]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/vdev.c
Write label 2,3 uberblocks when vdev expands
[FreeBSD/FreeBSD.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  */
29
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/abd.h>
49 #include <sys/zvol.h>
50 #include <sys/zfs_ratelimit.h>
51
52 /*
53  * When a vdev is added, it will be divided into approximately (but no
54  * more than) this number of metaslabs.
55  */
56 int metaslabs_per_vdev = 200;
57
58 /*
59  * Virtual device management.
60  */
61
62 static vdev_ops_t *vdev_ops_table[] = {
63         &vdev_root_ops,
64         &vdev_raidz_ops,
65         &vdev_mirror_ops,
66         &vdev_replacing_ops,
67         &vdev_spare_ops,
68         &vdev_disk_ops,
69         &vdev_file_ops,
70         &vdev_missing_ops,
71         &vdev_hole_ops,
72         NULL
73 };
74
75 /*
76  * Given a vdev type, return the appropriate ops vector.
77  */
78 static vdev_ops_t *
79 vdev_getops(const char *type)
80 {
81         vdev_ops_t *ops, **opspp;
82
83         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
84                 if (strcmp(ops->vdev_op_type, type) == 0)
85                         break;
86
87         return (ops);
88 }
89
90 /*
91  * Default asize function: return the MAX of psize with the asize of
92  * all children.  This is what's used by anything other than RAID-Z.
93  */
94 uint64_t
95 vdev_default_asize(vdev_t *vd, uint64_t psize)
96 {
97         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
98         uint64_t csize;
99         int c;
100
101         for (c = 0; c < vd->vdev_children; c++) {
102                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
103                 asize = MAX(asize, csize);
104         }
105
106         return (asize);
107 }
108
109 /*
110  * Get the minimum allocatable size. We define the allocatable size as
111  * the vdev's asize rounded to the nearest metaslab. This allows us to
112  * replace or attach devices which don't have the same physical size but
113  * can still satisfy the same number of allocations.
114  */
115 uint64_t
116 vdev_get_min_asize(vdev_t *vd)
117 {
118         vdev_t *pvd = vd->vdev_parent;
119
120         /*
121          * If our parent is NULL (inactive spare or cache) or is the root,
122          * just return our own asize.
123          */
124         if (pvd == NULL)
125                 return (vd->vdev_asize);
126
127         /*
128          * The top-level vdev just returns the allocatable size rounded
129          * to the nearest metaslab.
130          */
131         if (vd == vd->vdev_top)
132                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
133
134         /*
135          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
136          * so each child must provide at least 1/Nth of its asize.
137          */
138         if (pvd->vdev_ops == &vdev_raidz_ops)
139                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
140                     pvd->vdev_children);
141
142         return (pvd->vdev_min_asize);
143 }
144
145 void
146 vdev_set_min_asize(vdev_t *vd)
147 {
148         int c;
149         vd->vdev_min_asize = vdev_get_min_asize(vd);
150
151         for (c = 0; c < vd->vdev_children; c++)
152                 vdev_set_min_asize(vd->vdev_child[c]);
153 }
154
155 vdev_t *
156 vdev_lookup_top(spa_t *spa, uint64_t vdev)
157 {
158         vdev_t *rvd = spa->spa_root_vdev;
159
160         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
161
162         if (vdev < rvd->vdev_children) {
163                 ASSERT(rvd->vdev_child[vdev] != NULL);
164                 return (rvd->vdev_child[vdev]);
165         }
166
167         return (NULL);
168 }
169
170 vdev_t *
171 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
172 {
173         vdev_t *mvd;
174         int c;
175
176         if (vd->vdev_guid == guid)
177                 return (vd);
178
179         for (c = 0; c < vd->vdev_children; c++)
180                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
181                     NULL)
182                         return (mvd);
183
184         return (NULL);
185 }
186
187 static int
188 vdev_count_leaves_impl(vdev_t *vd)
189 {
190         int n = 0;
191         int c;
192
193         if (vd->vdev_ops->vdev_op_leaf)
194                 return (1);
195
196         for (c = 0; c < vd->vdev_children; c++)
197                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
198
199         return (n);
200 }
201
202 int
203 vdev_count_leaves(spa_t *spa)
204 {
205         return (vdev_count_leaves_impl(spa->spa_root_vdev));
206 }
207
208 void
209 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
210 {
211         size_t oldsize, newsize;
212         uint64_t id = cvd->vdev_id;
213         vdev_t **newchild;
214
215         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
216         ASSERT(cvd->vdev_parent == NULL);
217
218         cvd->vdev_parent = pvd;
219
220         if (pvd == NULL)
221                 return;
222
223         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
224
225         oldsize = pvd->vdev_children * sizeof (vdev_t *);
226         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
227         newsize = pvd->vdev_children * sizeof (vdev_t *);
228
229         newchild = kmem_alloc(newsize, KM_SLEEP);
230         if (pvd->vdev_child != NULL) {
231                 bcopy(pvd->vdev_child, newchild, oldsize);
232                 kmem_free(pvd->vdev_child, oldsize);
233         }
234
235         pvd->vdev_child = newchild;
236         pvd->vdev_child[id] = cvd;
237
238         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
239         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
240
241         /*
242          * Walk up all ancestors to update guid sum.
