]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/vdev.c
OpenZFS 5561 - support root pools on EFI/GPT partitioned disks
[FreeBSD/FreeBSD.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/abd.h>
47 #include <sys/zvol.h>
48 #include <sys/zfs_ratelimit.h>
49
50 /*
51  * When a vdev is added, it will be divided into approximately (but no
52  * more than) this number of metaslabs.
53  */
54 int metaslabs_per_vdev = 200;
55
56 /*
57  * Virtual device management.
58  */
59
60 static vdev_ops_t *vdev_ops_table[] = {
61         &vdev_root_ops,
62         &vdev_raidz_ops,
63         &vdev_mirror_ops,
64         &vdev_replacing_ops,
65         &vdev_spare_ops,
66         &vdev_disk_ops,
67         &vdev_file_ops,
68         &vdev_missing_ops,
69         &vdev_hole_ops,
70         NULL
71 };
72
73 /*
74  * Given a vdev type, return the appropriate ops vector.
75  */
76 static vdev_ops_t *
77 vdev_getops(const char *type)
78 {
79         vdev_ops_t *ops, **opspp;
80
81         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
82                 if (strcmp(ops->vdev_op_type, type) == 0)
83                         break;
84
85         return (ops);
86 }
87
88 /*
89  * Default asize function: return the MAX of psize with the asize of
90  * all children.  This is what's used by anything other than RAID-Z.
91  */
92 uint64_t
93 vdev_default_asize(vdev_t *vd, uint64_t psize)
94 {
95         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
96         uint64_t csize;
97         int c;
98
99         for (c = 0; c < vd->vdev_children; c++) {
100                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
101                 asize = MAX(asize, csize);
102         }
103
104         return (asize);
105 }
106
107 /*
108  * Get the minimum allocatable size. We define the allocatable size as
109  * the vdev's asize rounded to the nearest metaslab. This allows us to
110  * replace or attach devices which don't have the same physical size but
111  * can still satisfy the same number of allocations.
112  */
113 uint64_t
114 vdev_get_min_asize(vdev_t *vd)
115 {
116         vdev_t *pvd = vd->vdev_parent;
117
118         /*
119          * If our parent is NULL (inactive spare or cache) or is the root,
120          * just return our own asize.
121          */
122         if (pvd == NULL)
123                 return (vd->vdev_asize);
124
125         /*
126          * The top-level vdev just returns the allocatable size rounded
127          * to the nearest metaslab.
128          */
129         if (vd == vd->vdev_top)
130                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
131
132         /*
133          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
134          * so each child must provide at least 1/Nth of its asize.
135          */
136         if (pvd->vdev_ops == &vdev_raidz_ops)
137                 return (pvd->vdev_min_asize / pvd->vdev_children);
138
139         return (pvd->vdev_min_asize);
140 }
141
142 void
143 vdev_set_min_asize(vdev_t *vd)
144 {
145         int c;
146         vd->vdev_min_asize = vdev_get_min_asize(vd);
147
148         for (c = 0; c < vd->vdev_children; c++)
149                 vdev_set_min_asize(vd->vdev_child[c]);
150 }
151
152 vdev_t *
153 vdev_lookup_top(spa_t *spa, uint64_t vdev)
154 {
155         vdev_t *rvd = spa->spa_root_vdev;
156
157         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
158
159         if (vdev < rvd->vdev_children) {
160                 ASSERT(rvd->vdev_child[vdev] != NULL);
161                 return (rvd->vdev_child[vdev]);
162         }
163
164         return (NULL);
165 }
166
167 vdev_t *
168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
169 {
170         vdev_t *mvd;
171         int c;
172
173         if (vd->vdev_guid == guid)
174                 return (vd);
175
176         for (c = 0; c < vd->vdev_children; c++)
177                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
178                     NULL)
179                         return (mvd);
180
181         return (NULL);
182 }
183
184 static int
185 vdev_count_leaves_impl(vdev_t *vd)
186 {
187         int n = 0;
188         int c;
189
190         if (vd->vdev_ops->vdev_op_leaf)
191                 return (1);
192
193         for (c = 0; c < vd->vdev_children; c++)
194                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
195
196         return (n);
197 }
198
199 int
200 vdev_count_leaves(spa_t *spa)
201 {
202         return (vdev_count_leaves_impl(spa->spa_root_vdev));
203 }
204
205 void
206 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
207 {
208         size_t oldsize, newsize;
209         uint64_t id = cvd->vdev_id;
210         vdev_t **newchild;
211
212         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
213         ASSERT(cvd->vdev_parent == NULL);
214
215         cvd->vdev_parent = pvd;
216
217         if (pvd == NULL)
218                 return;
219
220         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
221
222         oldsize = pvd->vdev_children * sizeof (vdev_t *);
223         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
224         newsize = pvd->vdev_children * sizeof (vdev_t *);
225
226         newchild = kmem_alloc(newsize, KM_SLEEP);
227         if (pvd->vdev_child != NULL) {
228                 bcopy(pvd->vdev_child, newchild, oldsize);
229                 kmem_free(pvd->vdev_child, oldsize);
230         }
231
232         pvd->vdev_child = newchild;
233         pvd->vdev_child[id] = cvd;
234
235         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
236         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
237
238         /*
239          * Walk up all ancestors to update guid sum.
240          */
241         for (; pvd != NULL; pvd = pvd->vdev_parent)
242                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
243 }
244
245 void
246 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
247 {
248         int c;
249         uint_t id = cvd->vdev_id;
250
251         ASSERT(cvd->vdev_parent == pvd);
252
253         if (pvd == NULL)
254                 return;
255
256         ASSERT(id < pvd->vdev_children);
257         ASSERT(pvd->vdev_child[id] == cvd);
258
259         pvd->vdev_child[id] = NULL;
260         cvd->vdev_parent = NULL;
261
262         for (c = 0; c < pvd->vdev_children; c++)
263                 if (pvd->vdev_child[c])
264                         break;
265
266         if (c == pvd->vdev_children) {
267                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
268                 pvd->vdev_child = NULL;
269                 pvd->vdev_children = 0;
270         }
271
272         /*
273          * Walk up all ancestors to update guid sum.
274          */
275         for (; pvd != NULL; pvd = pvd->vdev_parent)
276                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
277 }
278
279 /*
280  * Remove any holes in the child array.
281  */
282 void
283 vdev_compact_children(vdev_t *pvd)
284 {
285         vdev_t **newchild, *cvd;
286         int oldc = pvd->vdev_children;
287         int newc;
288         int c;
289
290         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
291
292         for (c = newc = 0; c < oldc; c++)
293                 if (pvd->vdev_child[c])
294                         newc++;
295
296         newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
297
298         for (c = newc = 0; c < oldc; c++) {
299                 if ((cvd = pvd->vdev_child[c]) != NULL) {
300                         newchild[newc] = cvd;
301                         cvd->vdev_id = newc++;
302                 }
303         }
304
305         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
306         pvd->vdev_child = newchild;
307         pvd->vdev_children = newc;
308 }
309
310 /*
311  * Allocate and minimally initialize a vdev_t.
312  */
313 vdev_t *
314 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
315 {
316         vdev_t *vd;
317         int t;
318
319         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
320
321         if (spa->spa_root_vdev == NULL) {
322                 ASSERT(ops == &vdev_root_ops);
323                 spa->spa_root_vdev = vd;
324                 spa->spa_load_guid = spa_generate_guid(NULL);
325         }
326
327         if (guid == 0 && ops != &vdev_hole_ops) {
328                 if (spa->spa_root_vdev == vd) {
329                         /*
330                          * The root vdev's guid will also be the pool guid,
331                          * which must be unique among all pools.
332                          */
333                         guid = spa_generate_guid(NULL);
334                 } else {
335                         /*
336                          * Any other vdev's guid must be unique within the pool.
337                          */
338                         guid = spa_generate_guid(spa);
339                 }
340                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
341         }
342
343         vd->vdev_spa = spa;
344         vd->vdev_id = id;
345         vd->vdev_guid = guid;
346         vd->vdev_guid_sum = guid;
347         vd->vdev_ops = ops;
348         vd->vdev_state = VDEV_STATE_CLOSED;
349         vd->vdev_ishole = (ops == &vdev_hole_ops);
350
351         /*
352          * Initialize rate limit structs for events.  We rate limit ZIO delay
353          * and checksum events so that we don't overwhelm ZED with thousands
354          * of events when a disk is acting up.
355          */
356         zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
357         zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
358
359         list_link_init(&vd->vdev_config_dirty_node);
360         list_link_init(&vd->vdev_state_dirty_node);
361         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
362         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
363         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
364         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
365
366         for (t = 0; t < DTL_TYPES; t++) {
367                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
368                     &vd->vdev_dtl_lock);
369         }
370         txg_list_create(&vd->vdev_ms_list,
371             offsetof(struct metaslab, ms_txg_node));
372         txg_list_create(&vd->vdev_dtl_list,
373             offsetof(struct vdev, vdev_dtl_node));
374         vd->vdev_stat.vs_timestamp = gethrtime();
375         vdev_queue_init(vd);
376         vdev_cache_init(vd);
377
378         return (vd);
379 }
380
381 /*
382  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
383  * creating a new vdev or loading an existing one - the behavior is slightly
384  * different for each case.
385  */
386 int
387 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
388     int alloctype)
389 {
390         vdev_ops_t *ops;
391         char *type;
392         uint64_t guid = 0, islog, nparity;
393         vdev_t *vd;
394
395         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
396
397         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
398                 return (SET_ERROR(EINVAL));
399
400         if ((ops = vdev_getops(type)) == NULL)
401                 return (SET_ERROR(EINVAL));
402
403         /*
404          * If this is a load, get the vdev guid from the nvlist.
405          * Otherwise, vdev_alloc_common() will generate one for us.
406          */
407         if (alloctype == VDEV_ALLOC_LOAD) {
408                 uint64_t label_id;
409
410                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
411                     label_id != id)
412                         return (SET_ERROR(EINVAL));
413
414                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
415                         return (SET_ERROR(EINVAL));
416         } else if (alloctype == VDEV_ALLOC_SPARE) {
417                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
418                         return (SET_ERROR(EINVAL));
419         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
420                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
421                         return (SET_ERROR(EINVAL));
422         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
423                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
424                         return (SET_ERROR(EINVAL));
425         }
426
427         /*
428          * The first allocated vdev must be of type 'root'.
429          */
430         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
431                 return (SET_ERROR(EINVAL));
432
433         /*
434          * Determine whether we're a log vdev.
435          */
436         islog = 0;
437         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
438         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
439                 return (SET_ERROR(ENOTSUP));
440
441         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
442                 return (SET_ERROR(ENOTSUP));
443
444         /*
445          * Set the nparity property for RAID-Z vdevs.
446          */
447         nparity = -1ULL;
448         if (ops == &vdev_raidz_ops) {
449                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
450                     &nparity) == 0) {
451                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
452                                 return (SET_ERROR(EINVAL));
453                         /*
454                          * Previous versions could only support 1 or 2 parity
455                          * device.
456                          */
457                         if (nparity > 1 &&
458                             spa_version(spa) < SPA_VERSION_RAIDZ2)
459                                 return (SET_ERROR(ENOTSUP));
460                         if (nparity > 2 &&
461                             spa_version(spa) < SPA_VERSION_RAIDZ3)
462                                 return (SET_ERROR(ENOTSUP));
463                 } else {
464                         /*
465                          * We require the parity to be specified for SPAs that
466                          * support multiple parity levels.
467                          */
468                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
469                                 return (SET_ERROR(EINVAL));
470                         /*
471                          * Otherwise, we default to 1 parity device for RAID-Z.
472                          */
473                         nparity = 1;
474                 }
475         } else {
476                 nparity = 0;
477         }
478         ASSERT(nparity != -1ULL);
479
480         vd = vdev_alloc_common(spa, id, guid, ops);
481
482         vd->vdev_islog = islog;
483         vd->vdev_nparity = nparity;
484
485         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
486                 vd->vdev_path = spa_strdup(vd->vdev_path);
487         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
488                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
489         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
490             &vd->vdev_physpath) == 0)
491                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
492
493         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
494             &vd->vdev_enc_sysfs_path) == 0)
495                 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
496
497         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
498                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
499
500         /*
501          * Set the whole_disk property.  If it's not specified, leave the value
502          * as -1.
503          */
504         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
505             &vd->vdev_wholedisk) != 0)
506                 vd->vdev_wholedisk = -1ULL;
507
508         /*
509          * Look for the 'not present' flag.  This will only be set if the device
510          * was not present at the time of import.
511          */
512         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
513             &vd->vdev_not_present);
514
515         /*
516          * Get the alignment requirement.
517          */
518         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
519
520         /*
521          * Retrieve the vdev creation time.
522          */
523         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
524             &vd->vdev_crtxg);
525
526         /*
527          * If we're a top-level vdev, try to load the allocation parameters.
528          */
529         if (parent && !parent->vdev_parent &&
530             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
531                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
532                     &vd->vdev_ms_array);
533                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
534                     &vd->vdev_ms_shift);
535                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
536                     &vd->vdev_asize);
537                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
538                     &vd->vdev_removing);
539                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
540                     &vd->vdev_top_zap);
541         } else {
542                 ASSERT0(vd->vdev_top_zap);
543         }
544
545         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
546                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
547                     alloctype == VDEV_ALLOC_ADD ||
548                     alloctype == VDEV_ALLOC_SPLIT ||
549                     alloctype == VDEV_ALLOC_ROOTPOOL);
550                 vd->vdev_mg = metaslab_group_create(islog ?
