]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/vdev.c
Allow metaslab to be unloaded even when not freed from
[FreeBSD/FreeBSD.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/vdev_initialize.h>
54 #include <sys/vdev_trim.h>
55 #include <sys/zvol.h>
56 #include <sys/zfs_ratelimit.h>
57
58 /* default target for number of metaslabs per top-level vdev */
59 int zfs_vdev_default_ms_count = 200;
60
61 /* minimum number of metaslabs per top-level vdev */
62 int zfs_vdev_min_ms_count = 16;
63
64 /* practical upper limit of total metaslabs per top-level vdev */
65 int zfs_vdev_ms_count_limit = 1ULL << 17;
66
67 /* lower limit for metaslab size (512M) */
68 int zfs_vdev_default_ms_shift = 29;
69
70 /* upper limit for metaslab size (16G) */
71 int zfs_vdev_max_ms_shift = 34;
72
73 int vdev_validate_skip = B_FALSE;
74
75 /*
76  * Since the DTL space map of a vdev is not expected to have a lot of
77  * entries, we default its block size to 4K.
78  */
79 int vdev_dtl_sm_blksz = (1 << 12);
80
81 /*
82  * Rate limit slow IO (delay) events to this many per second.
83  */
84 unsigned int zfs_slow_io_events_per_second = 20;
85
86 /*
87  * Rate limit checksum events after this many checksum errors per second.
88  */
89 unsigned int zfs_checksum_events_per_second = 20;
90
91 /*
92  * Ignore errors during scrub/resilver.  Allows to work around resilver
93  * upon import when there are pool errors.
94  */
95 int zfs_scan_ignore_errors = 0;
96
97 /*
98  * vdev-wide space maps that have lots of entries written to them at
99  * the end of each transaction can benefit from a higher I/O bandwidth
100  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
101  */
102 int vdev_standard_sm_blksz = (1 << 17);
103
104 /*
105  * Tunable parameter for debugging or performance analysis. Setting this
106  * will cause pool corruption on power loss if a volatile out-of-order
107  * write cache is enabled.
108  */
109 int zfs_nocacheflush = 0;
110
111 /*PRINTFLIKE2*/
112 void
113 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
114 {
115         va_list adx;
116         char buf[256];
117
118         va_start(adx, fmt);
119         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
120         va_end(adx);
121
122         if (vd->vdev_path != NULL) {
123                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
124                     vd->vdev_path, buf);
125         } else {
126                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
127                     vd->vdev_ops->vdev_op_type,
128                     (u_longlong_t)vd->vdev_id,
129                     (u_longlong_t)vd->vdev_guid, buf);
130         }
131 }
132
133 void
134 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
135 {
136         char state[20];
137
138         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
139                 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
140                     vd->vdev_ops->vdev_op_type);
141                 return;
142         }
143
144         switch (vd->vdev_state) {
145         case VDEV_STATE_UNKNOWN:
146                 (void) snprintf(state, sizeof (state), "unknown");
147                 break;
148         case VDEV_STATE_CLOSED:
149                 (void) snprintf(state, sizeof (state), "closed");
150                 break;
151         case VDEV_STATE_OFFLINE:
152                 (void) snprintf(state, sizeof (state), "offline");
153                 break;
154         case VDEV_STATE_REMOVED:
155                 (void) snprintf(state, sizeof (state), "removed");
156                 break;
157         case VDEV_STATE_CANT_OPEN:
158                 (void) snprintf(state, sizeof (state), "can't open");
159                 break;
160         case VDEV_STATE_FAULTED:
161                 (void) snprintf(state, sizeof (state), "faulted");
162                 break;
163         case VDEV_STATE_DEGRADED:
164                 (void) snprintf(state, sizeof (state), "degraded");
165                 break;
166         case VDEV_STATE_HEALTHY:
167                 (void) snprintf(state, sizeof (state), "healthy");
168                 break;
169         default:
170                 (void) snprintf(state, sizeof (state), "<state %u>",
171                     (uint_t)vd->vdev_state);
172         }
173
174         zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
175             "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
176             vd->vdev_islog ? " (log)" : "",
177             (u_longlong_t)vd->vdev_guid,
178             vd->vdev_path ? vd->vdev_path : "N/A", state);
179
180         for (uint64_t i = 0; i < vd->vdev_children; i++)
181                 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
182 }
183
184 /*
185  * Virtual device management.
186  */
187
188 static vdev_ops_t *vdev_ops_table[] = {
189         &vdev_root_ops,
190         &vdev_raidz_ops,
191         &vdev_mirror_ops,
192         &vdev_replacing_ops,
193         &vdev_spare_ops,
194         &vdev_disk_ops,
195         &vdev_file_ops,
196         &vdev_missing_ops,
197         &vdev_hole_ops,
198         &vdev_indirect_ops,
199         NULL
200 };
201
202 /*
203  * Given a vdev type, return the appropriate ops vector.
204  */
205 static vdev_ops_t *
206 vdev_getops(const char *type)
207 {
208         vdev_ops_t *ops, **opspp;
209
210         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
211                 if (strcmp(ops->vdev_op_type, type) == 0)
212                         break;
213
214         return (ops);
215 }
216
217 /* ARGSUSED */
218 void
219 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
220 {
221         res->rs_start = in->rs_start;
222         res->rs_end = in->rs_end;
223 }
224
225 /*
226  * Derive the enumerated alloction bias from string input.
227  * String origin is either the per-vdev zap or zpool(1M).
228  */
229 static vdev_alloc_bias_t
230 vdev_derive_alloc_bias(const char *bias)
231 {
232         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
233
234         if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
235                 alloc_bias = VDEV_BIAS_LOG;
236         else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
237                 alloc_bias = VDEV_BIAS_SPECIAL;
238         else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
239                 alloc_bias = VDEV_BIAS_DEDUP;
240
241         return (alloc_bias);
242 }
243
244 /*
245  * Default asize function: return the MAX of psize with the asize of
246  * all children.  This is what's used by anything other than RAID-Z.
247  */
248 uint64_t
249 vdev_default_asize(vdev_t *vd, uint64_t psize)
250 {
251         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
252         uint64_t csize;
253
254         for (int c = 0; c < vd->vdev_children; c++) {
255                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
256                 asize = MAX(asize, csize);
257         }
258
259         return (asize);
260 }
261
262 /*
263  * Get the minimum allocatable size. We define the allocatable size as
264  * the vdev's asize rounded to the nearest metaslab. This allows us to
265  * replace or attach devices which don't have the same physical size but
266  * can still satisfy the same number of allocations.
267  */
268 uint64_t
269 vdev_get_min_asize(vdev_t *vd)
270 {
271         vdev_t *pvd = vd->vdev_parent;
272
273         /*
274          * If our parent is NULL (inactive spare or cache) or is the root,
275          * just return our own asize.
276          */
277         if (pvd == NULL)
278                 return (vd->vdev_asize);
279
280         /*
281          * The top-level vdev just returns the allocatable size rounded
282          * to the nearest metaslab.
283          */
284         if (vd == vd->vdev_top)
285                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
286
287         /*
288          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
289          * so each child must provide at least 1/Nth of its asize.
290          */
291         if (pvd->vdev_ops == &vdev_raidz_ops)
292                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
293                     pvd->vdev_children);
294
295         return (pvd->vdev_min_asize);
296 }
297
298 void
299 vdev_set_min_asize(vdev_t *vd)
300 {
301         vd->vdev_min_asize = vdev_get_min_asize(vd);
302
303         for (int c = 0; c < vd->vdev_children; c++)
304                 vdev_set_min_asize(vd->vdev_child[c]);
305 }
306
307 vdev_t *
308 vdev_lookup_top(spa_t *spa, uint64_t vdev)
309 {
310         vdev_t *rvd = spa->spa_root_vdev;
311
312         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
313
314         if (vdev < rvd->vdev_children) {
315                 ASSERT(rvd->vdev_child[vdev] != NULL);
316                 return (rvd->vdev_child[vdev]);
317         }
318
319         return (NULL);
320 }
321
322 vdev_t *
323 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
324 {
325         vdev_t *mvd;
326
327         if (vd->vdev_guid == guid)
328                 return (vd);
329
330         for (int c = 0; c < vd->vdev_children; c++)
331                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
332                     NULL)
333                         return (mvd);
334
335         return (NULL);
336 }
337
338 static int
339 vdev_count_leaves_impl(vdev_t *vd)
340 {
341         int n = 0;
342
343         if (vd->vdev_ops->vdev_op_leaf)
344                 return (1);
345
346         for (int c = 0; c < vd->vdev_children; c++)
347                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
348
349         return (n);
350 }
351
352 int
353 vdev_count_leaves(spa_t *spa)
354 {
355         int rc;
356
357         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
358         rc = vdev_count_leaves_impl(spa->spa_root_vdev);
359         spa_config_exit(spa, SCL_VDEV, FTAG);
360
361         return (rc);
362 }
363
364 void
365 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
366 {
367         size_t oldsize, newsize;
368         uint64_t id = cvd->vdev_id;
369         vdev_t **newchild;
370
371         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
372         ASSERT(cvd->vdev_parent == NULL);
373
374         cvd->vdev_parent = pvd;
375
376         if (pvd == NULL)
377                 return;
378
379         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
380
381         oldsize = pvd->vdev_children * sizeof (vdev_t *);
382         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
383         newsize = pvd->vdev_children * sizeof (vdev_t *);
384
385         newchild = kmem_alloc(newsize, KM_SLEEP);
386         if (pvd->vdev_child != NULL) {
387                 bcopy(pvd->vdev_child, newchild, oldsize);
388                 kmem_free(pvd->vdev_child, oldsize);
389         }
390
391         pvd->vdev_child = newchild;
392         pvd->vdev_child[id] = cvd;
393
394         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
395         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
396
397         /*
398          * Walk up all ancestors to update guid sum.
399          */
400         for (; pvd != NULL; pvd = pvd->vdev_parent)
401                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
402
403         if (cvd->vdev_ops->vdev_op_leaf) {
404                 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
405                 cvd->vdev_spa->spa_leaf_list_gen++;
406         }
407 }
408
409 void
410 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
411 {
412         int c;
413         uint_t id = cvd->vdev_id;
414
415         ASSERT(cvd->vdev_parent == pvd);
416
417         if (pvd == NULL)
418                 return;
419
420         ASSERT(id < pvd->vdev_children);
421         ASSERT(pvd->vdev_child[id] == cvd);
422
423         pvd->vdev_child[id] = NULL;
424         cvd->vdev_parent = NULL;
425
426         for (c = 0; c < pvd->vdev_children; c++)
427                 if (pvd->vdev_child[c])
428                         break;
429
430         if (c == pvd->vdev_children) {
431                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
432                 pvd->vdev_child = NULL;
433                 pvd->vdev_children = 0;
434         }
435
436         if (cvd->vdev_ops->vdev_op_leaf) {
437                 spa_t *spa = cvd->vdev_spa;
438                 list_remove(&spa->spa_leaf_list, cvd);
439                 spa->spa_leaf_list_gen++;
440         }
441
442         /*
443          * Walk up all ancestors to update guid sum.
444          */
445         for (; pvd != NULL; pvd = pvd->vdev_parent)
446                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
447 }
448
449 /*
450  * Remove any holes in the child array.
451  */
452 void
453 vdev_compact_children(vdev_t *pvd)
454 {
455         vdev_t **newchild, *cvd;
456         int oldc = pvd->vdev_children;
457         int newc;
458
459         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
460
461         if (oldc == 0)
462                 return;
463
464         for (int c = newc = 0; c < oldc; c++)
465                 if (pvd->vdev_child[c])
466                         newc++;
467
468         if (newc > 0) {
469                 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
470
471                 for (int c = newc = 0; c < oldc; c++) {
472                         if ((cvd = pvd->vdev_child[c]) != NULL) {
473                                 newchild[newc] = cvd;
474                                 cvd->vdev_id = newc++;
475                         }
476                 }
477         } else {
478                 newchild = NULL;
479         }
480
481         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
482         pvd->vdev_child = newchild;
483         pvd->vdev_children = newc;
484 }
485
486 /*
487  * Allocate and minimally initialize a vdev_t.
488  */
489 vdev_t *
490 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
491 {
492         vdev_t *vd;
493         vdev_indirect_config_t *vic;
494
495         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
496         vic = &vd->vdev_indirect_config;
497
498         if (spa->spa_root_vdev == NULL) {
499                 ASSERT(ops == &vdev_root_ops);
500                 spa->spa_root_vdev = vd;
501                 spa->spa_load_guid = spa_generate_guid(NULL);
502         }
503
504         if (guid == 0 && ops != &vdev_hole_ops) {
505                 if (spa->spa_root_vdev == vd) {
506                         /*
507                          * The root vdev's guid will also be the pool guid,
508                          * which must be unique among all pools.
509                          */
510                         guid = spa_generate_guid(NULL);
511                 } else {
512                         /*
513                          * Any other vdev's guid must be unique within the pool.
514                          */
515                         guid = spa_generate_guid(spa);
516                 }
517                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
518         }
519
520         vd->vdev_spa = spa;
521         vd->vdev_id = id;
522         vd->vdev_guid = guid;
523         vd->vdev_guid_sum = guid;
524         vd->vdev_ops = ops;
525         vd->vdev_state = VDEV_STATE_CLOSED;
526         vd->vdev_ishole = (ops == &vdev_hole_ops);
527         vic->vic_prev_indirect_vdev = UINT64_MAX;
528
529         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
530         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
531         vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
532
533         /*
534          * Initialize rate limit structs for events.  We rate limit ZIO delay
535          * and checksum events so that we don't overwhelm ZED with thousands
536          * of events when a disk is acting up.
537          */
538         zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
539             1);
540         zfs_ratelimit_init(&vd->vdev_checksum_rl,
541             &zfs_checksum_events_per_second, 1);
542
543         list_link_init(&vd->vdev_config_dirty_node);
544         list_link_init(&vd->vdev_state_dirty_node);
545         list_link_init(&vd->vdev_initialize_node);
546         list_link_init(&vd->vdev_leaf_node);
547         list_link_init(&vd->vdev_trim_node);
548         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
549         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
550         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
551         mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
552         mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
553         mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
554         cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
555         cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
556         mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
557         mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
558         mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
559         cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
560         cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
561         cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
562
563         for (int t = 0; t < DTL_TYPES; t++) {
564                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
565         }
566         txg_list_create(&vd->vdev_ms_list, spa,
567             offsetof(struct metaslab, ms_txg_node));
568         txg_list_create(&vd->vdev_dtl_list, spa,
569             offsetof(struct vdev, vdev_dtl_node));
570         vd->vdev_stat.vs_timestamp = gethrtime();
571         vdev_queue_init(vd);
572         vdev_cache_init(vd);
573
574         return (vd);
575 }
576
577 /*
578  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
579  * creating a new vdev or loading an existing one - the behavior is slightly
580  * different for each case.
581  */
582 int
583 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
584     int alloctype)
585 {
586         vdev_ops_t *ops;
587         char *type;
588         uint64_t guid = 0, islog, nparity;
589         vdev_t *vd;
590         vdev_indirect_config_t *vic;
591         char *tmp = NULL;
592         int rc;
593         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
594         boolean_t top_level = (parent && !parent->vdev_parent);
595
596         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
597
598         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
599                 return (SET_ERROR(EINVAL));
600
601         if ((ops = vdev_getops(type)) == NULL)
602                 return (SET_ERROR(EINVAL));
603
604         /*
605          * If this is a load, get the vdev guid from the nvlist.
606          * Otherwise, vdev_alloc_common() will generate one for us.
607          */
608         if (alloctype == VDEV_ALLOC_LOAD) {
609                 uint64_t label_id;
610
611                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
612                     label_id != id)
613                         return (SET_ERROR(EINVAL));
614
615                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
616                         return (SET_ERROR(EINVAL));
617         } else if (alloctype == VDEV_ALLOC_SPARE) {
618                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
619                         return (SET_ERROR(EINVAL));
620         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
621                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
622                         return (SET_ERROR(EINVAL));
623         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
624                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
625                         return (SET_ERROR(EINVAL));
626         }
627
628         /*
629          * The first allocated vdev must be of type 'root'.
630          */
631         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
632                 return (SET_ERROR(EINVAL));
633
634         /*
635          * Determine whether we're a log vdev.
636          */
637         islog = 0;
638         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
639         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
640                 return (SET_ERROR(ENOTSUP));
641
642         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
643                 return (SET_ERROR(ENOTSUP));
644
645         /*
646          * Set the nparity property for RAID-Z vdevs.
647          */
648         nparity = -1ULL;
649         if (ops == &vdev_raidz_ops) {
650                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
651                     &nparity) == 0) {
652                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
653                                 return (SET_ERROR(EINVAL));
654                         /*
655                          * Previous versions could only support 1 or 2 parity
656                          * device.
657                          */
658                         if (nparity > 1 &&
659                             spa_version(spa) < SPA_VERSION_RAIDZ2)
660                                 return (SET_ERROR(ENOTSUP));
661                         if (nparity > 2 &&
662                             spa_version(spa) < SPA_VERSION_RAIDZ3)
663                                 return (SET_ERROR(ENOTSUP));
664                 } else {
665                         /*
666                          * We require the parity to be specified for SPAs that
667                          * support multiple parity levels.
668                          */
669                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
670                                 return (SET_ERROR(EINVAL));
671                         /*
672                          * Otherwise, we default to 1 parity device for RAID-Z.
673                          */
674                         nparity = 1;
675                 }
676         } else {
677                 nparity = 0;
678         }
679         ASSERT(nparity != -1ULL);
680
681         /*
682          * If creating a top-level vdev, check for allocation classes input
683          */
684         if (top_level && alloctype == VDEV_ALLOC_ADD) {
685                 char *bias;
686
687                 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
688                     &bias) == 0) {
689                         alloc_bias = vdev_derive_alloc_bias(bias);
690
691                         /* spa_vdev_add() expects feature to be enabled */
692                         if (spa->spa_load_state != SPA_LOAD_CREATE &&
693                             !spa_feature_is_enabled(spa,
694                             SPA_FEATURE_ALLOCATION_CLASSES)) {
695                                 return (SET_ERROR(ENOTSUP));
696                         }
697                 }
698         }
699
700         vd = vdev_alloc_common(spa, id, guid, ops);
701         vic = &vd->vdev_indirect_config;
702
703         vd->vdev_islog = islog;
704         vd->vdev_nparity = nparity;
705         if (top_level && alloc_bias != VDEV_BIAS_NONE)
706                 vd->vdev_alloc_bias = alloc_bias;
707
708         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
709                 vd->vdev_path = spa_strdup(vd->vdev_path);
710
711         /*
712          * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
713          * fault on a vdev and want it to persist across imports (like with
714          * zpool offline -f).