243          */
244         for (; pvd != NULL; pvd = pvd->vdev_parent)
245                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
246 }
247
248 void
249 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
250 {
251         int c;
252         uint_t id = cvd->vdev_id;
253
254         ASSERT(cvd->vdev_parent == pvd);
255
256         if (pvd == NULL)
257                 return;
258
259         ASSERT(id < pvd->vdev_children);
260         ASSERT(pvd->vdev_child[id] == cvd);
261
262         pvd->vdev_child[id] = NULL;
263         cvd->vdev_parent = NULL;
264
265         for (c = 0; c < pvd->vdev_children; c++)
266                 if (pvd->vdev_child[c])
267                         break;
268
269         if (c == pvd->vdev_children) {
270                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
271                 pvd->vdev_child = NULL;
272                 pvd->vdev_children = 0;
273         }
274
275         /*
276          * Walk up all ancestors to update guid sum.
277          */
278         for (; pvd != NULL; pvd = pvd->vdev_parent)
279                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
280 }
281
282 /*
283  * Remove any holes in the child array.
284  */
285 void
286 vdev_compact_children(vdev_t *pvd)
287 {
288         vdev_t **newchild, *cvd;
289         int oldc = pvd->vdev_children;
290         int newc;
291         int c;
292
293         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
294
295         for (c = newc = 0; c < oldc; c++)
296                 if (pvd->vdev_child[c])
297                         newc++;
298
299         newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
300
301         for (c = newc = 0; c < oldc; c++) {
302                 if ((cvd = pvd->vdev_child[c]) != NULL) {
303                         newchild[newc] = cvd;
304                         cvd->vdev_id = newc++;
305                 }
306         }
307
308         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
309         pvd->vdev_child = newchild;
310         pvd->vdev_children = newc;
311 }
312
313 /*
314  * Allocate and minimally initialize a vdev_t.
315  */
316 vdev_t *
317 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
318 {
319         vdev_t *vd;
320         int t;
321
322         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
323
324         if (spa->spa_root_vdev == NULL) {
325                 ASSERT(ops == &vdev_root_ops);
326                 spa->spa_root_vdev = vd;
327                 spa->spa_load_guid = spa_generate_guid(NULL);
328         }
329
330         if (guid == 0 && ops != &vdev_hole_ops) {
331                 if (spa->spa_root_vdev == vd) {
332                         /*
333                          * The root vdev's guid will also be the pool guid,
334                          * which must be unique among all pools.
335                          */
336                         guid = spa_generate_guid(NULL);
337                 } else {
338                         /*
339                          * Any other vdev's guid must be unique within the pool.
340                          */
341                         guid = spa_generate_guid(spa);
342                 }
343                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
344         }
345
346         vd->vdev_spa = spa;
347         vd->vdev_id = id;
348         vd->vdev_guid = guid;
349         vd->vdev_guid_sum = guid;
350         vd->vdev_ops = ops;
351         vd->vdev_state = VDEV_STATE_CLOSED;
352         vd->vdev_ishole = (ops == &vdev_hole_ops);
353
354         /*
355          * Initialize rate limit structs for events.  We rate limit ZIO delay
356          * and checksum events so that we don't overwhelm ZED with thousands
357          * of events when a disk is acting up.
358          */
359         zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
360         zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
361
362         list_link_init(&vd->vdev_config_dirty_node);
363         list_link_init(&vd->vdev_state_dirty_node);
364         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
365         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
366         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
367         mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
368
369         for (t = 0; t < DTL_TYPES; t++) {
370                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
371                     &vd->vdev_dtl_lock);
372         }
373         txg_list_create(&vd->vdev_ms_list,
374             offsetof(struct metaslab, ms_txg_node));
375         txg_list_create(&vd->vdev_dtl_list,
376             offsetof(struct vdev, vdev_dtl_node));
377         vd->vdev_stat.vs_timestamp = gethrtime();
378         vdev_queue_init(vd);
379         vdev_cache_init(vd);
380
381         return (vd);
382 }
383
384 /*
385  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
386  * creating a new vdev or loading an existing one - the behavior is slightly
387  * different for each case.
