  * two child DTL_MISSING maps.
2756  *
2757  * It should be clear from the above that to compute the DTLs and outage maps
2758  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2759  * Therefore, that is all we keep on disk.  When loading the pool, or after
2760  * a configuration change, we generate all other DTLs from first principles.
2761  */
2762 void
2763 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2764 {
2765         range_tree_t *rt = vd->vdev_dtl[t];
2766
2767         ASSERT(t < DTL_TYPES);
2768         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2769         ASSERT(spa_writeable(vd->vdev_spa));
2770
2771         mutex_enter(&vd->vdev_dtl_lock);
2772         if (!range_tree_contains(rt, txg, size))
2773                 range_tree_add(rt, txg, size);
2774         mutex_exit(&vd->vdev_dtl_lock);
2775 }
2776
2777 boolean_t
2778 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2779 {
2780         range_tree_t *rt = vd->vdev_dtl[t];
2781         boolean_t dirty = B_FALSE;
2782
2783         ASSERT(t < DTL_TYPES);
2784         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2785
2786         /*
2787          * While we are loading the pool, the DTLs have not been loaded yet.
2788          * This isn't a problem but it can result in devices being tried
2789          * which are known to not have the data.  In which case, the import
2790          * is relying on the checksum to ensure that we get the right data.
2791          * Note that while importing we are only reading the MOS, which is
2792          * always checksummed.
2793          */
2794         mutex_enter(&vd->vdev_dtl_lock);
2795         if (!range_tree_is_empty(rt))
2796                 dirty = range_tree_contains(rt, txg, size);
2797         mutex_exit(&vd->vdev_dtl_lock);
2798
2799         return (dirty);
2800 }
2801
2802 boolean_t
2803 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2804 {
2805         range_tree_t *rt = vd->vdev_dtl[t];
2806         boolean_t empty;
2807
2808         mutex_enter(&vd->vdev_dtl_lock);
2809         empty = range_tree_is_empty(rt);
2810         mutex_exit(&vd->vdev_dtl_lock);
2811
2812         return (empty);
2813 }
2814
2815 /*
2816  * Check if the txg falls within the range which must be
2817  * resilvered.  DVAs outside this range can always be skipped.
2818  */
2819 boolean_t
2820 vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2821     uint64_t phys_birth)
2822 {
2823         /* Set by sequential resilver. */
2824         if (phys_birth == TXG_UNKNOWN)
2825                 return (B_TRUE);
2826
2827         return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1));
2828 }
2829
2830 /*
2831  * Returns B_TRUE if the vdev determines the DVA needs to be resilvered.
2832  */
2833 boolean_t
2834 vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
2835     uint64_t phys_birth)
2836 {
2837         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2838
2839         if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2840             vd->vdev_ops->vdev_op_leaf)
2841                 return (B_TRUE);
2842
2843         return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize,
2844             phys_birth));
2845 }
2846
2847 /*
2848  * Returns the lowest txg in the DTL range.
2849  */
2850 static uint64_t
2851 vdev_dtl_min(vdev_t *vd)
2852 {
2853         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2854         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2855         ASSERT0(vd->vdev_children);
2856
2857         return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1);
2858 }
2859
2860 /*
2861  * Returns the highest txg in the DTL.
2862  */
2863 static uint64_t
2864 vdev_dtl_max(vdev_t *vd)
2865 {
2866         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2867         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2868         ASSERT0(vd->vdev_children);
2869
2870         return (range_tree_max(vd->vdev_dtl[DTL_MISSING]));
2871 }
2872
2873 /*
2874  * Determine if a resilvering vdev should remove any DTL entries from
2875  * its range. If the vdev was resilvering for the entire duration of the
2876  * scan then it should excise that range from its DTLs. Otherwise, this
2877  * vdev is considered partially resilvered and should leave its DTL
2878  * entries intact. The comment in vdev_dtl_reassess() describes how we
2879  * excise the DTLs.
2880  */
2881 static boolean_t
2882 vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done)
2883 {
2884         ASSERT0(vd->vdev_children);
2885
2886         if (vd->vdev_state < VDEV_STATE_DEGRADED)
2887                 return (B_FALSE);
2888
2889         if (vd->vdev_resilver_deferred)
2890                 return (B_FALSE);
2891
2892         if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2893                 return (B_TRUE);
2894
2895         if (rebuild_done) {
2896                 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2897                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
2898
2899                 /* Rebuild not initiated by attach */
2900                 if (vd->vdev_rebuild_txg == 0)
2901                         return (B_TRUE);
2902
2903                 /*
2904                  * When a rebuild completes without error then all missing data
2905                  * up to the rebuild max txg has been reconstructed and the DTL
2906                  * is eligible for excision.
2907                  */
2908                 if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE &&
2909                     vdev_dtl_max(vd) <= vrp->vrp_max_txg) {
2910                         ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd));
2911                         ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg);
2912                         ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg);
2913                         return (B_TRUE);
2914                 }
2915         } else {
2916                 dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan;
2917                 dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys;
2918
2919                 /* Resilver not initiated by attach */
2920                 if (vd->vdev_resilver_txg == 0)
2921                         return (B_TRUE);
2922
2923                 /*
2924                  * When a resilver is initiated the scan will assign the
2925                  * scn_max_txg value to the highest txg value that exists
2926                  * in all DTLs. If this device's max DTL is not part of this
2927                  * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg]
2928                  * then it is not eligible for excision.
2929                  */
2930                 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2931                         ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd));
2932                         ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg);
2933                         ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg);
2934                         return (B_TRUE);
2935                 }
2936         }
2937
2938         return (B_FALSE);
2939 }
2940
2941 /*
2942  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2943  * write operations will be issued to the pool.
2944  */
2945 void
2946 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg,
2947     boolean_t scrub_done, boolean_t rebuild_done)
2948 {
2949         spa_t *spa = vd->vdev_spa;
2950         avl_tree_t reftree;
2951         int minref;
2952
2953         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2954
2955         for (int c = 0; c < vd->vdev_children; c++)
2956                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2957                     scrub_txg, scrub_done, rebuild_done);
2958
2959         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2960                 return;
2961
2962         if (vd->vdev_ops->vdev_op_leaf) {
2963                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2964                 vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config;
2965                 boolean_t check_excise = B_FALSE;
2966                 boolean_t wasempty = B_TRUE;
2967
2968                 mutex_enter(&vd->vdev_dtl_lock);
2969
2970                 /*
2971                  * If requested, pretend the scan or rebuild completed cleanly.
2972                  */
2973                 if (zfs_scan_ignore_errors) {
2974                         if (scn != NULL)
2975                                 scn->scn_phys.scn_errors = 0;
2976                         if (vr != NULL)
2977                                 vr->vr_rebuild_phys.vrp_errors = 0;
2978                 }
2979
2980                 if (scrub_txg != 0 &&
2981                     !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
2982                         wasempty = B_FALSE;
2983                         zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d "
2984                             "dtl:%llu/%llu errors:%llu",
2985                             (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg,
2986                             (u_longlong_t)scrub_txg, spa->spa_scrub_started,
2987                             (u_longlong_t)vdev_dtl_min(vd),
2988                             (u_longlong_t)vdev_dtl_max(vd),
2989                             (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0));
2990                 }
2991
2992                 /*
2993                  * If we've completed a scrub/resilver or a rebuild cleanly
2994                  * then determine if this vdev should remove any DTLs. We
2995                  * only want to excise regions on vdevs that were available
2996                  * during the entire duration of this scan.
2997                  */
2998                 if (rebuild_done &&
2999                     vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) {
3000                         check_excise = B_TRUE;
3001                 } else {
3002                         if (spa->spa_scrub_started ||
3003                             (scn != NULL && scn->scn_phys.scn_errors == 0)) {
3004                                 check_excise = B_TRUE;
3005                         }
3006                 }
3007
3008                 if (scrub_txg && check_excise &&
3009                     vdev_dtl_should_excise(vd, rebuild_done)) {
3010                         /*
3011                          * We completed a scrub, resilver or rebuild up to
3012                          * scrub_txg.  If we did it without rebooting, then
3013                          * the scrub dtl will be valid, so excise the old
3014                          * region and fold in the scrub dtl.  Otherwise,
3015                          * leave the dtl as-is if there was an error.
3016                          *
3017                          * There's little trick here: to excise the beginning
3018                          * of the DTL_MISSING map, we put it into a reference
3019                          * tree and then add a segment with refcnt -1 that
3020                          * covers the range [0, scrub_txg).  This means
3021                          * that each txg in that range has refcnt -1 or 0.
3022                          * We then add DTL_SCRUB with a refcnt of 2, so that
3023                          * entries in the range [0, scrub_txg) will have a
3024                          * positive refcnt -- either 1 or 2.  We then convert
3025                          * the reference tree into the new DTL_MISSING map.
3026                          */
3027                         space_reftree_create(&reftree);
3028                         space_reftree_add_map(&reftree,
3029                             vd->vdev_dtl[DTL_MISSING], 1);
3030                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
3031                         space_reftree_add_map(&reftree,
3032                             vd->vdev_dtl[DTL_SCRUB], 2);
3033                         space_reftree_generate_map(&reftree,
3034                             vd->vdev_dtl[DTL_MISSING], 1);
3035                         space_reftree_destroy(&reftree);
3036
3037                         if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
3038                                 zfs_dbgmsg("update DTL_MISSING:%llu/%llu",
3039                                     (u_longlong_t)vdev_dtl_min(vd),
3040                                     (u_longlong_t)vdev_dtl_max(vd));
3041                         } else if (!wasempty) {
3042                                 zfs_dbgmsg("DTL_MISSING is now empty");
3043                         }
3044                 }
3045                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
3046                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3047                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
3048                 if (scrub_done)
3049                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
3050                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
3051                 if (!vdev_readable(vd))
3052                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
3053                 else
3054                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
3055                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
3056
3057                 /*
3058                  * If the vdev was resilvering or rebuilding and no longer
3059                  * has any DTLs then reset the appropriate flag and dirty
3060                  * the top level so that we persist the change.