715          */
716         rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
717         if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
718                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
719                 vd->vdev_faulted = 1;
720                 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
721         }
722
723         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
724                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
725         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
726             &vd->vdev_physpath) == 0)
727                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
728
729         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
730             &vd->vdev_enc_sysfs_path) == 0)
731                 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
732
733         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
734                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
735
736         /*
737          * Set the whole_disk property.  If it's not specified, leave the value
738          * as -1.
739          */
740         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
741             &vd->vdev_wholedisk) != 0)
742                 vd->vdev_wholedisk = -1ULL;
743
744         ASSERT0(vic->vic_mapping_object);
745         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
746             &vic->vic_mapping_object);
747         ASSERT0(vic->vic_births_object);
748         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
749             &vic->vic_births_object);
750         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
751         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
752             &vic->vic_prev_indirect_vdev);
753
754         /*
755          * Look for the 'not present' flag.  This will only be set if the device
756          * was not present at the time of import.
757          */
758         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
759             &vd->vdev_not_present);
760
761         /*
762          * Get the alignment requirement.
763          */
764         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
765
766         /*
767          * Retrieve the vdev creation time.
768          */
769         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
770             &vd->vdev_crtxg);
771
772         /*
773          * If we're a top-level vdev, try to load the allocation parameters.
774          */
775         if (top_level &&
776             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
777                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
778                     &vd->vdev_ms_array);
779                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
780                     &vd->vdev_ms_shift);
781                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
782                     &vd->vdev_asize);
783                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
784                     &vd->vdev_removing);
785                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
786                     &vd->vdev_top_zap);
787         } else {
788                 ASSERT0(vd->vdev_top_zap);
789         }
790
791         if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
792                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
793                     alloctype == VDEV_ALLOC_ADD ||
794                     alloctype == VDEV_ALLOC_SPLIT ||
795                     alloctype == VDEV_ALLOC_ROOTPOOL);
796                 /* Note: metaslab_group_create() is now deferred */
797         }
798
799         if (vd->vdev_ops->vdev_op_leaf &&
800             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
801                 (void) nvlist_lookup_uint64(nv,
802                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
803         } else {
804                 ASSERT0(vd->vdev_leaf_zap);
805         }
806
807         /*
808          * If we're a leaf vdev, try to load the DTL object and other state.
809          */
810
811         if (vd->vdev_ops->vdev_op_leaf &&
812             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
813             alloctype == VDEV_ALLOC_ROOTPOOL)) {
814                 if (alloctype == VDEV_ALLOC_LOAD) {
815                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
816                             &vd->vdev_dtl_object);
817                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
818                             &vd->vdev_unspare);
819                 }
820
821                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
822                         uint64_t spare = 0;
823
824                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
825                             &spare) == 0 && spare)
826                                 spa_spare_add(vd);
827                 }
828
829                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
830                     &vd->vdev_offline);
831
832                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
833                     &vd->vdev_resilver_txg);
834
835                 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
836                         vdev_set_deferred_resilver(spa, vd);
837
838                 /*
839                  * In general, when importing a pool we want to ignore the
840                  * persistent fault state, as the diagnosis made on another
841                  * system may not be valid in the current context.  The only
842                  * exception is if we forced a vdev to a persistently faulted
843                  * state with 'zpool offline -f'.  The persistent fault will
844                  * remain across imports until cleared.
845                  *
846                  * Local vdevs will remain in the faulted state.
847                  */
848                 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
849                     spa_load_state(spa) == SPA_LOAD_IMPORT) {
850                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
851                             &vd->vdev_faulted);
852                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
853                             &vd->vdev_degraded);
854                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
855                             &vd->vdev_removed);
856
857                         if (vd->vdev_faulted || vd->vdev_degraded) {
858                                 char *aux;
859
860                                 vd->vdev_label_aux =
861                                     VDEV_AUX_ERR_EXCEEDED;
862                                 if (nvlist_lookup_string(nv,
863                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
864                                     strcmp(aux, "external") == 0)
865                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
866                                 else
867                                         vd->vdev_faulted = 0ULL;
868                         }
869                 }
870         }
871
872         /*
873          * Add ourselves to the parent's list of children.
874          */
875         vdev_add_child(parent, vd);
876
877         *vdp = vd;
878
879         return (0);
880 }
881
882 void
883 vdev_free(vdev_t *vd)
884 {
885         spa_t *spa = vd->vdev_spa;
886
887         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
888         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
889         ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
890
891         /*
892          * Scan queues are normally destroyed at the end of a scan. If the
893          * queue exists here, that implies the vdev is being removed while
894          * the scan is still running.
895          */
896         if (vd->vdev_scan_io_queue != NULL) {
897                 mutex_enter(&vd->vdev_scan_io_queue_lock);
898                 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
899                 vd->vdev_scan_io_queue = NULL;
900                 mutex_exit(&vd->vdev_scan_io_queue_lock);
901         }
902
903         /*
904          * vdev_free() implies closing the vdev first.  This is simpler than
905          * trying to ensure complicated semantics for all callers.
906          */
907         vdev_close(vd);
908
909         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
910         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
911
912         /*
913          * Free all children.
914          */
915         for (int c = 0; c < vd->vdev_children; c++)
916                 vdev_free(vd->vdev_child[c]);
917
918         ASSERT(vd->vdev_child == NULL);
919         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
920
921         /*
922          * Discard allocation state.
923          */
924         if (vd->vdev_mg != NULL) {
925                 vdev_metaslab_fini(vd);
926                 metaslab_group_destroy(vd->vdev_mg);
927         }
928
929         ASSERT0(vd->vdev_stat.vs_space);
930         ASSERT0(vd->vdev_stat.vs_dspace);
931         ASSERT0(vd->vdev_stat.vs_alloc);
932
933         /*
934          * Remove this vdev from its parent's child list.
935          */
936         vdev_remove_child(vd->vdev_parent, vd);
937
938         ASSERT(vd->vdev_parent == NULL);
939         ASSERT(!list_link_active(&vd->vdev_leaf_node));
940
941         /*
942          * Clean up vdev structure.
943          */
944         vdev_queue_fini(vd);
945         vdev_cache_fini(vd);
946
947         if (vd->vdev_path)
948                 spa_strfree(vd->vdev_path);
949         if (vd->vdev_devid)
950                 spa_strfree(vd->vdev_devid);
951         if (vd->vdev_physpath)
952                 spa_strfree(vd->vdev_physpath);
953
954         if (vd->vdev_enc_sysfs_path)
955                 spa_strfree(vd->vdev_enc_sysfs_path);
956
957         if (vd->vdev_fru)
958                 spa_strfree(vd->vdev_fru);
959
960         if (vd->vdev_isspare)
961                 spa_spare_remove(vd);
962         if (vd->vdev_isl2cache)
963                 spa_l2cache_remove(vd);
964
965         txg_list_destroy(&vd->vdev_ms_list);
966         txg_list_destroy(&vd->vdev_dtl_list);
967
968         mutex_enter(&vd->vdev_dtl_lock);
969         space_map_close(vd->vdev_dtl_sm);
970         for (int t = 0; t < DTL_TYPES; t++) {
971                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
972                 range_tree_destroy(vd->vdev_dtl[t]);
973         }
974         mutex_exit(&vd->vdev_dtl_lock);
975
976         EQUIV(vd->vdev_indirect_births != NULL,
977             vd->vdev_indirect_mapping != NULL);
978         if (vd->vdev_indirect_births != NULL) {
979                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
980                 vdev_indirect_births_close(vd->vdev_indirect_births);
981         }
982
983         if (vd->vdev_obsolete_sm != NULL) {
984                 ASSERT(vd->vdev_removing ||
985                     vd->vdev_ops == &vdev_indirect_ops);
986                 space_map_close(vd->vdev_obsolete_sm);
987                 vd->vdev_obsolete_sm = NULL;
988         }
989         range_tree_destroy(vd->vdev_obsolete_segments);
990         rw_destroy(&vd->vdev_indirect_rwlock);
991         mutex_destroy(&vd->vdev_obsolete_lock);
992
993         mutex_destroy(&vd->vdev_dtl_lock);
994         mutex_destroy(&vd->vdev_stat_lock);
995         mutex_destroy(&vd->vdev_probe_lock);
996         mutex_destroy(&vd->vdev_scan_io_queue_lock);
997         mutex_destroy(&vd->vdev_initialize_lock);
998         mutex_destroy(&vd->vdev_initialize_io_lock);
999         cv_destroy(&vd->vdev_initialize_io_cv);
1000         cv_destroy(&vd->vdev_initialize_cv);
1001         mutex_destroy(&vd->vdev_trim_lock);
1002         mutex_destroy(&vd->vdev_autotrim_lock);
1003         mutex_destroy(&vd->vdev_trim_io_lock);
1004         cv_destroy(&vd->vdev_trim_cv);
1005         cv_destroy(&vd->vdev_autotrim_cv);
1006         cv_destroy(&vd->vdev_trim_io_cv);
1007
1008         zfs_ratelimit_fini(&vd->vdev_delay_rl);
1009         zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1010
1011         if (vd == spa->spa_root_vdev)
1012                 spa->spa_root_vdev = NULL;
1013
1014         kmem_free(vd, sizeof (vdev_t));
1015 }
1016
1017 /*
1018  * Transfer top-level vdev state from svd to tvd.
1019  */
1020 static void
1021 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1022 {
1023         spa_t *spa = svd->vdev_spa;
1024         metaslab_t *msp;
1025         vdev_t *vd;
1026         int t;
1027
1028         ASSERT(tvd == tvd->vdev_top);
1029
1030         tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1031         tvd->vdev_ms_array = svd->vdev_ms_array;
1032         tvd->vdev_ms_shift = svd->vdev_ms_shift;
1033         tvd->vdev_ms_count = svd->vdev_ms_count;
1034         tvd->vdev_top_zap = svd->vdev_top_zap;
1035
1036         svd->vdev_ms_array = 0;
1037         svd->vdev_ms_shift = 0;
1038         svd->vdev_ms_count = 0;
1039         svd->vdev_top_zap = 0;
1040
1041         if (tvd->vdev_mg)
1042                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1043         tvd->vdev_mg = svd->vdev_mg;
1044         tvd->vdev_ms = svd->vdev_ms;
1045
1046         svd->vdev_mg = NULL;
1047         svd->vdev_ms = NULL;
1048
1049         if (tvd->vdev_mg != NULL)
1050                 tvd->vdev_mg->mg_vd = tvd;
1051
1052         tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1053         svd->vdev_checkpoint_sm = NULL;
1054
1055         tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1056         svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1057
1058         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1059         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1060         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1061
1062         svd->vdev_stat.vs_alloc = 0;
1063         svd->vdev_stat.vs_space = 0;
1064         svd->vdev_stat.vs_dspace = 0;
1065
1066         /*
1067          * State which may be set on a top-level vdev that's in the
1068          * process of being removed.
1069          */
1070         ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1071         ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1072         ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1073         ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1074         ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1075         ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1076         ASSERT0(tvd->vdev_removing);
1077         tvd->vdev_removing = svd->vdev_removing;
1078         tvd->vdev_indirect_config = svd->vdev_indirect_config;
1079         tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1080         tvd->vdev_indirect_births = svd->vdev_indirect_births;
1081         range_tree_swap(&svd->vdev_obsolete_segments,
1082             &tvd->vdev_obsolete_segments);
1083         tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1084         svd->vdev_indirect_config.vic_mapping_object = 0;
1085         svd->vdev_indirect_config.vic_births_object = 0;
1086         svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1087         svd->vdev_indirect_mapping = NULL;
1088         svd->vdev_indirect_births = NULL;
1089         svd->vdev_obsolete_sm = NULL;
1090         svd->vdev_removing = 0;
1091
1092         for (t = 0; t < TXG_SIZE; t++) {
1093                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1094                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1095                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1096                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1097                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1098                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1099         }
1100
1101         if (list_link_active(&svd->vdev_config_dirty_node)) {
1102                 vdev_config_clean(svd);
1103                 vdev_config_dirty(tvd);
1104         }
1105
1106         if (list_link_active(&svd->vdev_state_dirty_node)) {
1107                 vdev_state_clean(svd);
1108                 vdev_state_dirty(tvd);
1109         }
1110
1111         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1112         svd->vdev_deflate_ratio = 0;
1113
1114         tvd->vdev_islog = svd->vdev_islog;
1115         svd->vdev_islog = 0;
1116
1117         dsl_scan_io_queue_vdev_xfer(svd, tvd);
1118 }
1119
1120 static void
1121 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1122 {
1123         if (vd == NULL)
1124                 return;
1125
1126         vd->vdev_top = tvd;
1127
1128         for (int c = 0; c < vd->vdev_children; c++)
1129                 vdev_top_update(tvd, vd->vdev_child[c]);
1130 }
1131
1132 /*
1133  * Add a mirror/replacing vdev above an existing vdev.
1134  */
1135 vdev_t *
1136 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1137 {
1138         spa_t *spa = cvd->vdev_spa;
1139         vdev_t *pvd = cvd->vdev_parent;
1140         vdev_t *mvd;
1141
1142         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1143
1144         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1145
1146         mvd->vdev_asize = cvd->vdev_asize;
1147         mvd->vdev_min_asize = cvd->vdev_min_asize;
1148         mvd->vdev_max_asize = cvd->vdev_max_asize;
1149         mvd->vdev_psize = cvd->vdev_psize;
1150         mvd->vdev_ashift = cvd->vdev_ashift;
1151         mvd->vdev_state = cvd->vdev_state;
1152         mvd->vdev_crtxg = cvd->vdev_crtxg;
1153
1154         vdev_remove_child(pvd, cvd);
1155         vdev_add_child(pvd, mvd);
1156         cvd->vdev_id = mvd->vdev_children;
1157         vdev_add_child(mvd, cvd);
1158         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1159
1160         if (mvd == mvd->vdev_top)
1161                 vdev_top_transfer(cvd, mvd);
1162
1163         return (mvd);
1164 }
1165
1166 /*
1167  * Remove a 1-way mirror/replacing vdev from the tree.
1168  */
1169 void
1170 vdev_remove_parent(vdev_t *cvd)
1171 {
1172         vdev_t *mvd = cvd->vdev_parent;
1173         vdev_t *pvd = mvd->vdev_parent;
1174
1175         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1176
1177         ASSERT(mvd->vdev_children == 1);
1178         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1179             mvd->vdev_ops == &vdev_replacing_ops ||
1180             mvd->vdev_ops == &vdev_spare_ops);
1181         cvd->vdev_ashift = mvd->vdev_ashift;
1182
1183         vdev_remove_child(mvd, cvd);
1184         vdev_remove_child(pvd, mvd);
1185
1186         /*
1187          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1188          * Otherwise, we could have detached an offline device, and when we
1189          * go to import the pool we'll think we have two top-level vdevs,
1190          * instead of a different version of the same top-level vdev.
1191          */
1192         if (mvd->vdev_top == mvd) {
1193                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1194                 cvd->vdev_orig_guid = cvd->vdev_guid;
1195                 cvd->vdev_guid += guid_delta;
1196                 cvd->vdev_guid_sum += guid_delta;
1197
1198                 /*
1199                  * If pool not set for autoexpand, we need to also preserve
1200                  * mvd's asize to prevent automatic expansion of cvd.
1201                  * Otherwise if we are adjusting the mirror by attaching and
1202                  * detaching children of non-uniform sizes, the mirror could
1203                  * autoexpand, unexpectedly requiring larger devices to
1204                  * re-establish the mirror.
1205                  */
1206                 if (!cvd->vdev_spa->spa_autoexpand)
1207                         cvd->vdev_asize = mvd->vdev_asize;
1208         }
1209         cvd->vdev_id = mvd->vdev_id;
1210         vdev_add_child(pvd, cvd);
1211         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1212
1213         if (cvd == cvd->vdev_top)
1214                 vdev_top_transfer(mvd, cvd);
1215
1216         ASSERT(mvd->vdev_children == 0);
1217         vdev_free(mvd);
1218 }
1219
1220 static void
1221 vdev_metaslab_group_create(vdev_t *vd)
1222 {
1223         spa_t *spa = vd->vdev_spa;
1224
1225         /*
1226          * metaslab_group_create was delayed until allocation bias was available
1227          */
1228         if (vd->vdev_mg == NULL) {
1229                 metaslab_class_t *mc;
1230
1231                 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1232                         vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1233
1234                 ASSERT3U(vd->vdev_islog, ==,
1235                     (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1236
1237                 switch (vd->vdev_alloc_bias) {
1238                 case VDEV_BIAS_LOG:
1239                         mc = spa_log_class(spa);
1240                         break;
1241                 case VDEV_BIAS_SPECIAL:
1242                         mc = spa_special_class(spa);
1243                         break;
1244                 case VDEV_BIAS_DEDUP:
1245                         mc = spa_dedup_class(spa);
1246                         break;
1247                 default:
1248                         mc = spa_normal_class(spa);
1249                 }
1250
1251                 vd->vdev_mg = metaslab_group_create(mc, vd,
1252                     spa->spa_alloc_count);
1253
1254                 /*
1255                  * The spa ashift values currently only reflect the
1256                  * general vdev classes. Class destination is late
1257                  * binding so ashift checking had to wait until now
1258                  */
1259                 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1260                     mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1261                         if (vd->vdev_ashift > spa->spa_max_ashift)
1262                                 spa->spa_max_ashift = vd->vdev_ashift;
1263                         if (vd->vdev_ashift < spa->spa_min_ashift)
1264                                 spa->spa_min_ashift = vd->vdev_ashift;
1265                 }
1266         }
1267 }
1268
1269 int
1270 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1271 {
1272         spa_t *spa = vd->vdev_spa;
1273         objset_t *mos = spa->spa_meta_objset;
1274         uint64_t m;
1275         uint64_t oldc = vd->vdev_ms_count;
1276         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1277         metaslab_t **mspp;
1278         int error;
1279         boolean_t expanding = (oldc != 0);
1280
1281         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1282
1283         /*
1284          * This vdev is not being allocated from yet or is a hole.