388  */
389 int
390 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
391     int alloctype)
392 {
393         vdev_ops_t *ops;
394         char *type;
395         uint64_t guid = 0, islog, nparity;
396         vdev_t *vd;
397
398         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
399
400         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
401                 return (SET_ERROR(EINVAL));
402
403         if ((ops = vdev_getops(type)) == NULL)
404                 return (SET_ERROR(EINVAL));
405
406         /*
407          * If this is a load, get the vdev guid from the nvlist.
408          * Otherwise, vdev_alloc_common() will generate one for us.
409          */
410         if (alloctype == VDEV_ALLOC_LOAD) {
411                 uint64_t label_id;
412
413                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
414                     label_id != id)
415                         return (SET_ERROR(EINVAL));
416
417                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
418                         return (SET_ERROR(EINVAL));
419         } else if (alloctype == VDEV_ALLOC_SPARE) {
420                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
421                         return (SET_ERROR(EINVAL));
422         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
423                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
424                         return (SET_ERROR(EINVAL));
425         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
426                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
427                         return (SET_ERROR(EINVAL));
428         }
429
430         /*
431          * The first allocated vdev must be of type 'root'.
432          */
433         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
434                 return (SET_ERROR(EINVAL));
435
436         /*
437          * Determine whether we're a log vdev.
438          */
439         islog = 0;
440         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
441         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
442                 return (SET_ERROR(ENOTSUP));
443
444         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
445                 return (SET_ERROR(ENOTSUP));
446
447         /*
448          * Set the nparity property for RAID-Z vdevs.
449          */
450         nparity = -1ULL;
451         if (ops == &vdev_raidz_ops) {
452                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
453                     &nparity) == 0) {
454                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
455                                 return (SET_ERROR(EINVAL));
456                         /*
457                          * Previous versions could only support 1 or 2 parity
458                          * device.
459                          */
460                         if (nparity > 1 &&
461                             spa_version(spa) < SPA_VERSION_RAIDZ2)
462                                 return (SET_ERROR(ENOTSUP));
463                         if (nparity > 2 &&
464                             spa_version(spa) < SPA_VERSION_RAIDZ3)
465                                 return (SET_ERROR(ENOTSUP));
466                 } else {
467                         /*
468                          * We require the parity to be specified for SPAs that
469                          * support multiple parity levels.
470                          */
471                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
472                                 return (SET_ERROR(EINVAL));
473                         /*
474                          * Otherwise, we default to 1 parity device for RAID-Z.
475                          */
476                         nparity = 1;
477                 }
478         } else {
479                 nparity = 0;
480         }
481         ASSERT(nparity != -1ULL);
482
483         vd = vdev_alloc_common(spa, id, guid, ops);
484
485         vd->vdev_islog = islog;
486         vd->vdev_nparity = nparity;
487
488         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
489                 vd->vdev_path = spa_strdup(vd->vdev_path);
490         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
491                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
492         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
493             &vd->vdev_physpath) == 0)
494                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
495
496         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
497             &vd->vdev_enc_sysfs_path) == 0)
498                 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
499
500         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
501                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
502
503         /*
504          * Set the whole_disk property.  If it's not specified, leave the value
505          * as -1.
506          */
507         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
508             &vd->vdev_wholedisk) != 0)
509                 vd->vdev_wholedisk = -1ULL;
510
511         /*
512          * Look for the 'not present' flag.  This will only be set if the device
513          * was not present at the time of import.
514          */
515         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
516             &vd->vdev_not_present);
517
518         /*
519          * Get the alignment requirement.
520          */
521         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
522
523         /*
524          * Retrieve the vdev creation time.
525          */
526         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
527             &vd->vdev_crtxg);
528
529         /*
530          * If we're a top-level vdev, try to load the allocation parameters.
531          */
532         if (parent && !parent->vdev_parent &&
533             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
534                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
535                     &vd->vdev_ms_array);
536                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
537                     &vd->vdev_ms_shift);
538                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
539                     &vd->vdev_asize);
540                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
541                     &vd->vdev_removing);
542                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
543                     &vd->vdev_top_zap);
544         } else {
545                 ASSERT0(vd->vdev_top_zap);
546         }
547
548         if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
549                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
550                     alloctype == VDEV_ALLOC_ADD ||
551                     alloctype == VDEV_ALLOC_SPLIT ||
552                     alloctype == VDEV_ALLOC_ROOTPOOL);
553                 vd->vdev_mg = metaslab_group_create(islog ?