551                     spa_log_class(spa) : spa_normal_class(spa), vd);
552         }
553
554         if (vd->vdev_ops->vdev_op_leaf &&
555             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
556                 (void) nvlist_lookup_uint64(nv,
557                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
558         } else {
559                 ASSERT0(vd->vdev_leaf_zap);
560         }
561
562         /*
563          * If we're a leaf vdev, try to load the DTL object and other state.
564          */
565
566         if (vd->vdev_ops->vdev_op_leaf &&
567             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
568             alloctype == VDEV_ALLOC_ROOTPOOL)) {
569                 if (alloctype == VDEV_ALLOC_LOAD) {
570                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
571                             &vd->vdev_dtl_object);
572                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
573                             &vd->vdev_unspare);
574                 }
575
576                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
577                         uint64_t spare = 0;
578
579                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
580                             &spare) == 0 && spare)
581                                 spa_spare_add(vd);
582                 }
583
584                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
585                     &vd->vdev_offline);
586
587                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
588                     &vd->vdev_resilver_txg);
589
590                 /*
591                  * When importing a pool, we want to ignore the persistent fault
592                  * state, as the diagnosis made on another system may not be
593                  * valid in the current context.  Local vdevs will
594                  * remain in the faulted state.
595                  */
596                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
597                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
598                             &vd->vdev_faulted);
599                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
600                             &vd->vdev_degraded);
601                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
602                             &vd->vdev_removed);
603
604                         if (vd->vdev_faulted || vd->vdev_degraded) {
605                                 char *aux;
606
607                                 vd->vdev_label_aux =
608                                     VDEV_AUX_ERR_EXCEEDED;
609                                 if (nvlist_lookup_string(nv,
610                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
611                                     strcmp(aux, "external") == 0)
612                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
613                         }
614                 }
615         }
616
617         /*
618          * Add ourselves to the parent's list of children.
619          */
620         vdev_add_child(parent, vd);
621
622         *vdp = vd;
623
624         return (0);
625 }
626
627 void
628 vdev_free(vdev_t *vd)
629 {
630         int c, t;
631         spa_t *spa = vd->vdev_spa;
632
633         /*
634          * vdev_free() implies closing the vdev first.  This is simpler than
635          * trying to ensure complicated semantics for all callers.
636          */
637         vdev_close(vd);
638
639         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
640         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
641
642         /*
643          * Free all children.
644          */
645         for (c = 0; c < vd->vdev_children; c++)
646                 vdev_free(vd->vdev_child[c]);
647
648         ASSERT(vd->vdev_child == NULL);
649         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
650
651         /*
652          * Discard allocation state.
653          */
654         if (vd->vdev_mg != NULL) {
655                 vdev_metaslab_fini(vd);
656                 metaslab_group_destroy(vd->vdev_mg);
657         }
658
659         ASSERT0(vd->vdev_stat.vs_space);
660         ASSERT0(vd->vdev_stat.vs_dspace);
661         ASSERT0(vd->vdev_stat.vs_alloc);
662
663         /*
664          * Remove this vdev from its parent's child list.
665          */
666         vdev_remove_child(vd->vdev_parent, vd);
667
668         ASSERT(vd->vdev_parent == NULL);
669
670         /*
671          * Clean up vdev structure.
672          */
673         vdev_queue_fini(vd);
674         vdev_cache_fini(vd);
675
676         if (vd->vdev_path)
677                 spa_strfree(vd->vdev_path);
678         if (vd->vdev_devid)
679                 spa_strfree(vd->vdev_devid);
680         if (vd->vdev_physpath)
681                 spa_strfree(vd->vdev_physpath);
682
683         if (vd->vdev_enc_sysfs_path)
684                 spa_strfree(vd->vdev_enc_sysfs_path);
685
686         if (vd->vdev_fru)
687                 spa_strfree(vd->vdev_fru);
688
689         if (vd->vdev_isspare)
690                 spa_spare_remove(vd);
691         if (vd->vdev_isl2cache)
692                 spa_l2cache_remove(vd);
693
694         txg_list_destroy(&vd->vdev_ms_list);
695         txg_list_destroy(&vd->vdev_dtl_list);
696
697         mutex_enter(&vd->vdev_dtl_lock);
698         space_map_close(vd->vdev_dtl_sm);
699         for (t = 0; t < DTL_TYPES; t++) {
700                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
701                 range_tree_destroy(vd->vdev_dtl[t]);
702         }
703         mutex_exit(&vd->vdev_dtl_lock);
704
705         mutex_destroy(&vd->vdev_queue_lock);
706         mutex_destroy(&vd->vdev_dtl_lock);
707         mutex_destroy(&vd->vdev_stat_lock);
708         mutex_destroy(&vd->vdev_probe_lock);
709
710         if (vd == spa->spa_root_vdev)
711                 spa->spa_root_vdev = NULL;
712
713         kmem_free(vd, sizeof (vdev_t));
714 }
715
716 /*
717  * Transfer top-level vdev state from svd to tvd.
718  */
719 static void
720 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
721 {
722         spa_t *spa = svd->vdev_spa;
723         metaslab_t *msp;
724         vdev_t *vd;
725         int t;
726
727         ASSERT(tvd == tvd->vdev_top);
728
729         tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
730         tvd->vdev_ms_array = svd->vdev_ms_array;
731         tvd->vdev_ms_shift = svd->vdev_ms_shift;
732         tvd->vdev_ms_count = svd->vdev_ms_count;
733         tvd->vdev_top_zap = svd->vdev_top_zap;
734
735         svd->vdev_ms_array = 0;
736         svd->vdev_ms_shift = 0;
737         svd->vdev_ms_count = 0;
738         svd->vdev_top_zap = 0;
739
740         if (tvd->vdev_mg)
741                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
742         tvd->vdev_mg = svd->vdev_mg;
743         tvd->vdev_ms = svd->vdev_ms;
744
745         svd->vdev_mg = NULL;
746         svd->vdev_ms = NULL;
747
748         if (tvd->vdev_mg != NULL)
749                 tvd->vdev_mg->mg_vd = tvd;
750
751         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
752         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
753         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
754
755         svd->vdev_stat.vs_alloc = 0;
756         svd->vdev_stat.vs_space = 0;
757         svd->vdev_stat.vs_dspace = 0;
758
759         for (t = 0; t < TXG_SIZE; t++) {
760                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
761                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
762                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
763                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
764                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
765                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
766         }
767
768         if (list_link_active(&svd->vdev_config_dirty_node)) {
769                 vdev_config_clean(svd);
770                 vdev_config_dirty(tvd);
771         }
772
773         if (list_link_active(&svd->vdev_state_dirty_node)) {
774                 vdev_state_clean(svd);
775                 vdev_state_dirty(tvd);
776         }
777
778         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
779         svd->vdev_deflate_ratio = 0;
780
781         tvd->vdev_islog = svd->vdev_islog;
782         svd->vdev_islog = 0;
783 }
784
785 static void
786 vdev_top_update(vdev_t *tvd, vdev_t *vd)
787 {
788         int c;
789
790         if (vd == NULL)
791                 return;
792
793         vd->vdev_top = tvd;
794
795         for (c = 0; c < vd->vdev_children; c++)
796                 vdev_top_update(tvd, vd->vdev_child[c]);
797 }
798
799 /*
800  * Add a mirror/replacing vdev above an existing vdev.
801  */
802 vdev_t *
803 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
804 {
805         spa_t *spa = cvd->vdev_spa;
806         vdev_t *pvd = cvd->vdev_parent;
807         vdev_t *mvd;
808
809         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
810
811         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
812
813         mvd->vdev_asize = cvd->vdev_asize;
814         mvd->vdev_min_asize = cvd->vdev_min_asize;
815         mvd->vdev_max_asize = cvd->vdev_max_asize;
816         mvd->vdev_ashift = cvd->vdev_ashift;
817         mvd->vdev_state = cvd->vdev_state;
818         mvd->vdev_crtxg = cvd->vdev_crtxg;
819
820         vdev_remove_child(pvd, cvd);
821         vdev_add_child(pvd, mvd);
822         cvd->vdev_id = mvd->vdev_children;
823         vdev_add_child(mvd, cvd);
824         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
825
826         if (mvd == mvd->vdev_top)
827                 vdev_top_transfer(cvd, mvd);
828
829         return (mvd);
830 }
831
832 /*
833  * Remove a 1-way mirror/replacing vdev from the tree.
834  */
835 void
836 vdev_remove_parent(vdev_t *cvd)
837 {
838         vdev_t *mvd = cvd->vdev_parent;
839         vdev_t *pvd = mvd->vdev_parent;
840
841         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
842
843         ASSERT(mvd->vdev_children == 1);
844         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
845             mvd->vdev_ops == &vdev_replacing_ops ||
846             mvd->vdev_ops == &vdev_spare_ops);
847         cvd->vdev_ashift = mvd->vdev_ashift;
848
849         vdev_remove_child(mvd, cvd);
850         vdev_remove_child(pvd, mvd);
851
852         /*
853          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
854          * Otherwise, we could have detached an offline device, and when we
855          * go to import the pool we'll think we have two top-level vdevs,
856          * instead of a different version of the same top-level vdev.
857          */
858         if (mvd->vdev_top == mvd) {
859                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
860                 cvd->vdev_orig_guid = cvd->vdev_guid;
861                 cvd->vdev_guid += guid_delta;
862                 cvd->vdev_guid_sum += guid_delta;
863
864                 /*
865                  * If pool not set for autoexpand, we need to also preserve
866                  * mvd's asize to prevent automatic expansion of cvd.
867                  * Otherwise if we are adjusting the mirror by attaching and
868                  * detaching children of non-uniform sizes, the mirror could
869                  * autoexpand, unexpectedly requiring larger devices to
870                  * re-establish the mirror.
871                  */
872                 if (!cvd->vdev_spa->spa_autoexpand)
873                         cvd->vdev_asize = mvd->vdev_asize;
874         }
875         cvd->vdev_id = mvd->vdev_id;
876         vdev_add_child(pvd, cvd);
877         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
878
879         if (cvd == cvd->vdev_top)
880                 vdev_top_transfer(mvd, cvd);
881
882         ASSERT(mvd->vdev_children == 0);
883         vdev_free(mvd);
884 }
885
886 int
887 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
888 {
889         spa_t *spa = vd->vdev_spa;
890         objset_t *mos = spa->spa_meta_objset;
891         uint64_t m;
892         uint64_t oldc = vd->vdev_ms_count;
893         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
894         metaslab_t **mspp;
895         int error;
896
897         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
898
899         /*
900          * This vdev is not being allocated from yet or is a hole.
901          */
902         if (vd->vdev_ms_shift == 0)
903                 return (0);
904
905         ASSERT(!vd->vdev_ishole);
906
907         /*
908          * Compute the raidz-deflation ratio.  Note, we hard-code
909          * in 128k (1 << 17) because it is the "typical" blocksize.
910          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
911          * otherwise it would inconsistently account for existing bp's.
912          */
913         vd->vdev_deflate_ratio = (1 << 17) /
914             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
915
916         ASSERT(oldc <= newc);
917
918         mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
919
920         if (oldc != 0) {
921                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
922                 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
923         }
924
925         vd->vdev_ms = mspp;
926         vd->vdev_ms_count = newc;
927
928         for (m = oldc; m < newc; m++) {
929                 uint64_t object = 0;
930
931                 if (txg == 0) {
932                         error = dmu_read(mos, vd->vdev_ms_array,
933                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
934                             DMU_READ_PREFETCH);
935                         if (error)
936                                 return (error);
937                 }
938
939                 error = metaslab_init(vd->vdev_mg, m, object, txg,
940                     &(vd->vdev_ms[m]));
941                 if (error)
942                         return (error);
943         }
944
945         if (txg == 0)
946                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
947
948         /*
949          * If the vdev is being removed we don't activate
950          * the metaslabs since we want to ensure that no new
951          * allocations are performed on this device.
952          */
953         if (oldc == 0 && !vd->vdev_removing)
954                 metaslab_group_activate(vd->vdev_mg);
955
956         if (txg == 0)
957                 spa_config_exit(spa, SCL_ALLOC, FTAG);
958
959         return (0);
960 }
961
962 void
963 vdev_metaslab_fini(vdev_t *vd)
964 {
965         uint64_t m;
966         uint64_t count = vd->vdev_ms_count;
967
968         if (vd->vdev_ms != NULL) {
969                 metaslab_group_passivate(vd->vdev_mg);
970                 for (m = 0; m < count; m++) {
971                         metaslab_t *msp = vd->vdev_ms[m];
972
973                         if (msp != NULL)
974                                 metaslab_fini(msp);
975                 }
976                 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
977                 vd->vdev_ms = NULL;
978         }
979
980         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
981 }
982
983 typedef struct vdev_probe_stats {
984         boolean_t       vps_readable;
985         boolean_t       vps_writeable;
986         int             vps_flags;
987 } vdev_probe_stats_t;
988
989 static void
990 vdev_probe_done(zio_t *zio)
991 {
992         spa_t *spa = zio->io_spa;
993         vdev_t *vd = zio->io_vd;
994         vdev_probe_stats_t *vps = zio->io_private;
995
996         ASSERT(vd->vdev_probe_zio != NULL);
997
998         if (zio->io_type == ZIO_TYPE_READ) {
999                 if (zio->io_error == 0)
1000                         vps->vps_readable = 1;
1001                 if (zio->io_error == 0 && spa_writeable(spa)) {
1002                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1003                             zio->io_offset, zio->io_size, zio->io_abd,
1004                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1005                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1006                 } else {
1007                         abd_free(zio->io_abd);
1008                 }
1009         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1010                 if (zio->io_error == 0)
1011                         vps->vps_writeable = 1;
1012                 abd_free(zio->io_abd);
1013         } else if (zio->io_type == ZIO_TYPE_NULL) {
1014                 zio_t *pio;
1015                 zio_link_t *zl;
1016
1017                 vd->vdev_cant_read |= !vps->vps_readable;
1018                 vd->vdev_cant_write |= !vps->vps_writeable;
1019
1020                 if (vdev_readable(vd) &&
1021                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1022                         zio->io_error = 0;
1023                 } else {
1024                         ASSERT(zio->io_error != 0);
1025                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1026                             spa, vd, NULL, 0, 0);
1027                         zio->io_error = SET_ERROR(ENXIO);
1028                 }
1029
1030                 mutex_enter(&vd->vdev_probe_lock);
1031                 ASSERT(vd->vdev_probe_zio == zio);
1032                 vd->vdev_probe_zio = NULL;
1033                 mutex_exit(&vd->vdev_probe_lock);
1034
1035                 zl = NULL;
1036                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1037                         if (!vdev_accessible(vd, pio))
1038                                 pio->io_error = SET_ERROR(ENXIO);
1039
1040                 kmem_free(vps, sizeof (*vps));
1041         }
1042 }
1043
1044 /*
1045  * Determine whether this device is accessible.