1285          */
1286         if (vd->vdev_ms_shift == 0)
1287                 return (0);
1288
1289         ASSERT(!vd->vdev_ishole);
1290
1291         ASSERT(oldc <= newc);
1292
1293         mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1294
1295         if (expanding) {
1296                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1297                 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1298         }
1299
1300         vd->vdev_ms = mspp;
1301         vd->vdev_ms_count = newc;
1302         for (m = oldc; m < newc; m++) {
1303                 uint64_t object = 0;
1304
1305                 /*
1306                  * vdev_ms_array may be 0 if we are creating the "fake"
1307                  * metaslabs for an indirect vdev for zdb's leak detection.
1308                  * See zdb_leak_init().
1309                  */
1310                 if (txg == 0 && vd->vdev_ms_array != 0) {
1311                         error = dmu_read(mos, vd->vdev_ms_array,
1312                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1313                             DMU_READ_PREFETCH);
1314                         if (error != 0) {
1315                                 vdev_dbgmsg(vd, "unable to read the metaslab "
1316                                     "array [error=%d]", error);
1317                                 return (error);
1318                         }
1319                 }
1320
1321 #ifndef _KERNEL
1322                 /*
1323                  * To accomodate zdb_leak_init() fake indirect
1324                  * metaslabs, we allocate a metaslab group for
1325                  * indirect vdevs which normally don't have one.
1326                  */
1327                 if (vd->vdev_mg == NULL) {
1328                         ASSERT0(vdev_is_concrete(vd));
1329                         vdev_metaslab_group_create(vd);
1330                 }
1331 #endif
1332                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1333                     &(vd->vdev_ms[m]));
1334                 if (error != 0) {
1335                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1336                             error);
1337                         return (error);
1338                 }
1339         }
1340
1341         if (txg == 0)
1342                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1343
1344         /*
1345          * If the vdev is being removed we don't activate
1346          * the metaslabs since we want to ensure that no new
1347          * allocations are performed on this device.
1348          */
1349         if (!expanding && !vd->vdev_removing) {
1350                 metaslab_group_activate(vd->vdev_mg);
1351         }
1352
1353         if (txg == 0)
1354                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1355
1356         return (0);
1357 }
1358
1359 void
1360 vdev_metaslab_fini(vdev_t *vd)
1361 {
1362         if (vd->vdev_checkpoint_sm != NULL) {
1363                 ASSERT(spa_feature_is_active(vd->vdev_spa,
1364                     SPA_FEATURE_POOL_CHECKPOINT));
1365                 space_map_close(vd->vdev_checkpoint_sm);
1366                 /*
1367                  * Even though we close the space map, we need to set its
1368                  * pointer to NULL. The reason is that vdev_metaslab_fini()
1369                  * may be called multiple times for certain operations
1370                  * (i.e. when destroying a pool) so we need to ensure that
1371                  * this clause never executes twice. This logic is similar
1372                  * to the one used for the vdev_ms clause below.
1373                  */
1374                 vd->vdev_checkpoint_sm = NULL;
1375         }
1376
1377         if (vd->vdev_ms != NULL) {
1378                 metaslab_group_t *mg = vd->vdev_mg;
1379                 metaslab_group_passivate(mg);
1380
1381                 uint64_t count = vd->vdev_ms_count;
1382                 for (uint64_t m = 0; m < count; m++) {
1383                         metaslab_t *msp = vd->vdev_ms[m];
1384                         if (msp != NULL)
1385                                 metaslab_fini(msp);
1386                 }
1387                 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1388                 vd->vdev_ms = NULL;
1389
1390                 vd->vdev_ms_count = 0;
1391
1392                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1393                         ASSERT0(mg->mg_histogram[i]);
1394         }
1395         ASSERT0(vd->vdev_ms_count);
1396         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1397 }
1398
1399 typedef struct vdev_probe_stats {
1400         boolean_t       vps_readable;
1401         boolean_t       vps_writeable;
1402         int             vps_flags;
1403 } vdev_probe_stats_t;
1404
1405 static void
1406 vdev_probe_done(zio_t *zio)
1407 {
1408         spa_t *spa = zio->io_spa;
1409         vdev_t *vd = zio->io_vd;
1410         vdev_probe_stats_t *vps = zio->io_private;
1411
1412         ASSERT(vd->vdev_probe_zio != NULL);
1413
1414         if (zio->io_type == ZIO_TYPE_READ) {
1415                 if (zio->io_error == 0)
1416                         vps->vps_readable = 1;
1417                 if (zio->io_error == 0 && spa_writeable(spa)) {
1418                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1419                             zio->io_offset, zio->io_size, zio->io_abd,
1420                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1421                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1422                 } else {
1423                         abd_free(zio->io_abd);
1424                 }
1425         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1426                 if (zio->io_error == 0)
1427                         vps->vps_writeable = 1;
1428                 abd_free(zio->io_abd);
1429         } else if (zio->io_type == ZIO_TYPE_NULL) {
1430                 zio_t *pio;
1431                 zio_link_t *zl;
1432
1433                 vd->vdev_cant_read |= !vps->vps_readable;
1434                 vd->vdev_cant_write |= !vps->vps_writeable;
1435
1436                 if (vdev_readable(vd) &&
1437                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1438                         zio->io_error = 0;
1439                 } else {
1440                         ASSERT(zio->io_error != 0);
1441                         vdev_dbgmsg(vd, "failed probe");
1442                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1443                             spa, vd, NULL, NULL, 0, 0);
1444                         zio->io_error = SET_ERROR(ENXIO);
1445                 }
1446
1447                 mutex_enter(&vd->vdev_probe_lock);
1448                 ASSERT(vd->vdev_probe_zio == zio);
1449                 vd->vdev_probe_zio = NULL;
1450                 mutex_exit(&vd->vdev_probe_lock);
1451
1452                 zl = NULL;
1453                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1454                         if (!vdev_accessible(vd, pio))
1455                                 pio->io_error = SET_ERROR(ENXIO);
1456
1457                 kmem_free(vps, sizeof (*vps));
1458         }
1459 }
1460
1461 /*
1462  * Determine whether this device is accessible.
1463  *
1464  * Read and write to several known locations: the pad regions of each
1465  * vdev label but the first, which we leave alone in case it contains
1466  * a VTOC.
1467  */
1468 zio_t *
1469 vdev_probe(vdev_t *vd, zio_t *zio)
1470 {
1471         spa_t *spa = vd->vdev_spa;
1472         vdev_probe_stats_t *vps = NULL;
1473         zio_t *pio;
1474
1475         ASSERT(vd->vdev_ops->vdev_op_leaf);
1476
1477         /*
1478          * Don't probe the probe.
1479          */
1480         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1481                 return (NULL);
1482
1483         /*
1484          * To prevent 'probe storms' when a device fails, we create
1485          * just one probe i/o at a time.  All zios that want to probe
1486          * this vdev will become parents of the probe io.
1487          */
1488         mutex_enter(&vd->vdev_probe_lock);
1489
1490         if ((pio = vd->vdev_probe_zio) == NULL) {
1491                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1492
1493                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1494                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1495                     ZIO_FLAG_TRYHARD;
1496
1497                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1498                         /*
1499                          * vdev_cant_read and vdev_cant_write can only
1500                          * transition from TRUE to FALSE when we have the
1501                          * SCL_ZIO lock as writer; otherwise they can only
1502                          * transition from FALSE to TRUE.  This ensures that
1503                          * any zio looking at these values can assume that
1504                          * failures persist for the life of the I/O.  That's
1505                          * important because when a device has intermittent
1506                          * connectivity problems, we want to ensure that
1507                          * they're ascribed to the device (ENXIO) and not
1508                          * the zio (EIO).
1509                          *
1510                          * Since we hold SCL_ZIO as writer here, clear both
1511                          * values so the probe can reevaluate from first
1512                          * principles.
1513                          */
1514                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1515                         vd->vdev_cant_read = B_FALSE;
1516                         vd->vdev_cant_write = B_FALSE;
1517                 }
1518
1519                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1520                     vdev_probe_done, vps,
1521                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1522
1523                 /*
1524                  * We can't change the vdev state in this context, so we
1525                  * kick off an async task to do it on our behalf.
1526                  */
1527                 if (zio != NULL) {
1528                         vd->vdev_probe_wanted = B_TRUE;
1529                         spa_async_request(spa, SPA_ASYNC_PROBE);
1530                 }
1531         }
1532
1533         if (zio != NULL)
1534                 zio_add_child(zio, pio);
1535
1536         mutex_exit(&vd->vdev_probe_lock);
1537
1538         if (vps == NULL) {
1539                 ASSERT(zio != NULL);
1540                 return (NULL);
1541         }
1542
1543         for (int l = 1; l < VDEV_LABELS; l++) {
1544                 zio_nowait(zio_read_phys(pio, vd,
1545                     vdev_label_offset(vd->vdev_psize, l,
1546                     offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1547                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1548                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1549                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1550         }
1551
1552         if (zio == NULL)
1553                 return (pio);
1554
1555         zio_nowait(pio);
1556         return (NULL);
1557 }
1558
1559 static void
1560 vdev_open_child(void *arg)
1561 {
1562         vdev_t *vd = arg;
1563
1564         vd->vdev_open_thread = curthread;
1565         vd->vdev_open_error = vdev_open(vd);
1566         vd->vdev_open_thread = NULL;
1567 }
1568
1569 static boolean_t
1570 vdev_uses_zvols(vdev_t *vd)
1571 {
1572 #ifdef _KERNEL
1573         if (zvol_is_zvol(vd->vdev_path))
1574                 return (B_TRUE);
1575 #endif
1576
1577         for (int c = 0; c < vd->vdev_children; c++)
1578                 if (vdev_uses_zvols(vd->vdev_child[c]))
1579                         return (B_TRUE);
1580
1581         return (B_FALSE);
1582 }
1583
1584 void
1585 vdev_open_children(vdev_t *vd)
1586 {
1587         taskq_t *tq;
1588         int children = vd->vdev_children;
1589
1590         /*
1591          * in order to handle pools on top of zvols, do the opens
1592          * in a single thread so that the same thread holds the
1593          * spa_namespace_lock
1594          */
1595         if (vdev_uses_zvols(vd)) {
1596 retry_sync:
1597                 for (int c = 0; c < children; c++)
1598                         vd->vdev_child[c]->vdev_open_error =
1599                             vdev_open(vd->vdev_child[c]);
1600         } else {
1601                 tq = taskq_create("vdev_open", children, minclsyspri,
1602                     children, children, TASKQ_PREPOPULATE);
1603                 if (tq == NULL)
1604                         goto retry_sync;
1605
1606                 for (int c = 0; c < children; c++)
1607                         VERIFY(taskq_dispatch(tq, vdev_open_child,
1608                             vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1609
1610                 taskq_destroy(tq);
1611         }
1612
1613         vd->vdev_nonrot = B_TRUE;
1614
1615         for (int c = 0; c < children; c++)
1616                 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1617 }
1618
1619 /*
1620  * Compute the raidz-deflation ratio.  Note, we hard-code
1621  * in 128k (1 << 17) because it is the "typical" blocksize.
1622  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1623  * otherwise it would inconsistently account for existing bp's.
1624  */
1625 static void
1626 vdev_set_deflate_ratio(vdev_t *vd)
1627 {
1628         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1629                 vd->vdev_deflate_ratio = (1 << 17) /
1630                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1631         }
1632 }
1633
1634 /*
1635  * Prepare a virtual device for access.
1636  */
1637 int
1638 vdev_open(vdev_t *vd)
1639 {
1640         spa_t *spa = vd->vdev_spa;
1641         int error;
1642         uint64_t osize = 0;
1643         uint64_t max_osize = 0;
1644         uint64_t asize, max_asize, psize;
1645         uint64_t ashift = 0;
1646
1647         ASSERT(vd->vdev_open_thread == curthread ||
1648             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1649         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1650             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1651             vd->vdev_state == VDEV_STATE_OFFLINE);
1652
1653         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1654         vd->vdev_cant_read = B_FALSE;
1655         vd->vdev_cant_write = B_FALSE;
1656         vd->vdev_min_asize = vdev_get_min_asize(vd);
1657
1658         /*
1659          * If this vdev is not removed, check its fault status.  If it's
1660          * faulted, bail out of the open.
1661          */
1662         if (!vd->vdev_removed && vd->vdev_faulted) {
1663                 ASSERT(vd->vdev_children == 0);
1664                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1665                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1666                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1667                     vd->vdev_label_aux);
1668                 return (SET_ERROR(ENXIO));
1669         } else if (vd->vdev_offline) {
1670                 ASSERT(vd->vdev_children == 0);
1671                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1672                 return (SET_ERROR(ENXIO));
1673         }
1674
1675         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1676
1677         /*
1678          * Physical volume size should never be larger than its max size, unless
1679          * the disk has shrunk while we were reading it or the device is buggy
1680          * or damaged: either way it's not safe for use, bail out of the open.
1681          */
1682         if (osize > max_osize) {
1683                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1684                     VDEV_AUX_OPEN_FAILED);
1685                 return (SET_ERROR(ENXIO));
1686         }
1687
1688         /*
1689          * Reset the vdev_reopening flag so that we actually close
1690          * the vdev on error.
1691          */
1692         vd->vdev_reopening = B_FALSE;
1693         if (zio_injection_enabled && error == 0)
1694                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1695
1696         if (error) {
1697                 if (vd->vdev_removed &&
1698                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1699                         vd->vdev_removed = B_FALSE;
1700
1701                 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1702                         vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1703                             vd->vdev_stat.vs_aux);
1704                 } else {
1705                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1706                             vd->vdev_stat.vs_aux);
1707                 }
1708                 return (error);
1709         }
1710
1711         vd->vdev_removed = B_FALSE;
1712
1713         /*
1714          * Recheck the faulted flag now that we have confirmed that
1715          * the vdev is accessible.  If we're faulted, bail.
1716          */
1717         if (vd->vdev_faulted) {
1718                 ASSERT(vd->vdev_children == 0);
1719                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1720                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1721                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1722                     vd->vdev_label_aux);
1723                 return (SET_ERROR(ENXIO));
1724         }
1725
1726         if (vd->vdev_degraded) {
1727                 ASSERT(vd->vdev_children == 0);
1728                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1729                     VDEV_AUX_ERR_EXCEEDED);
1730         } else {
1731                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1732         }
1733
1734         /*
1735          * For hole or missing vdevs we just return success.
1736          */
1737         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1738                 return (0);
1739
1740         for (int c = 0; c < vd->vdev_children; c++) {
1741                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1742                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1743                             VDEV_AUX_NONE);
1744                         break;
1745                 }
1746         }
1747
1748         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1749         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1750
1751         if (vd->vdev_children == 0) {
1752                 if (osize < SPA_MINDEVSIZE) {
1753                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1754                             VDEV_AUX_TOO_SMALL);
1755                         return (SET_ERROR(EOVERFLOW));
1756                 }
1757                 psize = osize;
1758                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1759                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1760                     VDEV_LABEL_END_SIZE);
1761         } else {
1762                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1763                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1764                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1765                             VDEV_AUX_TOO_SMALL);
1766                         return (SET_ERROR(EOVERFLOW));
1767                 }
1768                 psize = 0;
1769                 asize = osize;
1770                 max_asize = max_osize;
1771         }
1772
1773         /*
1774          * If the vdev was expanded, record this so that we can re-create the
1775          * uberblock rings in labels {2,3}, during the next sync.
1776          */
1777         if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1778                 vd->vdev_copy_uberblocks = B_TRUE;
1779
1780         vd->vdev_psize = psize;
1781
1782         /*
1783          * Make sure the allocatable size hasn't shrunk too much.
1784          */
1785         if (asize < vd->vdev_min_asize) {
1786                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1787                     VDEV_AUX_BAD_LABEL);
1788                 return (SET_ERROR(EINVAL));
1789         }
1790
1791         if (vd->vdev_asize == 0) {
1792                 /*
1793                  * This is the first-ever open, so use the computed values.
1794                  * For compatibility, a different ashift can be requested.
1795                  */
1796                 vd->vdev_asize = asize;
1797                 vd->vdev_max_asize = max_asize;
1798                 if (vd->vdev_ashift == 0) {
1799                         vd->vdev_ashift = ashift; /* use detected value */
1800                 }
1801                 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1802                     vd->vdev_ashift > ASHIFT_MAX)) {
1803                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1804                             VDEV_AUX_BAD_ASHIFT);
1805                         return (SET_ERROR(EDOM));
1806                 }
1807         } else {
1808                 /*
1809                  * Detect if the alignment requirement has increased.
1810                  * We don't want to make the pool unavailable, just
1811                  * post an event instead.
1812                  */
1813                 if (ashift > vd->vdev_top->vdev_ashift &&
1814                     vd->vdev_ops->vdev_op_leaf) {
1815                         zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1816                             spa, vd, NULL, NULL, 0, 0);
1817                 }
1818
1819                 vd->vdev_max_asize = max_asize;
1820         }
1821
1822         /*
1823          * If all children are healthy we update asize if either:
1824          * The asize has increased, due to a device expansion caused by dynamic
1825          * LUN growth or vdev replacement, and automatic expansion is enabled;
1826          * making the additional space available.
1827          *
1828          * The asize has decreased, due to a device shrink usually caused by a
1829          * vdev replace with a smaller device. This ensures that calculations
1830          * based of max_asize and asize e.g. esize are always valid. It's safe
1831          * to do this as we've already validated that asize is greater than
1832          * vdev_min_asize.
1833          */
1834         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1835             ((asize > vd->vdev_asize &&
1836             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1837             (asize < vd->vdev_asize)))
1838                 vd->vdev_asize = asize;
1839
1840         vdev_set_min_asize(vd);
1841
1842         /*
1843          * Ensure we can issue some IO before declaring the
1844          * vdev open for business.
1845          */
1846         if (vd->vdev_ops->vdev_op_leaf &&
1847             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1848                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1849                     VDEV_AUX_ERR_EXCEEDED);
1850                 return (error);
1851         }
1852
1853         /*
1854          * Track the min and max ashift values for normal data devices.
1855          */
1856         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1857             vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1858             vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
1859                 if (vd->vdev_ashift > spa->spa_max_ashift)
1860                         spa->spa_max_ashift = vd->vdev_ashift;
1861                 if (vd->vdev_ashift < spa->spa_min_ashift)
1862                         spa->spa_min_ashift = vd->vdev_ashift;
1863         }
1864
1865         /*
1866          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1867          * resilver.  But don't do this if we are doing a reopen for a scrub,
1868          * since this would just restart the scrub we are already doing.