554                     spa_log_class(spa) : spa_normal_class(spa), vd);
555         }
556
557         if (vd->vdev_ops->vdev_op_leaf &&
558             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
559                 (void) nvlist_lookup_uint64(nv,
560                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
561         } else {
562                 ASSERT0(vd->vdev_leaf_zap);
563         }
564
565         /*
566          * If we're a leaf vdev, try to load the DTL object and other state.
567          */
568
569         if (vd->vdev_ops->vdev_op_leaf &&
570             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
571             alloctype == VDEV_ALLOC_ROOTPOOL)) {
572                 if (alloctype == VDEV_ALLOC_LOAD) {
573                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
574                             &vd->vdev_dtl_object);
575                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
576                             &vd->vdev_unspare);
577                 }
578
579                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
580                         uint64_t spare = 0;
581
582                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
583                             &spare) == 0 && spare)
584                                 spa_spare_add(vd);
585                 }
586
587                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
588                     &vd->vdev_offline);
589
590                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
591                     &vd->vdev_resilver_txg);
592
593                 /*
594                  * When importing a pool, we want to ignore the persistent fault
595                  * state, as the diagnosis made on another system may not be
596                  * valid in the current context.  Local vdevs will
597                  * remain in the faulted state.
598                  */
599                 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
600                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
601                             &vd->vdev_faulted);
602                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
603                             &vd->vdev_degraded);
604                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
605                             &vd->vdev_removed);
606
607                         if (vd->vdev_faulted || vd->vdev_degraded) {
608                                 char *aux;
609
610                                 vd->vdev_label_aux =
611                                     VDEV_AUX_ERR_EXCEEDED;
612                                 if (nvlist_lookup_string(nv,
613                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
614                                     strcmp(aux, "external") == 0)
615                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
616                         }
617                 }
618         }
619
620         /*
621          * Add ourselves to the parent's list of children.
622          */
623         vdev_add_child(parent, vd);
624
625         *vdp = vd;
626
627         return (0);
628 }
629
630 void
631 vdev_free(vdev_t *vd)
632 {
633         int c, t;
634         spa_t *spa = vd->vdev_spa;
635
636         /*
637          * vdev_free() implies closing the vdev first.  This is simpler than
638          * trying to ensure complicated semantics for all callers.
639          */
640         vdev_close(vd);
641
642         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
643         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
644
645         /*
646          * Free all children.
647          */
648         for (c = 0; c < vd->vdev_children; c++)
649                 vdev_free(vd->vdev_child[c]);
650
651         ASSERT(vd->vdev_child == NULL);
652         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
653
654         /*
655          * Discard allocation state.
656          */
657         if (vd->vdev_mg != NULL) {
658                 vdev_metaslab_fini(vd);
659                 metaslab_group_destroy(vd->vdev_mg);
660         }
661
662         ASSERT0(vd->vdev_stat.vs_space);
663         ASSERT0(vd->vdev_stat.vs_dspace);
664         ASSERT0(vd->vdev_stat.vs_alloc);
665
666         /*
667          * Remove this vdev from its parent's child list.
668          */
669         vdev_remove_child(vd->vdev_parent, vd);
670
671         ASSERT(vd->vdev_parent == NULL);
672
673         /*
674          * Clean up vdev structure.
675          */
676         vdev_queue_fini(vd);
677         vdev_cache_fini(vd);
678
679         if (vd->vdev_path)
680                 spa_strfree(vd->vdev_path);
681         if (vd->vdev_devid)
682                 spa_strfree(vd->vdev_devid);
683         if (vd->vdev_physpath)
684                 spa_strfree(vd->vdev_physpath);
685
686         if (vd->vdev_enc_sysfs_path)
687                 spa_strfree(vd->vdev_enc_sysfs_path);
688
689         if (vd->vdev_fru)
690                 spa_strfree(vd->vdev_fru);
691
692         if (vd->vdev_isspare)
693                 spa_spare_remove(vd);
694         if (vd->vdev_isl2cache)
695                 spa_l2cache_remove(vd);
696
697         txg_list_destroy(&vd->vdev_ms_list);
698         txg_list_destroy(&vd->vdev_dtl_list);
699
700         mutex_enter(&vd->vdev_dtl_lock);
701         space_map_close(vd->vdev_dtl_sm);
702         for (t = 0; t < DTL_TYPES; t++) {
703                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
704                 range_tree_destroy(vd->vdev_dtl[t]);
705         }
706         mutex_exit(&vd->vdev_dtl_lock);
707
708         mutex_destroy(&vd->vdev_queue_lock);
709         mutex_destroy(&vd->vdev_dtl_lock);
710         mutex_destroy(&vd->vdev_stat_lock);
711         mutex_destroy(&vd->vdev_probe_lock);
712
713         if (vd == spa->spa_root_vdev)
714                 spa->spa_root_vdev = NULL;
715
716         kmem_free(vd, sizeof (vdev_t));
717 }
718
719 /*
720  * Transfer top-level vdev state from svd to tvd.