1046  *
1047  * Read and write to several known locations: the pad regions of each
1048  * vdev label but the first, which we leave alone in case it contains
1049  * a VTOC.
1050  */
1051 zio_t *
1052 vdev_probe(vdev_t *vd, zio_t *zio)
1053 {
1054         spa_t *spa = vd->vdev_spa;
1055         vdev_probe_stats_t *vps = NULL;
1056         zio_t *pio;
1057         int l;
1058
1059         ASSERT(vd->vdev_ops->vdev_op_leaf);
1060
1061         /*
1062          * Don't probe the probe.
1063          */
1064         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1065                 return (NULL);
1066
1067         /*
1068          * To prevent 'probe storms' when a device fails, we create
1069          * just one probe i/o at a time.  All zios that want to probe
1070          * this vdev will become parents of the probe io.
1071          */
1072         mutex_enter(&vd->vdev_probe_lock);
1073
1074         if ((pio = vd->vdev_probe_zio) == NULL) {
1075                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1076
1077                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1078                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1079                     ZIO_FLAG_TRYHARD;
1080
1081                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1082                         /*
1083                          * vdev_cant_read and vdev_cant_write can only
1084                          * transition from TRUE to FALSE when we have the
1085                          * SCL_ZIO lock as writer; otherwise they can only
1086                          * transition from FALSE to TRUE.  This ensures that
1087                          * any zio looking at these values can assume that
1088                          * failures persist for the life of the I/O.  That's
1089                          * important because when a device has intermittent
1090                          * connectivity problems, we want to ensure that
1091                          * they're ascribed to the device (ENXIO) and not
1092                          * the zio (EIO).
1093                          *
1094                          * Since we hold SCL_ZIO as writer here, clear both
1095                          * values so the probe can reevaluate from first
1096                          * principles.
1097                          */
1098                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1099                         vd->vdev_cant_read = B_FALSE;
1100                         vd->vdev_cant_write = B_FALSE;
1101                 }
1102
1103                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1104                     vdev_probe_done, vps,
1105                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1106
1107                 /*
1108                  * We can't change the vdev state in this context, so we
1109                  * kick off an async task to do it on our behalf.
1110                  */
1111                 if (zio != NULL) {
1112                         vd->vdev_probe_wanted = B_TRUE;
1113                         spa_async_request(spa, SPA_ASYNC_PROBE);
1114                 }
1115         }
1116
1117         if (zio != NULL)
1118                 zio_add_child(zio, pio);
1119
1120         mutex_exit(&vd->vdev_probe_lock);
1121
1122         if (vps == NULL) {
1123                 ASSERT(zio != NULL);
1124                 return (NULL);
1125         }
1126
1127         for (l = 1; l < VDEV_LABELS; l++) {
1128                 zio_nowait(zio_read_phys(pio, vd,
1129                     vdev_label_offset(vd->vdev_psize, l,
1130                     offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1131                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1132                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1133                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1134         }
1135
1136         if (zio == NULL)
1137                 return (pio);
1138
1139         zio_nowait(pio);
1140         return (NULL);
1141 }
1142
1143 static void
1144 vdev_open_child(void *arg)
1145 {
1146         vdev_t *vd = arg;
1147
1148         vd->vdev_open_thread = curthread;
1149         vd->vdev_open_error = vdev_open(vd);
1150         vd->vdev_open_thread = NULL;
1151 }
1152
1153 static boolean_t
1154 vdev_uses_zvols(vdev_t *vd)
1155 {
1156         int c;
1157
1158 #ifdef _KERNEL
1159         if (zvol_is_zvol(vd->vdev_path))
1160                 return (B_TRUE);
1161 #endif
1162
1163         for (c = 0; c < vd->vdev_children; c++)
1164                 if (vdev_uses_zvols(vd->vdev_child[c]))
1165                         return (B_TRUE);
1166
1167         return (B_FALSE);
1168 }
1169
1170 void
1171 vdev_open_children(vdev_t *vd)
1172 {
1173         taskq_t *tq;
1174         int children = vd->vdev_children;
1175         int c;
1176
1177         /*
1178          * in order to handle pools on top of zvols, do the opens
1179          * in a single thread so that the same thread holds the
1180          * spa_namespace_lock
1181          */
1182         if (vdev_uses_zvols(vd)) {
1183 retry_sync:
1184                 for (c = 0; c < children; c++)
1185                         vd->vdev_child[c]->vdev_open_error =
1186                             vdev_open(vd->vdev_child[c]);
1187         } else {
1188                 tq = taskq_create("vdev_open", children, minclsyspri,
1189                     children, children, TASKQ_PREPOPULATE);
1190                 if (tq == NULL)
1191                         goto retry_sync;
1192
1193                 for (c = 0; c < children; c++)
1194                         VERIFY(taskq_dispatch(tq, vdev_open_child,
1195                             vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1196
1197                 taskq_destroy(tq);
1198         }
1199
1200         vd->vdev_nonrot = B_TRUE;
1201
1202         for (c = 0; c < children; c++)
1203                 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1204 }
1205
1206 /*
1207  * Prepare a virtual device for access.
1208  */
1209 int
1210 vdev_open(vdev_t *vd)
1211 {
1212         spa_t *spa = vd->vdev_spa;
1213         int error;
1214         uint64_t osize = 0;
1215         uint64_t max_osize = 0;
1216         uint64_t asize, max_asize, psize;
1217         uint64_t ashift = 0;
1218         int c;
1219
1220         ASSERT(vd->vdev_open_thread == curthread ||
1221             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1222         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1223             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1224             vd->vdev_state == VDEV_STATE_OFFLINE);
1225
1226         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1227         vd->vdev_cant_read = B_FALSE;
1228         vd->vdev_cant_write = B_FALSE;
1229         vd->vdev_min_asize = vdev_get_min_asize(vd);
1230
1231         /*
1232          * If this vdev is not removed, check its fault status.  If it's
1233          * faulted, bail out of the open.
1234          */
1235         if (!vd->vdev_removed && vd->vdev_faulted) {
1236                 ASSERT(vd->vdev_children == 0);
1237                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1238                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1239                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1240                     vd->vdev_label_aux);
1241                 return (SET_ERROR(ENXIO));
1242         } else if (vd->vdev_offline) {
1243                 ASSERT(vd->vdev_children == 0);
1244                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1245                 return (SET_ERROR(ENXIO));
1246         }
1247
1248         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1249
1250         /*
1251          * Reset the vdev_reopening flag so that we actually close
1252          * the vdev on error.
1253          */
1254         vd->vdev_reopening = B_FALSE;
1255         if (zio_injection_enabled && error == 0)
1256                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1257
1258         if (error) {
1259                 if (vd->vdev_removed &&
1260                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1261                         vd->vdev_removed = B_FALSE;
1262
1263                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1264                     vd->vdev_stat.vs_aux);
1265                 return (error);
1266         }
1267
1268         vd->vdev_removed = B_FALSE;
1269
1270         /*
1271          * Recheck the faulted flag now that we have confirmed that
1272          * the vdev is accessible.  If we're faulted, bail.
1273          */
1274         if (vd->vdev_faulted) {
1275                 ASSERT(vd->vdev_children == 0);
1276                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1277                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1278                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1279                     vd->vdev_label_aux);
1280                 return (SET_ERROR(ENXIO));
1281         }
1282
1283         if (vd->vdev_degraded) {
1284                 ASSERT(vd->vdev_children == 0);
1285                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1286                     VDEV_AUX_ERR_EXCEEDED);
1287         } else {
1288                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1289         }
1290
1291         /*
1292          * For hole or missing vdevs we just return success.
1293          */
1294         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1295                 return (0);
1296
1297         for (c = 0; c < vd->vdev_children; c++) {
1298                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1299                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1300                             VDEV_AUX_NONE);
1301                         break;
1302                 }
1303         }
1304
1305         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1306         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1307
1308         if (vd->vdev_children == 0) {
1309                 if (osize < SPA_MINDEVSIZE) {
1310                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1311                             VDEV_AUX_TOO_SMALL);
1312                         return (SET_ERROR(EOVERFLOW));
1313                 }
1314                 psize = osize;
1315                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1316                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1317                     VDEV_LABEL_END_SIZE);
1318         } else {
1319                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1320                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1321                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1322                             VDEV_AUX_TOO_SMALL);
1323                         return (SET_ERROR(EOVERFLOW));
1324                 }
1325                 psize = 0;
1326                 asize = osize;
1327                 max_asize = max_osize;
1328         }
1329
1330         vd->vdev_psize = psize;
1331
1332         /*
1333          * Make sure the allocatable size hasn't shrunk.
1334          */
1335         if (asize < vd->vdev_min_asize) {
1336                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1337                     VDEV_AUX_BAD_LABEL);
1338                 return (SET_ERROR(EINVAL));
1339         }
1340
1341         if (vd->vdev_asize == 0) {
1342                 /*
1343                  * This is the first-ever open, so use the computed values.
1344                  * For compatibility, a different ashift can be requested.
1345                  */
1346                 vd->vdev_asize = asize;
1347                 vd->vdev_max_asize = max_asize;
1348                 if (vd->vdev_ashift == 0)
1349                         vd->vdev_ashift = ashift;
1350         } else {
1351                 /*
1352                  * Detect if the alignment requirement has increased.
1353                  * We don't want to make the pool unavailable, just
1354                  * post an event instead.
1355                  */
1356                 if (ashift > vd->vdev_top->vdev_ashift &&
1357                     vd->vdev_ops->vdev_op_leaf) {
1358                         zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1359                             spa, vd, NULL, 0, 0);
1360                 }
1361
1362                 vd->vdev_max_asize = max_asize;
1363         }
1364
1365         /*
1366          * If all children are healthy and the asize has increased,
1367          * then we've experienced dynamic LUN growth.  If automatic
1368          * expansion is enabled then use the additional space.
1369          */
1370         if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1371             (vd->vdev_expanding || spa->spa_autoexpand))
1372                 vd->vdev_asize = asize;
1373
1374         vdev_set_min_asize(vd);
1375
1376         /*
1377          * Ensure we can issue some IO before declaring the
1378          * vdev open for business.
1379          */
1380         if (vd->vdev_ops->vdev_op_leaf &&
1381             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1382                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1383                     VDEV_AUX_ERR_EXCEEDED);
1384                 return (error);
1385         }
1386
1387         /*
1388          * Track the min and max ashift values for normal data devices.
1389          */
1390         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1391             !vd->vdev_islog && vd->vdev_aux == NULL) {
1392                 if (vd->vdev_ashift > spa->spa_max_ashift)
1393                         spa->spa_max_ashift = vd->vdev_ashift;
1394                 if (vd->vdev_ashift < spa->spa_min_ashift)
1395                         spa->spa_min_ashift = vd->vdev_ashift;
1396         }
1397
1398         /*
1399          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1400          * resilver.  But don't do this if we are doing a reopen for a scrub,
1401          * since this would just restart the scrub we are already doing.
1402          */
1403         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1404             vdev_resilver_needed(vd, NULL, NULL))
1405                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1406
1407         return (0);
1408 }
1409
1410 /*
1411  * Called once the vdevs are all opened, this routine validates the label
1412  * contents.  This needs to be done before vdev_load() so that we don't
1413  * inadvertently do repair I/Os to the wrong device.
1414  *
1415  * If 'strict' is false ignore the spa guid check. This is necessary because
1416  * if the machine crashed during a re-guid the new guid might have been written
1417  * to all of the vdev labels, but not the cached config. The strict check
1418  * will be performed when the pool is opened again using the mos config.
1419  *
1420  * This function will only return failure if one of the vdevs indicates that it
1421  * has since been destroyed or exported.  This is only possible if
1422  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1423  * will be updated but the function will return 0.
1424  */
1425 int
1426 vdev_validate(vdev_t *vd, boolean_t strict)
1427 {
1428         spa_t *spa = vd->vdev_spa;
1429         nvlist_t *label;
1430         uint64_t guid = 0, top_guid;
1431         uint64_t state;
1432         int c;
1433
1434         for (c = 0; c < vd->vdev_children; c++)
1435                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1436                         return (SET_ERROR(EBADF));
1437
1438         /*
1439          * If the device has already failed, or was marked offline, don't do
1440          * any further validation.  Otherwise, label I/O will fail and we will
1441          * overwrite the previous state.