1869          */
1870         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1871             vdev_resilver_needed(vd, NULL, NULL)) {
1872                 if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
1873                     spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
1874                         vdev_set_deferred_resilver(spa, vd);
1875                 else
1876                         spa_async_request(spa, SPA_ASYNC_RESILVER);
1877         }
1878
1879         return (0);
1880 }
1881
1882 /*
1883  * Called once the vdevs are all opened, this routine validates the label
1884  * contents. This needs to be done before vdev_load() so that we don't
1885  * inadvertently do repair I/Os to the wrong device.
1886  *
1887  * This function will only return failure if one of the vdevs indicates that it
1888  * has since been destroyed or exported.  This is only possible if
1889  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1890  * will be updated but the function will return 0.
1891  */
1892 int
1893 vdev_validate(vdev_t *vd)
1894 {
1895         spa_t *spa = vd->vdev_spa;
1896         nvlist_t *label;
1897         uint64_t guid = 0, aux_guid = 0, top_guid;
1898         uint64_t state;
1899         nvlist_t *nvl;
1900         uint64_t txg;
1901
1902         if (vdev_validate_skip)
1903                 return (0);
1904
1905         for (uint64_t c = 0; c < vd->vdev_children; c++)
1906                 if (vdev_validate(vd->vdev_child[c]) != 0)
1907                         return (SET_ERROR(EBADF));
1908
1909         /*
1910          * If the device has already failed, or was marked offline, don't do
1911          * any further validation.  Otherwise, label I/O will fail and we will
1912          * overwrite the previous state.
1913          */
1914         if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1915                 return (0);
1916
1917         /*
1918          * If we are performing an extreme rewind, we allow for a label that
1919          * was modified at a point after the current txg.
1920          * If config lock is not held do not check for the txg. spa_sync could
1921          * be updating the vdev's label before updating spa_last_synced_txg.
1922          */
1923         if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1924             spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1925                 txg = UINT64_MAX;
1926         else
1927                 txg = spa_last_synced_txg(spa);
1928
1929         if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1930                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1931                     VDEV_AUX_BAD_LABEL);
1932                 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1933                     "txg %llu", (u_longlong_t)txg);
1934                 return (0);
1935         }
1936
1937         /*
1938          * Determine if this vdev has been split off into another
1939          * pool.  If so, then refuse to open it.
1940          */
1941         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1942             &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1943                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1944                     VDEV_AUX_SPLIT_POOL);
1945                 nvlist_free(label);
1946                 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1947                 return (0);
1948         }
1949
1950         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1951                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1952                     VDEV_AUX_CORRUPT_DATA);
1953                 nvlist_free(label);
1954                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1955                     ZPOOL_CONFIG_POOL_GUID);
1956                 return (0);
1957         }
1958
1959         /*
1960          * If config is not trusted then ignore the spa guid check. This is
1961          * necessary because if the machine crashed during a re-guid the new
1962          * guid might have been written to all of the vdev labels, but not the
1963          * cached config. The check will be performed again once we have the
1964          * trusted config from the MOS.
1965          */
1966         if (spa->spa_trust_config && guid != spa_guid(spa)) {
1967                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1968                     VDEV_AUX_CORRUPT_DATA);
1969                 nvlist_free(label);
1970                 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1971                     "match config (%llu != %llu)", (u_longlong_t)guid,
1972                     (u_longlong_t)spa_guid(spa));
1973                 return (0);
1974         }
1975
1976         if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1977             != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1978             &aux_guid) != 0)
1979                 aux_guid = 0;
1980
1981         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1982                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1983                     VDEV_AUX_CORRUPT_DATA);
1984                 nvlist_free(label);
1985                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1986                     ZPOOL_CONFIG_GUID);
1987                 return (0);
1988         }
1989
1990         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1991             != 0) {
1992                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1993                     VDEV_AUX_CORRUPT_DATA);
1994                 nvlist_free(label);
1995                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1996                     ZPOOL_CONFIG_TOP_GUID);
1997                 return (0);
1998         }
1999
2000         /*
2001          * If this vdev just became a top-level vdev because its sibling was
2002          * detached, it will have adopted the parent's vdev guid -- but the
2003          * label may or may not be on disk yet. Fortunately, either version
2004          * of the label will have the same top guid, so if we're a top-level
2005          * vdev, we can safely compare to that instead.
2006          * However, if the config comes from a cachefile that failed to update
2007          * after the detach, a top-level vdev will appear as a non top-level
2008          * vdev in the config. Also relax the constraints if we perform an
2009          * extreme rewind.
2010          *
2011          * If we split this vdev off instead, then we also check the
2012          * original pool's guid. We don't want to consider the vdev
2013          * corrupt if it is partway through a split operation.
2014          */
2015         if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2016                 boolean_t mismatch = B_FALSE;
2017                 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2018                         if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2019                                 mismatch = B_TRUE;
2020                 } else {
2021                         if (vd->vdev_guid != top_guid &&
2022                             vd->vdev_top->vdev_guid != guid)
2023                                 mismatch = B_TRUE;
2024                 }
2025
2026                 if (mismatch) {
2027                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2028                             VDEV_AUX_CORRUPT_DATA);
2029                         nvlist_free(label);
2030                         vdev_dbgmsg(vd, "vdev_validate: config guid "
2031                             "doesn't match label guid");
2032                         vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2033                             (u_longlong_t)vd->vdev_guid,
2034                             (u_longlong_t)vd->vdev_top->vdev_guid);
2035                         vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2036                             "aux_guid %llu", (u_longlong_t)guid,
2037                             (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2038                         return (0);
2039                 }
2040         }
2041
2042         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2043             &state) != 0) {
2044                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2045                     VDEV_AUX_CORRUPT_DATA);
2046                 nvlist_free(label);
2047                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2048                     ZPOOL_CONFIG_POOL_STATE);
2049                 return (0);
2050         }
2051
2052         nvlist_free(label);
2053
2054         /*
2055          * If this is a verbatim import, no need to check the
2056          * state of the pool.
2057          */
2058         if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2059             spa_load_state(spa) == SPA_LOAD_OPEN &&
2060             state != POOL_STATE_ACTIVE) {
2061                 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2062                     "for spa %s", (u_longlong_t)state, spa->spa_name);
2063                 return (SET_ERROR(EBADF));
2064         }
2065
2066         /*
2067          * If we were able to open and validate a vdev that was
2068          * previously marked permanently unavailable, clear that state
2069          * now.
2070          */
2071         if (vd->vdev_not_present)
2072                 vd->vdev_not_present = 0;
2073
2074         return (0);
2075 }
2076
2077 static void
2078 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2079 {
2080         if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2081                 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2082                         zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2083                             "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2084                             dvd->vdev_path, svd->vdev_path);
2085                         spa_strfree(dvd->vdev_path);
2086                         dvd->vdev_path = spa_strdup(svd->vdev_path);
2087                 }
2088         } else if (svd->vdev_path != NULL) {
2089                 dvd->vdev_path = spa_strdup(svd->vdev_path);
2090                 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2091                     (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2092         }
2093 }
2094
2095 /*
2096  * Recursively copy vdev paths from one vdev to another. Source and destination
2097  * vdev trees must have same geometry otherwise return error. Intended to copy
2098  * paths from userland config into MOS config.
2099  */
2100 int
2101 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2102 {
2103         if ((svd->vdev_ops == &vdev_missing_ops) ||
2104             (svd->vdev_ishole && dvd->vdev_ishole) ||
2105             (dvd->vdev_ops == &vdev_indirect_ops))
2106                 return (0);
2107
2108         if (svd->vdev_ops != dvd->vdev_ops) {
2109                 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2110                     svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2111                 return (SET_ERROR(EINVAL));
2112         }
2113
2114         if (svd->vdev_guid != dvd->vdev_guid) {
2115                 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2116                     "%llu)", (u_longlong_t)svd->vdev_guid,
2117                     (u_longlong_t)dvd->vdev_guid);
2118                 return (SET_ERROR(EINVAL));
2119         }
2120
2121         if (svd->vdev_children != dvd->vdev_children) {
2122                 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2123                     "%llu != %llu", (u_longlong_t)svd->vdev_children,
2124                     (u_longlong_t)dvd->vdev_children);
2125                 return (SET_ERROR(EINVAL));
2126         }
2127
2128         for (uint64_t i = 0; i < svd->vdev_children; i++) {
2129                 int error = vdev_copy_path_strict(svd->vdev_child[i],
2130                     dvd->vdev_child[i]);
2131                 if (error != 0)
2132                         return (error);
2133         }
2134
2135         if (svd->vdev_ops->vdev_op_leaf)
2136                 vdev_copy_path_impl(svd, dvd);
2137
2138         return (0);
2139 }
2140
2141 static void
2142 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2143 {
2144         ASSERT(stvd->vdev_top == stvd);
2145         ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2146
2147         for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2148                 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2149         }
2150
2151         if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2152                 return;
2153
2154         /*
2155          * The idea here is that while a vdev can shift positions within
2156          * a top vdev (when replacing, attaching mirror, etc.) it cannot
2157          * step outside of it.
2158          */
2159         vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2160
2161         if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2162                 return;
2163
2164         ASSERT(vd->vdev_ops->vdev_op_leaf);
2165
2166         vdev_copy_path_impl(vd, dvd);
2167 }
2168
2169 /*
2170  * Recursively copy vdev paths from one root vdev to another. Source and
2171  * destination vdev trees may differ in geometry. For each destination leaf
2172  * vdev, search a vdev with the same guid and top vdev id in the source.
2173  * Intended to copy paths from userland config into MOS config.
2174  */
2175 void
2176 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2177 {
2178         uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2179         ASSERT(srvd->vdev_ops == &vdev_root_ops);
2180         ASSERT(drvd->vdev_ops == &vdev_root_ops);
2181
2182         for (uint64_t i = 0; i < children; i++) {
2183                 vdev_copy_path_search(srvd->vdev_child[i],
2184                     drvd->vdev_child[i]);
2185         }
2186 }
2187
2188 /*
2189  * Close a virtual device.
2190  */
2191 void
2192 vdev_close(vdev_t *vd)
2193 {
2194         vdev_t *pvd = vd->vdev_parent;
2195         ASSERTV(spa_t *spa = vd->vdev_spa);
2196
2197         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2198
2199         /*
2200          * If our parent is reopening, then we are as well, unless we are
2201          * going offline.
2202          */
2203         if (pvd != NULL && pvd->vdev_reopening)
2204                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2205
2206         vd->vdev_ops->vdev_op_close(vd);
2207
2208         vdev_cache_purge(vd);
2209
2210         /*
2211          * We record the previous state before we close it, so that if we are
2212          * doing a reopen(), we don't generate FMA ereports if we notice that
2213          * it's still faulted.
2214          */
2215         vd->vdev_prevstate = vd->vdev_state;
2216
2217         if (vd->vdev_offline)
2218                 vd->vdev_state = VDEV_STATE_OFFLINE;
2219         else
2220                 vd->vdev_state = VDEV_STATE_CLOSED;
2221         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2222 }
2223
2224 void
2225 vdev_hold(vdev_t *vd)
2226 {
2227         spa_t *spa = vd->vdev_spa;
2228
2229         ASSERT(spa_is_root(spa));
2230         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2231                 return;
2232
2233         for (int c = 0; c < vd->vdev_children; c++)
2234                 vdev_hold(vd->vdev_child[c]);
2235
2236         if (vd->vdev_ops->vdev_op_leaf)
2237                 vd->vdev_ops->vdev_op_hold(vd);
2238 }
2239
2240 void
2241 vdev_rele(vdev_t *vd)
2242 {
2243         ASSERT(spa_is_root(vd->vdev_spa));
2244         for (int c = 0; c < vd->vdev_children; c++)
2245                 vdev_rele(vd->vdev_child[c]);
2246
2247         if (vd->vdev_ops->vdev_op_leaf)
2248                 vd->vdev_ops->vdev_op_rele(vd);
2249 }
2250
2251 /*
2252  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2253  * reopen leaf vdevs which had previously been opened as they might deadlock
2254  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2255  * If the leaf has never been opened then open it, as usual.
2256  */
2257 void
2258 vdev_reopen(vdev_t *vd)
2259 {
2260         spa_t *spa = vd->vdev_spa;
2261
2262         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2263
2264         /* set the reopening flag unless we're taking the vdev offline */
2265         vd->vdev_reopening = !vd->vdev_offline;
2266         vdev_close(vd);
2267         (void) vdev_open(vd);
2268
2269         /*
2270          * Call vdev_validate() here to make sure we have the same device.
2271          * Otherwise, a device with an invalid label could be successfully
2272          * opened in response to vdev_reopen().
2273          */
2274         if (vd->vdev_aux) {
2275                 (void) vdev_validate_aux(vd);
2276                 if (vdev_readable(vd) && vdev_writeable(vd) &&
2277                     vd->vdev_aux == &spa->spa_l2cache &&
2278                     !l2arc_vdev_present(vd))
2279                         l2arc_add_vdev(spa, vd);
2280         } else {
2281                 (void) vdev_validate(vd);
2282         }
2283
2284         /*
2285          * Reassess parent vdev's health.
2286          */
2287         vdev_propagate_state(vd);
2288 }
2289
2290 int
2291 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2292 {
2293         int error;
2294
2295         /*
2296          * Normally, partial opens (e.g. of a mirror) are allowed.
2297          * For a create, however, we want to fail the request if
2298          * there are any components we can't open.
2299          */
2300         error = vdev_open(vd);
2301
2302         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2303                 vdev_close(vd);
2304                 return (error ? error : ENXIO);
2305         }
2306
2307         /*
2308          * Recursively load DTLs and initialize all labels.
2309          */
2310         if ((error = vdev_dtl_load(vd)) != 0 ||
2311             (error = vdev_label_init(vd, txg, isreplacing ?
2312             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2313                 vdev_close(vd);
2314                 return (error);
2315         }
2316
2317         return (0);
2318 }
2319
2320 void
2321 vdev_metaslab_set_size(vdev_t *vd)
2322 {
2323         uint64_t asize = vd->vdev_asize;
2324         uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2325         uint64_t ms_shift;
2326
2327         /*
2328          * There are two dimensions to the metaslab sizing calculation:
2329          * the size of the metaslab and the count of metaslabs per vdev.
2330          *
2331          * The default values used below are a good balance between memory
2332          * usage (larger metaslab size means more memory needed for loaded
2333          * metaslabs; more metaslabs means more memory needed for the
2334          * metaslab_t structs), metaslab load time (larger metaslabs take
2335          * longer to load), and metaslab sync time (more metaslabs means
2336          * more time spent syncing all of them).
2337          *
2338          * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2339          * The range of the dimensions are as follows:
2340          *
2341          *      2^29 <= ms_size  <= 2^34
2342          *        16 <= ms_count <= 131,072
2343          *
2344          * On the lower end of vdev sizes, we aim for metaslabs sizes of
2345          * at least 512MB (2^29) to minimize fragmentation effects when
2346          * testing with smaller devices.  However, the count constraint
2347          * of at least 16 metaslabs will override this minimum size goal.
2348          *
2349          * On the upper end of vdev sizes, we aim for a maximum metaslab
2350          * size of 16GB.  However, we will cap the total count to 2^17
2351          * metaslabs to keep our memory footprint in check and let the
2352          * metaslab size grow from there if that limit is hit.
2353          *
2354          * The net effect of applying above constrains is summarized below.
2355          *
2356          *   vdev size       metaslab count
2357          *  --------------|-----------------
2358          *      < 8GB        ~16
2359          *  8GB   - 100GB   one per 512MB
2360          *  100GB - 3TB     ~200
2361          *  3TB   - 2PB     one per 16GB
2362          *      > 2PB       ~131,072
2363          *  --------------------------------
2364          *
2365          *  Finally, note that all of the above calculate the initial
2366          *  number of metaslabs. Expanding a top-level vdev will result
2367          *  in additional metaslabs being allocated making it possible
2368          *  to exceed the zfs_vdev_ms_count_limit.
2369          */
2370
2371         if (ms_count < zfs_vdev_min_ms_count)
2372                 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2373         else if (ms_count > zfs_vdev_default_ms_count)
2374                 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2375         else
2376                 ms_shift = zfs_vdev_default_ms_shift;
2377
2378         if (ms_shift < SPA_MAXBLOCKSHIFT) {
2379                 ms_shift = SPA_MAXBLOCKSHIFT;
2380         } else if (ms_shift > zfs_vdev_max_ms_shift) {
2381                 ms_shift = zfs_vdev_max_ms_shift;
2382                 /* cap the total count to constrain memory footprint */
2383                 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2384                         ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2385         }
2386
2387         vd->vdev_ms_shift = ms_shift;
2388         ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2389 }
2390
2391 void
2392 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2393 {
2394         ASSERT(vd == vd->vdev_top);
2395         /* indirect vdevs don't have metaslabs or dtls */
2396         ASSERT(vdev_is_concrete(vd) || flags == 0);
2397         ASSERT(ISP2(flags));
2398         ASSERT(spa_writeable(vd->vdev_spa));
2399
2400         if (flags & VDD_METASLAB)
2401                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2402
2403         if (flags & VDD_DTL)
2404                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2405
2406         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2407 }
2408
2409 void
2410 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2411 {
2412         for (int c = 0; c < vd->vdev_children; c++)
2413                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2414
2415         if (vd->vdev_ops->vdev_op_leaf)
2416                 vdev_dirty(vd->vdev_top, flags, vd, txg);
2417 }
2418
2419 /*
2420  * DTLs.
2421  *
2422  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2423  * the vdev has less than perfect replication.  There are four kinds of DTL:
2424  *
2425  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2426  *
2427  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2428  *
2429  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2430  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2431  *      txgs that was scrubbed.
2432  *
2433  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2434  *      persistent errors or just some device being offline.
2435  *      Unlike the other three, the DTL_OUTAGE map is not generally
2436  *      maintained; it's only computed when needed, typically to
2437  *      determine whether a device can be detached.
2438  *
2439  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2440  * either has the data or it doesn't.
2441  *
2442  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2443  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2444  * if any child is less than fully replicated, then so is its parent.
2445  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2446  * comprising only those txgs which appear in 'maxfaults' or more children;
2447  * those are the txgs we don't have enough replication to read.  For example,
2448  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2449  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2450  * two child DTL_MISSING maps.
2451  *
2452  * It should be clear from the above that to compute the DTLs and outage maps
2453  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2454  * Therefore, that is all we keep on disk.  When loading the pool, or after
2455  * a configuration change, we generate all other DTLs from first principles.