3061                  */
3062                 if (txg != 0 &&
3063                     range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3064                     range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
3065                         if (vd->vdev_rebuild_txg != 0) {
3066                                 vd->vdev_rebuild_txg = 0;
3067                                 vdev_config_dirty(vd->vdev_top);
3068                         } else if (vd->vdev_resilver_txg != 0) {
3069                                 vd->vdev_resilver_txg = 0;
3070                                 vdev_config_dirty(vd->vdev_top);
3071                         }
3072                 }
3073
3074                 mutex_exit(&vd->vdev_dtl_lock);
3075
3076                 if (txg != 0)
3077                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
3078                 return;
3079         }
3080
3081         mutex_enter(&vd->vdev_dtl_lock);
3082         for (int t = 0; t < DTL_TYPES; t++) {
3083                 /* account for child's outage in parent's missing map */
3084                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
3085                 if (t == DTL_SCRUB)
3086                         continue;                       /* leaf vdevs only */
3087                 if (t == DTL_PARTIAL)
3088                         minref = 1;                     /* i.e. non-zero */
3089                 else if (vdev_get_nparity(vd) != 0)
3090                         minref = vdev_get_nparity(vd) + 1; /* RAID-Z, dRAID */
3091                 else
3092                         minref = vd->vdev_children;     /* any kind of mirror */
3093                 space_reftree_create(&reftree);
3094                 for (int c = 0; c < vd->vdev_children; c++) {
3095                         vdev_t *cvd = vd->vdev_child[c];
3096                         mutex_enter(&cvd->vdev_dtl_lock);
3097                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
3098                         mutex_exit(&cvd->vdev_dtl_lock);
3099                 }
3100                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
3101                 space_reftree_destroy(&reftree);
3102         }
3103         mutex_exit(&vd->vdev_dtl_lock);
3104 }
3105
3106 int
3107 vdev_dtl_load(vdev_t *vd)
3108 {
3109         spa_t *spa = vd->vdev_spa;
3110         objset_t *mos = spa->spa_meta_objset;
3111         range_tree_t *rt;
3112         int error = 0;
3113
3114         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
3115                 ASSERT(vdev_is_concrete(vd));
3116
3117                 error = space_map_open(&vd->vdev_dtl_sm, mos,
3118                     vd->vdev_dtl_object, 0, -1ULL, 0);
3119                 if (error)
3120                         return (error);
3121                 ASSERT(vd->vdev_dtl_sm != NULL);
3122
3123                 rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3124                 error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC);
3125                 if (error == 0) {
3126                         mutex_enter(&vd->vdev_dtl_lock);
3127                         range_tree_walk(rt, range_tree_add,
3128                             vd->vdev_dtl[DTL_MISSING]);
3129                         mutex_exit(&vd->vdev_dtl_lock);
3130                 }
3131
3132                 range_tree_vacate(rt, NULL, NULL);
3133                 range_tree_destroy(rt);
3134
3135                 return (error);
3136         }
3137
3138         for (int c = 0; c < vd->vdev_children; c++) {
3139                 error = vdev_dtl_load(vd->vdev_child[c]);
3140                 if (error != 0)
3141                         break;
3142         }
3143
3144         return (error);
3145 }
3146
3147 static void
3148 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
3149 {
3150         spa_t *spa = vd->vdev_spa;
3151         objset_t *mos = spa->spa_meta_objset;
3152         vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
3153         const char *string;
3154
3155         ASSERT(alloc_bias != VDEV_BIAS_NONE);
3156
3157         string =
3158             (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
3159             (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
3160             (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
3161
3162         ASSERT(string != NULL);
3163         VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
3164             1, strlen(string) + 1, string, tx));
3165
3166         if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
3167                 spa_activate_allocation_classes(spa, tx);
3168         }
3169 }
3170
3171 void
3172 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
3173 {
3174         spa_t *spa = vd->vdev_spa;
3175
3176         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
3177         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3178             zapobj, tx));
3179 }
3180
3181 uint64_t
3182 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
3183 {
3184         spa_t *spa = vd->vdev_spa;
3185         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
3186             DMU_OT_NONE, 0, tx);
3187
3188         ASSERT(zap != 0);
3189         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
3190             zap, tx));
3191
3192         return (zap);
3193 }
3194
3195 void
3196 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
3197 {
3198         if (vd->vdev_ops != &vdev_hole_ops &&
3199             vd->vdev_ops != &vdev_missing_ops &&
3200             vd->vdev_ops != &vdev_root_ops &&
3201             !vd->vdev_top->vdev_removing) {
3202                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
3203                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
3204                 }
3205                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
3206                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
3207                         if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
3208                                 vdev_zap_allocation_data(vd, tx);
3209                 }
3210         }
3211
3212         for (uint64_t i = 0; i < vd->vdev_children; i++) {
3213                 vdev_construct_zaps(vd->vdev_child[i], tx);
3214         }
3215 }
3216
3217 static void
3218 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
3219 {
3220         spa_t *spa = vd->vdev_spa;
3221         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
3222         objset_t *mos = spa->spa_meta_objset;
3223         range_tree_t *rtsync;
3224         dmu_tx_t *tx;
3225         uint64_t object = space_map_object(vd->vdev_dtl_sm);
3226
3227         ASSERT(vdev_is_concrete(vd));
3228         ASSERT(vd->vdev_ops->vdev_op_leaf);
3229
3230         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3231
3232         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
3233                 mutex_enter(&vd->vdev_dtl_lock);
3234                 space_map_free(vd->vdev_dtl_sm, tx);
3235                 space_map_close(vd->vdev_dtl_sm);
3236                 vd->vdev_dtl_sm = NULL;
3237                 mutex_exit(&vd->vdev_dtl_lock);
3238
3239                 /*
3240                  * We only destroy the leaf ZAP for detached leaves or for
3241                  * removed log devices. Removed data devices handle leaf ZAP
3242                  * cleanup later, once cancellation is no longer possible.
3243                  */
3244                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
3245                     vd->vdev_top->vdev_islog)) {
3246                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
3247                         vd->vdev_leaf_zap = 0;
3248                 }
3249
3250                 dmu_tx_commit(tx);
3251                 return;
3252         }
3253
3254         if (vd->vdev_dtl_sm == NULL) {
3255                 uint64_t new_object;
3256
3257                 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
3258                 VERIFY3U(new_object, !=, 0);
3259
3260                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
3261                     0, -1ULL, 0));
3262                 ASSERT(vd->vdev_dtl_sm != NULL);
3263         }
3264
3265         rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0);
3266
3267         mutex_enter(&vd->vdev_dtl_lock);
3268         range_tree_walk(rt, range_tree_add, rtsync);
3269         mutex_exit(&vd->vdev_dtl_lock);
3270
3271         space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
3272         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
3273         range_tree_vacate(rtsync, NULL, NULL);
3274
3275         range_tree_destroy(rtsync);
3276
3277         /*
3278          * If the object for the space map has changed then dirty
3279          * the top level so that we update the config.
3280          */
3281         if (object != space_map_object(vd->vdev_dtl_sm)) {
3282                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
3283                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
3284                     (u_longlong_t)object,
3285                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
3286                 vdev_config_dirty(vd->vdev_top);
3287         }
3288
3289         dmu_tx_commit(tx);
3290 }
3291
3292 /*
3293  * Determine whether the specified vdev can be offlined/detached/removed
3294  * without losing data.
3295  */
3296 boolean_t
3297 vdev_dtl_required(vdev_t *vd)
3298 {
3299         spa_t *spa = vd->vdev_spa;
3300         vdev_t *tvd = vd->vdev_top;
3301         uint8_t cant_read = vd->vdev_cant_read;
3302         boolean_t required;
3303
3304         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3305
3306         if (vd == spa->spa_root_vdev || vd == tvd)
3307                 return (B_TRUE);
3308
3309         /*
3310          * Temporarily mark the device as unreadable, and then determine
3311          * whether this results in any DTL outages in the top-level vdev.
3312          * If not, we can safely offline/detach/remove the device.
3313          */
3314         vd->vdev_cant_read = B_TRUE;
3315         vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3316         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
3317         vd->vdev_cant_read = cant_read;
3318         vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE);
3319
3320         if (!required && zio_injection_enabled) {
3321                 required = !!zio_handle_device_injection(vd, NULL,
3322                     SET_ERROR(ECHILD));
3323         }
3324
3325         return (required);
3326 }
3327
3328 /*
3329  * Determine if resilver is needed, and if so the txg range.
3330  */
3331 boolean_t
3332 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
3333 {
3334         boolean_t needed = B_FALSE;
3335         uint64_t thismin = UINT64_MAX;
3336         uint64_t thismax = 0;
3337
3338         if (vd->vdev_children == 0) {
3339                 mutex_enter(&vd->vdev_dtl_lock);
3340                 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
3341                     vdev_writeable(vd)) {
3342
3343                         thismin = vdev_dtl_min(vd);
3344                         thismax = vdev_dtl_max(vd);
3345                         needed = B_TRUE;
3346                 }
3347                 mutex_exit(&vd->vdev_dtl_lock);
3348         } else {
3349                 for (int c = 0; c < vd->vdev_children; c++) {
3350                         vdev_t *cvd = vd->vdev_child[c];
3351                         uint64_t cmin, cmax;
3352
3353                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
3354                                 thismin = MIN(thismin, cmin);
3355                                 thismax = MAX(thismax, cmax);
3356                                 needed = B_TRUE;
3357                         }
3358                 }
3359         }
3360
3361         if (needed && minp) {
3362                 *minp = thismin;
3363                 *maxp = thismax;
3364         }
3365         return (needed);
3366 }
3367
3368 /*
3369  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
3370  * will contain either the checkpoint spacemap object or zero if none exists.
3371  * All other errors are returned to the caller.
3372  */
3373 int
3374 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
3375 {
3376         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
3377
3378         if (vd->vdev_top_zap == 0) {
3379                 *sm_obj = 0;
3380                 return (0);
3381         }
3382
3383         int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3384             VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3385         if (error == ENOENT) {
3386                 *sm_obj = 0;
3387                 error = 0;
3388         }
3389
3390         return (error);
3391 }
3392
3393 int
3394 vdev_load(vdev_t *vd)
3395 {
3396         int children = vd->vdev_children;
3397         int error = 0;
3398         taskq_t *tq = NULL;
3399
3400         /*
3401          * It's only worthwhile to use the taskq for the root vdev, because the
3402          * slow part is metaslab_init, and that only happens for top-level
3403          * vdevs.
3404          */
3405         if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) {
3406                 tq = taskq_create("vdev_load", children, minclsyspri,
3407                     children, children, TASKQ_PREPOPULATE);
3408         }
3409
3410         /*
3411          * Recursively load all children.
3412          */
3413         for (int c = 0; c < vd->vdev_children; c++) {
3414                 vdev_t *cvd = vd->vdev_child[c];
3415
3416                 if (tq == NULL || vdev_uses_zvols(cvd)) {
3417                         cvd->vdev_load_error = vdev_load(cvd);
3418                 } else {
3419                         VERIFY(taskq_dispatch(tq, vdev_load_child,
3420                             cvd, TQ_SLEEP) != TASKQID_INVALID);
3421                 }
3422         }
3423
3424         if (tq != NULL) {
3425                 taskq_wait(tq);
3426                 taskq_destroy(tq);
3427         }
3428
3429         for (int c = 0; c < vd->vdev_children; c++) {
3430                 int error = vd->vdev_child[c]->vdev_load_error;
3431
3432                 if (error != 0)
3433                         return (error);
3434         }
3435
3436         vdev_set_deflate_ratio(vd);
3437
3438         /*
3439          * On spa_load path, grab the allocation bias from our zap
3440          */
3441         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3442                 spa_t *spa = vd->vdev_spa;
3443                 char bias_str[64];
3444
3445                 error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3446                     VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3447                     bias_str);
3448                 if (error == 0) {
3449                         ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3450                         vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3451                 } else if (error != ENOENT) {
3452                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3453                             VDEV_AUX_CORRUPT_DATA);
3454                         vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) "
3455                             "failed [error=%d]", vd->vdev_top_zap, error);
3456                         return (error);
3457                 }
3458         }
3459
3460         /*
3461          * Load any rebuild state from the top-level vdev zap.