1442          */
1443         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1444                 uint64_t aux_guid = 0;
1445                 nvlist_t *nvl;
1446                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1447                     spa_last_synced_txg(spa) : -1ULL;
1448
1449                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1450                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1451                             VDEV_AUX_BAD_LABEL);
1452                         return (0);
1453                 }
1454
1455                 /*
1456                  * Determine if this vdev has been split off into another
1457                  * pool.  If so, then refuse to open it.
1458                  */
1459                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1460                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1461                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1462                             VDEV_AUX_SPLIT_POOL);
1463                         nvlist_free(label);
1464                         return (0);
1465                 }
1466
1467                 if (strict && (nvlist_lookup_uint64(label,
1468                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1469                     guid != spa_guid(spa))) {
1470                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1471                             VDEV_AUX_CORRUPT_DATA);
1472                         nvlist_free(label);
1473                         return (0);
1474                 }
1475
1476                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1477                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1478                     &aux_guid) != 0)
1479                         aux_guid = 0;
1480
1481                 /*
1482                  * If this vdev just became a top-level vdev because its
1483                  * sibling was detached, it will have adopted the parent's
1484                  * vdev guid -- but the label may or may not be on disk yet.
1485                  * Fortunately, either version of the label will have the
1486                  * same top guid, so if we're a top-level vdev, we can
1487                  * safely compare to that instead.
1488                  *
1489                  * If we split this vdev off instead, then we also check the
1490                  * original pool's guid.  We don't want to consider the vdev
1491                  * corrupt if it is partway through a split operation.
1492                  */
1493                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1494                     &guid) != 0 ||
1495                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1496                     &top_guid) != 0 ||
1497                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1498                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1499                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1500                             VDEV_AUX_CORRUPT_DATA);
1501                         nvlist_free(label);
1502                         return (0);
1503                 }
1504
1505                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1506                     &state) != 0) {
1507                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1508                             VDEV_AUX_CORRUPT_DATA);
1509                         nvlist_free(label);
1510                         return (0);
1511                 }
1512
1513                 nvlist_free(label);
1514
1515                 /*
1516                  * If this is a verbatim import, no need to check the
1517                  * state of the pool.
1518                  */
1519                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1520                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1521                     state != POOL_STATE_ACTIVE)
1522                         return (SET_ERROR(EBADF));
1523
1524                 /*
1525                  * If we were able to open and validate a vdev that was
1526                  * previously marked permanently unavailable, clear that state
1527                  * now.
1528                  */
1529                 if (vd->vdev_not_present)
1530                         vd->vdev_not_present = 0;
1531         }
1532
1533         return (0);
1534 }
1535
1536 /*
1537  * Close a virtual device.
1538  */
1539 void
1540 vdev_close(vdev_t *vd)
1541 {
1542         vdev_t *pvd = vd->vdev_parent;
1543         ASSERTV(spa_t *spa = vd->vdev_spa);
1544
1545         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1546
1547         /*
1548          * If our parent is reopening, then we are as well, unless we are
1549          * going offline.
1550          */
1551         if (pvd != NULL && pvd->vdev_reopening)
1552                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1553
1554         vd->vdev_ops->vdev_op_close(vd);
1555
1556         vdev_cache_purge(vd);
1557
1558         /*
1559          * We record the previous state before we close it, so that if we are
1560          * doing a reopen(), we don't generate FMA ereports if we notice that
1561          * it's still faulted.
1562          */
1563         vd->vdev_prevstate = vd->vdev_state;
1564
1565         if (vd->vdev_offline)
1566                 vd->vdev_state = VDEV_STATE_OFFLINE;
1567         else
1568                 vd->vdev_state = VDEV_STATE_CLOSED;
1569         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1570 }
1571
1572 void
1573 vdev_hold(vdev_t *vd)
1574 {
1575         spa_t *spa = vd->vdev_spa;
1576         int c;
1577
1578         ASSERT(spa_is_root(spa));
1579         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1580                 return;
1581
1582         for (c = 0; c < vd->vdev_children; c++)
1583                 vdev_hold(vd->vdev_child[c]);
1584
1585         if (vd->vdev_ops->vdev_op_leaf)
1586                 vd->vdev_ops->vdev_op_hold(vd);
1587 }
1588
1589 void
1590 vdev_rele(vdev_t *vd)
1591 {
1592         int c;
1593
1594         ASSERT(spa_is_root(vd->vdev_spa));
1595         for (c = 0; c < vd->vdev_children; c++)
1596                 vdev_rele(vd->vdev_child[c]);
1597
1598         if (vd->vdev_ops->vdev_op_leaf)
1599                 vd->vdev_ops->vdev_op_rele(vd);
1600 }
1601
1602 /*
1603  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1604  * reopen leaf vdevs which had previously been opened as they might deadlock
1605  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1606  * If the leaf has never been opened then open it, as usual.
1607  */
1608 void
1609 vdev_reopen(vdev_t *vd)
1610 {
1611         spa_t *spa = vd->vdev_spa;
1612
1613         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1614
1615         /* set the reopening flag unless we're taking the vdev offline */
1616         vd->vdev_reopening = !vd->vdev_offline;
1617         vdev_close(vd);
1618         (void) vdev_open(vd);
1619
1620         /*
1621          * Call vdev_validate() here to make sure we have the same device.
1622          * Otherwise, a device with an invalid label could be successfully
1623          * opened in response to vdev_reopen().
1624          */
1625         if (vd->vdev_aux) {
1626                 (void) vdev_validate_aux(vd);
1627                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1628                     vd->vdev_aux == &spa->spa_l2cache &&
1629                     !l2arc_vdev_present(vd))
1630                         l2arc_add_vdev(spa, vd);
1631         } else {
1632                 (void) vdev_validate(vd, B_TRUE);
1633         }
1634
1635         /*
1636          * Reassess parent vdev's health.
1637          */
1638         vdev_propagate_state(vd);
1639 }
1640
1641 int
1642 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1643 {
1644         int error;
1645
1646         /*
1647          * Normally, partial opens (e.g. of a mirror) are allowed.
1648          * For a create, however, we want to fail the request if
1649          * there are any components we can't open.
1650          */
1651         error = vdev_open(vd);
1652
1653         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1654                 vdev_close(vd);
1655                 return (error ? error : ENXIO);
1656         }
1657
1658         /*
1659          * Recursively load DTLs and initialize all labels.
1660          */
1661         if ((error = vdev_dtl_load(vd)) != 0 ||
1662             (error = vdev_label_init(vd, txg, isreplacing ?
1663             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1664                 vdev_close(vd);
1665                 return (error);
1666         }
1667
1668         return (0);
1669 }
1670
1671 void
1672 vdev_metaslab_set_size(vdev_t *vd)
1673 {
1674         /*
1675          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1676          */
1677         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1678         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1679 }
1680
1681 void
1682 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1683 {
1684         ASSERT(vd == vd->vdev_top);
1685         ASSERT(!vd->vdev_ishole);
1686         ASSERT(ISP2(flags));
1687         ASSERT(spa_writeable(vd->vdev_spa));
1688
1689         if (flags & VDD_METASLAB)
1690                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1691
1692         if (flags & VDD_DTL)
1693                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1694
1695         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1696 }
1697
1698 void
1699 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1700 {
1701         int c;
1702
1703         for (c = 0; c < vd->vdev_children; c++)
1704                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1705
1706         if (vd->vdev_ops->vdev_op_leaf)
1707                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1708 }
1709
1710 /*
1711  * DTLs.
1712  *
1713  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1714  * the vdev has less than perfect replication.  There are four kinds of DTL:
1715  *
1716  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1717  *
1718  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1719  *
1720  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1721  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1722  *      txgs that was scrubbed.
1723  *
1724  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1725  *      persistent errors or just some device being offline.
1726  *      Unlike the other three, the DTL_OUTAGE map is not generally
1727  *      maintained; it's only computed when needed, typically to
1728  *      determine whether a device can be detached.
1729  *
1730  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1731  * either has the data or it doesn't.
1732  *
1733  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1734  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1735  * if any child is less than fully replicated, then so is its parent.
1736  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1737  * comprising only those txgs which appear in 'maxfaults' or more children;
1738  * those are the txgs we don't have enough replication to read.  For example,
1739  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1740  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1741  * two child DTL_MISSING maps.
1742  *
1743  * It should be clear from the above that to compute the DTLs and outage maps
1744  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1745  * Therefore, that is all we keep on disk.  When loading the pool, or after
1746  * a configuration change, we generate all other DTLs from first principles.
1747  */
1748 void
1749 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1750 {
1751         range_tree_t *rt = vd->vdev_dtl[t];
1752
1753         ASSERT(t < DTL_TYPES);
1754         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1755         ASSERT(spa_writeable(vd->vdev_spa));
1756
1757         mutex_enter(rt->rt_lock);
1758         if (!range_tree_contains(rt, txg, size))
1759                 range_tree_add(rt, txg, size);
1760         mutex_exit(rt->rt_lock);
1761 }
1762
1763 boolean_t
1764 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1765 {
1766         range_tree_t *rt = vd->vdev_dtl[t];
1767         boolean_t dirty = B_FALSE;
1768
1769         ASSERT(t < DTL_TYPES);
1770         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1771
1772         mutex_enter(rt->rt_lock);
1773         if (range_tree_space(rt) != 0)
1774                 dirty = range_tree_contains(rt, txg, size);
1775         mutex_exit(rt->rt_lock);
1776
1777         return (dirty);
1778 }
1779
1780 boolean_t
1781 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1782 {
1783         range_tree_t *rt = vd->vdev_dtl[t];
1784         boolean_t empty;
1785
1786         mutex_enter(rt->rt_lock);
1787         empty = (range_tree_space(rt) == 0);
1788         mutex_exit(rt->rt_lock);
1789
1790         return (empty);
1791 }
1792
1793 /*
1794  * Returns the lowest txg in the DTL range.
1795  */
1796 static uint64_t
1797 vdev_dtl_min(vdev_t *vd)
1798 {
1799         range_seg_t *rs;
1800
1801         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1802         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1803         ASSERT0(vd->vdev_children);
1804
1805         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1806         return (rs->rs_start - 1);
1807 }
1808
1809 /*
1810  * Returns the highest txg in the DTL.
1811  */
1812 static uint64_t
1813 vdev_dtl_max(vdev_t *vd)
1814 {
1815         range_seg_t *rs;
1816
1817         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1818         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1819         ASSERT0(vd->vdev_children);
1820
1821         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1822         return (rs->rs_end);
1823 }
1824
1825 /*
1826  * Determine if a resilvering vdev should remove any DTL entries from
1827  * its range. If the vdev was resilvering for the entire duration of the
1828  * scan then it should excise that range from its DTLs. Otherwise, this
1829  * vdev is considered partially resilvered and should leave its DTL
1830  * entries intact. The comment in vdev_dtl_reassess() describes how we
1831  * excise the DTLs.
1832  */
1833 static boolean_t
1834 vdev_dtl_should_excise(vdev_t *vd)
1835 {
1836         spa_t *spa = vd->vdev_spa;
1837         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1838
1839         ASSERT0(scn->scn_phys.scn_errors);
1840         ASSERT0(vd->vdev_children);
1841
1842         if (vd->vdev_resilver_txg == 0 ||
1843             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1844                 return (B_TRUE);
1845
1846         /*
1847          * When a resilver is initiated the scan will assign the scn_max_txg
1848          * value to the highest txg value that exists in all DTLs. If this
1849          * device's max DTL is not part of this scan (i.e. it is not in
1850          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1851          * for excision.
1852          */
1853         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1854                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1855                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1856                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1857                 return (B_TRUE);
1858         }
1859         return (B_FALSE);
1860 }
1861
1862 /*
1863  * Reassess DTLs after a config change or scrub completion.
1864  */
1865 void
1866 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1867 {
1868         spa_t *spa = vd->vdev_spa;
1869         avl_tree_t reftree;
1870         int c, t, minref;
1871
1872         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1873
1874         for (c = 0; c < vd->vdev_children; c++)
1875                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1876                     scrub_txg, scrub_done);
1877
1878         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1879                 return;
1880
1881         if (vd->vdev_ops->vdev_op_leaf) {
1882                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1883
1884                 mutex_enter(&vd->vdev_dtl_lock);
1885
1886                 /*
1887                  * If we've completed a scan cleanly then determine
1888                  * if this vdev should remove any DTLs. We only want to
1889                  * excise regions on vdevs that were available during
1890                  * the entire duration of this scan.
1891                  */
1892                 if (scrub_txg != 0 &&
1893                     (spa->spa_scrub_started ||
1894                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1895                     vdev_dtl_should_excise(vd)) {
1896                         /*
1897                          * We completed a scrub up to scrub_txg.  If we
1898                          * did it without rebooting, then the scrub dtl
1899                          * will be valid, so excise the old region and
1900                          * fold in the scrub dtl.  Otherwise, leave the
1901                          * dtl as-is if there was an error.
1902                          *
1903                          * There's little trick here: to excise the beginning
1904                          * of the DTL_MISSING map, we put it into a reference
1905                          * tree and then add a segment with refcnt -1 that
1906                          * covers the range [0, scrub_txg).  This means
1907                          * that each txg in that range has refcnt -1 or 0.
1908                          * We then add DTL_SCRUB with a refcnt of 2, so that
1909                          * entries in the range [0, scrub_txg) will have a
1910                          * positive refcnt -- either 1 or 2.  We then convert
1911                          * the reference tree into the new DTL_MISSING map.