2456  */
2457 void
2458 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2459 {
2460         range_tree_t *rt = vd->vdev_dtl[t];
2461
2462         ASSERT(t < DTL_TYPES);
2463         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2464         ASSERT(spa_writeable(vd->vdev_spa));
2465
2466         mutex_enter(&vd->vdev_dtl_lock);
2467         if (!range_tree_contains(rt, txg, size))
2468                 range_tree_add(rt, txg, size);
2469         mutex_exit(&vd->vdev_dtl_lock);
2470 }
2471
2472 boolean_t
2473 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2474 {
2475         range_tree_t *rt = vd->vdev_dtl[t];
2476         boolean_t dirty = B_FALSE;
2477
2478         ASSERT(t < DTL_TYPES);
2479         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2480
2481         /*
2482          * While we are loading the pool, the DTLs have not been loaded yet.
2483          * Ignore the DTLs and try all devices.  This avoids a recursive
2484          * mutex enter on the vdev_dtl_lock, and also makes us try hard
2485          * when loading the pool (relying on the checksum to ensure that
2486          * we get the right data -- note that we while loading, we are
2487          * only reading the MOS, which is always checksummed).
2488          */
2489         if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2490                 return (B_FALSE);
2491
2492         mutex_enter(&vd->vdev_dtl_lock);
2493         if (!range_tree_is_empty(rt))
2494                 dirty = range_tree_contains(rt, txg, size);
2495         mutex_exit(&vd->vdev_dtl_lock);
2496
2497         return (dirty);
2498 }
2499
2500 boolean_t
2501 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2502 {
2503         range_tree_t *rt = vd->vdev_dtl[t];
2504         boolean_t empty;
2505
2506         mutex_enter(&vd->vdev_dtl_lock);
2507         empty = range_tree_is_empty(rt);
2508         mutex_exit(&vd->vdev_dtl_lock);
2509
2510         return (empty);
2511 }
2512
2513 /*
2514  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2515  */
2516 boolean_t
2517 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2518 {
2519         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2520
2521         if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2522             vd->vdev_ops->vdev_op_leaf)
2523                 return (B_TRUE);
2524
2525         return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2526 }
2527
2528 /*
2529  * Returns the lowest txg in the DTL range.
2530  */
2531 static uint64_t
2532 vdev_dtl_min(vdev_t *vd)
2533 {
2534         range_seg_t *rs;
2535
2536         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2537         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2538         ASSERT0(vd->vdev_children);
2539
2540         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2541         return (rs->rs_start - 1);
2542 }
2543
2544 /*
2545  * Returns the highest txg in the DTL.
2546  */
2547 static uint64_t
2548 vdev_dtl_max(vdev_t *vd)
2549 {
2550         range_seg_t *rs;
2551
2552         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2553         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2554         ASSERT0(vd->vdev_children);
2555
2556         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2557         return (rs->rs_end);
2558 }
2559
2560 /*
2561  * Determine if a resilvering vdev should remove any DTL entries from
2562  * its range. If the vdev was resilvering for the entire duration of the
2563  * scan then it should excise that range from its DTLs. Otherwise, this
2564  * vdev is considered partially resilvered and should leave its DTL
2565  * entries intact. The comment in vdev_dtl_reassess() describes how we
2566  * excise the DTLs.
2567  */
2568 static boolean_t
2569 vdev_dtl_should_excise(vdev_t *vd)
2570 {
2571         spa_t *spa = vd->vdev_spa;
2572         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2573
2574         ASSERT0(scn->scn_phys.scn_errors);
2575         ASSERT0(vd->vdev_children);
2576
2577         if (vd->vdev_state < VDEV_STATE_DEGRADED)
2578                 return (B_FALSE);
2579
2580         if (vd->vdev_resilver_deferred)
2581                 return (B_FALSE);
2582
2583         if (vd->vdev_resilver_txg == 0 ||
2584             range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2585                 return (B_TRUE);
2586
2587         /*
2588          * When a resilver is initiated the scan will assign the scn_max_txg
2589          * value to the highest txg value that exists in all DTLs. If this
2590          * device's max DTL is not part of this scan (i.e. it is not in
2591          * the range (scn_min_txg, scn_max_txg] then it is not eligible
2592          * for excision.
2593          */
2594         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2595                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2596                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2597                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2598                 return (B_TRUE);
2599         }
2600         return (B_FALSE);
2601 }
2602
2603 /*
2604  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2605  * write operations will be issued to the pool.
2606  */
2607 void
2608 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2609 {
2610         spa_t *spa = vd->vdev_spa;
2611         avl_tree_t reftree;
2612         int minref;
2613
2614         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2615
2616         for (int c = 0; c < vd->vdev_children; c++)
2617                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2618                     scrub_txg, scrub_done);
2619
2620         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2621                 return;
2622
2623         if (vd->vdev_ops->vdev_op_leaf) {
2624                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2625
2626                 mutex_enter(&vd->vdev_dtl_lock);
2627
2628                 /*
2629                  * If requested, pretend the scan completed cleanly.
2630                  */
2631                 if (zfs_scan_ignore_errors && scn)
2632                         scn->scn_phys.scn_errors = 0;
2633
2634                 /*
2635                  * If we've completed a scan cleanly then determine
2636                  * if this vdev should remove any DTLs. We only want to
2637                  * excise regions on vdevs that were available during
2638                  * the entire duration of this scan.
2639                  */
2640                 if (scrub_txg != 0 &&
2641                     (spa->spa_scrub_started ||
2642                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2643                     vdev_dtl_should_excise(vd)) {
2644                         /*
2645                          * We completed a scrub up to scrub_txg.  If we
2646                          * did it without rebooting, then the scrub dtl
2647                          * will be valid, so excise the old region and
2648                          * fold in the scrub dtl.  Otherwise, leave the
2649                          * dtl as-is if there was an error.
2650                          *
2651                          * There's little trick here: to excise the beginning
2652                          * of the DTL_MISSING map, we put it into a reference
2653                          * tree and then add a segment with refcnt -1 that
2654                          * covers the range [0, scrub_txg).  This means
2655                          * that each txg in that range has refcnt -1 or 0.
2656                          * We then add DTL_SCRUB with a refcnt of 2, so that
2657                          * entries in the range [0, scrub_txg) will have a
2658                          * positive refcnt -- either 1 or 2.  We then convert
2659                          * the reference tree into the new DTL_MISSING map.
2660                          */
2661                         space_reftree_create(&reftree);
2662                         space_reftree_add_map(&reftree,
2663                             vd->vdev_dtl[DTL_MISSING], 1);
2664                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2665                         space_reftree_add_map(&reftree,
2666                             vd->vdev_dtl[DTL_SCRUB], 2);
2667                         space_reftree_generate_map(&reftree,
2668                             vd->vdev_dtl[DTL_MISSING], 1);
2669                         space_reftree_destroy(&reftree);
2670                 }
2671                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2672                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2673                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2674                 if (scrub_done)
2675                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2676                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2677                 if (!vdev_readable(vd))
2678                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2679                 else
2680                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2681                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2682
2683                 /*
2684                  * If the vdev was resilvering and no longer has any
2685                  * DTLs then reset its resilvering flag and dirty
2686                  * the top level so that we persist the change.
2687                  */
2688                 if (txg != 0 && vd->vdev_resilver_txg != 0 &&
2689                     range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2690                     range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2691                         vd->vdev_resilver_txg = 0;
2692                         vdev_config_dirty(vd->vdev_top);
2693                 }
2694
2695                 mutex_exit(&vd->vdev_dtl_lock);
2696
2697                 if (txg != 0)
2698                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2699                 return;
2700         }
2701
2702         mutex_enter(&vd->vdev_dtl_lock);
2703         for (int t = 0; t < DTL_TYPES; t++) {
2704                 /* account for child's outage in parent's missing map */
2705                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2706                 if (t == DTL_SCRUB)
2707                         continue;                       /* leaf vdevs only */
2708                 if (t == DTL_PARTIAL)
2709                         minref = 1;                     /* i.e. non-zero */
2710                 else if (vd->vdev_nparity != 0)
2711                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2712                 else
2713                         minref = vd->vdev_children;     /* any kind of mirror */
2714                 space_reftree_create(&reftree);
2715                 for (int c = 0; c < vd->vdev_children; c++) {
2716                         vdev_t *cvd = vd->vdev_child[c];
2717                         mutex_enter(&cvd->vdev_dtl_lock);
2718                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2719                         mutex_exit(&cvd->vdev_dtl_lock);
2720                 }
2721                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2722                 space_reftree_destroy(&reftree);
2723         }
2724         mutex_exit(&vd->vdev_dtl_lock);
2725 }
2726
2727 int
2728 vdev_dtl_load(vdev_t *vd)
2729 {
2730         spa_t *spa = vd->vdev_spa;
2731         objset_t *mos = spa->spa_meta_objset;
2732         int error = 0;
2733
2734         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2735                 ASSERT(vdev_is_concrete(vd));
2736
2737                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2738                     vd->vdev_dtl_object, 0, -1ULL, 0);
2739                 if (error)
2740                         return (error);
2741                 ASSERT(vd->vdev_dtl_sm != NULL);
2742
2743                 mutex_enter(&vd->vdev_dtl_lock);
2744                 error = space_map_load(vd->vdev_dtl_sm,
2745                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2746                 mutex_exit(&vd->vdev_dtl_lock);
2747
2748                 return (error);
2749         }
2750
2751         for (int c = 0; c < vd->vdev_children; c++) {
2752                 error = vdev_dtl_load(vd->vdev_child[c]);
2753                 if (error != 0)
2754                         break;
2755         }
2756
2757         return (error);
2758 }
2759
2760 static void
2761 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2762 {
2763         spa_t *spa = vd->vdev_spa;
2764         objset_t *mos = spa->spa_meta_objset;
2765         vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2766         const char *string;
2767
2768         ASSERT(alloc_bias != VDEV_BIAS_NONE);
2769
2770         string =
2771             (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2772             (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2773             (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2774
2775         ASSERT(string != NULL);
2776         VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2777             1, strlen(string) + 1, string, tx));
2778
2779         if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2780                 spa_activate_allocation_classes(spa, tx);
2781         }
2782 }
2783
2784 void
2785 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2786 {
2787         spa_t *spa = vd->vdev_spa;
2788
2789         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2790         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2791             zapobj, tx));
2792 }
2793
2794 uint64_t
2795 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2796 {
2797         spa_t *spa = vd->vdev_spa;
2798         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2799             DMU_OT_NONE, 0, tx);
2800
2801         ASSERT(zap != 0);
2802         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2803             zap, tx));
2804
2805         return (zap);
2806 }
2807
2808 void
2809 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2810 {
2811         if (vd->vdev_ops != &vdev_hole_ops &&
2812             vd->vdev_ops != &vdev_missing_ops &&
2813             vd->vdev_ops != &vdev_root_ops &&
2814             !vd->vdev_top->vdev_removing) {
2815                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2816                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2817                 }
2818                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2819                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2820                         if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2821                                 vdev_zap_allocation_data(vd, tx);
2822                 }
2823         }
2824
2825         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2826                 vdev_construct_zaps(vd->vdev_child[i], tx);
2827         }
2828 }
2829
2830 void
2831 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2832 {
2833         spa_t *spa = vd->vdev_spa;
2834         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2835         objset_t *mos = spa->spa_meta_objset;
2836         range_tree_t *rtsync;
2837         dmu_tx_t *tx;
2838         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2839
2840         ASSERT(vdev_is_concrete(vd));
2841         ASSERT(vd->vdev_ops->vdev_op_leaf);
2842
2843         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2844
2845         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2846                 mutex_enter(&vd->vdev_dtl_lock);
2847                 space_map_free(vd->vdev_dtl_sm, tx);
2848                 space_map_close(vd->vdev_dtl_sm);
2849                 vd->vdev_dtl_sm = NULL;
2850                 mutex_exit(&vd->vdev_dtl_lock);
2851
2852                 /*
2853                  * We only destroy the leaf ZAP for detached leaves or for
2854                  * removed log devices. Removed data devices handle leaf ZAP
2855                  * cleanup later, once cancellation is no longer possible.
2856                  */
2857                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2858                     vd->vdev_top->vdev_islog)) {
2859                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2860                         vd->vdev_leaf_zap = 0;
2861                 }
2862
2863                 dmu_tx_commit(tx);
2864                 return;
2865         }
2866
2867         if (vd->vdev_dtl_sm == NULL) {
2868                 uint64_t new_object;
2869
2870                 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2871                 VERIFY3U(new_object, !=, 0);
2872
2873                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2874                     0, -1ULL, 0));
2875                 ASSERT(vd->vdev_dtl_sm != NULL);
2876         }
2877
2878         rtsync = range_tree_create(NULL, NULL);
2879
2880         mutex_enter(&vd->vdev_dtl_lock);
2881         range_tree_walk(rt, range_tree_add, rtsync);
2882         mutex_exit(&vd->vdev_dtl_lock);
2883
2884         space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2885         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2886         range_tree_vacate(rtsync, NULL, NULL);
2887
2888         range_tree_destroy(rtsync);
2889
2890         /*
2891          * If the object for the space map has changed then dirty
2892          * the top level so that we update the config.
2893          */
2894         if (object != space_map_object(vd->vdev_dtl_sm)) {
2895                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2896                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
2897                     (u_longlong_t)object,
2898                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2899                 vdev_config_dirty(vd->vdev_top);
2900         }
2901
2902         dmu_tx_commit(tx);
2903 }
2904
2905 /*
2906  * Determine whether the specified vdev can be offlined/detached/removed
2907  * without losing data.
2908  */
2909 boolean_t
2910 vdev_dtl_required(vdev_t *vd)
2911 {
2912         spa_t *spa = vd->vdev_spa;
2913         vdev_t *tvd = vd->vdev_top;
2914         uint8_t cant_read = vd->vdev_cant_read;
2915         boolean_t required;
2916
2917         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2918
2919         if (vd == spa->spa_root_vdev || vd == tvd)
2920                 return (B_TRUE);
2921
2922         /*
2923          * Temporarily mark the device as unreadable, and then determine
2924          * whether this results in any DTL outages in the top-level vdev.
2925          * If not, we can safely offline/detach/remove the device.
2926          */
2927         vd->vdev_cant_read = B_TRUE;
2928         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2929         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2930         vd->vdev_cant_read = cant_read;
2931         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2932
2933         if (!required && zio_injection_enabled)
2934                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2935
2936         return (required);
2937 }
2938
2939 /*
2940  * Determine if resilver is needed, and if so the txg range.
2941  */
2942 boolean_t
2943 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2944 {
2945         boolean_t needed = B_FALSE;
2946         uint64_t thismin = UINT64_MAX;
2947         uint64_t thismax = 0;
2948
2949         if (vd->vdev_children == 0) {
2950                 mutex_enter(&vd->vdev_dtl_lock);
2951                 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2952                     vdev_writeable(vd)) {
2953
2954                         thismin = vdev_dtl_min(vd);
2955                         thismax = vdev_dtl_max(vd);
2956                         needed = B_TRUE;
2957                 }
2958                 mutex_exit(&vd->vdev_dtl_lock);
2959         } else {
2960                 for (int c = 0; c < vd->vdev_children; c++) {
2961                         vdev_t *cvd = vd->vdev_child[c];
2962                         uint64_t cmin, cmax;
2963
2964                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2965                                 thismin = MIN(thismin, cmin);
2966                                 thismax = MAX(thismax, cmax);
2967                                 needed = B_TRUE;
2968                         }
2969                 }
2970         }
2971
2972         if (needed && minp) {
2973                 *minp = thismin;
2974                 *maxp = thismax;
2975         }
2976         return (needed);
2977 }
2978
2979 /*
2980  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
2981  * will contain either the checkpoint spacemap object or zero if none exists.
2982  * All other errors are returned to the caller.
2983  */
2984 int
2985 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
2986 {
2987         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2988
2989         if (vd->vdev_top_zap == 0) {
2990                 *sm_obj = 0;
2991                 return (0);
2992         }
2993
2994         int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2995             VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
2996         if (error == ENOENT) {
2997                 *sm_obj = 0;
2998                 error = 0;
2999         }
3000
3001         return (error);
3002 }
3003
3004 int
3005 vdev_load(vdev_t *vd)
3006 {
3007         int error = 0;
3008
3009         /*
3010          * Recursively load all children.
3011          */
3012         for (int c = 0; c < vd->vdev_children; c++) {
3013                 error = vdev_load(vd->vdev_child[c]);
3014                 if (error != 0) {
3015                         return (error);
3016                 }
3017         }
3018
3019         vdev_set_deflate_ratio(vd);
3020
3021         /*
3022          * On spa_load path, grab the allocation bias from our zap
3023          */
3024         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3025                 spa_t *spa = vd->vdev_spa;
3026                 char bias_str[64];
3027
3028                 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3029                     VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3030                     bias_str) == 0) {
3031                         ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3032                         vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3033                 }
3034         }
3035
3036         /*
3037          * If this is a top-level vdev, initialize its metaslabs.
3038          */
3039         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3040                 vdev_metaslab_group_create(vd);
3041
3042                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3043                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3044                             VDEV_AUX_CORRUPT_DATA);
3045                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3046                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3047                             (u_longlong_t)vd->vdev_asize);
3048                         return (SET_ERROR(ENXIO));
3049                 }
3050
3051                 error = vdev_metaslab_init(vd, 0);
3052                 if (error != 0) {
3053                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3054                             "[error=%d]", error);
3055                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3056                             VDEV_AUX_CORRUPT_DATA);
3057                         return (error);
3058                 }
3059
3060                 uint64_t checkpoint_sm_obj;
3061                 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3062                 if (error == 0 && checkpoint_sm_obj != 0) {
3063                         objset_t *mos = spa_meta_objset(vd->vdev_spa);
3064                         ASSERT(vd->vdev_asize != 0);
3065                         ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3066
3067                         error = space_map_open(&vd->vdev_checkpoint_sm,
3068                             mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3069                             vd->vdev_ashift);
3070                         if (error != 0) {
3071                                 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3072                                     "failed for checkpoint spacemap (obj %llu) "
3073                                     "[error=%d]",
3074                                     (u_longlong_t)checkpoint_sm_obj, error);
3075                                 return (error);
3076                         }
3077                         ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3078
3079                         /*
3080                          * Since the checkpoint_sm contains free entries
3081                          * exclusively we can use space_map_allocated() to
3082                          * indicate the cumulative checkpointed space that
3083                          * has been freed.