3462          */
3463         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3464                 error = vdev_rebuild_load(vd);
3465                 if (error && error != ENOTSUP) {
3466                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3467                             VDEV_AUX_CORRUPT_DATA);
3468                         vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load "
3469                             "failed [error=%d]", error);
3470                         return (error);
3471                 }
3472         }
3473
3474         /*
3475          * If this is a top-level vdev, initialize its metaslabs.
3476          */
3477         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3478                 vdev_metaslab_group_create(vd);
3479
3480                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3481                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3482                             VDEV_AUX_CORRUPT_DATA);
3483                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3484                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3485                             (u_longlong_t)vd->vdev_asize);
3486                         return (SET_ERROR(ENXIO));
3487                 }
3488
3489                 error = vdev_metaslab_init(vd, 0);
3490                 if (error != 0) {
3491                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3492                             "[error=%d]", error);
3493                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3494                             VDEV_AUX_CORRUPT_DATA);
3495                         return (error);
3496                 }
3497
3498                 uint64_t checkpoint_sm_obj;
3499                 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3500                 if (error == 0 && checkpoint_sm_obj != 0) {
3501                         objset_t *mos = spa_meta_objset(vd->vdev_spa);
3502                         ASSERT(vd->vdev_asize != 0);
3503                         ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3504
3505                         error = space_map_open(&vd->vdev_checkpoint_sm,
3506                             mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3507                             vd->vdev_ashift);
3508                         if (error != 0) {
3509                                 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3510                                     "failed for checkpoint spacemap (obj %llu) "
3511                                     "[error=%d]",
3512                                     (u_longlong_t)checkpoint_sm_obj, error);
3513                                 return (error);
3514                         }
3515                         ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3516
3517                         /*
3518                          * Since the checkpoint_sm contains free entries
3519                          * exclusively we can use space_map_allocated() to
3520                          * indicate the cumulative checkpointed space that
3521                          * has been freed.
3522                          */
3523                         vd->vdev_stat.vs_checkpoint_space =
3524                             -space_map_allocated(vd->vdev_checkpoint_sm);
3525                         vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3526                             vd->vdev_stat.vs_checkpoint_space;
3527                 } else if (error != 0) {
3528                         vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3529                             "checkpoint space map object from vdev ZAP "
3530                             "[error=%d]", error);
3531                         return (error);
3532                 }
3533         }
3534
3535         /*
3536          * If this is a leaf vdev, load its DTL.
3537          */
3538         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3539                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3540                     VDEV_AUX_CORRUPT_DATA);
3541                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3542                     "[error=%d]", error);
3543                 return (error);
3544         }
3545
3546         uint64_t obsolete_sm_object;
3547         error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3548         if (error == 0 && obsolete_sm_object != 0) {
3549                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3550                 ASSERT(vd->vdev_asize != 0);
3551                 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3552
3553                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3554                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3555                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3556                             VDEV_AUX_CORRUPT_DATA);
3557                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3558                             "obsolete spacemap (obj %llu) [error=%d]",
3559                             (u_longlong_t)obsolete_sm_object, error);
3560                         return (error);
3561                 }
3562         } else if (error != 0) {
3563                 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3564                     "space map object from vdev ZAP [error=%d]", error);
3565                 return (error);
3566         }
3567
3568         return (0);
3569 }
3570
3571 /*
3572  * The special vdev case is used for hot spares and l2cache devices.  Its
3573  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3574  * we make sure that we can open the underlying device, then try to read the
3575  * label, and make sure that the label is sane and that it hasn't been
3576  * repurposed to another pool.
3577  */
3578 int
3579 vdev_validate_aux(vdev_t *vd)
3580 {
3581         nvlist_t *label;
3582         uint64_t guid, version;
3583         uint64_t state;
3584
3585         if (!vdev_readable(vd))
3586                 return (0);
3587
3588         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3589                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3590                     VDEV_AUX_CORRUPT_DATA);
3591                 return (-1);
3592         }
3593
3594         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3595             !SPA_VERSION_IS_SUPPORTED(version) ||
3596             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3597             guid != vd->vdev_guid ||
3598             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3599                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3600                     VDEV_AUX_CORRUPT_DATA);
3601                 nvlist_free(label);
3602                 return (-1);
3603         }
3604
3605         /*
3606          * We don't actually check the pool state here.  If it's in fact in
3607          * use by another pool, we update this fact on the fly when requested.
3608          */
3609         nvlist_free(label);
3610         return (0);
3611 }
3612
3613 static void
3614 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3615 {
3616         objset_t *mos = spa_meta_objset(vd->vdev_spa);
3617
3618         if (vd->vdev_top_zap == 0)
3619                 return;
3620
3621         uint64_t object = 0;
3622         int err = zap_lookup(mos, vd->vdev_top_zap,
3623             VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3624         if (err == ENOENT)
3625                 return;
3626         VERIFY0(err);
3627
3628         VERIFY0(dmu_object_free(mos, object, tx));
3629         VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3630             VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3631 }
3632
3633 /*
3634  * Free the objects used to store this vdev's spacemaps, and the array
3635  * that points to them.
3636  */
3637 void
3638 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3639 {
3640         if (vd->vdev_ms_array == 0)
3641                 return;
3642
3643         objset_t *mos = vd->vdev_spa->spa_meta_objset;
3644         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3645         size_t array_bytes = array_count * sizeof (uint64_t);
3646         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3647         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3648             array_bytes, smobj_array, 0));
3649
3650         for (uint64_t i = 0; i < array_count; i++) {
3651                 uint64_t smobj = smobj_array[i];
3652                 if (smobj == 0)
3653                         continue;
3654
3655                 space_map_free_obj(mos, smobj, tx);
3656         }
3657
3658         kmem_free(smobj_array, array_bytes);
3659         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3660         vdev_destroy_ms_flush_data(vd, tx);
3661         vd->vdev_ms_array = 0;
3662 }
3663
3664 static void
3665 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3666 {
3667         spa_t *spa = vd->vdev_spa;
3668
3669         ASSERT(vd->vdev_islog);
3670         ASSERT(vd == vd->vdev_top);
3671         ASSERT3U(txg, ==, spa_syncing_txg(spa));
3672
3673         dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3674
3675         vdev_destroy_spacemaps(vd, tx);
3676         if (vd->vdev_top_zap != 0) {
3677                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3678                 vd->vdev_top_zap = 0;
3679         }
3680
3681         dmu_tx_commit(tx);
3682 }
3683
3684 void
3685 vdev_sync_done(vdev_t *vd, uint64_t txg)
3686 {
3687         metaslab_t *msp;
3688         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3689
3690         ASSERT(vdev_is_concrete(vd));
3691
3692         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3693             != NULL)
3694                 metaslab_sync_done(msp, txg);
3695
3696         if (reassess) {
3697                 metaslab_sync_reassess(vd->vdev_mg);
3698                 if (vd->vdev_log_mg != NULL)
3699                         metaslab_sync_reassess(vd->vdev_log_mg);
3700         }
3701 }
3702
3703 void
3704 vdev_sync(vdev_t *vd, uint64_t txg)
3705 {
3706         spa_t *spa = vd->vdev_spa;
3707         vdev_t *lvd;
3708         metaslab_t *msp;
3709
3710         ASSERT3U(txg, ==, spa->spa_syncing_txg);
3711         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3712         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3713                 ASSERT(vd->vdev_removing ||
3714                     vd->vdev_ops == &vdev_indirect_ops);
3715
3716                 vdev_indirect_sync_obsolete(vd, tx);
3717
3718                 /*
3719                  * If the vdev is indirect, it can't have dirty
3720                  * metaslabs or DTLs.
3721                  */
3722                 if (vd->vdev_ops == &vdev_indirect_ops) {
3723                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3724                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3725                         dmu_tx_commit(tx);
3726                         return;
3727                 }
3728         }
3729
3730         ASSERT(vdev_is_concrete(vd));
3731
3732         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3733             !vd->vdev_removing) {
3734                 ASSERT(vd == vd->vdev_top);
3735                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3736                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3737                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3738                 ASSERT(vd->vdev_ms_array != 0);
3739                 vdev_config_dirty(vd);
3740         }
3741
3742         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3743                 metaslab_sync(msp, txg);
3744                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3745         }
3746
3747         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3748                 vdev_dtl_sync(lvd, txg);
3749
3750         /*
3751          * If this is an empty log device being removed, destroy the
3752          * metadata associated with it.
3753          */
3754         if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3755                 vdev_remove_empty_log(vd, txg);
3756
3757         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3758         dmu_tx_commit(tx);
3759 }
3760
3761 uint64_t
3762 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3763 {
3764         return (vd->vdev_ops->vdev_op_asize(vd, psize));
3765 }
3766
3767 /*
3768  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3769  * not be opened, and no I/O is attempted.
3770  */
3771 int
3772 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3773 {
3774         vdev_t *vd, *tvd;
3775
3776         spa_vdev_state_enter(spa, SCL_NONE);
3777
3778         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3779                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3780
3781         if (!vd->vdev_ops->vdev_op_leaf)
3782                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3783
3784         tvd = vd->vdev_top;
3785
3786         /*
3787          * If user did a 'zpool offline -f' then make the fault persist across
3788          * reboots.
3789          */
3790         if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3791                 /*
3792                  * There are two kinds of forced faults: temporary and
3793                  * persistent.  Temporary faults go away at pool import, while
3794                  * persistent faults stay set.  Both types of faults can be
3795                  * cleared with a zpool clear.
3796                  *
3797                  * We tell if a vdev is persistently faulted by looking at the
3798                  * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3799                  * import then it's a persistent fault.  Otherwise, it's
3800                  * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3801                  * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3802                  * tells vdev_config_generate() (which gets run later) to set
3803                  * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3804                  */
3805                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3806                 vd->vdev_tmpoffline = B_FALSE;
3807                 aux = VDEV_AUX_EXTERNAL;
3808         } else {
3809                 vd->vdev_tmpoffline = B_TRUE;
3810         }
3811
3812         /*
3813          * We don't directly use the aux state here, but if we do a
3814          * vdev_reopen(), we need this value to be present to remember why we
3815          * were faulted.
3816          */
3817         vd->vdev_label_aux = aux;
3818
3819         /*
3820          * Faulted state takes precedence over degraded.
3821          */
3822         vd->vdev_delayed_close = B_FALSE;
3823         vd->vdev_faulted = 1ULL;
3824         vd->vdev_degraded = 0ULL;
3825         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3826
3827         /*
3828          * If this device has the only valid copy of the data, then
3829          * back off and simply mark the vdev as degraded instead.