1912                          */
1913                         space_reftree_create(&reftree);
1914                         space_reftree_add_map(&reftree,
1915                             vd->vdev_dtl[DTL_MISSING], 1);
1916                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1917                         space_reftree_add_map(&reftree,
1918                             vd->vdev_dtl[DTL_SCRUB], 2);
1919                         space_reftree_generate_map(&reftree,
1920                             vd->vdev_dtl[DTL_MISSING], 1);
1921                         space_reftree_destroy(&reftree);
1922                 }
1923                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1924                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1925                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1926                 if (scrub_done)
1927                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1928                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1929                 if (!vdev_readable(vd))
1930                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1931                 else
1932                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1933                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1934
1935                 /*
1936                  * If the vdev was resilvering and no longer has any
1937                  * DTLs then reset its resilvering flag and dirty
1938                  * the top level so that we persist the change.
1939                  */
1940                 if (vd->vdev_resilver_txg != 0 &&
1941                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1942                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1943                         vd->vdev_resilver_txg = 0;
1944                         vdev_config_dirty(vd->vdev_top);
1945                 }
1946
1947                 mutex_exit(&vd->vdev_dtl_lock);
1948
1949                 if (txg != 0)
1950                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1951                 return;
1952         }
1953
1954         mutex_enter(&vd->vdev_dtl_lock);
1955         for (t = 0; t < DTL_TYPES; t++) {
1956                 int c;
1957
1958                 /* account for child's outage in parent's missing map */
1959                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1960                 if (t == DTL_SCRUB)
1961                         continue;                       /* leaf vdevs only */
1962                 if (t == DTL_PARTIAL)
1963                         minref = 1;                     /* i.e. non-zero */
1964                 else if (vd->vdev_nparity != 0)
1965                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1966                 else
1967                         minref = vd->vdev_children;     /* any kind of mirror */
1968                 space_reftree_create(&reftree);
1969                 for (c = 0; c < vd->vdev_children; c++) {
1970                         vdev_t *cvd = vd->vdev_child[c];
1971                         mutex_enter(&cvd->vdev_dtl_lock);
1972                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1973                         mutex_exit(&cvd->vdev_dtl_lock);
1974                 }
1975                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1976                 space_reftree_destroy(&reftree);
1977         }
1978         mutex_exit(&vd->vdev_dtl_lock);
1979 }
1980
1981 int
1982 vdev_dtl_load(vdev_t *vd)
1983 {
1984         spa_t *spa = vd->vdev_spa;
1985         objset_t *mos = spa->spa_meta_objset;
1986         int error = 0;
1987         int c;
1988
1989         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1990                 ASSERT(!vd->vdev_ishole);
1991
1992                 error = space_map_open(&vd->vdev_dtl_sm, mos,
1993                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1994                 if (error)
1995                         return (error);
1996                 ASSERT(vd->vdev_dtl_sm != NULL);
1997
1998                 mutex_enter(&vd->vdev_dtl_lock);
1999
2000                 /*
2001                  * Now that we've opened the space_map we need to update
2002                  * the in-core DTL.
2003                  */
2004                 space_map_update(vd->vdev_dtl_sm);
2005
2006                 error = space_map_load(vd->vdev_dtl_sm,
2007                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2008                 mutex_exit(&vd->vdev_dtl_lock);
2009
2010                 return (error);
2011         }
2012
2013         for (c = 0; c < vd->vdev_children; c++) {
2014                 error = vdev_dtl_load(vd->vdev_child[c]);
2015                 if (error != 0)
2016                         break;
2017         }
2018
2019         return (error);
2020 }
2021
2022 void
2023 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2024 {
2025         spa_t *spa = vd->vdev_spa;
2026
2027         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2028         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2029             zapobj, tx));
2030 }
2031
2032 uint64_t
2033 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2034 {
2035         spa_t *spa = vd->vdev_spa;
2036         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2037             DMU_OT_NONE, 0, tx);
2038
2039         ASSERT(zap != 0);
2040         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2041             zap, tx));
2042
2043         return (zap);
2044 }
2045
2046 void
2047 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2048 {
2049         uint64_t i;
2050
2051         if (vd->vdev_ops != &vdev_hole_ops &&
2052             vd->vdev_ops != &vdev_missing_ops &&
2053             vd->vdev_ops != &vdev_root_ops &&
2054             !vd->vdev_top->vdev_removing) {
2055                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2056                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2057                 }
2058                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2059                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2060                 }
2061         }
2062         for (i = 0; i < vd->vdev_children; i++) {
2063                 vdev_construct_zaps(vd->vdev_child[i], tx);
2064         }
2065 }
2066
2067 void
2068 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2069 {
2070         spa_t *spa = vd->vdev_spa;
2071         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2072         objset_t *mos = spa->spa_meta_objset;
2073         range_tree_t *rtsync;
2074         kmutex_t rtlock;
2075         dmu_tx_t *tx;
2076         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2077
2078         ASSERT(!vd->vdev_ishole);
2079         ASSERT(vd->vdev_ops->vdev_op_leaf);
2080
2081         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2082
2083         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2084                 mutex_enter(&vd->vdev_dtl_lock);
2085                 space_map_free(vd->vdev_dtl_sm, tx);
2086                 space_map_close(vd->vdev_dtl_sm);
2087                 vd->vdev_dtl_sm = NULL;
2088                 mutex_exit(&vd->vdev_dtl_lock);
2089
2090                 /*
2091                  * We only destroy the leaf ZAP for detached leaves or for
2092                  * removed log devices. Removed data devices handle leaf ZAP
2093                  * cleanup later, once cancellation is no longer possible.
2094                  */
2095                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2096                     vd->vdev_top->vdev_islog)) {
2097                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2098                         vd->vdev_leaf_zap = 0;
2099                 }
2100
2101                 dmu_tx_commit(tx);
2102                 return;
2103         }
2104
2105         if (vd->vdev_dtl_sm == NULL) {
2106                 uint64_t new_object;
2107
2108                 new_object = space_map_alloc(mos, tx);
2109                 VERIFY3U(new_object, !=, 0);
2110
2111                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2112                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2113                 ASSERT(vd->vdev_dtl_sm != NULL);
2114         }
2115
2116         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2117
2118         rtsync = range_tree_create(NULL, NULL, &rtlock);
2119
2120         mutex_enter(&rtlock);
2121
2122         mutex_enter(&vd->vdev_dtl_lock);
2123         range_tree_walk(rt, range_tree_add, rtsync);
2124         mutex_exit(&vd->vdev_dtl_lock);
2125
2126         space_map_truncate(vd->vdev_dtl_sm, tx);
2127         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2128         range_tree_vacate(rtsync, NULL, NULL);
2129
2130         range_tree_destroy(rtsync);
2131
2132         mutex_exit(&rtlock);
2133         mutex_destroy(&rtlock);
2134
2135         /*
2136          * If the object for the space map has changed then dirty
2137          * the top level so that we update the config.
2138          */
2139         if (object != space_map_object(vd->vdev_dtl_sm)) {
2140                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2141                     "new object %llu", txg, spa_name(spa), object,
2142                     space_map_object(vd->vdev_dtl_sm));
2143                 vdev_config_dirty(vd->vdev_top);
2144         }
2145
2146         dmu_tx_commit(tx);
2147
2148         mutex_enter(&vd->vdev_dtl_lock);
2149         space_map_update(vd->vdev_dtl_sm);
2150         mutex_exit(&vd->vdev_dtl_lock);
2151 }
2152
2153 /*
2154  * Determine whether the specified vdev can be offlined/detached/removed
2155  * without losing data.
2156  */
2157 boolean_t
2158 vdev_dtl_required(vdev_t *vd)
2159 {
2160         spa_t *spa = vd->vdev_spa;
2161         vdev_t *tvd = vd->vdev_top;
2162         uint8_t cant_read = vd->vdev_cant_read;
2163         boolean_t required;
2164
2165         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2166
2167         if (vd == spa->spa_root_vdev || vd == tvd)
2168                 return (B_TRUE);
2169
2170         /*
2171          * Temporarily mark the device as unreadable, and then determine
2172          * whether this results in any DTL outages in the top-level vdev.
2173          * If not, we can safely offline/detach/remove the device.
2174          */
2175         vd->vdev_cant_read = B_TRUE;
2176         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2177         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2178         vd->vdev_cant_read = cant_read;
2179         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2180
2181         if (!required && zio_injection_enabled)
2182                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2183
2184         return (required);
2185 }
2186
2187 /*
2188  * Determine if resilver is needed, and if so the txg range.
2189  */
2190 boolean_t
2191 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2192 {
2193         boolean_t needed = B_FALSE;
2194         uint64_t thismin = UINT64_MAX;
2195         uint64_t thismax = 0;
2196         int c;
2197
2198         if (vd->vdev_children == 0) {
2199                 mutex_enter(&vd->vdev_dtl_lock);
2200                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2201                     vdev_writeable(vd)) {
2202
2203                         thismin = vdev_dtl_min(vd);
2204                         thismax = vdev_dtl_max(vd);
2205                         needed = B_TRUE;
2206                 }
2207                 mutex_exit(&vd->vdev_dtl_lock);
2208         } else {
2209                 for (c = 0; c < vd->vdev_children; c++) {
2210                         vdev_t *cvd = vd->vdev_child[c];
2211                         uint64_t cmin, cmax;
2212
2213                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2214                                 thismin = MIN(thismin, cmin);
2215                                 thismax = MAX(thismax, cmax);
2216                                 needed = B_TRUE;
2217                         }
2218                 }
2219         }
2220
2221         if (needed && minp) {
2222                 *minp = thismin;
2223                 *maxp = thismax;
2224         }
2225         return (needed);
2226 }
2227
2228 void
2229 vdev_load(vdev_t *vd)
2230 {
2231         int c;
2232
2233         /*
2234          * Recursively load all children.
2235          */
2236         for (c = 0; c < vd->vdev_children; c++)
2237                 vdev_load(vd->vdev_child[c]);
2238
2239         /*
2240          * If this is a top-level vdev, initialize its metaslabs.
2241          */
2242         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2243             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2244             vdev_metaslab_init(vd, 0) != 0))
2245                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2246                     VDEV_AUX_CORRUPT_DATA);
2247         /*
2248          * If this is a leaf vdev, load its DTL.
2249          */
2250         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2251                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2252                     VDEV_AUX_CORRUPT_DATA);
2253 }
2254
2255 /*
2256  * The special vdev case is used for hot spares and l2cache devices.  Its
2257  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2258  * we make sure that we can open the underlying device, then try to read the
2259  * label, and make sure that the label is sane and that it hasn't been
2260  * repurposed to another pool.
2261  */
2262 int
2263 vdev_validate_aux(vdev_t *vd)
2264 {
2265         nvlist_t *label;
2266         uint64_t guid, version;
2267         uint64_t state;
2268
2269         if (!vdev_readable(vd))
2270                 return (0);
2271
2272         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2273                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2274                     VDEV_AUX_CORRUPT_DATA);
2275                 return (-1);
2276         }
2277
2278         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2279             !SPA_VERSION_IS_SUPPORTED(version) ||
2280             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2281             guid != vd->vdev_guid ||
2282             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2283                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2284                     VDEV_AUX_CORRUPT_DATA);
2285                 nvlist_free(label);
2286                 return (-1);
2287         }
2288
2289         /*
2290          * We don't actually check the pool state here.  If it's in fact in
2291          * use by another pool, we update this fact on the fly when requested.
2292          */
2293         nvlist_free(label);
2294         return (0);
2295 }
2296
2297 void
2298 vdev_remove(vdev_t *vd, uint64_t txg)
2299 {
2300         spa_t *spa = vd->vdev_spa;
2301         objset_t *mos = spa->spa_meta_objset;
2302         dmu_tx_t *tx;
2303         int m, i;
2304
2305         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2306         ASSERT(vd == vd->vdev_top);
2307         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2308
2309         if (vd->vdev_ms != NULL) {
2310                 metaslab_group_t *mg = vd->vdev_mg;
2311
2312                 metaslab_group_histogram_verify(mg);
2313                 metaslab_class_histogram_verify(mg->mg_class);
2314
2315                 for (m = 0; m < vd->vdev_ms_count; m++) {
2316                         metaslab_t *msp = vd->vdev_ms[m];
2317
2318                         if (msp == NULL || msp->ms_sm == NULL)
2319                                 continue;
2320
2321                         mutex_enter(&msp->ms_lock);
2322                         /*
2323                          * If the metaslab was not loaded when the vdev
2324                          * was removed then the histogram accounting may
2325                          * not be accurate. Update the histogram information
2326                          * here so that we ensure that the metaslab group
2327                          * and metaslab class are up-to-date.
2328                          */
2329                         metaslab_group_histogram_remove(mg, msp);
2330
2331                         VERIFY0(space_map_allocated(msp->ms_sm));
2332                         space_map_free(msp->ms_sm, tx);
2333                         space_map_close(msp->ms_sm);
2334                         msp->ms_sm = NULL;
2335                         mutex_exit(&msp->ms_lock);
2336                 }
2337
2338                 metaslab_group_histogram_verify(mg);
2339                 metaslab_class_histogram_verify(mg->mg_class);
2340                 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2341                         ASSERT0(mg->mg_histogram[i]);
2342
2343         }
2344
2345         if (vd->vdev_ms_array) {
2346                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2347                 vd->vdev_ms_array = 0;
2348         }
2349
2350         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2351                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2352                 vd->vdev_top_zap = 0;
2353         }
2354         dmu_tx_commit(tx);
2355 }
2356
2357 void
2358 vdev_sync_done(vdev_t *vd, uint64_t txg)
2359 {
2360         metaslab_t *msp;
2361         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2362
2363         ASSERT(!vd->vdev_ishole);
2364
2365         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2366                 metaslab_sync_done(msp, txg);
2367
2368         if (reassess)
2369                 metaslab_sync_reassess(vd->vdev_mg);
2370 }
2371
2372 void
2373 vdev_sync(vdev_t *vd, uint64_t txg)
2374 {
2375         spa_t *spa = vd->vdev_spa;
2376         vdev_t *lvd;
2377         metaslab_t *msp;
2378         dmu_tx_t *tx;
2379
2380         ASSERT(!vd->vdev_ishole);
2381
2382         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2383                 ASSERT(vd == vd->vdev_top);
2384                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2385                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2386                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2387                 ASSERT(vd->vdev_ms_array != 0);
2388                 vdev_config_dirty(vd);
2389                 dmu_tx_commit(tx);
2390         }
2391
2392         /*
2393          * Remove the metadata associated with this vdev once it's empty.