3084                          */
3085                         vd->vdev_stat.vs_checkpoint_space =
3086                             -space_map_allocated(vd->vdev_checkpoint_sm);
3087                         vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3088                             vd->vdev_stat.vs_checkpoint_space;
3089                 } else if (error != 0) {
3090                         vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3091                             "checkpoint space map object from vdev ZAP "
3092                             "[error=%d]", error);
3093                         return (error);
3094                 }
3095         }
3096
3097         /*
3098          * If this is a leaf vdev, load its DTL.
3099          */
3100         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3101                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3102                     VDEV_AUX_CORRUPT_DATA);
3103                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3104                     "[error=%d]", error);
3105                 return (error);
3106         }
3107
3108         uint64_t obsolete_sm_object;
3109         error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3110         if (error == 0 && obsolete_sm_object != 0) {
3111                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3112                 ASSERT(vd->vdev_asize != 0);
3113                 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3114
3115                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3116                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3117                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3118                             VDEV_AUX_CORRUPT_DATA);
3119                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3120                             "obsolete spacemap (obj %llu) [error=%d]",
3121                             (u_longlong_t)obsolete_sm_object, error);
3122                         return (error);
3123                 }
3124         } else if (error != 0) {
3125                 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3126                     "space map object from vdev ZAP [error=%d]", error);
3127                 return (error);
3128         }
3129
3130         return (0);
3131 }
3132
3133 /*
3134  * The special vdev case is used for hot spares and l2cache devices.  Its
3135  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3136  * we make sure that we can open the underlying device, then try to read the
3137  * label, and make sure that the label is sane and that it hasn't been
3138  * repurposed to another pool.
3139  */
3140 int
3141 vdev_validate_aux(vdev_t *vd)
3142 {
3143         nvlist_t *label;
3144         uint64_t guid, version;
3145         uint64_t state;
3146
3147         if (!vdev_readable(vd))
3148                 return (0);
3149
3150         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3151                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3152                     VDEV_AUX_CORRUPT_DATA);
3153                 return (-1);
3154         }
3155
3156         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3157             !SPA_VERSION_IS_SUPPORTED(version) ||
3158             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3159             guid != vd->vdev_guid ||
3160             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3161                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3162                     VDEV_AUX_CORRUPT_DATA);
3163                 nvlist_free(label);
3164                 return (-1);
3165         }
3166
3167         /*
3168          * We don't actually check the pool state here.  If it's in fact in
3169          * use by another pool, we update this fact on the fly when requested.
3170          */
3171         nvlist_free(label);
3172         return (0);
3173 }
3174
3175 /*
3176  * Free the objects used to store this vdev's spacemaps, and the array
3177  * that points to them.
3178  */
3179 void
3180 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3181 {
3182         if (vd->vdev_ms_array == 0)
3183                 return;
3184
3185         objset_t *mos = vd->vdev_spa->spa_meta_objset;
3186         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3187         size_t array_bytes = array_count * sizeof (uint64_t);
3188         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3189         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3190             array_bytes, smobj_array, 0));
3191
3192         for (uint64_t i = 0; i < array_count; i++) {
3193                 uint64_t smobj = smobj_array[i];
3194                 if (smobj == 0)
3195                         continue;
3196
3197                 space_map_free_obj(mos, smobj, tx);
3198         }
3199
3200         kmem_free(smobj_array, array_bytes);
3201         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3202         vd->vdev_ms_array = 0;
3203 }
3204
3205 static void
3206 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3207 {
3208         spa_t *spa = vd->vdev_spa;
3209
3210         ASSERT(vd->vdev_islog);
3211         ASSERT(vd == vd->vdev_top);
3212         ASSERT3U(txg, ==, spa_syncing_txg(spa));
3213
3214         dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3215
3216         vdev_destroy_spacemaps(vd, tx);
3217         if (vd->vdev_top_zap != 0) {
3218                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3219                 vd->vdev_top_zap = 0;
3220         }
3221
3222         dmu_tx_commit(tx);
3223 }
3224
3225 void
3226 vdev_sync_done(vdev_t *vd, uint64_t txg)
3227 {
3228         metaslab_t *msp;
3229         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3230
3231         ASSERT(vdev_is_concrete(vd));
3232
3233         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3234             != NULL)
3235                 metaslab_sync_done(msp, txg);
3236
3237         /*
3238          * Because this function is only called on dirty vdevs, it's possible
3239          * we won't consider all metaslabs for unloading on every
3240          * txg. However, unless the system is largely idle it is likely that
3241          * we will dirty all vdevs within a few txgs.
3242          */
3243         for (int i = 0; i < vd->vdev_ms_count; i++) {
3244                 msp = vd->vdev_ms[i];
3245                 mutex_enter(&msp->ms_lock);
3246                 if (msp->ms_sm != NULL)
3247                         metaslab_potentially_unload(msp, txg);
3248                 mutex_exit(&msp->ms_lock);
3249         }
3250
3251         if (reassess)
3252                 metaslab_sync_reassess(vd->vdev_mg);
3253 }
3254
3255 void
3256 vdev_sync(vdev_t *vd, uint64_t txg)
3257 {
3258         spa_t *spa = vd->vdev_spa;
3259         vdev_t *lvd;
3260         metaslab_t *msp;
3261
3262         ASSERT3U(txg, ==, spa->spa_syncing_txg);
3263         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3264         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3265                 ASSERT(vd->vdev_removing ||
3266                     vd->vdev_ops == &vdev_indirect_ops);
3267
3268                 vdev_indirect_sync_obsolete(vd, tx);
3269
3270                 /*
3271                  * If the vdev is indirect, it can't have dirty
3272                  * metaslabs or DTLs.
3273                  */
3274                 if (vd->vdev_ops == &vdev_indirect_ops) {
3275                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3276                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3277                         dmu_tx_commit(tx);
3278                         return;
3279                 }
3280         }
3281
3282         ASSERT(vdev_is_concrete(vd));
3283
3284         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3285             !vd->vdev_removing) {
3286                 ASSERT(vd == vd->vdev_top);
3287                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3288                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3289                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3290                 ASSERT(vd->vdev_ms_array != 0);
3291                 vdev_config_dirty(vd);
3292         }
3293
3294         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3295                 metaslab_sync(msp, txg);
3296                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3297         }
3298
3299         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3300                 vdev_dtl_sync(lvd, txg);
3301
3302         /*
3303          * If this is an empty log device being removed, destroy the
3304          * metadata associated with it.
3305          */
3306         if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3307                 vdev_remove_empty_log(vd, txg);
3308
3309         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3310         dmu_tx_commit(tx);
3311 }
3312
3313 uint64_t
3314 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3315 {
3316         return (vd->vdev_ops->vdev_op_asize(vd, psize));
3317 }
3318
3319 /*
3320  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3321  * not be opened, and no I/O is attempted.
3322  */
3323 int
3324 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3325 {
3326         vdev_t *vd, *tvd;
3327
3328         spa_vdev_state_enter(spa, SCL_NONE);
3329
3330         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3331                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3332
3333         if (!vd->vdev_ops->vdev_op_leaf)
3334                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3335
3336         tvd = vd->vdev_top;
3337
3338         /*
3339          * If user did a 'zpool offline -f' then make the fault persist across
3340          * reboots.
3341          */
3342         if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3343                 /*
3344                  * There are two kinds of forced faults: temporary and
3345                  * persistent.  Temporary faults go away at pool import, while
3346                  * persistent faults stay set.  Both types of faults can be
3347                  * cleared with a zpool clear.
3348                  *
3349                  * We tell if a vdev is persistently faulted by looking at the
3350                  * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3351                  * import then it's a persistent fault.  Otherwise, it's
3352                  * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3353                  * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3354                  * tells vdev_config_generate() (which gets run later) to set
3355                  * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3356                  */
3357                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3358                 vd->vdev_tmpoffline = B_FALSE;
3359                 aux = VDEV_AUX_EXTERNAL;
3360         } else {
3361                 vd->vdev_tmpoffline = B_TRUE;
3362         }
3363
3364         /*
3365          * We don't directly use the aux state here, but if we do a
3366          * vdev_reopen(), we need this value to be present to remember why we
3367          * were faulted.
3368          */
3369         vd->vdev_label_aux = aux;
3370
3371         /*
3372          * Faulted state takes precedence over degraded.
3373          */
3374         vd->vdev_delayed_close = B_FALSE;
3375         vd->vdev_faulted = 1ULL;
3376         vd->vdev_degraded = 0ULL;
3377         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3378
3379         /*
3380          * If this device has the only valid copy of the data, then
3381          * back off and simply mark the vdev as degraded instead.
3382          */
3383         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3384                 vd->vdev_degraded = 1ULL;
3385                 vd->vdev_faulted = 0ULL;
3386
3387                 /*
3388                  * If we reopen the device and it's not dead, only then do we
3389                  * mark it degraded.
3390                  */
3391                 vdev_reopen(tvd);
3392
3393                 if (vdev_readable(vd))
3394                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3395         }
3396
3397         return (spa_vdev_state_exit(spa, vd, 0));
3398 }
3399
3400 /*
3401  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3402  * user that something is wrong.  The vdev continues to operate as normal as far
3403  * as I/O is concerned.
3404  */
3405 int
3406 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3407 {
3408         vdev_t *vd;
3409
3410         spa_vdev_state_enter(spa, SCL_NONE);
3411
3412         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3413                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3414
3415         if (!vd->vdev_ops->vdev_op_leaf)
3416                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3417
3418         /*
3419          * If the vdev is already faulted, then don't do anything.
3420          */
3421         if (vd->vdev_faulted || vd->vdev_degraded)
3422                 return (spa_vdev_state_exit(spa, NULL, 0));
3423
3424         vd->vdev_degraded = 1ULL;
3425         if (!vdev_is_dead(vd))
3426                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3427                     aux);
3428
3429         return (spa_vdev_state_exit(spa, vd, 0));
3430 }
3431
3432 /*
3433  * Online the given vdev.
3434  *
3435  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3436  * spare device should be detached when the device finishes resilvering.
3437  * Second, the online should be treated like a 'test' online case, so no FMA
3438  * events are generated if the device fails to open.
3439  */
3440 int
3441 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3442 {
3443         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3444         boolean_t wasoffline;
3445         vdev_state_t oldstate;
3446
3447         spa_vdev_state_enter(spa, SCL_NONE);
3448
3449         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3450                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3451
3452         if (!vd->vdev_ops->vdev_op_leaf)
3453                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3454
3455         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3456         oldstate = vd->vdev_state;
3457
3458         tvd = vd->vdev_top;
3459         vd->vdev_offline = B_FALSE;
3460         vd->vdev_tmpoffline = B_FALSE;
3461         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3462         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3463
3464         /* XXX - L2ARC 1.0 does not support expansion */
3465         if (!vd->vdev_aux) {
3466                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3467                         pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3468                             spa->spa_autoexpand);
3469                 vd->vdev_expansion_time = gethrestime_sec();
3470         }
3471
3472         vdev_reopen(tvd);
3473         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3474
3475         if (!vd->vdev_aux) {
3476                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3477                         pvd->vdev_expanding = B_FALSE;
3478         }
3479
3480         if (newstate)
3481                 *newstate = vd->vdev_state;
3482         if ((flags & ZFS_ONLINE_UNSPARE) &&
3483             !vdev_is_dead(vd) && vd->vdev_parent &&
3484             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3485             vd->vdev_parent->vdev_child[0] == vd)
3486                 vd->vdev_unspare = B_TRUE;
3487
3488         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3489
3490                 /* XXX - L2ARC 1.0 does not support expansion */
3491                 if (vd->vdev_aux)
3492                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3493                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3494         }
3495
3496         /* Restart initializing if necessary */
3497         mutex_enter(&vd->vdev_initialize_lock);
3498         if (vdev_writeable(vd) &&
3499             vd->vdev_initialize_thread == NULL &&
3500             vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3501                 (void) vdev_initialize(vd);
3502         }
3503         mutex_exit(&vd->vdev_initialize_lock);
3504
3505         /* Restart trimming if necessary */
3506         mutex_enter(&vd->vdev_trim_lock);
3507         if (vdev_writeable(vd) &&
3508             vd->vdev_trim_thread == NULL &&
3509             vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3510                 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3511                     vd->vdev_trim_secure);
3512         }
3513         mutex_exit(&vd->vdev_trim_lock);
3514
3515         if (wasoffline ||
3516             (oldstate < VDEV_STATE_DEGRADED &&
3517             vd->vdev_state >= VDEV_STATE_DEGRADED))
3518                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3519
3520         return (spa_vdev_state_exit(spa, vd, 0));
3521 }
3522
3523 static int
3524 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3525 {
3526         vdev_t *vd, *tvd;
3527         int error = 0;
3528         uint64_t generation;
3529         metaslab_group_t *mg;
3530
3531 top:
3532         spa_vdev_state_enter(spa, SCL_ALLOC);
3533
3534         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3535                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3536
3537         if (!vd->vdev_ops->vdev_op_leaf)
3538                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3539
3540         tvd = vd->vdev_top;
3541         mg = tvd->vdev_mg;
3542         generation = spa->spa_config_generation + 1;
3543
3544         /*
3545          * If the device isn't already offline, try to offline it.
3546          */
3547         if (!vd->vdev_offline) {
3548                 /*
3549                  * If this device has the only valid copy of some data,
3550                  * don't allow it to be offlined. Log devices are always
3551                  * expendable.
3552                  */
3553                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3554                     vdev_dtl_required(vd))
3555                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
3556
3557                 /*
3558                  * If the top-level is a slog and it has had allocations
3559                  * then proceed.  We check that the vdev's metaslab group
3560                  * is not NULL since it's possible that we may have just
3561                  * added this vdev but not yet initialized its metaslabs.
3562                  */
3563                 if (tvd->vdev_islog && mg != NULL) {
3564                         /*
3565                          * Prevent any future allocations.
3566                          */
3567                         metaslab_group_passivate(mg);
3568                         (void) spa_vdev_state_exit(spa, vd, 0);
3569
3570                         error = spa_reset_logs(spa);
3571
3572                         /*
3573                          * If the log device was successfully reset but has
3574                          * checkpointed data, do not offline it.
3575                          */
3576                         if (error == 0 &&
3577                             tvd->vdev_checkpoint_sm != NULL) {
3578                                 ASSERT3U(space_map_allocated(
3579                                     tvd->vdev_checkpoint_sm), !=, 0);
3580                                 error = ZFS_ERR_CHECKPOINT_EXISTS;
3581                         }
3582
3583                         spa_vdev_state_enter(spa, SCL_ALLOC);
3584
3585                         /*
3586                          * Check to see if the config has changed.
3587                          */
3588                         if (error || generation != spa->spa_config_generation) {
3589                                 metaslab_group_activate(mg);
3590                                 if (error)
3591                                         return (spa_vdev_state_exit(spa,
3592                                             vd, error));
3593                                 (void) spa_vdev_state_exit(spa, vd, 0);
3594                                 goto top;
3595                         }
3596                         ASSERT0(tvd->vdev_stat.vs_alloc);
3597                 }
3598
3599                 /*
3600                  * Offline this device and reopen its top-level vdev.
3601                  * If the top-level vdev is a log device then just offline
3602                  * it. Otherwise, if this action results in the top-level
3603                  * vdev becoming unusable, undo it and fail the request.
3604                  */
3605                 vd->vdev_offline = B_TRUE;
3606                 vdev_reopen(tvd);
3607
3608                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3609                     vdev_is_dead(tvd)) {
3610                         vd->vdev_offline = B_FALSE;
3611                         vdev_reopen(tvd);
3612                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
3613                 }
3614
3615                 /*
3616                  * Add the device back into the metaslab rotor so that
3617                  * once we online the device it's open for business.
3618                  */
3619                 if (tvd->vdev_islog && mg != NULL)
3620                         metaslab_group_activate(mg);
3621         }
3622
3623         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3624
3625         return (spa_vdev_state_exit(spa, vd, 0));
3626 }
3627
3628 int
3629 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3630 {
3631         int error;
3632
3633         mutex_enter(&spa->spa_vdev_top_lock);
3634         error = vdev_offline_locked(spa, guid, flags);
3635         mutex_exit(&spa->spa_vdev_top_lock);
3636
3637         return (error);
3638 }
3639
3640 /*
3641  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3642  * vdev_offline(), we assume the spa config is locked.  We also clear all
3643  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3644  */
3645 void
3646 vdev_clear(spa_t *spa, vdev_t *vd)
3647 {
3648         vdev_t *rvd = spa->spa_root_vdev;
3649
3650         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3651
3652         if (vd == NULL)
3653                 vd = rvd;
3654
3655         vd->vdev_stat.vs_read_errors = 0;
3656         vd->vdev_stat.vs_write_errors = 0;
3657         vd->vdev_stat.vs_checksum_errors = 0;
3658         vd->vdev_stat.vs_slow_ios = 0;
3659
3660         for (int c = 0; c < vd->vdev_children; c++)
3661                 vdev_clear(spa, vd->vdev_child[c]);
3662
3663         /*
3664          * It makes no sense to "clear" an indirect vdev.
3665          */
3666         if (!vdev_is_concrete(vd))
3667                 return;
3668
3669         /*
3670          * If we're in the FAULTED state or have experienced failed I/O, then
3671          * clear the persistent state and attempt to reopen the device.  We
3672          * also mark the vdev config dirty, so that the new faulted state is
3673          * written out to disk.
3674          */
3675         if (vd->vdev_faulted || vd->vdev_degraded ||
3676             !vdev_readable(vd) || !vdev_writeable(vd)) {
3677                 /*
3678                  * When reopening in response to a clear event, it may be due to
3679                  * a fmadm repair request.  In this case, if the device is
3680                  * still broken, we want to still post the ereport again.
3681                  */
3682                 vd->vdev_forcefault = B_TRUE;
3683
3684                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3685                 vd->vdev_cant_read = B_FALSE;
3686                 vd->vdev_cant_write = B_FALSE;
3687                 vd->vdev_stat.vs_aux = 0;
3688
3689                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3690
3691                 vd->vdev_forcefault = B_FALSE;
3692
3693                 if (vd != rvd && vdev_writeable(vd->vdev_top))
3694                         vdev_state_dirty(vd->vdev_top);
3695
3696                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) {
3697                         if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
3698                             spa_feature_is_enabled(spa,
3699                             SPA_FEATURE_RESILVER_DEFER))
3700                                 vdev_set_deferred_resilver(spa, vd);
3701                         else
3702                                 spa_async_request(spa, SPA_ASYNC_RESILVER);
3703                 }
3704
3705                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3706         }
3707
3708         /*
3709          * When clearing a FMA-diagnosed fault, we always want to
3710          * unspare the device, as we assume that the original spare was
3711          * done in response to the FMA fault.