3830          */
3831         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3832                 vd->vdev_degraded = 1ULL;
3833                 vd->vdev_faulted = 0ULL;
3834
3835                 /*
3836                  * If we reopen the device and it's not dead, only then do we
3837                  * mark it degraded.
3838                  */
3839                 vdev_reopen(tvd);
3840
3841                 if (vdev_readable(vd))
3842                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3843         }
3844
3845         return (spa_vdev_state_exit(spa, vd, 0));
3846 }
3847
3848 /*
3849  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3850  * user that something is wrong.  The vdev continues to operate as normal as far
3851  * as I/O is concerned.
3852  */
3853 int
3854 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3855 {
3856         vdev_t *vd;
3857
3858         spa_vdev_state_enter(spa, SCL_NONE);
3859
3860         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3861                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3862
3863         if (!vd->vdev_ops->vdev_op_leaf)
3864                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3865
3866         /*
3867          * If the vdev is already faulted, then don't do anything.
3868          */
3869         if (vd->vdev_faulted || vd->vdev_degraded)
3870                 return (spa_vdev_state_exit(spa, NULL, 0));
3871
3872         vd->vdev_degraded = 1ULL;
3873         if (!vdev_is_dead(vd))
3874                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3875                     aux);
3876
3877         return (spa_vdev_state_exit(spa, vd, 0));
3878 }
3879
3880 /*
3881  * Online the given vdev.
3882  *
3883  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3884  * spare device should be detached when the device finishes resilvering.
3885  * Second, the online should be treated like a 'test' online case, so no FMA
3886  * events are generated if the device fails to open.
3887  */
3888 int
3889 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3890 {
3891         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3892         boolean_t wasoffline;
3893         vdev_state_t oldstate;
3894
3895         spa_vdev_state_enter(spa, SCL_NONE);
3896
3897         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3898                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3899
3900         if (!vd->vdev_ops->vdev_op_leaf)
3901                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3902
3903         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3904         oldstate = vd->vdev_state;
3905
3906         tvd = vd->vdev_top;
3907         vd->vdev_offline = B_FALSE;
3908         vd->vdev_tmpoffline = B_FALSE;
3909         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3910         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3911
3912         /* XXX - L2ARC 1.0 does not support expansion */
3913         if (!vd->vdev_aux) {
3914                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3915                         pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3916                             spa->spa_autoexpand);
3917                 vd->vdev_expansion_time = gethrestime_sec();
3918         }
3919
3920         vdev_reopen(tvd);
3921         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3922
3923         if (!vd->vdev_aux) {
3924                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3925                         pvd->vdev_expanding = B_FALSE;
3926         }
3927
3928         if (newstate)
3929                 *newstate = vd->vdev_state;
3930         if ((flags & ZFS_ONLINE_UNSPARE) &&
3931             !vdev_is_dead(vd) && vd->vdev_parent &&
3932             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3933             vd->vdev_parent->vdev_child[0] == vd)
3934                 vd->vdev_unspare = B_TRUE;
3935
3936         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3937
3938                 /* XXX - L2ARC 1.0 does not support expansion */
3939                 if (vd->vdev_aux)
3940                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3941                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3942         }
3943
3944         /* Restart initializing if necessary */
3945         mutex_enter(&vd->vdev_initialize_lock);
3946         if (vdev_writeable(vd) &&
3947             vd->vdev_initialize_thread == NULL &&
3948             vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3949                 (void) vdev_initialize(vd);
3950         }
3951         mutex_exit(&vd->vdev_initialize_lock);
3952
3953         /*
3954          * Restart trimming if necessary. We do not restart trimming for cache
3955          * devices here. This is triggered by l2arc_rebuild_vdev()
3956          * asynchronously for the whole device or in l2arc_evict() as it evicts
3957          * space for upcoming writes.
3958          */
3959         mutex_enter(&vd->vdev_trim_lock);
3960         if (vdev_writeable(vd) && !vd->vdev_isl2cache &&
3961             vd->vdev_trim_thread == NULL &&
3962             vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3963                 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3964                     vd->vdev_trim_secure);
3965         }
3966         mutex_exit(&vd->vdev_trim_lock);
3967
3968         if (wasoffline ||
3969             (oldstate < VDEV_STATE_DEGRADED &&
3970             vd->vdev_state >= VDEV_STATE_DEGRADED))
3971                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3972
3973         return (spa_vdev_state_exit(spa, vd, 0));
3974 }
3975
3976 static int
3977 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3978 {
3979         vdev_t *vd, *tvd;
3980         int error = 0;
3981         uint64_t generation;
3982         metaslab_group_t *mg;
3983
3984 top:
3985         spa_vdev_state_enter(spa, SCL_ALLOC);
3986
3987         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3988                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV)));
3989
3990         if (!vd->vdev_ops->vdev_op_leaf)
3991                 return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP)));
3992
3993         if (vd->vdev_ops == &vdev_draid_spare_ops)
3994                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3995
3996         tvd = vd->vdev_top;
3997         mg = tvd->vdev_mg;
3998         generation = spa->spa_config_generation + 1;
3999
4000         /*
4001          * If the device isn't already offline, try to offline it.
4002          */
4003         if (!vd->vdev_offline) {
4004                 /*
4005                  * If this device has the only valid copy of some data,
4006                  * don't allow it to be offlined. Log devices are always
4007                  * expendable.
4008                  */
4009                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4010                     vdev_dtl_required(vd))
4011                         return (spa_vdev_state_exit(spa, NULL,
4012                             SET_ERROR(EBUSY)));
4013
4014                 /*
4015                  * If the top-level is a slog and it has had allocations
4016                  * then proceed.  We check that the vdev's metaslab group
4017                  * is not NULL since it's possible that we may have just
4018                  * added this vdev but not yet initialized its metaslabs.
4019                  */
4020                 if (tvd->vdev_islog && mg != NULL) {
4021                         /*
4022                          * Prevent any future allocations.
4023                          */
4024                         ASSERT3P(tvd->vdev_log_mg, ==, NULL);
4025                         metaslab_group_passivate(mg);
4026                         (void) spa_vdev_state_exit(spa, vd, 0);
4027
4028                         error = spa_reset_logs(spa);
4029
4030                         /*
4031                          * If the log device was successfully reset but has
4032                          * checkpointed data, do not offline it.
4033                          */
4034                         if (error == 0 &&
4035                             tvd->vdev_checkpoint_sm != NULL) {
4036                                 ASSERT3U(space_map_allocated(
4037                                     tvd->vdev_checkpoint_sm), !=, 0);
4038                                 error = ZFS_ERR_CHECKPOINT_EXISTS;
4039                         }
4040
4041                         spa_vdev_state_enter(spa, SCL_ALLOC);
4042
4043                         /*
4044                          * Check to see if the config has changed.
4045                          */
4046                         if (error || generation != spa->spa_config_generation) {
4047                                 metaslab_group_activate(mg);
4048                                 if (error)
4049                                         return (spa_vdev_state_exit(spa,
4050                                             vd, error));
4051                                 (void) spa_vdev_state_exit(spa, vd, 0);
4052                                 goto top;
4053                         }
4054                         ASSERT0(tvd->vdev_stat.vs_alloc);
4055                 }
4056
4057                 /*
4058                  * Offline this device and reopen its top-level vdev.
4059                  * If the top-level vdev is a log device then just offline
4060                  * it. Otherwise, if this action results in the top-level
4061                  * vdev becoming unusable, undo it and fail the request.
4062                  */
4063                 vd->vdev_offline = B_TRUE;
4064                 vdev_reopen(tvd);
4065
4066                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
4067                     vdev_is_dead(tvd)) {
4068                         vd->vdev_offline = B_FALSE;
4069                         vdev_reopen(tvd);
4070                         return (spa_vdev_state_exit(spa, NULL,
4071                             SET_ERROR(EBUSY)));
4072                 }
4073
4074                 /*
4075                  * Add the device back into the metaslab rotor so that
4076                  * once we online the device it's open for business.
4077                  */
4078                 if (tvd->vdev_islog && mg != NULL)
4079                         metaslab_group_activate(mg);
4080         }
4081
4082         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
4083
4084         return (spa_vdev_state_exit(spa, vd, 0));
4085 }
4086
4087 int
4088 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
4089 {
4090         int error;
4091
4092         mutex_enter(&spa->spa_vdev_top_lock);
4093         error = vdev_offline_locked(spa, guid, flags);
4094         mutex_exit(&spa->spa_vdev_top_lock);
4095
4096         return (error);
4097 }
4098
4099 /*
4100  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
4101  * vdev_offline(), we assume the spa config is locked.  We also clear all
4102  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
4103  */
4104 void
4105 vdev_clear(spa_t *spa, vdev_t *vd)
4106 {
4107         vdev_t *rvd = spa->spa_root_vdev;
4108
4109         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
4110
4111         if (vd == NULL)
4112                 vd = rvd;
4113
4114         vd->vdev_stat.vs_read_errors = 0;
4115         vd->vdev_stat.vs_write_errors = 0;
4116         vd->vdev_stat.vs_checksum_errors = 0;
4117         vd->vdev_stat.vs_slow_ios = 0;
4118
4119         for (int c = 0; c < vd->vdev_children; c++)
4120                 vdev_clear(spa, vd->vdev_child[c]);
4121
4122         /*
4123          * It makes no sense to "clear" an indirect vdev.
4124          */
4125         if (!vdev_is_concrete(vd))
4126                 return;
4127
4128         /*
4129          * If we're in the FAULTED state or have experienced failed I/O, then
4130          * clear the persistent state and attempt to reopen the device.  We
4131          * also mark the vdev config dirty, so that the new faulted state is
4132          * written out to disk.
4133          */
4134         if (vd->vdev_faulted || vd->vdev_degraded ||
4135             !vdev_readable(vd) || !vdev_writeable(vd)) {
4136                 /*
4137                  * When reopening in response to a clear event, it may be due to
4138                  * a fmadm repair request.  In this case, if the device is
4139                  * still broken, we want to still post the ereport again.
4140                  */
4141                 vd->vdev_forcefault = B_TRUE;
4142
4143                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
4144                 vd->vdev_cant_read = B_FALSE;
4145                 vd->vdev_cant_write = B_FALSE;
4146                 vd->vdev_stat.vs_aux = 0;
4147
4148                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
4149
4150                 vd->vdev_forcefault = B_FALSE;
4151
4152                 if (vd != rvd && vdev_writeable(vd->vdev_top))
4153                         vdev_state_dirty(vd->vdev_top);
4154
4155                 /* If a resilver isn't required, check if vdevs can be culled */
4156                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd) &&
4157                     !dsl_scan_resilvering(spa->spa_dsl_pool) &&
4158                     !dsl_scan_resilver_scheduled(spa->spa_dsl_pool))
4159                         spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4160
4161                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
4162         }
4163
4164         /*
4165          * When clearing a FMA-diagnosed fault, we always want to
4166          * unspare the device, as we assume that the original spare was
4167          * done in response to the FMA fault.