2394          */
2395         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2396                 vdev_remove(vd, txg);
2397
2398         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2399                 metaslab_sync(msp, txg);
2400                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2401         }
2402
2403         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2404                 vdev_dtl_sync(lvd, txg);
2405
2406         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2407 }
2408
2409 uint64_t
2410 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2411 {
2412         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2413 }
2414
2415 /*
2416  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2417  * not be opened, and no I/O is attempted.
2418  */
2419 int
2420 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2421 {
2422         vdev_t *vd, *tvd;
2423
2424         spa_vdev_state_enter(spa, SCL_NONE);
2425
2426         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2427                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2428
2429         if (!vd->vdev_ops->vdev_op_leaf)
2430                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2431
2432         tvd = vd->vdev_top;
2433
2434         /*
2435          * We don't directly use the aux state here, but if we do a
2436          * vdev_reopen(), we need this value to be present to remember why we
2437          * were faulted.
2438          */
2439         vd->vdev_label_aux = aux;
2440
2441         /*
2442          * Faulted state takes precedence over degraded.
2443          */
2444         vd->vdev_delayed_close = B_FALSE;
2445         vd->vdev_faulted = 1ULL;
2446         vd->vdev_degraded = 0ULL;
2447         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2448
2449         /*
2450          * If this device has the only valid copy of the data, then
2451          * back off and simply mark the vdev as degraded instead.
2452          */
2453         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2454                 vd->vdev_degraded = 1ULL;
2455                 vd->vdev_faulted = 0ULL;
2456
2457                 /*
2458                  * If we reopen the device and it's not dead, only then do we
2459                  * mark it degraded.
2460                  */
2461                 vdev_reopen(tvd);
2462
2463                 if (vdev_readable(vd))
2464                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2465         }
2466
2467         return (spa_vdev_state_exit(spa, vd, 0));
2468 }
2469
2470 /*
2471  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2472  * user that something is wrong.  The vdev continues to operate as normal as far
2473  * as I/O is concerned.
2474  */
2475 int
2476 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2477 {
2478         vdev_t *vd;
2479
2480         spa_vdev_state_enter(spa, SCL_NONE);
2481
2482         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2483                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2484
2485         if (!vd->vdev_ops->vdev_op_leaf)
2486                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2487
2488         /*
2489          * If the vdev is already faulted, then don't do anything.
2490          */
2491         if (vd->vdev_faulted || vd->vdev_degraded)
2492                 return (spa_vdev_state_exit(spa, NULL, 0));
2493
2494         vd->vdev_degraded = 1ULL;
2495         if (!vdev_is_dead(vd))
2496                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2497                     aux);
2498
2499         return (spa_vdev_state_exit(spa, vd, 0));
2500 }
2501
2502 /*
2503  * Online the given vdev.
2504  *
2505  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2506  * spare device should be detached when the device finishes resilvering.
2507  * Second, the online should be treated like a 'test' online case, so no FMA
2508  * events are generated if the device fails to open.
2509  */
2510 int
2511 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2512 {
2513         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2514         boolean_t postevent = B_FALSE;
2515
2516         spa_vdev_state_enter(spa, SCL_NONE);
2517
2518         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2519                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2520
2521         if (!vd->vdev_ops->vdev_op_leaf)
2522                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2523
2524         postevent =
2525             (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2526             B_TRUE : B_FALSE;
2527
2528         tvd = vd->vdev_top;
2529         vd->vdev_offline = B_FALSE;
2530         vd->vdev_tmpoffline = B_FALSE;
2531         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2532         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2533
2534         /* XXX - L2ARC 1.0 does not support expansion */
2535         if (!vd->vdev_aux) {
2536                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2537                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2538         }
2539
2540         vdev_reopen(tvd);
2541         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2542
2543         if (!vd->vdev_aux) {
2544                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2545                         pvd->vdev_expanding = B_FALSE;
2546         }
2547
2548         if (newstate)
2549                 *newstate = vd->vdev_state;
2550         if ((flags & ZFS_ONLINE_UNSPARE) &&
2551             !vdev_is_dead(vd) && vd->vdev_parent &&
2552             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2553             vd->vdev_parent->vdev_child[0] == vd)
2554                 vd->vdev_unspare = B_TRUE;
2555
2556         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2557
2558                 /* XXX - L2ARC 1.0 does not support expansion */
2559                 if (vd->vdev_aux)
2560                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2561                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2562         }
2563
2564         if (postevent)
2565                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2566
2567         return (spa_vdev_state_exit(spa, vd, 0));
2568 }
2569
2570 static int
2571 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2572 {
2573         vdev_t *vd, *tvd;
2574         int error = 0;
2575         uint64_t generation;
2576         metaslab_group_t *mg;
2577
2578 top:
2579         spa_vdev_state_enter(spa, SCL_ALLOC);
2580
2581         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2582                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2583
2584         if (!vd->vdev_ops->vdev_op_leaf)
2585                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2586
2587         tvd = vd->vdev_top;
2588         mg = tvd->vdev_mg;
2589         generation = spa->spa_config_generation + 1;
2590
2591         /*
2592          * If the device isn't already offline, try to offline it.
2593          */
2594         if (!vd->vdev_offline) {
2595                 /*
2596                  * If this device has the only valid copy of some data,
2597                  * don't allow it to be offlined. Log devices are always
2598                  * expendable.
2599                  */
2600                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2601                     vdev_dtl_required(vd))
2602                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2603
2604                 /*
2605                  * If the top-level is a slog and it has had allocations
2606                  * then proceed.  We check that the vdev's metaslab group
2607                  * is not NULL since it's possible that we may have just
2608                  * added this vdev but not yet initialized its metaslabs.
2609                  */
2610                 if (tvd->vdev_islog && mg != NULL) {
2611                         /*
2612                          * Prevent any future allocations.
2613                          */
2614                         metaslab_group_passivate(mg);
2615                         (void) spa_vdev_state_exit(spa, vd, 0);
2616
2617                         error = spa_offline_log(spa);
2618
2619                         spa_vdev_state_enter(spa, SCL_ALLOC);
2620
2621                         /*
2622                          * Check to see if the config has changed.
2623                          */
2624                         if (error || generation != spa->spa_config_generation) {
2625                                 metaslab_group_activate(mg);
2626                                 if (error)
2627                                         return (spa_vdev_state_exit(spa,
2628                                             vd, error));
2629                                 (void) spa_vdev_state_exit(spa, vd, 0);
2630                                 goto top;
2631                         }
2632                         ASSERT0(tvd->vdev_stat.vs_alloc);
2633                 }
2634
2635                 /*
2636                  * Offline this device and reopen its top-level vdev.
2637                  * If the top-level vdev is a log device then just offline
2638                  * it. Otherwise, if this action results in the top-level
2639                  * vdev becoming unusable, undo it and fail the request.
2640                  */
2641                 vd->vdev_offline = B_TRUE;
2642                 vdev_reopen(tvd);
2643
2644                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2645                     vdev_is_dead(tvd)) {
2646                         vd->vdev_offline = B_FALSE;
2647                         vdev_reopen(tvd);
2648                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2649                 }
2650
2651                 /*
2652                  * Add the device back into the metaslab rotor so that
2653                  * once we online the device it's open for business.
2654                  */
2655                 if (tvd->vdev_islog && mg != NULL)
2656                         metaslab_group_activate(mg);
2657         }
2658
2659         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2660
2661         return (spa_vdev_state_exit(spa, vd, 0));
2662 }
2663
2664 int
2665 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2666 {
2667         int error;
2668
2669         mutex_enter(&spa->spa_vdev_top_lock);
2670         error = vdev_offline_locked(spa, guid, flags);
2671         mutex_exit(&spa->spa_vdev_top_lock);
2672
2673         return (error);
2674 }
2675
2676 /*
2677  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2678  * vdev_offline(), we assume the spa config is locked.  We also clear all
2679  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2680  */
2681 void
2682 vdev_clear(spa_t *spa, vdev_t *vd)
2683 {
2684         vdev_t *rvd = spa->spa_root_vdev;
2685         int c;
2686
2687         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2688
2689         if (vd == NULL)
2690                 vd = rvd;
2691
2692         vd->vdev_stat.vs_read_errors = 0;
2693         vd->vdev_stat.vs_write_errors = 0;
2694         vd->vdev_stat.vs_checksum_errors = 0;
2695
2696         for (c = 0; c < vd->vdev_children; c++)
2697                 vdev_clear(spa, vd->vdev_child[c]);
2698
2699         /*
2700          * If we're in the FAULTED state or have experienced failed I/O, then
2701          * clear the persistent state and attempt to reopen the device.  We
2702          * also mark the vdev config dirty, so that the new faulted state is
2703          * written out to disk.
2704          */
2705         if (vd->vdev_faulted || vd->vdev_degraded ||
2706             !vdev_readable(vd) || !vdev_writeable(vd)) {
2707
2708                 /*
2709                  * When reopening in response to a clear event, it may be due to
2710                  * a fmadm repair request.  In this case, if the device is
2711                  * still broken, we want to still post the ereport again.
2712                  */
2713                 vd->vdev_forcefault = B_TRUE;
2714
2715                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2716                 vd->vdev_cant_read = B_FALSE;
2717                 vd->vdev_cant_write = B_FALSE;
2718
2719                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2720
2721                 vd->vdev_forcefault = B_FALSE;
2722
2723                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2724                         vdev_state_dirty(vd->vdev_top);
2725
2726                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2727                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2728
2729                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2730         }
2731
2732         /*
2733          * When clearing a FMA-diagnosed fault, we always want to
2734          * unspare the device, as we assume that the original spare was
2735          * done in response to the FMA fault.
2736          */
2737         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2738             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2739             vd->vdev_parent->vdev_child[0] == vd)
2740                 vd->vdev_unspare = B_TRUE;
2741 }
2742
2743 boolean_t
2744 vdev_is_dead(vdev_t *vd)
2745 {
2746         /*
2747          * Holes and missing devices are always considered "dead".
2748          * This simplifies the code since we don't have to check for
2749          * these types of devices in the various code paths.
2750          * Instead we rely on the fact that we skip over dead devices
2751          * before issuing I/O to them.
2752          */
2753         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2754             vd->vdev_ops == &vdev_missing_ops);
2755 }
2756
2757 boolean_t
2758 vdev_readable(vdev_t *vd)
2759 {
2760         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2761 }
2762
2763 boolean_t
2764 vdev_writeable(vdev_t *vd)
2765 {
2766         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2767 }
2768
2769 boolean_t
2770 vdev_allocatable(vdev_t *vd)
2771 {
2772         uint64_t state = vd->vdev_state;
2773
2774         /*
2775          * We currently allow allocations from vdevs which may be in the
2776          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2777          * fails to reopen then we'll catch it later when we're holding
2778          * the proper locks.  Note that we have to get the vdev state
2779          * in a local variable because although it changes atomically,
2780          * we're asking two separate questions about it.
2781          */
2782         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2783             !vd->vdev_cant_write && !vd->vdev_ishole &&
2784             vd->vdev_mg->mg_initialized);
2785 }
2786
2787 boolean_t
2788 vdev_accessible(vdev_t *vd, zio_t *zio)
2789 {
2790         ASSERT(zio->io_vd == vd);
2791
2792         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2793                 return (B_FALSE);
2794
2795         if (zio->io_type == ZIO_TYPE_READ)
2796                 return (!vd->vdev_cant_read);
2797
2798         if (zio->io_type == ZIO_TYPE_WRITE)
2799                 return (!vd->vdev_cant_write);
2800
2801         return (B_TRUE);
2802 }
2803
2804 static void
2805 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2806 {
2807         int t;
2808         for (t = 0; t < ZIO_TYPES; t++) {
2809                 vs->vs_ops[t] += cvs->vs_ops[t];
2810                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2811         }
2812
2813         cvs->vs_scan_removing = cvd->vdev_removing;
2814 }
2815
2816 /*
2817  * Get extended stats
2818  */
2819 static void
2820 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2821 {
2822         int t, b;
2823         for (t = 0; t < ZIO_TYPES; t++) {
2824                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2825                         vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2826
2827                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2828                         vsx->vsx_total_histo[t][b] +=
2829                             cvsx->vsx_total_histo[t][b];
2830                 }
2831         }
2832
2833         for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2834                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2835                         vsx->vsx_queue_histo[t][b] +=
2836                             cvsx->vsx_queue_histo[t][b];
2837                 }
2838                 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2839                 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2840
2841                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2842                         vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2843
2844                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2845                         vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2846         }
2847
2848 }
2849
2850 /*
2851  * Get statistics for the given vdev.
2852  */
2853 static void
2854 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2855 {
2856         int c, t;
2857         /*
2858          * If we're getting stats on the root vdev, aggregate the I/O counts
2859          * over all top-level vdevs (i.e. the direct children of the root).