3712          */
3713         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3714             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3715             vd->vdev_parent->vdev_child[0] == vd)
3716                 vd->vdev_unspare = B_TRUE;
3717 }
3718
3719 boolean_t
3720 vdev_is_dead(vdev_t *vd)
3721 {
3722         /*
3723          * Holes and missing devices are always considered "dead".
3724          * This simplifies the code since we don't have to check for
3725          * these types of devices in the various code paths.
3726          * Instead we rely on the fact that we skip over dead devices
3727          * before issuing I/O to them.
3728          */
3729         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3730             vd->vdev_ops == &vdev_hole_ops ||
3731             vd->vdev_ops == &vdev_missing_ops);
3732 }
3733
3734 boolean_t
3735 vdev_readable(vdev_t *vd)
3736 {
3737         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3738 }
3739
3740 boolean_t
3741 vdev_writeable(vdev_t *vd)
3742 {
3743         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3744             vdev_is_concrete(vd));
3745 }
3746
3747 boolean_t
3748 vdev_allocatable(vdev_t *vd)
3749 {
3750         uint64_t state = vd->vdev_state;
3751
3752         /*
3753          * We currently allow allocations from vdevs which may be in the
3754          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3755          * fails to reopen then we'll catch it later when we're holding
3756          * the proper locks.  Note that we have to get the vdev state
3757          * in a local variable because although it changes atomically,
3758          * we're asking two separate questions about it.
3759          */
3760         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3761             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3762             vd->vdev_mg->mg_initialized);
3763 }
3764
3765 boolean_t
3766 vdev_accessible(vdev_t *vd, zio_t *zio)
3767 {
3768         ASSERT(zio->io_vd == vd);
3769
3770         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3771                 return (B_FALSE);
3772
3773         if (zio->io_type == ZIO_TYPE_READ)
3774                 return (!vd->vdev_cant_read);
3775
3776         if (zio->io_type == ZIO_TYPE_WRITE)
3777                 return (!vd->vdev_cant_write);
3778
3779         return (B_TRUE);
3780 }
3781
3782 static void
3783 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3784 {
3785         for (int t = 0; t < VS_ZIO_TYPES; t++) {
3786                 vs->vs_ops[t] += cvs->vs_ops[t];
3787                 vs->vs_bytes[t] += cvs->vs_bytes[t];
3788         }
3789
3790         cvs->vs_scan_removing = cvd->vdev_removing;
3791 }
3792
3793 /*
3794  * Get extended stats
3795  */
3796 static void
3797 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3798 {
3799         int t, b;
3800         for (t = 0; t < ZIO_TYPES; t++) {
3801                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
3802                         vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
3803
3804                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
3805                         vsx->vsx_total_histo[t][b] +=
3806                             cvsx->vsx_total_histo[t][b];
3807                 }
3808         }
3809
3810         for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
3811                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
3812                         vsx->vsx_queue_histo[t][b] +=
3813                             cvsx->vsx_queue_histo[t][b];
3814                 }
3815                 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
3816                 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
3817
3818                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
3819                         vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
3820
3821                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
3822                         vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
3823         }
3824
3825 }
3826
3827 boolean_t
3828 vdev_is_spacemap_addressable(vdev_t *vd)
3829 {
3830         if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3831                 return (B_TRUE);
3832
3833         /*
3834          * If double-word space map entries are not enabled we assume
3835          * 47 bits of the space map entry are dedicated to the entry's
3836          * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3837          * to calculate the maximum address that can be described by a
3838          * space map entry for the given device.
3839          */
3840         uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
3841
3842         if (shift >= 63) /* detect potential overflow */
3843                 return (B_TRUE);
3844
3845         return (vd->vdev_asize < (1ULL << shift));
3846 }
3847
3848 /*
3849  * Get statistics for the given vdev.
3850  */
3851 static void
3852 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3853 {
3854         int t;
3855         /*
3856          * If we're getting stats on the root vdev, aggregate the I/O counts
3857          * over all top-level vdevs (i.e. the direct children of the root).
3858          */
3859         if (!vd->vdev_ops->vdev_op_leaf) {
3860                 if (vs) {
3861                         memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
3862                         memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
3863                 }
3864                 if (vsx)
3865                         memset(vsx, 0, sizeof (*vsx));
3866
3867                 for (int c = 0; c < vd->vdev_children; c++) {
3868                         vdev_t *cvd = vd->vdev_child[c];
3869                         vdev_stat_t *cvs = &cvd->vdev_stat;
3870                         vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
3871
3872                         vdev_get_stats_ex_impl(cvd, cvs, cvsx);
3873                         if (vs)
3874                                 vdev_get_child_stat(cvd, vs, cvs);
3875                         if (vsx)
3876                                 vdev_get_child_stat_ex(cvd, vsx, cvsx);
3877
3878                 }
3879         } else {
3880                 /*
3881                  * We're a leaf.  Just copy our ZIO active queue stats in.  The
3882                  * other leaf stats are updated in vdev_stat_update().
3883                  */
3884                 if (!vsx)
3885                         return;
3886
3887                 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
3888
3889                 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
3890                         vsx->vsx_active_queue[t] =
3891                             vd->vdev_queue.vq_class[t].vqc_active;
3892                         vsx->vsx_pend_queue[t] = avl_numnodes(
3893                             &vd->vdev_queue.vq_class[t].vqc_queued_tree);
3894                 }
3895         }
3896 }
3897
3898 void
3899 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3900 {
3901         vdev_t *tvd = vd->vdev_top;
3902         mutex_enter(&vd->vdev_stat_lock);
3903         if (vs) {
3904                 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3905                 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3906                 vs->vs_state = vd->vdev_state;
3907                 vs->vs_rsize = vdev_get_min_asize(vd);
3908                 if (vd->vdev_ops->vdev_op_leaf) {
3909                         vs->vs_rsize += VDEV_LABEL_START_SIZE +
3910                             VDEV_LABEL_END_SIZE;
3911                         /*
3912                          * Report initializing progress. Since we don't
3913                          * have the initializing locks held, this is only
3914                          * an estimate (although a fairly accurate one).
3915                          */
3916                         vs->vs_initialize_bytes_done =
3917                             vd->vdev_initialize_bytes_done;
3918                         vs->vs_initialize_bytes_est =
3919                             vd->vdev_initialize_bytes_est;
3920                         vs->vs_initialize_state = vd->vdev_initialize_state;
3921                         vs->vs_initialize_action_time =
3922                             vd->vdev_initialize_action_time;
3923
3924                         /*
3925                          * Report manual TRIM progress. Since we don't have
3926                          * the manual TRIM locks held, this is only an
3927                          * estimate (although fairly accurate one).
3928                          */
3929                         vs->vs_trim_notsup = !vd->vdev_has_trim;
3930                         vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
3931                         vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
3932                         vs->vs_trim_state = vd->vdev_trim_state;
3933                         vs->vs_trim_action_time = vd->vdev_trim_action_time;
3934                 }
3935                 /*
3936                  * Report expandable space on top-level, non-auxiliary devices
3937                  * only. The expandable space is reported in terms of metaslab
3938                  * sized units since that determines how much space the pool
3939                  * can expand.
3940                  */
3941                 if (vd->vdev_aux == NULL && tvd != NULL) {
3942                         vs->vs_esize = P2ALIGN(
3943                             vd->vdev_max_asize - vd->vdev_asize,
3944                             1ULL << tvd->vdev_ms_shift);
3945                 }
3946                 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3947                     vdev_is_concrete(vd)) {
3948                         vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3949                             vd->vdev_mg->mg_fragmentation : 0;
3950                 }
3951                 if (vd->vdev_ops->vdev_op_leaf)
3952                         vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
3953         }
3954
3955         vdev_get_stats_ex_impl(vd, vs, vsx);
3956         mutex_exit(&vd->vdev_stat_lock);
3957 }
3958
3959 void
3960 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3961 {
3962         return (vdev_get_stats_ex(vd, vs, NULL));
3963 }
3964
3965 void
3966 vdev_clear_stats(vdev_t *vd)
3967 {
3968         mutex_enter(&vd->vdev_stat_lock);
3969         vd->vdev_stat.vs_space = 0;
3970         vd->vdev_stat.vs_dspace = 0;
3971         vd->vdev_stat.vs_alloc = 0;
3972         mutex_exit(&vd->vdev_stat_lock);
3973 }
3974
3975 void
3976 vdev_scan_stat_init(vdev_t *vd)
3977 {
3978         vdev_stat_t *vs = &vd->vdev_stat;
3979
3980         for (int c = 0; c < vd->vdev_children; c++)
3981                 vdev_scan_stat_init(vd->vdev_child[c]);
3982
3983         mutex_enter(&vd->vdev_stat_lock);
3984         vs->vs_scan_processed = 0;
3985         mutex_exit(&vd->vdev_stat_lock);
3986 }
3987
3988 void
3989 vdev_stat_update(zio_t *zio, uint64_t psize)
3990 {
3991         spa_t *spa = zio->io_spa;
3992         vdev_t *rvd = spa->spa_root_vdev;
3993         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3994         vdev_t *pvd;
3995         uint64_t txg = zio->io_txg;
3996         vdev_stat_t *vs = &vd->vdev_stat;
3997         vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
3998         zio_type_t type = zio->io_type;
3999         int flags = zio->io_flags;
4000
4001         /*
4002          * If this i/o is a gang leader, it didn't do any actual work.
4003          */
4004         if (zio->io_gang_tree)
4005                 return;
4006
4007         if (zio->io_error == 0) {
4008                 /*
4009                  * If this is a root i/o, don't count it -- we've already
4010                  * counted the top-level vdevs, and vdev_get_stats() will
4011                  * aggregate them when asked.  This reduces contention on
4012                  * the root vdev_stat_lock and implicitly handles blocks
4013                  * that compress away to holes, for which there is no i/o.
4014                  * (Holes never create vdev children, so all the counters
4015                  * remain zero, which is what we want.)
4016                  *
4017                  * Note: this only applies to successful i/o (io_error == 0)
4018                  * because unlike i/o counts, errors are not additive.
4019                  * When reading a ditto block, for example, failure of
4020                  * one top-level vdev does not imply a root-level error.
4021                  */
4022                 if (vd == rvd)
4023                         return;
4024
4025                 ASSERT(vd == zio->io_vd);
4026
4027                 if (flags & ZIO_FLAG_IO_BYPASS)
4028                         return;
4029
4030                 mutex_enter(&vd->vdev_stat_lock);
4031
4032                 if (flags & ZIO_FLAG_IO_REPAIR) {
4033                         if (flags & ZIO_FLAG_SCAN_THREAD) {
4034                                 dsl_scan_phys_t *scn_phys =
4035                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
4036                                 uint64_t *processed = &scn_phys->scn_processed;
4037
4038                                 /* XXX cleanup? */
4039                                 if (vd->vdev_ops->vdev_op_leaf)
4040                                         atomic_add_64(processed, psize);
4041                                 vs->vs_scan_processed += psize;
4042                         }
4043
4044                         if (flags & ZIO_FLAG_SELF_HEAL)
4045                                 vs->vs_self_healed += psize;
4046                 }
4047
4048                 /*
4049                  * The bytes/ops/histograms are recorded at the leaf level and
4050                  * aggregated into the higher level vdevs in vdev_get_stats().
4051                  */
4052                 if (vd->vdev_ops->vdev_op_leaf &&
4053                     (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4054                         zio_type_t vs_type = type;
4055
4056                         /*
4057                          * TRIM ops and bytes are reported to user space as
4058                          * ZIO_TYPE_IOCTL.  This is done to preserve the
4059                          * vdev_stat_t structure layout for user space.
4060                          */
4061                         if (type == ZIO_TYPE_TRIM)
4062                                 vs_type = ZIO_TYPE_IOCTL;
4063
4064                         vs->vs_ops[vs_type]++;
4065                         vs->vs_bytes[vs_type] += psize;
4066
4067                         if (flags & ZIO_FLAG_DELEGATED) {
4068                                 vsx->vsx_agg_histo[zio->io_priority]
4069                                     [RQ_HISTO(zio->io_size)]++;
4070                         } else {
4071                                 vsx->vsx_ind_histo[zio->io_priority]
4072                                     [RQ_HISTO(zio->io_size)]++;
4073                         }
4074
4075                         if (zio->io_delta && zio->io_delay) {
4076                                 vsx->vsx_queue_histo[zio->io_priority]
4077                                     [L_HISTO(zio->io_delta - zio->io_delay)]++;
4078                                 vsx->vsx_disk_histo[type]
4079                                     [L_HISTO(zio->io_delay)]++;
4080                                 vsx->vsx_total_histo[type]
4081                                     [L_HISTO(zio->io_delta)]++;
4082                         }
4083                 }
4084
4085                 mutex_exit(&vd->vdev_stat_lock);
4086                 return;
4087         }
4088
4089         if (flags & ZIO_FLAG_SPECULATIVE)
4090                 return;
4091
4092         /*
4093          * If this is an I/O error that is going to be retried, then ignore the
4094          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4095          * hard errors, when in reality they can happen for any number of
4096          * innocuous reasons (bus resets, MPxIO link failure, etc).
4097          */
4098         if (zio->io_error == EIO &&
4099             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4100                 return;
4101
4102         /*
4103          * Intent logs writes won't propagate their error to the root
4104          * I/O so don't mark these types of failures as pool-level
4105          * errors.
4106          */
4107         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4108                 return;
4109
4110         if (spa->spa_load_state == SPA_LOAD_NONE &&
4111             type == ZIO_TYPE_WRITE && txg != 0 &&
4112             (!(flags & ZIO_FLAG_IO_REPAIR) ||
4113             (flags & ZIO_FLAG_SCAN_THREAD) ||
4114             spa->spa_claiming)) {
4115                 /*
4116                  * This is either a normal write (not a repair), or it's
4117                  * a repair induced by the scrub thread, or it's a repair
4118                  * made by zil_claim() during spa_load() in the first txg.
4119                  * In the normal case, we commit the DTL change in the same
4120                  * txg as the block was born.  In the scrub-induced repair
4121                  * case, we know that scrubs run in first-pass syncing context,
4122                  * so we commit the DTL change in spa_syncing_txg(spa).
4123                  * In the zil_claim() case, we commit in spa_first_txg(spa).
4124                  *
4125                  * We currently do not make DTL entries for failed spontaneous
4126                  * self-healing writes triggered by normal (non-scrubbing)
4127                  * reads, because we have no transactional context in which to
4128                  * do so -- and it's not clear that it'd be desirable anyway.
4129                  */
4130                 if (vd->vdev_ops->vdev_op_leaf) {
4131                         uint64_t commit_txg = txg;
4132                         if (flags & ZIO_FLAG_SCAN_THREAD) {
4133                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4134                                 ASSERT(spa_sync_pass(spa) == 1);
4135                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4136                                 commit_txg = spa_syncing_txg(spa);
4137                         } else if (spa->spa_claiming) {
4138                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4139                                 commit_txg = spa_first_txg(spa);
4140                         }
4141                         ASSERT(commit_txg >= spa_syncing_txg(spa));
4142                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4143                                 return;
4144                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4145                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4146                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4147                 }
4148                 if (vd != rvd)
4149                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4150         }
4151 }
4152
4153 int64_t
4154 vdev_deflated_space(vdev_t *vd, int64_t space)
4155 {
4156         ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4157         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4158
4159         return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4160 }
4161
4162 /*
4163  * Update the in-core space usage stats for this vdev, its metaslab class,
4164  * and the root vdev.
4165  */
4166 void
4167 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4168     int64_t space_delta)
4169 {
4170         int64_t dspace_delta;
4171         spa_t *spa = vd->vdev_spa;
4172         vdev_t *rvd = spa->spa_root_vdev;
4173
4174         ASSERT(vd == vd->vdev_top);
4175
4176         /*
4177          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4178          * factor.  We must calculate this here and not at the root vdev
4179          * because the root vdev's psize-to-asize is simply the max of its
4180          * childrens', thus not accurate enough for us.
4181          */
4182         dspace_delta = vdev_deflated_space(vd, space_delta);
4183
4184         mutex_enter(&vd->vdev_stat_lock);
4185         /* ensure we won't underflow */
4186         if (alloc_delta < 0) {
4187                 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4188         }
4189
4190         vd->vdev_stat.vs_alloc += alloc_delta;
4191         vd->vdev_stat.vs_space += space_delta;
4192         vd->vdev_stat.vs_dspace += dspace_delta;
4193         mutex_exit(&vd->vdev_stat_lock);
4194
4195         /* every class but log contributes to root space stats */
4196         if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4197                 ASSERT(!vd->vdev_isl2cache);
4198                 mutex_enter(&rvd->vdev_stat_lock);
4199                 rvd->vdev_stat.vs_alloc += alloc_delta;
4200                 rvd->vdev_stat.vs_space += space_delta;
4201                 rvd->vdev_stat.vs_dspace += dspace_delta;
4202                 mutex_exit(&rvd->vdev_stat_lock);
4203         }
4204         /* Note: metaslab_class_space_update moved to metaslab_space_update */
4205 }
4206
4207 /*
4208  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4209  * so that it will be written out next time the vdev configuration is synced.
4210  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4211  */
4212 void
4213 vdev_config_dirty(vdev_t *vd)
4214 {
4215         spa_t *spa = vd->vdev_spa;
4216         vdev_t *rvd = spa->spa_root_vdev;
4217         int c;
4218
4219         ASSERT(spa_writeable(spa));
4220
4221         /*
4222          * If this is an aux vdev (as with l2cache and spare devices), then we
4223          * update the vdev config manually and set the sync flag.
4224          */
4225         if (vd->vdev_aux != NULL) {
4226                 spa_aux_vdev_t *sav = vd->vdev_aux;
4227                 nvlist_t **aux;
4228                 uint_t naux;
4229
4230                 for (c = 0; c < sav->sav_count; c++) {
4231                         if (sav->sav_vdevs[c] == vd)
4232                                 break;
4233                 }
4234
4235                 if (c == sav->sav_count) {
4236                         /*
4237                          * We're being removed.  There's nothing more to do.