4168          */
4169         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
4170             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4171             vd->vdev_parent->vdev_child[0] == vd)
4172                 vd->vdev_unspare = B_TRUE;
4173
4174         /* Clear recent error events cache (i.e. duplicate events tracking) */
4175         zfs_ereport_clear(spa, vd);
4176 }
4177
4178 boolean_t
4179 vdev_is_dead(vdev_t *vd)
4180 {
4181         /*
4182          * Holes and missing devices are always considered "dead".
4183          * This simplifies the code since we don't have to check for
4184          * these types of devices in the various code paths.
4185          * Instead we rely on the fact that we skip over dead devices
4186          * before issuing I/O to them.
4187          */
4188         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
4189             vd->vdev_ops == &vdev_hole_ops ||
4190             vd->vdev_ops == &vdev_missing_ops);
4191 }
4192
4193 boolean_t
4194 vdev_readable(vdev_t *vd)
4195 {
4196         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
4197 }
4198
4199 boolean_t
4200 vdev_writeable(vdev_t *vd)
4201 {
4202         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
4203             vdev_is_concrete(vd));
4204 }
4205
4206 boolean_t
4207 vdev_allocatable(vdev_t *vd)
4208 {
4209         uint64_t state = vd->vdev_state;
4210
4211         /*
4212          * We currently allow allocations from vdevs which may be in the
4213          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
4214          * fails to reopen then we'll catch it later when we're holding
4215          * the proper locks.  Note that we have to get the vdev state
4216          * in a local variable because although it changes atomically,
4217          * we're asking two separate questions about it.
4218          */
4219         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
4220             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
4221             vd->vdev_mg->mg_initialized);
4222 }
4223
4224 boolean_t
4225 vdev_accessible(vdev_t *vd, zio_t *zio)
4226 {
4227         ASSERT(zio->io_vd == vd);
4228
4229         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
4230                 return (B_FALSE);
4231
4232         if (zio->io_type == ZIO_TYPE_READ)
4233                 return (!vd->vdev_cant_read);
4234
4235         if (zio->io_type == ZIO_TYPE_WRITE)
4236                 return (!vd->vdev_cant_write);
4237
4238         return (B_TRUE);
4239 }
4240
4241 static void
4242 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
4243 {
4244         /*
4245          * Exclude the dRAID spare when aggregating to avoid double counting
4246          * the ops and bytes.  These IOs are counted by the physical leaves.
4247          */
4248         if (cvd->vdev_ops == &vdev_draid_spare_ops)
4249                 return;
4250
4251         for (int t = 0; t < VS_ZIO_TYPES; t++) {
4252                 vs->vs_ops[t] += cvs->vs_ops[t];
4253                 vs->vs_bytes[t] += cvs->vs_bytes[t];
4254         }
4255
4256         cvs->vs_scan_removing = cvd->vdev_removing;
4257 }
4258
4259 /*
4260  * Get extended stats
4261  */
4262 static void
4263 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
4264 {
4265         int t, b;
4266         for (t = 0; t < ZIO_TYPES; t++) {
4267                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
4268                         vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
4269
4270                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
4271                         vsx->vsx_total_histo[t][b] +=
4272                             cvsx->vsx_total_histo[t][b];
4273                 }
4274         }
4275
4276         for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
4277                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
4278                         vsx->vsx_queue_histo[t][b] +=
4279                             cvsx->vsx_queue_histo[t][b];
4280                 }
4281                 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
4282                 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
4283
4284                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
4285                         vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
4286
4287                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
4288                         vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
4289         }
4290
4291 }
4292
4293 boolean_t
4294 vdev_is_spacemap_addressable(vdev_t *vd)
4295 {
4296         if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
4297                 return (B_TRUE);
4298
4299         /*
4300          * If double-word space map entries are not enabled we assume
4301          * 47 bits of the space map entry are dedicated to the entry's
4302          * offset (see SM_OFFSET_BITS in space_map.h). We then use that
4303          * to calculate the maximum address that can be described by a
4304          * space map entry for the given device.
4305          */
4306         uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
4307
4308         if (shift >= 63) /* detect potential overflow */
4309                 return (B_TRUE);
4310
4311         return (vd->vdev_asize < (1ULL << shift));
4312 }
4313
4314 /*
4315  * Get statistics for the given vdev.
4316  */
4317 static void
4318 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4319 {
4320         int t;
4321         /*
4322          * If we're getting stats on the root vdev, aggregate the I/O counts
4323          * over all top-level vdevs (i.e. the direct children of the root).
4324          */
4325         if (!vd->vdev_ops->vdev_op_leaf) {
4326                 if (vs) {
4327                         memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
4328                         memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
4329                 }
4330                 if (vsx)
4331                         memset(vsx, 0, sizeof (*vsx));
4332
4333                 for (int c = 0; c < vd->vdev_children; c++) {
4334                         vdev_t *cvd = vd->vdev_child[c];
4335                         vdev_stat_t *cvs = &cvd->vdev_stat;
4336                         vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
4337
4338                         vdev_get_stats_ex_impl(cvd, cvs, cvsx);
4339                         if (vs)
4340                                 vdev_get_child_stat(cvd, vs, cvs);
4341                         if (vsx)
4342                                 vdev_get_child_stat_ex(cvd, vsx, cvsx);
4343                 }
4344         } else {
4345                 /*
4346                  * We're a leaf.  Just copy our ZIO active queue stats in.  The
4347                  * other leaf stats are updated in vdev_stat_update().
4348                  */
4349                 if (!vsx)
4350                         return;
4351
4352                 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
4353
4354                 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
4355                         vsx->vsx_active_queue[t] =
4356                             vd->vdev_queue.vq_class[t].vqc_active;
4357                         vsx->vsx_pend_queue[t] = avl_numnodes(
4358                             &vd->vdev_queue.vq_class[t].vqc_queued_tree);
4359                 }
4360         }
4361 }
4362
4363 void
4364 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
4365 {
4366         vdev_t *tvd = vd->vdev_top;
4367         mutex_enter(&vd->vdev_stat_lock);
4368         if (vs) {
4369                 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
4370                 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
4371                 vs->vs_state = vd->vdev_state;
4372                 vs->vs_rsize = vdev_get_min_asize(vd);
4373
4374                 if (vd->vdev_ops->vdev_op_leaf) {
4375                         vs->vs_rsize += VDEV_LABEL_START_SIZE +
4376                             VDEV_LABEL_END_SIZE;
4377                         /*
4378                          * Report initializing progress. Since we don't
4379                          * have the initializing locks held, this is only
4380                          * an estimate (although a fairly accurate one).
4381                          */
4382                         vs->vs_initialize_bytes_done =
4383                             vd->vdev_initialize_bytes_done;
4384                         vs->vs_initialize_bytes_est =
4385                             vd->vdev_initialize_bytes_est;
4386                         vs->vs_initialize_state = vd->vdev_initialize_state;
4387                         vs->vs_initialize_action_time =
4388                             vd->vdev_initialize_action_time;
4389
4390                         /*
4391                          * Report manual TRIM progress. Since we don't have
4392                          * the manual TRIM locks held, this is only an
4393                          * estimate (although fairly accurate one).
4394                          */
4395                         vs->vs_trim_notsup = !vd->vdev_has_trim;
4396                         vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
4397                         vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
4398                         vs->vs_trim_state = vd->vdev_trim_state;
4399                         vs->vs_trim_action_time = vd->vdev_trim_action_time;
4400
4401                         /* Set when there is a deferred resilver. */
4402                         vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
4403                 }
4404
4405                 /*
4406                  * Report expandable space on top-level, non-auxiliary devices
4407                  * only. The expandable space is reported in terms of metaslab
4408                  * sized units since that determines how much space the pool
4409                  * can expand.
4410                  */
4411                 if (vd->vdev_aux == NULL && tvd != NULL) {
4412                         vs->vs_esize = P2ALIGN(
4413                             vd->vdev_max_asize - vd->vdev_asize,
4414                             1ULL << tvd->vdev_ms_shift);
4415                 }
4416
4417                 vs->vs_configured_ashift = vd->vdev_top != NULL
4418                     ? vd->vdev_top->vdev_ashift : vd->vdev_ashift;
4419                 vs->vs_logical_ashift = vd->vdev_logical_ashift;
4420                 vs->vs_physical_ashift = vd->vdev_physical_ashift;
4421
4422                 /*
4423                  * Report fragmentation and rebuild progress for top-level,
4424                  * non-auxiliary, concrete devices.
4425                  */
4426                 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
4427                     vdev_is_concrete(vd)) {
4428                         /*
4429                          * The vdev fragmentation rating doesn't take into
4430                          * account the embedded slog metaslab (vdev_log_mg).
4431                          * Since it's only one metaslab, it would have a tiny
4432                          * impact on the overall fragmentation.
4433                          */
4434                         vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
4435                             vd->vdev_mg->mg_fragmentation : 0;
4436                 }
4437         }
4438
4439         vdev_get_stats_ex_impl(vd, vs, vsx);
4440         mutex_exit(&vd->vdev_stat_lock);
4441 }
4442
4443 void
4444 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
4445 {
4446         return (vdev_get_stats_ex(vd, vs, NULL));
4447 }
4448
4449 void
4450 vdev_clear_stats(vdev_t *vd)
4451 {
4452         mutex_enter(&vd->vdev_stat_lock);
4453         vd->vdev_stat.vs_space = 0;
4454         vd->vdev_stat.vs_dspace = 0;
4455         vd->vdev_stat.vs_alloc = 0;
4456         mutex_exit(&vd->vdev_stat_lock);
4457 }
4458
4459 void
4460 vdev_scan_stat_init(vdev_t *vd)
4461 {
4462         vdev_stat_t *vs = &vd->vdev_stat;
4463
4464         for (int c = 0; c < vd->vdev_children; c++)
4465                 vdev_scan_stat_init(vd->vdev_child[c]);
4466
4467         mutex_enter(&vd->vdev_stat_lock);
4468         vs->vs_scan_processed = 0;
4469         mutex_exit(&vd->vdev_stat_lock);
4470 }
4471
4472 void
4473 vdev_stat_update(zio_t *zio, uint64_t psize)
4474 {
4475         spa_t *spa = zio->io_spa;
4476         vdev_t *rvd = spa->spa_root_vdev;
4477         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4478         vdev_t *pvd;
4479         uint64_t txg = zio->io_txg;
4480         vdev_stat_t *vs = &vd->vdev_stat;
4481         vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4482         zio_type_t type = zio->io_type;
4483         int flags = zio->io_flags;
4484
4485         /*
4486          * If this i/o is a gang leader, it didn't do any actual work.