2860          */
2861         if (!vd->vdev_ops->vdev_op_leaf) {
2862                 if (vs) {
2863                         memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2864                         memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2865                 }
2866                 if (vsx)
2867                         memset(vsx, 0, sizeof (*vsx));
2868
2869                 for (c = 0; c < vd->vdev_children; c++) {
2870                         vdev_t *cvd = vd->vdev_child[c];
2871                         vdev_stat_t *cvs = &cvd->vdev_stat;
2872                         vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2873
2874                         vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2875                         if (vs)
2876                                 vdev_get_child_stat(cvd, vs, cvs);
2877                         if (vsx)
2878                                 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2879
2880                 }
2881         } else {
2882                 /*
2883                  * We're a leaf.  Just copy our ZIO active queue stats in.  The
2884                  * other leaf stats are updated in vdev_stat_update().
2885                  */
2886                 if (!vsx)
2887                         return;
2888
2889                 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2890
2891                 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2892                         vsx->vsx_active_queue[t] =
2893                             vd->vdev_queue.vq_class[t].vqc_active;
2894                         vsx->vsx_pend_queue[t] = avl_numnodes(
2895                             &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2896                 }
2897         }
2898 }
2899
2900 void
2901 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2902 {
2903         mutex_enter(&vd->vdev_stat_lock);
2904         if (vs) {
2905                 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2906                 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2907                 vs->vs_state = vd->vdev_state;
2908                 vs->vs_rsize = vdev_get_min_asize(vd);
2909                 if (vd->vdev_ops->vdev_op_leaf)
2910                         vs->vs_rsize += VDEV_LABEL_START_SIZE +
2911                             VDEV_LABEL_END_SIZE;
2912                 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2913                 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2914                     !vd->vdev_ishole) {
2915                         vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2916                 }
2917         }
2918
2919         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2920         vdev_get_stats_ex_impl(vd, vs, vsx);
2921         mutex_exit(&vd->vdev_stat_lock);
2922 }
2923
2924 void
2925 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2926 {
2927         return (vdev_get_stats_ex(vd, vs, NULL));
2928 }
2929
2930 void
2931 vdev_clear_stats(vdev_t *vd)
2932 {
2933         mutex_enter(&vd->vdev_stat_lock);
2934         vd->vdev_stat.vs_space = 0;
2935         vd->vdev_stat.vs_dspace = 0;
2936         vd->vdev_stat.vs_alloc = 0;
2937         mutex_exit(&vd->vdev_stat_lock);
2938 }
2939
2940 void
2941 vdev_scan_stat_init(vdev_t *vd)
2942 {
2943         vdev_stat_t *vs = &vd->vdev_stat;
2944         int c;
2945
2946         for (c = 0; c < vd->vdev_children; c++)
2947                 vdev_scan_stat_init(vd->vdev_child[c]);
2948
2949         mutex_enter(&vd->vdev_stat_lock);
2950         vs->vs_scan_processed = 0;
2951         mutex_exit(&vd->vdev_stat_lock);
2952 }
2953
2954 void
2955 vdev_stat_update(zio_t *zio, uint64_t psize)
2956 {
2957         spa_t *spa = zio->io_spa;
2958         vdev_t *rvd = spa->spa_root_vdev;
2959         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2960         vdev_t *pvd;
2961         uint64_t txg = zio->io_txg;
2962         vdev_stat_t *vs = &vd->vdev_stat;
2963         vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
2964         zio_type_t type = zio->io_type;
2965         int flags = zio->io_flags;
2966
2967         /*
2968          * If this i/o is a gang leader, it didn't do any actual work.
2969          */
2970         if (zio->io_gang_tree)
2971                 return;
2972
2973         if (zio->io_error == 0) {
2974                 /*
2975                  * If this is a root i/o, don't count it -- we've already
2976                  * counted the top-level vdevs, and vdev_get_stats() will
2977                  * aggregate them when asked.  This reduces contention on
2978                  * the root vdev_stat_lock and implicitly handles blocks
2979                  * that compress away to holes, for which there is no i/o.
2980                  * (Holes never create vdev children, so all the counters
2981                  * remain zero, which is what we want.)
2982                  *
2983                  * Note: this only applies to successful i/o (io_error == 0)
2984                  * because unlike i/o counts, errors are not additive.
2985                  * When reading a ditto block, for example, failure of
2986                  * one top-level vdev does not imply a root-level error.
2987                  */
2988                 if (vd == rvd)
2989                         return;
2990
2991                 ASSERT(vd == zio->io_vd);
2992
2993                 if (flags & ZIO_FLAG_IO_BYPASS)
2994                         return;
2995
2996                 mutex_enter(&vd->vdev_stat_lock);
2997
2998                 if (flags & ZIO_FLAG_IO_REPAIR) {
2999                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3000                                 dsl_scan_phys_t *scn_phys =
3001                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3002                                 uint64_t *processed = &scn_phys->scn_processed;
3003
3004                                 /* XXX cleanup? */
3005                                 if (vd->vdev_ops->vdev_op_leaf)
3006                                         atomic_add_64(processed, psize);
3007                                 vs->vs_scan_processed += psize;
3008                         }
3009
3010                         if (flags & ZIO_FLAG_SELF_HEAL)
3011                                 vs->vs_self_healed += psize;
3012                 }
3013
3014                 /*
3015                  * The bytes/ops/histograms are recorded at the leaf level and
3016                  * aggregated into the higher level vdevs in vdev_get_stats().
3017                  */
3018                 if (vd->vdev_ops->vdev_op_leaf &&
3019                     (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3020
3021                         vs->vs_ops[type]++;
3022                         vs->vs_bytes[type] += psize;
3023
3024                         if (flags & ZIO_FLAG_DELEGATED) {
3025                                 vsx->vsx_agg_histo[zio->io_priority]
3026                                     [RQ_HISTO(zio->io_size)]++;
3027                         } else {
3028                                 vsx->vsx_ind_histo[zio->io_priority]
3029                                     [RQ_HISTO(zio->io_size)]++;
3030                         }
3031
3032                         if (zio->io_delta && zio->io_delay) {
3033                                 vsx->vsx_queue_histo[zio->io_priority]
3034                                     [L_HISTO(zio->io_delta - zio->io_delay)]++;
3035                                 vsx->vsx_disk_histo[type]
3036                                     [L_HISTO(zio->io_delay)]++;
3037                                 vsx->vsx_total_histo[type]
3038                                     [L_HISTO(zio->io_delta)]++;
3039                         }
3040                 }
3041
3042                 mutex_exit(&vd->vdev_stat_lock);
3043                 return;
3044         }
3045
3046         if (flags & ZIO_FLAG_SPECULATIVE)
3047                 return;
3048
3049         /*
3050          * If this is an I/O error that is going to be retried, then ignore the
3051          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3052          * hard errors, when in reality they can happen for any number of
3053          * innocuous reasons (bus resets, MPxIO link failure, etc).
3054          */
3055         if (zio->io_error == EIO &&
3056             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3057                 return;
3058
3059         /*
3060          * Intent logs writes won't propagate their error to the root
3061          * I/O so don't mark these types of failures as pool-level
3062          * errors.
3063          */
3064         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3065                 return;
3066
3067         mutex_enter(&vd->vdev_stat_lock);
3068         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3069                 if (zio->io_error == ECKSUM)
3070                         vs->vs_checksum_errors++;
3071                 else
3072                         vs->vs_read_errors++;
3073         }
3074         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3075                 vs->vs_write_errors++;
3076         mutex_exit(&vd->vdev_stat_lock);
3077
3078         if (type == ZIO_TYPE_WRITE && txg != 0 &&
3079             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3080             (flags & ZIO_FLAG_SCAN_THREAD) ||
3081             spa->spa_claiming)) {
3082                 /*
3083                  * This is either a normal write (not a repair), or it's
3084                  * a repair induced by the scrub thread, or it's a repair
3085                  * made by zil_claim() during spa_load() in the first txg.
3086                  * In the normal case, we commit the DTL change in the same
3087                  * txg as the block was born.  In the scrub-induced repair
3088                  * case, we know that scrubs run in first-pass syncing context,
3089                  * so we commit the DTL change in spa_syncing_txg(spa).
3090                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3091                  *
3092                  * We currently do not make DTL entries for failed spontaneous
3093                  * self-healing writes triggered by normal (non-scrubbing)
3094                  * reads, because we have no transactional context in which to
3095                  * do so -- and it's not clear that it'd be desirable anyway.
3096                  */
3097                 if (vd->vdev_ops->vdev_op_leaf) {
3098                         uint64_t commit_txg = txg;
3099                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3100                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3101                                 ASSERT(spa_sync_pass(spa) == 1);
3102                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3103                                 commit_txg = spa_syncing_txg(spa);
3104                         } else if (spa->spa_claiming) {
3105                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3106                                 commit_txg = spa_first_txg(spa);
3107                         }
3108                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3109                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3110                                 return;
3111                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3112                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3113                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3114                 }
3115                 if (vd != rvd)
3116                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3117         }
3118 }
3119
3120 /*
3121  * Update the in-core space usage stats for this vdev, its metaslab class,
3122  * and the root vdev.
3123  */
3124 void
3125 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3126     int64_t space_delta)
3127 {
3128         int64_t dspace_delta = space_delta;
3129         spa_t *spa = vd->vdev_spa;
3130         vdev_t *rvd = spa->spa_root_vdev;
3131         metaslab_group_t *mg = vd->vdev_mg;
3132         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3133
3134         ASSERT(vd == vd->vdev_top);
3135
3136         /*
3137          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3138          * factor.  We must calculate this here and not at the root vdev
3139          * because the root vdev's psize-to-asize is simply the max of its
3140          * childrens', thus not accurate enough for us.
3141          */
3142         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3143         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3144         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3145             vd->vdev_deflate_ratio;
3146
3147         mutex_enter(&vd->vdev_stat_lock);
3148         vd->vdev_stat.vs_alloc += alloc_delta;
3149         vd->vdev_stat.vs_space += space_delta;
3150         vd->vdev_stat.vs_dspace += dspace_delta;
3151         mutex_exit(&vd->vdev_stat_lock);
3152
3153         if (mc == spa_normal_class(spa)) {
3154                 mutex_enter(&rvd->vdev_stat_lock);
3155                 rvd->vdev_stat.vs_alloc += alloc_delta;
3156                 rvd->vdev_stat.vs_space += space_delta;
3157                 rvd->vdev_stat.vs_dspace += dspace_delta;
3158                 mutex_exit(&rvd->vdev_stat_lock);
3159         }
3160
3161         if (mc != NULL) {
3162                 ASSERT(rvd == vd->vdev_parent);
3163                 ASSERT(vd->vdev_ms_count != 0);
3164
3165                 metaslab_class_space_update(mc,
3166                     alloc_delta, defer_delta, space_delta, dspace_delta);
3167         }
3168 }
3169
3170 /*
3171  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3172  * so that it will be written out next time the vdev configuration is synced.
3173  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3174  */
3175 void
3176 vdev_config_dirty(vdev_t *vd)
3177 {
3178         spa_t *spa = vd->vdev_spa;
3179         vdev_t *rvd = spa->spa_root_vdev;
3180         int c;
3181
3182         ASSERT(spa_writeable(spa));
3183
3184         /*
3185          * If this is an aux vdev (as with l2cache and spare devices), then we
3186          * update the vdev config manually and set the sync flag.
3187          */
3188         if (vd->vdev_aux != NULL) {
3189                 spa_aux_vdev_t *sav = vd->vdev_aux;
3190                 nvlist_t **aux;
3191                 uint_t naux;
3192
3193                 for (c = 0; c < sav->sav_count; c++) {
3194                         if (sav->sav_vdevs[c] == vd)
3195                                 break;
3196                 }
3197
3198                 if (c == sav->sav_count) {
3199                         /*
3200                          * We're being removed.  There's nothing more to do.
3201                          */
3202                         ASSERT(sav->sav_sync == B_TRUE);
3203                         return;
3204                 }
3205
3206                 sav->sav_sync = B_TRUE;
3207
3208                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3209                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3210                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3211                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3212                 }
3213
3214                 ASSERT(c < naux);
3215
3216                 /*
3217                  * Setting the nvlist in the middle if the array is a little
3218                  * sketchy, but it will work.
3219                  */
3220                 nvlist_free(aux[c]);
3221                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3222
3223                 return;
3224         }
3225
3226         /*
3227          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3228          * must either hold SCL_CONFIG as writer, or must be the sync thread
3229          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3230          * so this is sufficient to ensure mutual exclusion.
3231          */
3232         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3233             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3234             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3235
3236         if (vd == rvd) {
3237                 for (c = 0; c < rvd->vdev_children; c++)
3238                         vdev_config_dirty(rvd->vdev_child[c]);
3239         } else {
3240                 ASSERT(vd == vd->vdev_top);
3241
3242                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3243                     !vd->vdev_ishole)
3244                         list_insert_head(&spa->spa_config_dirty_list, vd);
3245         }
3246 }
3247
3248 void
3249 vdev_config_clean(vdev_t *vd)
3250 {
3251         spa_t *spa = vd->vdev_spa;
3252
3253         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3254             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3255             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3256
3257         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3258         list_remove(&spa->spa_config_dirty_list, vd);
3259 }
3260
3261 /*
3262  * Mark a top-level vdev's state as dirty, so that the next pass of
3263  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3264  * the state changes from larger config changes because they require
3265  * much less locking, and are often needed for administrative actions.