4238                          */
4239                         ASSERT(sav->sav_sync == B_TRUE);
4240                         return;
4241                 }
4242
4243                 sav->sav_sync = B_TRUE;
4244
4245                 if (nvlist_lookup_nvlist_array(sav->sav_config,
4246                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4247                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4248                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4249                 }
4250
4251                 ASSERT(c < naux);
4252
4253                 /*
4254                  * Setting the nvlist in the middle if the array is a little
4255                  * sketchy, but it will work.
4256                  */
4257                 nvlist_free(aux[c]);
4258                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4259
4260                 return;
4261         }
4262
4263         /*
4264          * The dirty list is protected by the SCL_CONFIG lock.  The caller
4265          * must either hold SCL_CONFIG as writer, or must be the sync thread
4266          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4267          * so this is sufficient to ensure mutual exclusion.
4268          */
4269         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4270             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4271             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4272
4273         if (vd == rvd) {
4274                 for (c = 0; c < rvd->vdev_children; c++)
4275                         vdev_config_dirty(rvd->vdev_child[c]);
4276         } else {
4277                 ASSERT(vd == vd->vdev_top);
4278
4279                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4280                     vdev_is_concrete(vd)) {
4281                         list_insert_head(&spa->spa_config_dirty_list, vd);
4282                 }
4283         }
4284 }
4285
4286 void
4287 vdev_config_clean(vdev_t *vd)
4288 {
4289         spa_t *spa = vd->vdev_spa;
4290
4291         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4292             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4293             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4294
4295         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4296         list_remove(&spa->spa_config_dirty_list, vd);
4297 }
4298
4299 /*
4300  * Mark a top-level vdev's state as dirty, so that the next pass of
4301  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4302  * the state changes from larger config changes because they require
4303  * much less locking, and are often needed for administrative actions.
4304  */
4305 void
4306 vdev_state_dirty(vdev_t *vd)
4307 {
4308         spa_t *spa = vd->vdev_spa;
4309
4310         ASSERT(spa_writeable(spa));
4311         ASSERT(vd == vd->vdev_top);
4312
4313         /*
4314          * The state list is protected by the SCL_STATE lock.  The caller
4315          * must either hold SCL_STATE as writer, or must be the sync thread
4316          * (which holds SCL_STATE as reader).  There's only one sync thread,
4317          * so this is sufficient to ensure mutual exclusion.
4318          */
4319         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4320             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4321             spa_config_held(spa, SCL_STATE, RW_READER)));
4322
4323         if (!list_link_active(&vd->vdev_state_dirty_node) &&
4324             vdev_is_concrete(vd))
4325                 list_insert_head(&spa->spa_state_dirty_list, vd);
4326 }
4327
4328 void
4329 vdev_state_clean(vdev_t *vd)
4330 {
4331         spa_t *spa = vd->vdev_spa;
4332
4333         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4334             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4335             spa_config_held(spa, SCL_STATE, RW_READER)));
4336
4337         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4338         list_remove(&spa->spa_state_dirty_list, vd);
4339 }
4340
4341 /*
4342  * Propagate vdev state up from children to parent.
4343  */
4344 void
4345 vdev_propagate_state(vdev_t *vd)
4346 {
4347         spa_t *spa = vd->vdev_spa;
4348         vdev_t *rvd = spa->spa_root_vdev;
4349         int degraded = 0, faulted = 0;
4350         int corrupted = 0;
4351         vdev_t *child;
4352
4353         if (vd->vdev_children > 0) {
4354                 for (int c = 0; c < vd->vdev_children; c++) {
4355                         child = vd->vdev_child[c];
4356
4357                         /*
4358                          * Don't factor holes or indirect vdevs into the
4359                          * decision.
4360                          */
4361                         if (!vdev_is_concrete(child))
4362                                 continue;
4363
4364                         if (!vdev_readable(child) ||
4365                             (!vdev_writeable(child) && spa_writeable(spa))) {
4366                                 /*
4367                                  * Root special: if there is a top-level log
4368                                  * device, treat the root vdev as if it were
4369                                  * degraded.
4370                                  */
4371                                 if (child->vdev_islog && vd == rvd)
4372                                         degraded++;
4373                                 else
4374                                         faulted++;
4375                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4376                                 degraded++;
4377                         }
4378
4379                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4380                                 corrupted++;
4381                 }
4382
4383                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4384
4385                 /*
4386                  * Root special: if there is a top-level vdev that cannot be
4387                  * opened due to corrupted metadata, then propagate the root
4388                  * vdev's aux state as 'corrupt' rather than 'insufficient
4389                  * replicas'.
4390                  */
4391                 if (corrupted && vd == rvd &&
4392                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4393                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4394                             VDEV_AUX_CORRUPT_DATA);
4395         }
4396
4397         if (vd->vdev_parent)
4398                 vdev_propagate_state(vd->vdev_parent);
4399 }
4400
4401 /*
4402  * Set a vdev's state.  If this is during an open, we don't update the parent
4403  * state, because we're in the process of opening children depth-first.
4404  * Otherwise, we propagate the change to the parent.
4405  *
4406  * If this routine places a device in a faulted state, an appropriate ereport is
4407  * generated.
4408  */
4409 void
4410 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4411 {
4412         uint64_t save_state;
4413         spa_t *spa = vd->vdev_spa;
4414
4415         if (state == vd->vdev_state) {
4416                 /*
4417                  * Since vdev_offline() code path is already in an offline
4418                  * state we can miss a statechange event to OFFLINE. Check
4419                  * the previous state to catch this condition.
4420                  */
4421                 if (vd->vdev_ops->vdev_op_leaf &&
4422                     (state == VDEV_STATE_OFFLINE) &&
4423                     (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4424                         /* post an offline state change */
4425                         zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4426                 }
4427                 vd->vdev_stat.vs_aux = aux;
4428                 return;
4429         }
4430
4431         save_state = vd->vdev_state;
4432
4433         vd->vdev_state = state;
4434         vd->vdev_stat.vs_aux = aux;
4435
4436         /*
4437          * If we are setting the vdev state to anything but an open state, then
4438          * always close the underlying device unless the device has requested
4439          * a delayed close (i.e. we're about to remove or fault the device).
4440          * Otherwise, we keep accessible but invalid devices open forever.
4441          * We don't call vdev_close() itself, because that implies some extra
4442          * checks (offline, etc) that we don't want here.  This is limited to
4443          * leaf devices, because otherwise closing the device will affect other
4444          * children.
4445          */
4446         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4447             vd->vdev_ops->vdev_op_leaf)
4448                 vd->vdev_ops->vdev_op_close(vd);
4449
4450         if (vd->vdev_removed &&
4451             state == VDEV_STATE_CANT_OPEN &&
4452             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4453                 /*
4454                  * If the previous state is set to VDEV_STATE_REMOVED, then this
4455                  * device was previously marked removed and someone attempted to
4456                  * reopen it.  If this failed due to a nonexistent device, then
4457                  * keep the device in the REMOVED state.  We also let this be if
4458                  * it is one of our special test online cases, which is only
4459                  * attempting to online the device and shouldn't generate an FMA
4460                  * fault.
4461                  */
4462                 vd->vdev_state = VDEV_STATE_REMOVED;
4463                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4464         } else if (state == VDEV_STATE_REMOVED) {
4465                 vd->vdev_removed = B_TRUE;
4466         } else if (state == VDEV_STATE_CANT_OPEN) {
4467                 /*
4468                  * If we fail to open a vdev during an import or recovery, we
4469                  * mark it as "not available", which signifies that it was
4470                  * never there to begin with.  Failure to open such a device
4471                  * is not considered an error.
4472                  */
4473                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4474                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4475                     vd->vdev_ops->vdev_op_leaf)
4476                         vd->vdev_not_present = 1;
4477
4478                 /*
4479                  * Post the appropriate ereport.  If the 'prevstate' field is
4480                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
4481                  * that this is part of a vdev_reopen().  In this case, we don't
4482                  * want to post the ereport if the device was already in the
4483                  * CANT_OPEN state beforehand.
4484                  *
4485                  * If the 'checkremove' flag is set, then this is an attempt to
4486                  * online the device in response to an insertion event.  If we
4487                  * hit this case, then we have detected an insertion event for a
4488                  * faulted or offline device that wasn't in the removed state.
4489                  * In this scenario, we don't post an ereport because we are
4490                  * about to replace the device, or attempt an online with
4491                  * vdev_forcefault, which will generate the fault for us.
4492                  */
4493                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4494                     !vd->vdev_not_present && !vd->vdev_checkremove &&
4495                     vd != spa->spa_root_vdev) {
4496                         const char *class;
4497
4498                         switch (aux) {
4499                         case VDEV_AUX_OPEN_FAILED:
4500                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4501                                 break;
4502                         case VDEV_AUX_CORRUPT_DATA:
4503                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4504                                 break;
4505                         case VDEV_AUX_NO_REPLICAS:
4506                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4507                                 break;
4508                         case VDEV_AUX_BAD_GUID_SUM:
4509                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4510                                 break;
4511                         case VDEV_AUX_TOO_SMALL:
4512                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4513                                 break;
4514                         case VDEV_AUX_BAD_LABEL:
4515                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4516                                 break;
4517                         case VDEV_AUX_BAD_ASHIFT:
4518                                 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4519                                 break;
4520                         default:
4521                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4522                         }
4523
4524                         zfs_ereport_post(class, spa, vd, NULL, NULL,
4525                             save_state, 0);
4526                 }
4527
4528                 /* Erase any notion of persistent removed state */
4529                 vd->vdev_removed = B_FALSE;
4530         } else {
4531                 vd->vdev_removed = B_FALSE;
4532         }
4533
4534         /*
4535          * Notify ZED of any significant state-change on a leaf vdev.
4536          *
4537          */
4538         if (vd->vdev_ops->vdev_op_leaf) {
4539                 /* preserve original state from a vdev_reopen() */
4540                 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4541                     (vd->vdev_prevstate != vd->vdev_state) &&
4542                     (save_state <= VDEV_STATE_CLOSED))
4543                         save_state = vd->vdev_prevstate;
4544
4545                 /* filter out state change due to initial vdev_open */
4546                 if (save_state > VDEV_STATE_CLOSED)
4547                         zfs_post_state_change(spa, vd, save_state);
4548         }
4549
4550         if (!isopen && vd->vdev_parent)
4551                 vdev_propagate_state(vd->vdev_parent);
4552 }
4553
4554 boolean_t
4555 vdev_children_are_offline(vdev_t *vd)
4556 {
4557         ASSERT(!vd->vdev_ops->vdev_op_leaf);
4558
4559         for (uint64_t i = 0; i < vd->vdev_children; i++) {
4560                 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4561                         return (B_FALSE);
4562         }
4563
4564         return (B_TRUE);
4565 }
4566
4567 /*
4568  * Check the vdev configuration to ensure that it's capable of supporting
4569  * a root pool. We do not support partial configuration.
4570  */
4571 boolean_t
4572 vdev_is_bootable(vdev_t *vd)
4573 {
4574         if (!vd->vdev_ops->vdev_op_leaf) {
4575                 const char *vdev_type = vd->vdev_ops->vdev_op_type;
4576
4577                 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4578                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4579                         return (B_FALSE);
4580                 }
4581         }
4582
4583         for (int c = 0; c < vd->vdev_children; c++) {
4584                 if (!vdev_is_bootable(vd->vdev_child[c]))
4585                         return (B_FALSE);
4586         }
4587         return (B_TRUE);
4588 }
4589
4590 boolean_t
4591 vdev_is_concrete(vdev_t *vd)
4592 {
4593         vdev_ops_t *ops = vd->vdev_ops;
4594         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4595             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4596                 return (B_FALSE);
4597         } else {
4598                 return (B_TRUE);
4599         }
4600 }
4601
4602 /*
4603  * Determine if a log device has valid content.  If the vdev was
4604  * removed or faulted in the MOS config then we know that
4605  * the content on the log device has already been written to the pool.
4606  */
4607 boolean_t
4608 vdev_log_state_valid(vdev_t *vd)
4609 {
4610         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4611             !vd->vdev_removed)
4612                 return (B_TRUE);
4613
4614         for (int c = 0; c < vd->vdev_children; c++)
4615                 if (vdev_log_state_valid(vd->vdev_child[c]))
4616                         return (B_TRUE);
4617
4618         return (B_FALSE);
4619 }
4620
4621 /*
4622  * Expand a vdev if possible.
4623  */
4624 void
4625 vdev_expand(vdev_t *vd, uint64_t txg)
4626 {
4627         ASSERT(vd->vdev_top == vd);
4628         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4629         ASSERT(vdev_is_concrete(vd));
4630
4631         vdev_set_deflate_ratio(vd);
4632
4633         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4634             vdev_is_concrete(vd)) {
4635                 vdev_metaslab_group_create(vd);
4636                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4637                 vdev_config_dirty(vd);
4638         }
4639 }
4640
4641 /*
4642  * Split a vdev.
4643  */
4644 void
4645 vdev_split(vdev_t *vd)
4646 {
4647         vdev_t *cvd, *pvd = vd->vdev_parent;
4648
4649         vdev_remove_child(pvd, vd);
4650         vdev_compact_children(pvd);
4651
4652         cvd = pvd->vdev_child[0];
4653         if (pvd->vdev_children == 1) {
4654                 vdev_remove_parent(cvd);
4655                 cvd->vdev_splitting = B_TRUE;
4656         }
4657         vdev_propagate_state(cvd);
4658 }
4659
4660 void
4661 vdev_deadman(vdev_t *vd, char *tag)
4662 {
4663         for (int c = 0; c < vd->vdev_children; c++) {
4664                 vdev_t *cvd = vd->vdev_child[c];
4665
4666                 vdev_deadman(cvd, tag);
4667         }
4668
4669         if (vd->vdev_ops->vdev_op_leaf) {
4670                 vdev_queue_t *vq = &vd->vdev_queue;
4671
4672                 mutex_enter(&vq->vq_lock);
4673                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4674                         spa_t *spa = vd->vdev_spa;
4675                         zio_t *fio;
4676                         uint64_t delta;
4677
4678                         zfs_dbgmsg("slow vdev: %s has %d active IOs",
4679                             vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4680
4681                         /*
4682                          * Look at the head of all the pending queues,
4683                          * if any I/O has been outstanding for longer than
4684                          * the spa_deadman_synctime invoke the deadman logic.
4685                          */
4686                         fio = avl_first(&vq->vq_active_tree);
4687                         delta = gethrtime() - fio->io_timestamp;
4688                         if (delta > spa_deadman_synctime(spa))
4689                                 zio_deadman(fio, tag);
4690                 }
4691                 mutex_exit(&vq->vq_lock);
4692         }
4693 }
4694
4695 void
4696 vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd)
4697 {
4698         for (uint64_t i = 0; i < vd->vdev_children; i++)
4699                 vdev_set_deferred_resilver(spa, vd->vdev_child[i]);
4700
4701         if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) ||
4702             range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
4703                 return;
4704         }
4705
4706         vd->vdev_resilver_deferred = B_TRUE;
4707         spa->spa_resilver_deferred = B_TRUE;
4708 }
4709
4710 /*
4711  * Translate a logical range to the physical range for the specified vdev_t.
4712  * This function is initially called with a leaf vdev and will walk each
4713  * parent vdev until it reaches a top-level vdev. Once the top-level is
4714  * reached the physical range is initialized and the recursive function
4715  * begins to unwind. As it unwinds it calls the parent's vdev specific
4716  * translation function to do the real conversion.
4717  */
4718 void
4719 vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
4720 {
4721         /*
4722          * Walk up the vdev tree
4723          */
4724         if (vd != vd->vdev_top) {
4725                 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
4726         } else {
4727                 /*
4728                  * We've reached the top-level vdev, initialize the
4729                  * physical range to the logical range and start to
4730                  * unwind.
4731                  */
4732                 physical_rs->rs_start = logical_rs->rs_start;
4733                 physical_rs->rs_end = logical_rs->rs_end;
4734                 return;
4735         }
4736
4737         vdev_t *pvd = vd->vdev_parent;
4738         ASSERT3P(pvd, !=, NULL);
4739         ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
4740
4741         /*
4742          * As this recursive function unwinds, translate the logical
4743          * range into its physical components by calling the
4744          * vdev specific translate function.
4745          */
4746         range_seg_t intermediate = { { { 0, 0 } } };
4747         pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
4748
4749         physical_rs->rs_start = intermediate.rs_start;
4750         physical_rs->rs_end = intermediate.rs_end;
4751 }
4752
4753 #if defined(_KERNEL)
4754 EXPORT_SYMBOL(vdev_fault);
4755 EXPORT_SYMBOL(vdev_degrade);
4756 EXPORT_SYMBOL(vdev_online);
4757 EXPORT_SYMBOL(vdev_offline);
4758 EXPORT_SYMBOL(vdev_clear);
4759
4760 /* BEGIN CSTYLED */
4761 module_param(zfs_vdev_default_ms_count, int, 0644);
4762 MODULE_PARM_DESC(zfs_vdev_default_ms_count,
4763         "Target number of metaslabs per top-level vdev");
4764
4765 module_param(zfs_vdev_min_ms_count, int, 0644);
4766 MODULE_PARM_DESC(zfs_vdev_min_ms_count,
4767         "Minimum number of metaslabs per top-level vdev");
4768
4769 module_param(zfs_vdev_ms_count_limit, int, 0644);
4770 MODULE_PARM_DESC(zfs_vdev_ms_count_limit,
4771         "Practical upper limit of total metaslabs per top-level vdev");
4772
4773 module_param(zfs_slow_io_events_per_second, uint, 0644);
4774 MODULE_PARM_DESC(zfs_slow_io_events_per_second,
4775         "Rate limit slow IO (delay) events to this many per second");
4776
4777 module_param(zfs_checksum_events_per_second, uint, 0644);
4778 MODULE_PARM_DESC(zfs_checksum_events_per_second, "Rate limit checksum events "
4779         "to this many checksum errors per second (do not set below zed"
4780         "threshold).");
4781
4782 module_param(zfs_scan_ignore_errors, int, 0644);
4783 MODULE_PARM_DESC(zfs_scan_ignore_errors,
4784         "Ignore errors during resilver/scrub");
4785
4786 module_param(vdev_validate_skip, int, 0644);
4787 MODULE_PARM_DESC(vdev_validate_skip,
4788         "Bypass vdev_validate()");
4789
4790 module_param(zfs_nocacheflush, int, 0644);
4791 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
4792 /* END CSTYLED */
4793 #endif