4487          */
4488         if (zio->io_gang_tree)
4489                 return;
4490
4491         if (zio->io_error == 0) {
4492                 /*
4493                  * If this is a root i/o, don't count it -- we've already
4494                  * counted the top-level vdevs, and vdev_get_stats() will
4495                  * aggregate them when asked.  This reduces contention on
4496                  * the root vdev_stat_lock and implicitly handles blocks
4497                  * that compress away to holes, for which there is no i/o.
4498                  * (Holes never create vdev children, so all the counters
4499                  * remain zero, which is what we want.)
4500                  *
4501                  * Note: this only applies to successful i/o (io_error == 0)
4502                  * because unlike i/o counts, errors are not additive.
4503                  * When reading a ditto block, for example, failure of
4504                  * one top-level vdev does not imply a root-level error.
4505                  */
4506                 if (vd == rvd)
4507                         return;
4508
4509                 ASSERT(vd == zio->io_vd);
4510
4511                 if (flags & ZIO_FLAG_IO_BYPASS)
4512                         return;
4513
4514                 mutex_enter(&vd->vdev_stat_lock);
4515
4516                 if (flags & ZIO_FLAG_IO_REPAIR) {
4517                         /*
4518                          * Repair is the result of a resilver issued by the
4519                          * scan thread (spa_sync).
4520                          */
4521                         if (flags & ZIO_FLAG_SCAN_THREAD) {
4522                                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
4523                                 dsl_scan_phys_t *scn_phys = &scn->scn_phys;
4524                                 uint64_t *processed = &scn_phys->scn_processed;
4525
4526                                 if (vd->vdev_ops->vdev_op_leaf)
4527                                         atomic_add_64(processed, psize);
4528                                 vs->vs_scan_processed += psize;
4529                         }
4530
4531                         /*
4532                          * Repair is the result of a rebuild issued by the
4533                          * rebuild thread (vdev_rebuild_thread).  To avoid
4534                          * double counting repaired bytes the virtual dRAID
4535                          * spare vdev is excluded from the processed bytes.
4536                          */
4537                         if (zio->io_priority == ZIO_PRIORITY_REBUILD) {
4538                                 vdev_t *tvd = vd->vdev_top;
4539                                 vdev_rebuild_t *vr = &tvd->vdev_rebuild_config;
4540                                 vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys;
4541                                 uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt;
4542
4543                                 if (vd->vdev_ops->vdev_op_leaf &&
4544                                     vd->vdev_ops != &vdev_draid_spare_ops) {
4545                                         atomic_add_64(rebuilt, psize);
4546                                 }
4547                                 vs->vs_rebuild_processed += psize;
4548                         }
4549
4550                         if (flags & ZIO_FLAG_SELF_HEAL)
4551                                 vs->vs_self_healed += psize;
4552                 }
4553
4554                 /*
4555                  * The bytes/ops/histograms are recorded at the leaf level and
4556                  * aggregated into the higher level vdevs in vdev_get_stats().
4557                  */
4558                 if (vd->vdev_ops->vdev_op_leaf &&
4559                     (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4560                         zio_type_t vs_type = type;
4561                         zio_priority_t priority = zio->io_priority;
4562
4563                         /*
4564                          * TRIM ops and bytes are reported to user space as
4565                          * ZIO_TYPE_IOCTL.  This is done to preserve the
4566                          * vdev_stat_t structure layout for user space.
4567                          */
4568                         if (type == ZIO_TYPE_TRIM)
4569                                 vs_type = ZIO_TYPE_IOCTL;
4570
4571                         /*
4572                          * Solely for the purposes of 'zpool iostat -lqrw'
4573                          * reporting use the priority to catagorize the IO.
4574                          * Only the following are reported to user space:
4575                          *
4576                          *   ZIO_PRIORITY_SYNC_READ,
4577                          *   ZIO_PRIORITY_SYNC_WRITE,
4578                          *   ZIO_PRIORITY_ASYNC_READ,
4579                          *   ZIO_PRIORITY_ASYNC_WRITE,
4580                          *   ZIO_PRIORITY_SCRUB,
4581                          *   ZIO_PRIORITY_TRIM.
4582                          */
4583                         if (priority == ZIO_PRIORITY_REBUILD) {
4584                                 priority = ((type == ZIO_TYPE_WRITE) ?
4585                                     ZIO_PRIORITY_ASYNC_WRITE :
4586                                     ZIO_PRIORITY_SCRUB);
4587                         } else if (priority == ZIO_PRIORITY_INITIALIZING) {
4588                                 ASSERT3U(type, ==, ZIO_TYPE_WRITE);
4589                                 priority = ZIO_PRIORITY_ASYNC_WRITE;
4590                         } else if (priority == ZIO_PRIORITY_REMOVAL) {
4591                                 priority = ((type == ZIO_TYPE_WRITE) ?
4592                                     ZIO_PRIORITY_ASYNC_WRITE :
4593                                     ZIO_PRIORITY_ASYNC_READ);
4594                         }
4595
4596                         vs->vs_ops[vs_type]++;
4597                         vs->vs_bytes[vs_type] += psize;
4598
4599                         if (flags & ZIO_FLAG_DELEGATED) {
4600                                 vsx->vsx_agg_histo[priority]
4601                                     [RQ_HISTO(zio->io_size)]++;
4602                         } else {
4603                                 vsx->vsx_ind_histo[priority]
4604                                     [RQ_HISTO(zio->io_size)]++;
4605                         }
4606
4607                         if (zio->io_delta && zio->io_delay) {
4608                                 vsx->vsx_queue_histo[priority]
4609                                     [L_HISTO(zio->io_delta - zio->io_delay)]++;
4610                                 vsx->vsx_disk_histo[type]
4611                                     [L_HISTO(zio->io_delay)]++;
4612                                 vsx->vsx_total_histo[type]
4613                                     [L_HISTO(zio->io_delta)]++;
4614                         }
4615                 }
4616
4617                 mutex_exit(&vd->vdev_stat_lock);
4618                 return;
4619         }
4620
4621         if (flags & ZIO_FLAG_SPECULATIVE)
4622                 return;
4623
4624         /*
4625          * If this is an I/O error that is going to be retried, then ignore the
4626          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4627          * hard errors, when in reality they can happen for any number of
4628          * innocuous reasons (bus resets, MPxIO link failure, etc).
4629          */
4630         if (zio->io_error == EIO &&
4631             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4632                 return;
4633
4634         /*
4635          * Intent logs writes won't propagate their error to the root
4636          * I/O so don't mark these types of failures as pool-level
4637          * errors.
4638          */
4639         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4640                 return;
4641
4642         if (type == ZIO_TYPE_WRITE && txg != 0 &&
4643             (!(flags & ZIO_FLAG_IO_REPAIR) ||
4644             (flags & ZIO_FLAG_SCAN_THREAD) ||
4645             spa->spa_claiming)) {
4646                 /*
4647                  * This is either a normal write (not a repair), or it's
4648                  * a repair induced by the scrub thread, or it's a repair
4649                  * made by zil_claim() during spa_load() in the first txg.
4650                  * In the normal case, we commit the DTL change in the same
4651                  * txg as the block was born.  In the scrub-induced repair
4652                  * case, we know that scrubs run in first-pass syncing context,
4653                  * so we commit the DTL change in spa_syncing_txg(spa).
4654                  * In the zil_claim() case, we commit in spa_first_txg(spa).
4655                  *
4656                  * We currently do not make DTL entries for failed spontaneous
4657                  * self-healing writes triggered by normal (non-scrubbing)
4658                  * reads, because we have no transactional context in which to
4659                  * do so -- and it's not clear that it'd be desirable anyway.
4660                  */
4661                 if (vd->vdev_ops->vdev_op_leaf) {
4662                         uint64_t commit_txg = txg;
4663                         if (flags & ZIO_FLAG_SCAN_THREAD) {
4664                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4665                                 ASSERT(spa_sync_pass(spa) == 1);
4666                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4667                                 commit_txg = spa_syncing_txg(spa);
4668                         } else if (spa->spa_claiming) {
4669                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4670                                 commit_txg = spa_first_txg(spa);
4671                         }
4672                         ASSERT(commit_txg >= spa_syncing_txg(spa));
4673                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4674                                 return;
4675                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4676                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4677                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4678                 }
4679                 if (vd != rvd)
4680                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4681         }
4682 }
4683
4684 int64_t
4685 vdev_deflated_space(vdev_t *vd, int64_t space)
4686 {
4687         ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4688         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4689
4690         return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4691 }
4692
4693 /*
4694  * Update the in-core space usage stats for this vdev, its metaslab class,
4695  * and the root vdev.
4696  */
4697 void
4698 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4699     int64_t space_delta)
4700 {
4701         int64_t dspace_delta;
4702         spa_t *spa = vd->vdev_spa;
4703         vdev_t *rvd = spa->spa_root_vdev;
4704
4705         ASSERT(vd == vd->vdev_top);
4706
4707         /*
4708          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4709          * factor.  We must calculate this here and not at the root vdev
4710          * because the root vdev's psize-to-asize is simply the max of its
4711          * children's, thus not accurate enough for us.
4712          */
4713         dspace_delta = vdev_deflated_space(vd, space_delta);
4714
4715         mutex_enter(&vd->vdev_stat_lock);
4716         /* ensure we won't underflow */
4717         if (alloc_delta < 0) {
4718                 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4719         }
4720
4721         vd->vdev_stat.vs_alloc += alloc_delta;
4722         vd->vdev_stat.vs_space += space_delta;
4723         vd->vdev_stat.vs_dspace += dspace_delta;
4724         mutex_exit(&vd->vdev_stat_lock);
4725
4726         /* every class but log contributes to root space stats */
4727         if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4728                 ASSERT(!vd->vdev_isl2cache);
4729                 mutex_enter(&rvd->vdev_stat_lock);
4730                 rvd->vdev_stat.vs_alloc += alloc_delta;
4731                 rvd->vdev_stat.vs_space += space_delta;
4732                 rvd->vdev_stat.vs_dspace += dspace_delta;
4733                 mutex_exit(&rvd->vdev_stat_lock);
4734         }
4735         /* Note: metaslab_class_space_update moved to metaslab_space_update */
4736 }
4737
4738 /*
4739  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4740  * so that it will be written out next time the vdev configuration is synced.
4741  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4742  */
4743 void
4744 vdev_config_dirty(vdev_t *vd)
4745 {
4746         spa_t *spa = vd->vdev_spa;
4747         vdev_t *rvd = spa->spa_root_vdev;
4748         int c;
4749
4750         ASSERT(spa_writeable(spa));
4751
4752         /*
4753          * If this is an aux vdev (as with l2cache and spare devices), then we
4754          * update the vdev config manually and set the sync flag.
4755          */
4756         if (vd->vdev_aux != NULL) {
4757                 spa_aux_vdev_t *sav = vd->vdev_aux;
4758                 nvlist_t **aux;
4759                 uint_t naux;
4760
4761                 for (c = 0; c < sav->sav_count; c++) {
4762                         if (sav->sav_vdevs[c] == vd)
4763                                 break;
4764                 }
4765
4766                 if (c == sav->sav_count) {
4767                         /*
4768                          * We're being removed.  There's nothing more to do.