3266  */
3267 void
3268 vdev_state_dirty(vdev_t *vd)
3269 {
3270         spa_t *spa = vd->vdev_spa;
3271
3272         ASSERT(spa_writeable(spa));
3273         ASSERT(vd == vd->vdev_top);
3274
3275         /*
3276          * The state list is protected by the SCL_STATE lock.  The caller
3277          * must either hold SCL_STATE as writer, or must be the sync thread
3278          * (which holds SCL_STATE as reader).  There's only one sync thread,
3279          * so this is sufficient to ensure mutual exclusion.
3280          */
3281         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3282             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3283             spa_config_held(spa, SCL_STATE, RW_READER)));
3284
3285         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3286                 list_insert_head(&spa->spa_state_dirty_list, vd);
3287 }
3288
3289 void
3290 vdev_state_clean(vdev_t *vd)
3291 {
3292         spa_t *spa = vd->vdev_spa;
3293
3294         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3295             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3296             spa_config_held(spa, SCL_STATE, RW_READER)));
3297
3298         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3299         list_remove(&spa->spa_state_dirty_list, vd);
3300 }
3301
3302 /*
3303  * Propagate vdev state up from children to parent.
3304  */
3305 void
3306 vdev_propagate_state(vdev_t *vd)
3307 {
3308         spa_t *spa = vd->vdev_spa;
3309         vdev_t *rvd = spa->spa_root_vdev;
3310         int degraded = 0, faulted = 0;
3311         int corrupted = 0;
3312         vdev_t *child;
3313         int c;
3314
3315         if (vd->vdev_children > 0) {
3316                 for (c = 0; c < vd->vdev_children; c++) {
3317                         child = vd->vdev_child[c];
3318
3319                         /*
3320                          * Don't factor holes into the decision.
3321                          */
3322                         if (child->vdev_ishole)
3323                                 continue;
3324
3325                         if (!vdev_readable(child) ||
3326                             (!vdev_writeable(child) && spa_writeable(spa))) {
3327                                 /*
3328                                  * Root special: if there is a top-level log
3329                                  * device, treat the root vdev as if it were
3330                                  * degraded.
3331                                  */
3332                                 if (child->vdev_islog && vd == rvd)
3333                                         degraded++;
3334                                 else
3335                                         faulted++;
3336                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3337                                 degraded++;
3338                         }
3339
3340                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3341                                 corrupted++;
3342                 }
3343
3344                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3345
3346                 /*
3347                  * Root special: if there is a top-level vdev that cannot be
3348                  * opened due to corrupted metadata, then propagate the root
3349                  * vdev's aux state as 'corrupt' rather than 'insufficient
3350                  * replicas'.
3351                  */
3352                 if (corrupted && vd == rvd &&
3353                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3354                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3355                             VDEV_AUX_CORRUPT_DATA);
3356         }
3357
3358         if (vd->vdev_parent)
3359                 vdev_propagate_state(vd->vdev_parent);
3360 }
3361
3362 /*
3363  * Set a vdev's state.  If this is during an open, we don't update the parent
3364  * state, because we're in the process of opening children depth-first.
3365  * Otherwise, we propagate the change to the parent.
3366  *
3367  * If this routine places a device in a faulted state, an appropriate ereport is
3368  * generated.
3369  */
3370 void
3371 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3372 {
3373         uint64_t save_state;
3374         spa_t *spa = vd->vdev_spa;
3375
3376         if (state == vd->vdev_state) {
3377                 /*
3378                  * Since vdev_offline() code path is already in an offline
3379                  * state we can miss a statechange event to OFFLINE. Check
3380                  * the previous state to catch this condition.
3381                  */
3382                 if (vd->vdev_ops->vdev_op_leaf &&
3383                     (state == VDEV_STATE_OFFLINE) &&
3384                     (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3385                         /* post an offline state change */
3386                         zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3387                 }
3388                 vd->vdev_stat.vs_aux = aux;
3389                 return;
3390         }
3391
3392         save_state = vd->vdev_state;
3393
3394         vd->vdev_state = state;
3395         vd->vdev_stat.vs_aux = aux;
3396
3397         /*
3398          * If we are setting the vdev state to anything but an open state, then
3399          * always close the underlying device unless the device has requested
3400          * a delayed close (i.e. we're about to remove or fault the device).
3401          * Otherwise, we keep accessible but invalid devices open forever.
3402          * We don't call vdev_close() itself, because that implies some extra
3403          * checks (offline, etc) that we don't want here.  This is limited to
3404          * leaf devices, because otherwise closing the device will affect other
3405          * children.
3406          */
3407         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3408             vd->vdev_ops->vdev_op_leaf)
3409                 vd->vdev_ops->vdev_op_close(vd);
3410
3411         if (vd->vdev_removed &&
3412             state == VDEV_STATE_CANT_OPEN &&
3413             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3414                 /*
3415                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3416                  * device was previously marked removed and someone attempted to
3417                  * reopen it.  If this failed due to a nonexistent device, then
3418                  * keep the device in the REMOVED state.  We also let this be if
3419                  * it is one of our special test online cases, which is only
3420                  * attempting to online the device and shouldn't generate an FMA
3421                  * fault.
3422                  */
3423                 vd->vdev_state = VDEV_STATE_REMOVED;
3424                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3425         } else if (state == VDEV_STATE_REMOVED) {
3426                 vd->vdev_removed = B_TRUE;
3427         } else if (state == VDEV_STATE_CANT_OPEN) {
3428                 /*
3429                  * If we fail to open a vdev during an import or recovery, we
3430                  * mark it as "not available", which signifies that it was
3431                  * never there to begin with.  Failure to open such a device
3432                  * is not considered an error.
3433                  */
3434                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3435                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3436                     vd->vdev_ops->vdev_op_leaf)
3437                         vd->vdev_not_present = 1;
3438
3439                 /*
3440                  * Post the appropriate ereport.  If the 'prevstate' field is
3441                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3442                  * that this is part of a vdev_reopen().  In this case, we don't
3443                  * want to post the ereport if the device was already in the
3444                  * CANT_OPEN state beforehand.
3445                  *
3446                  * If the 'checkremove' flag is set, then this is an attempt to
3447                  * online the device in response to an insertion event.  If we
3448                  * hit this case, then we have detected an insertion event for a
3449                  * faulted or offline device that wasn't in the removed state.
3450                  * In this scenario, we don't post an ereport because we are
3451                  * about to replace the device, or attempt an online with
3452                  * vdev_forcefault, which will generate the fault for us.
3453                  */
3454                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3455                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3456                     vd != spa->spa_root_vdev) {
3457                         const char *class;
3458
3459                         switch (aux) {
3460                         case VDEV_AUX_OPEN_FAILED:
3461                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3462                                 break;
3463                         case VDEV_AUX_CORRUPT_DATA:
3464                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3465                                 break;
3466                         case VDEV_AUX_NO_REPLICAS:
3467                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3468                                 break;
3469                         case VDEV_AUX_BAD_GUID_SUM:
3470                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3471                                 break;
3472                         case VDEV_AUX_TOO_SMALL:
3473                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3474                                 break;
3475                         case VDEV_AUX_BAD_LABEL:
3476                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3477                                 break;
3478                         default:
3479                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3480                         }
3481
3482                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3483                 }
3484
3485                 /* Erase any notion of persistent removed state */
3486                 vd->vdev_removed = B_FALSE;
3487         } else {
3488                 vd->vdev_removed = B_FALSE;
3489         }
3490
3491         /*
3492          * Notify ZED of any significant state-change on a leaf vdev.
3493          *
3494          */
3495         if (vd->vdev_ops->vdev_op_leaf) {
3496                 /* preserve original state from a vdev_reopen() */
3497                 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3498                     (vd->vdev_prevstate != vd->vdev_state) &&
3499                     (save_state <= VDEV_STATE_CLOSED))
3500                         save_state = vd->vdev_prevstate;
3501
3502                 /* filter out state change due to initial vdev_open */
3503                 if (save_state > VDEV_STATE_CLOSED)
3504                         zfs_post_state_change(spa, vd, save_state);
3505         }
3506
3507         if (!isopen && vd->vdev_parent)
3508                 vdev_propagate_state(vd->vdev_parent);
3509 }
3510
3511 /*
3512  * Check the vdev configuration to ensure that it's capable of supporting
3513  * a root pool.
3514  */
3515 boolean_t
3516 vdev_is_bootable(vdev_t *vd)
3517 {
3518 #if defined(__sun__) || defined(__sun)
3519         /*
3520          * Currently, we do not support RAID-Z or partial configuration.
3521          * In addition, only a single top-level vdev is allowed and none of the
3522          * leaves can be wholedisks.
3523          */
3524         int c;
3525
3526         if (!vd->vdev_ops->vdev_op_leaf) {
3527                 char *vdev_type = vd->vdev_ops->vdev_op_type;
3528
3529                 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3530                     vd->vdev_children > 1) {
3531                         return (B_FALSE);
3532                 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3533                     strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3534                         return (B_FALSE);
3535                 }
3536         }
3537
3538         for (c = 0; c < vd->vdev_children; c++) {
3539                 if (!vdev_is_bootable(vd->vdev_child[c]))
3540                         return (B_FALSE);
3541         }
3542 #endif /* __sun__ || __sun */
3543         return (B_TRUE);
3544 }
3545
3546 /*
3547  * Load the state from the original vdev tree (ovd) which
3548  * we've retrieved from the MOS config object. If the original
3549  * vdev was offline or faulted then we transfer that state to the
3550  * device in the current vdev tree (nvd).
3551  */
3552 void
3553 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3554 {
3555         int c;
3556
3557         ASSERT(nvd->vdev_top->vdev_islog);
3558         ASSERT(spa_config_held(nvd->vdev_spa,
3559             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3560         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3561
3562         for (c = 0; c < nvd->vdev_children; c++)
3563                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3564
3565         if (nvd->vdev_ops->vdev_op_leaf) {
3566                 /*
3567                  * Restore the persistent vdev state
3568                  */
3569                 nvd->vdev_offline = ovd->vdev_offline;
3570                 nvd->vdev_faulted = ovd->vdev_faulted;
3571                 nvd->vdev_degraded = ovd->vdev_degraded;
3572                 nvd->vdev_removed = ovd->vdev_removed;
3573         }
3574 }
3575
3576 /*
3577  * Determine if a log device has valid content.  If the vdev was
3578  * removed or faulted in the MOS config then we know that
3579  * the content on the log device has already been written to the pool.
3580  */
3581 boolean_t
3582 vdev_log_state_valid(vdev_t *vd)
3583 {
3584         int c;
3585
3586         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3587             !vd->vdev_removed)
3588                 return (B_TRUE);
3589
3590         for (c = 0; c < vd->vdev_children; c++)
3591                 if (vdev_log_state_valid(vd->vdev_child[c]))
3592                         return (B_TRUE);
3593
3594         return (B_FALSE);
3595 }
3596
3597 /*
3598  * Expand a vdev if possible.
3599  */
3600 void
3601 vdev_expand(vdev_t *vd, uint64_t txg)
3602 {
3603         ASSERT(vd->vdev_top == vd);
3604         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3605
3606         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3607                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3608                 vdev_config_dirty(vd);
3609         }
3610 }
3611
3612 /*
3613  * Split a vdev.
3614  */
3615 void
3616 vdev_split(vdev_t *vd)
3617 {
3618         vdev_t *cvd, *pvd = vd->vdev_parent;
3619
3620         vdev_remove_child(pvd, vd);
3621         vdev_compact_children(pvd);
3622
3623         cvd = pvd->vdev_child[0];
3624         if (pvd->vdev_children == 1) {
3625                 vdev_remove_parent(cvd);
3626                 cvd->vdev_splitting = B_TRUE;
3627         }
3628         vdev_propagate_state(cvd);
3629 }
3630
3631 void
3632 vdev_deadman(vdev_t *vd)
3633 {
3634         int c;
3635
3636         for (c = 0; c < vd->vdev_children; c++) {
3637                 vdev_t *cvd = vd->vdev_child[c];
3638
3639                 vdev_deadman(cvd);
3640         }
3641
3642         if (vd->vdev_ops->vdev_op_leaf) {
3643                 vdev_queue_t *vq = &vd->vdev_queue;
3644
3645                 mutex_enter(&vq->vq_lock);
3646                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3647                         spa_t *spa = vd->vdev_spa;
3648                         zio_t *fio;
3649                         uint64_t delta;
3650
3651                         /*
3652                          * Look at the head of all the pending queues,
3653                          * if any I/O has been outstanding for longer than
3654                          * the spa_deadman_synctime we log a zevent.
3655                          */
3656                         fio = avl_first(&vq->vq_active_tree);
3657                         delta = gethrtime() - fio->io_timestamp;
3658                         if (delta > spa_deadman_synctime(spa)) {
3659                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3660                                     "delta %lluns, last io %lluns",
3661                                     fio->io_timestamp, delta,
3662                                     vq->vq_io_complete_ts);
3663                                 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3664                                     spa, vd, fio, 0, 0);
3665                         }
3666                 }
3667                 mutex_exit(&vq->vq_lock);
3668         }
3669 }
3670
3671 #if defined(_KERNEL) && defined(HAVE_SPL)
3672 EXPORT_SYMBOL(vdev_fault);
3673 EXPORT_SYMBOL(vdev_degrade);
3674 EXPORT_SYMBOL(vdev_online);
3675 EXPORT_SYMBOL(vdev_offline);
3676 EXPORT_SYMBOL(vdev_clear);
3677 /* BEGIN CSTYLED */
3678 module_param(metaslabs_per_vdev, int, 0644);
3679 MODULE_PARM_DESC(metaslabs_per_vdev,
3680         "Divide added vdev into approximately (but no more than) this number "
3681         "of metaslabs");
3682 /* END CSTYLED */
3683 #endif