4769                          */
4770                         ASSERT(sav->sav_sync == B_TRUE);
4771                         return;
4772                 }
4773
4774                 sav->sav_sync = B_TRUE;
4775
4776                 if (nvlist_lookup_nvlist_array(sav->sav_config,
4777                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4778                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4779                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4780                 }
4781
4782                 ASSERT(c < naux);
4783
4784                 /*
4785                  * Setting the nvlist in the middle if the array is a little
4786                  * sketchy, but it will work.
4787                  */
4788                 nvlist_free(aux[c]);
4789                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4790
4791                 return;
4792         }
4793
4794         /*
4795          * The dirty list is protected by the SCL_CONFIG lock.  The caller
4796          * must either hold SCL_CONFIG as writer, or must be the sync thread
4797          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4798          * so this is sufficient to ensure mutual exclusion.
4799          */
4800         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4801             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4802             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4803
4804         if (vd == rvd) {
4805                 for (c = 0; c < rvd->vdev_children; c++)
4806                         vdev_config_dirty(rvd->vdev_child[c]);
4807         } else {
4808                 ASSERT(vd == vd->vdev_top);
4809
4810                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4811                     vdev_is_concrete(vd)) {
4812                         list_insert_head(&spa->spa_config_dirty_list, vd);
4813                 }
4814         }
4815 }
4816
4817 void
4818 vdev_config_clean(vdev_t *vd)
4819 {
4820         spa_t *spa = vd->vdev_spa;
4821
4822         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4823             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4824             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4825
4826         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4827         list_remove(&spa->spa_config_dirty_list, vd);
4828 }
4829
4830 /*
4831  * Mark a top-level vdev's state as dirty, so that the next pass of
4832  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4833  * the state changes from larger config changes because they require
4834  * much less locking, and are often needed for administrative actions.
4835  */
4836 void
4837 vdev_state_dirty(vdev_t *vd)
4838 {
4839         spa_t *spa = vd->vdev_spa;
4840
4841         ASSERT(spa_writeable(spa));
4842         ASSERT(vd == vd->vdev_top);
4843
4844         /*
4845          * The state list is protected by the SCL_STATE lock.  The caller
4846          * must either hold SCL_STATE as writer, or must be the sync thread
4847          * (which holds SCL_STATE as reader).  There's only one sync thread,
4848          * so this is sufficient to ensure mutual exclusion.
4849          */
4850         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4851             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4852             spa_config_held(spa, SCL_STATE, RW_READER)));
4853
4854         if (!list_link_active(&vd->vdev_state_dirty_node) &&
4855             vdev_is_concrete(vd))
4856                 list_insert_head(&spa->spa_state_dirty_list, vd);
4857 }
4858
4859 void
4860 vdev_state_clean(vdev_t *vd)
4861 {
4862         spa_t *spa = vd->vdev_spa;
4863
4864         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4865             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4866             spa_config_held(spa, SCL_STATE, RW_READER)));
4867
4868         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4869         list_remove(&spa->spa_state_dirty_list, vd);
4870 }
4871
4872 /*
4873  * Propagate vdev state up from children to parent.
4874  */
4875 void
4876 vdev_propagate_state(vdev_t *vd)
4877 {
4878         spa_t *spa = vd->vdev_spa;
4879         vdev_t *rvd = spa->spa_root_vdev;
4880         int degraded = 0, faulted = 0;
4881         int corrupted = 0;
4882         vdev_t *child;
4883
4884         if (vd->vdev_children > 0) {
4885                 for (int c = 0; c < vd->vdev_children; c++) {
4886                         child = vd->vdev_child[c];
4887
4888                         /*
4889                          * Don't factor holes or indirect vdevs into the
4890                          * decision.
4891                          */
4892                         if (!vdev_is_concrete(child))
4893                                 continue;
4894
4895                         if (!vdev_readable(child) ||
4896                             (!vdev_writeable(child) && spa_writeable(spa))) {
4897                                 /*
4898                                  * Root special: if there is a top-level log
4899                                  * device, treat the root vdev as if it were
4900                                  * degraded.
4901                                  */
4902                                 if (child->vdev_islog && vd == rvd)
4903                                         degraded++;
4904                                 else
4905                                         faulted++;
4906                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4907                                 degraded++;
4908                         }
4909
4910                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4911                                 corrupted++;
4912                 }
4913
4914                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4915
4916                 /*
4917                  * Root special: if there is a top-level vdev that cannot be
4918                  * opened due to corrupted metadata, then propagate the root
4919                  * vdev's aux state as 'corrupt' rather than 'insufficient
4920                  * replicas'.
4921                  */
4922                 if (corrupted && vd == rvd &&
4923                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4924                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4925                             VDEV_AUX_CORRUPT_DATA);
4926         }
4927
4928         if (vd->vdev_parent)
4929                 vdev_propagate_state(vd->vdev_parent);
4930 }
4931
4932 /*
4933  * Set a vdev's state.  If this is during an open, we don't update the parent
4934  * state, because we're in the process of opening children depth-first.
4935  * Otherwise, we propagate the change to the parent.
4936  *
4937  * If this routine places a device in a faulted state, an appropriate ereport is
4938  * generated.
4939  */
4940 void
4941 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4942 {
4943         uint64_t save_state;
4944         spa_t *spa = vd->vdev_spa;
4945
4946         if (state == vd->vdev_state) {
4947                 /*
4948                  * Since vdev_offline() code path is already in an offline
4949                  * state we can miss a statechange event to OFFLINE. Check
4950                  * the previous state to catch this condition.
4951                  */
4952                 if (vd->vdev_ops->vdev_op_leaf &&
4953                     (state == VDEV_STATE_OFFLINE) &&
4954                     (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4955                         /* post an offline state change */
4956                         zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4957                 }
4958                 vd->vdev_stat.vs_aux = aux;
4959                 return;
4960         }
4961
4962         save_state = vd->vdev_state;
4963
4964         vd->vdev_state = state;
4965         vd->vdev_stat.vs_aux = aux;
4966
4967         /*
4968          * If we are setting the vdev state to anything but an open state, then
4969          * always close the underlying device unless the device has requested
4970          * a delayed close (i.e. we're about to remove or fault the device).
4971          * Otherwise, we keep accessible but invalid devices open forever.
4972          * We don't call vdev_close() itself, because that implies some extra
4973          * checks (offline, etc) that we don't want here.  This is limited to
4974          * leaf devices, because otherwise closing the device will affect other
4975          * children.
4976          */
4977         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4978             vd->vdev_ops->vdev_op_leaf)
4979                 vd->vdev_ops->vdev_op_close(vd);
4980
4981         if (vd->vdev_removed &&
4982             state == VDEV_STATE_CANT_OPEN &&
4983             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4984                 /*
4985                  * If the previous state is set to VDEV_STATE_REMOVED, then this
4986                  * device was previously marked removed and someone attempted to
4987                  * reopen it.  If this failed due to a nonexistent device, then
4988                  * keep the device in the REMOVED state.  We also let this be if
4989                  * it is one of our special test online cases, which is only
4990                  * attempting to online the device and shouldn't generate an FMA
4991                  * fault.
4992                  */
4993                 vd->vdev_state = VDEV_STATE_REMOVED;
4994                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4995         } else if (state == VDEV_STATE_REMOVED) {
4996                 vd->vdev_removed = B_TRUE;
4997         } else if (state == VDEV_STATE_CANT_OPEN) {
4998                 /*
4999                  * If we fail to open a vdev during an import or recovery, we
5000                  * mark it as "not available", which signifies that it was
5001                  * never there to begin with.  Failure to open such a device
5002                  * is not considered an error.
5003                  */
5004                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
5005                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
5006                     vd->vdev_ops->vdev_op_leaf)
5007                         vd->vdev_not_present = 1;
5008
5009                 /*
5010                  * Post the appropriate ereport.  If the 'prevstate' field is
5011                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
5012                  * that this is part of a vdev_reopen().  In this case, we don't
5013                  * want to post the ereport if the device was already in the
5014                  * CANT_OPEN state beforehand.
5015                  *
5016                  * If the 'checkremove' flag is set, then this is an attempt to
5017                  * online the device in response to an insertion event.  If we
5018                  * hit this case, then we have detected an insertion event for a
5019                  * faulted or offline device that wasn't in the removed state.
5020                  * In this scenario, we don't post an ereport because we are
5021                  * about to replace the device, or attempt an online with
5022                  * vdev_forcefault, which will generate the fault for us.
5023                  */
5024                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
5025                     !vd->vdev_not_present && !vd->vdev_checkremove &&
5026                     vd != spa->spa_root_vdev) {
5027                         const char *class;
5028
5029                         switch (aux) {
5030                         case VDEV_AUX_OPEN_FAILED:
5031                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
5032                                 break;
5033                         case VDEV_AUX_CORRUPT_DATA:
5034                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
5035                                 break;
5036                         case VDEV_AUX_NO_REPLICAS:
5037                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
5038                                 break;
5039                         case VDEV_AUX_BAD_GUID_SUM:
5040                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
5041                                 break;
5042                         case VDEV_AUX_TOO_SMALL:
5043                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
5044                                 break;
5045                         case VDEV_AUX_BAD_LABEL:
5046                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
5047                                 break;
5048                         case VDEV_AUX_BAD_ASHIFT:
5049                                 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
5050                                 break;
5051                         default:
5052                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
5053                         }
5054
5055                         (void) zfs_ereport_post(class, spa, vd, NULL, NULL,
5056                             save_state);
5057                 }
5058
5059                 /* Erase any notion of persistent removed state */
5060                 vd->vdev_removed = B_FALSE;
5061         } else {
5062                 vd->vdev_removed = B_FALSE;
5063         }
5064
5065         /*
5066          * Notify ZED of any significant state-change on a leaf vdev.
5067          *
5068          */
5069         if (vd->vdev_ops->vdev_op_leaf) {
5070                 /* preserve original state from a vdev_reopen() */
5071                 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
5072                     (vd->vdev_prevstate != vd->vdev_state) &&
5073                     (save_state <= VDEV_STATE_CLOSED))
5074                         save_state = vd->vdev_prevstate;
5075
5076                 /* filter out state change due to initial vdev_open */
5077                 if (save_state > VDEV_STATE_CLOSED)
5078                         zfs_post_state_change(spa, vd, save_state);
5079         }
5080
5081         if (!isopen && vd->vdev_parent)
5082                 vdev_propagate_state(vd->vdev_parent);
5083 }
5084
5085 boolean_t
5086 vdev_children_are_offline(vdev_t *vd)
5087 {
5088         ASSERT(!vd->vdev_ops->vdev_op_leaf);
5089
5090         for (uint64_t i = 0; i < vd->vdev_children; i++) {
5091                 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
5092                         return (B_FALSE);
5093         }
5094
5095         return (B_TRUE);
5096 }
5097
5098 /*
5099  * Check the vdev configuration to ensure that it's capable of supporting
5100  * a root pool. We do not support partial configuration.
5101  */
5102 boolean_t
5103 vdev_is_bootable(vdev_t *vd)
5104 {
5105         if (!vd->vdev_ops->vdev_op_leaf) {
5106                 const char *vdev_type = vd->vdev_ops->vdev_op_type;
5107
5108                 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
5109                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
5110                         return (B_FALSE);
5111                 }
5112         }
5113
5114         for (int c = 0; c < vd->vdev_children; c++) {
5115                 if (!vdev_is_bootable(vd->vdev_child[c]))
5116                         return (B_FALSE);
5117         }
5118         return (B_TRUE);
5119 }
5120
5121 boolean_t
5122 vdev_is_concrete(vdev_t *vd)
5123 {
5124         vdev_ops_t *ops = vd->vdev_ops;
5125         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
5126             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
5127                 return (B_FALSE);
5128         } else {
5129                 return (B_TRUE);
5130         }
5131 }
5132
5133 /*
5134  * Determine if a log device has valid content.  If the vdev was
5135  * removed or faulted in the MOS config then we know that
5136  * the content on the log device has already been written to the pool.
5137  */
5138 boolean_t
5139 vdev_log_state_valid(vdev_t *vd)
5140 {
5141         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
5142             !vd->vdev_removed)
5143                 return (B_TRUE);
5144
5145         for (int c = 0; c < vd->vdev_children; c++)
5146                 if (vdev_log_state_valid(vd->vdev_child[c]))
5147                         return (B_TRUE);
5148
5149         return (B_FALSE);
5150 }
5151
5152 /*
5153  * Expand a vdev if possible.
5154  */
5155 void
5156 vdev_expand(vdev_t *vd, uint64_t txg)
5157 {
5158         ASSERT(vd->vdev_top == vd);
5159         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5160         ASSERT(vdev_is_concrete(vd));
5161
5162         vdev_set_deflate_ratio(vd);
5163
5164         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
5165             vdev_is_concrete(vd)) {
5166                 vdev_metaslab_group_create(vd);
5167                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
5168                 vdev_config_dirty(vd);
5169         }
5170 }
5171
5172 /*
5173  * Split a vdev.
5174  */
5175 void
5176 vdev_split(vdev_t *vd)
5177 {
5178         vdev_t *cvd, *pvd = vd->vdev_parent;
5179
5180         vdev_remove_child(pvd, vd);
5181         vdev_compact_children(pvd);
5182
5183         cvd = pvd->vdev_child[0];
5184         if (pvd->vdev_children == 1) {
5185                 vdev_remove_parent(cvd);
5186                 cvd->vdev_splitting = B_TRUE;
5187         }
5188         vdev_propagate_state(cvd);
5189 }
5190
5191 void
5192 vdev_deadman(vdev_t *vd, char *tag)
5193 {
5194         for (int c = 0; c < vd->vdev_children; c++) {
5195                 vdev_t *cvd = vd->vdev_child[c];
5196
5197                 vdev_deadman(cvd, tag);
5198         }
5199
5200         if (vd->vdev_ops->vdev_op_leaf) {
5201                 vdev_queue_t *vq = &vd->vdev_queue;
5202
5203                 mutex_enter(&vq->vq_lock);
5204                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
5205                         spa_t *spa = vd->vdev_spa;
5206                         zio_t *fio;
5207                         uint64_t delta;
5208
5209                         zfs_dbgmsg("slow vdev: %s has %d active IOs",
5210                             vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
5211
5212                         /*
5213                          * Look at the head of all the pending queues,
5214                          * if any I/O has been outstanding for longer than
5215                          * the spa_deadman_synctime invoke the deadman logic.
5216                          */
5217                         fio = avl_first(&vq->vq_active_tree);
5218                         delta = gethrtime() - fio->io_timestamp;
5219                         if (delta > spa_deadman_synctime(spa))
5220                                 zio_deadman(fio, tag);
5221                 }
5222                 mutex_exit(&vq->vq_lock);
5223         }
5224 }
5225
5226 void
5227 vdev_defer_resilver(vdev_t *vd)
5228 {
5229         ASSERT(vd->vdev_ops->vdev_op_leaf);
5230
5231         vd->vdev_resilver_deferred = B_TRUE;
5232         vd->vdev_spa->spa_resilver_deferred = B_TRUE;
5233 }
5234
5235 /*
5236  * Clears the resilver deferred flag on all leaf devs under vd. Returns
5237  * B_TRUE if we have devices that need to be resilvered and are available to
5238  * accept resilver I/Os.
5239  */
5240 boolean_t
5241 vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx)
5242 {
5243         boolean_t resilver_needed = B_FALSE;
5244         spa_t *spa = vd->vdev_spa;
5245
5246         for (int c = 0; c < vd->vdev_children; c++) {
5247                 vdev_t *cvd = vd->vdev_child[c];
5248                 resilver_needed |= vdev_clear_resilver_deferred(cvd, tx);
5249         }
5250
5251         if (vd == spa->spa_root_vdev &&
5252             spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) {
5253                 spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx);
5254                 vdev_config_dirty(vd);
5255                 spa->spa_resilver_deferred = B_FALSE;
5256                 return (resilver_needed);
5257         }
5258
5259         if (!vdev_is_concrete(vd) || vd->vdev_aux ||
5260             !vd->vdev_ops->vdev_op_leaf)
5261                 return (resilver_needed);
5262
5263         vd->vdev_resilver_deferred = B_FALSE;
5264
5265         return (!vdev_is_dead(vd) && !vd->vdev_offline &&
5266             vdev_resilver_needed(vd, NULL, NULL));
5267 }
5268
5269 boolean_t
5270 vdev_xlate_is_empty(range_seg64_t *rs)
5271 {
5272         return (rs->rs_start == rs->rs_end);
5273 }
5274
5275 /*
5276  * Translate a logical range to the first contiguous physical range for the
5277  * specified vdev_t.  This function is initially called with a leaf vdev and
5278  * will walk each parent vdev until it reaches a top-level vdev. Once the
5279  * top-level is reached the physical range is initialized and the recursive
5280  * function begins to unwind. As it unwinds it calls the parent's vdev
5281  * specific translation function to do the real conversion.
5282  */
5283 void
5284 vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs,
5285     range_seg64_t *physical_rs, range_seg64_t *remain_rs)
5286 {
5287         /*
5288          * Walk up the vdev tree
5289          */
5290         if (vd != vd->vdev_top) {
5291                 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs,
5292                     remain_rs);
5293         } else {
5294                 /*
5295                  * We've reached the top-level vdev, initialize the physical
5296                  * range to the logical range and set an empty remaining
5297                  * range then start to unwind.
5298                  */
5299                 physical_rs->rs_start = logical_rs->rs_start;
5300                 physical_rs->rs_end = logical_rs->rs_end;
5301
5302                 remain_rs->rs_start = logical_rs->rs_start;
5303                 remain_rs->rs_end = logical_rs->rs_start;
5304
5305                 return;
5306         }
5307
5308         vdev_t *pvd = vd->vdev_parent;
5309         ASSERT3P(pvd, !=, NULL);
5310         ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
5311
5312         /*
5313          * As this recursive function unwinds, translate the logical
5314          * range into its physical and any remaining components by calling
5315          * the vdev specific translate function.
5316          */
5317         range_seg64_t intermediate = { 0 };
5318         pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs);
5319
5320         physical_rs->rs_start = intermediate.rs_start;
5321         physical_rs->rs_end = intermediate.rs_end;
5322 }
5323
5324 void
5325 vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs,
5326     vdev_xlate_func_t *func, void *arg)
5327 {
5328         range_seg64_t iter_rs = *logical_rs;
5329         range_seg64_t physical_rs;
5330         range_seg64_t remain_rs;
5331
5332         while (!vdev_xlate_is_empty(&iter_rs)) {
5333
5334                 vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs);
5335
5336                 /*
5337                  * With raidz and dRAID, it's possible that the logical range
5338                  * does not live on this leaf vdev. Only when there is a non-
5339                  * zero physical size call the provided function.
5340                  */
5341                 if (!vdev_xlate_is_empty(&physical_rs))
5342                         func(arg, &physical_rs);
5343
5344                 iter_rs = remain_rs;
5345         }
5346 }
5347
5348 /*
5349  * Look at the vdev tree and determine whether any devices are currently being
5350  * replaced.
5351  */
5352 boolean_t
5353 vdev_replace_in_progress(vdev_t *vdev)
5354 {
5355         ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0);
5356
5357         if (vdev->vdev_ops == &vdev_replacing_ops)
5358                 return (B_TRUE);
5359
5360         /*
5361          * A 'spare' vdev indicates that we have a replace in progress, unless
5362          * it has exactly two children, and the second, the hot spare, has
5363          * finished being resilvered.
5364          */
5365         if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 ||
5366             !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING)))
5367                 return (B_TRUE);
5368
5369         for (int i = 0; i < vdev->vdev_children; i++) {
5370                 if (vdev_replace_in_progress(vdev->vdev_child[i]))
5371                         return (B_TRUE);
5372         }
5373
5374         return (B_FALSE);
5375 }
5376
5377 EXPORT_SYMBOL(vdev_fault);
5378 EXPORT_SYMBOL(vdev_degrade);
5379 EXPORT_SYMBOL(vdev_online);
5380 EXPORT_SYMBOL(vdev_offline);
5381 EXPORT_SYMBOL(vdev_clear);
5382
5383 /* BEGIN CSTYLED */
5384 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, INT, ZMOD_RW,
5385         "Target number of metaslabs per top-level vdev");
5386
5387 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, INT, ZMOD_RW,
5388         "Default limit for metaslab size");
5389
5390 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, INT, ZMOD_RW,
5391         "Minimum number of metaslabs per top-level vdev");
5392
5393 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, INT, ZMOD_RW,
5394         "Practical upper limit of total metaslabs per top-level vdev");
5395
5396 ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW,
5397         "Rate limit slow IO (delay) events to this many per second");
5398
5399 ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW,
5400         "Rate limit checksum events to this many checksum errors per second "
5401         "(do not set below zed threshold).");
5402
5403 ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW,
5404         "Ignore errors during resilver/scrub");
5405
5406 ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW,
5407         "Bypass vdev_validate()");
5408
5409 ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW,
5410         "Disable cache flushes");
5411
5412 ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, INT, ZMOD_RW,
5413         "Minimum number of metaslabs required to dedicate one for log blocks");
5414
5415 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift,
5416         param_set_min_auto_ashift, param_get_ulong, ZMOD_RW,
5417         "Minimum ashift used when creating new top-level vdevs");
5418
5419 ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift,
5420         param_set_max_auto_ashift, param_get_ulong, ZMOD_RW,
5421         "Maximum ashift used when optimizing for logical -> physical sector "
5422         "size on new top-level vdevs");
5423 /* END CSTYLED */