721  */
722 static void
723 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
724 {
725         spa_t *spa = svd->vdev_spa;
726         metaslab_t *msp;
727         vdev_t *vd;
728         int t;
729
730         ASSERT(tvd == tvd->vdev_top);
731
732         tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
733         tvd->vdev_ms_array = svd->vdev_ms_array;
734         tvd->vdev_ms_shift = svd->vdev_ms_shift;
735         tvd->vdev_ms_count = svd->vdev_ms_count;
736         tvd->vdev_top_zap = svd->vdev_top_zap;
737
738         svd->vdev_ms_array = 0;
739         svd->vdev_ms_shift = 0;
740         svd->vdev_ms_count = 0;
741         svd->vdev_top_zap = 0;
742
743         if (tvd->vdev_mg)
744                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
745         tvd->vdev_mg = svd->vdev_mg;
746         tvd->vdev_ms = svd->vdev_ms;
747
748         svd->vdev_mg = NULL;
749         svd->vdev_ms = NULL;
750
751         if (tvd->vdev_mg != NULL)
752                 tvd->vdev_mg->mg_vd = tvd;
753
754         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
755         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
756         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
757
758         svd->vdev_stat.vs_alloc = 0;
759         svd->vdev_stat.vs_space = 0;
760         svd->vdev_stat.vs_dspace = 0;
761
762         for (t = 0; t < TXG_SIZE; t++) {
763                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
764                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
765                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
766                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
767                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
768                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
769         }
770
771         if (list_link_active(&svd->vdev_config_dirty_node)) {
772                 vdev_config_clean(svd);
773                 vdev_config_dirty(tvd);
774         }
775
776         if (list_link_active(&svd->vdev_state_dirty_node)) {
777                 vdev_state_clean(svd);
778                 vdev_state_dirty(tvd);
779         }
780
781         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
782         svd->vdev_deflate_ratio = 0;
783
784         tvd->vdev_islog = svd->vdev_islog;
785         svd->vdev_islog = 0;
786 }
787
788 static void
789 vdev_top_update(vdev_t *tvd, vdev_t *vd)
790 {
791         int c;
792
793         if (vd == NULL)
794                 return;
795
796         vd->vdev_top = tvd;
797
798         for (c = 0; c < vd->vdev_children; c++)
799                 vdev_top_update(tvd, vd->vdev_child[c]);
800 }
801
802 /*
803  * Add a mirror/replacing vdev above an existing vdev.
804  */
805 vdev_t *
806 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
807 {
808         spa_t *spa = cvd->vdev_spa;
809         vdev_t *pvd = cvd->vdev_parent;
810         vdev_t *mvd;
811
812         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
813
814         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
815
816         mvd->vdev_asize = cvd->vdev_asize;
817         mvd->vdev_min_asize = cvd->vdev_min_asize;
818         mvd->vdev_max_asize = cvd->vdev_max_asize;
819         mvd->vdev_ashift = cvd->vdev_ashift;
820         mvd->vdev_state = cvd->vdev_state;
821         mvd->vdev_crtxg = cvd->vdev_crtxg;
822
823         vdev_remove_child(pvd, cvd);
824         vdev_add_child(pvd, mvd);
825         cvd->vdev_id = mvd->vdev_children;
826         vdev_add_child(mvd, cvd);
827         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
828
829         if (mvd == mvd->vdev_top)
830                 vdev_top_transfer(cvd, mvd);
831
832         return (mvd);
833 }
834
835 /*
836  * Remove a 1-way mirror/replacing vdev from the tree.
837  */
838 void
839 vdev_remove_parent(vdev_t *cvd)
840 {
841         vdev_t *mvd = cvd->vdev_parent;
842         vdev_t *pvd = mvd->vdev_parent;
843
844         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
845
846         ASSERT(mvd->vdev_children == 1);
847         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
848             mvd->vdev_ops == &vdev_replacing_ops ||
849             mvd->vdev_ops == &vdev_spare_ops);
850         cvd->vdev_ashift = mvd->vdev_ashift;
851
852         vdev_remove_child(mvd, cvd);
853         vdev_remove_child(pvd, mvd);
854
855         /*
856          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
857          * Otherwise, we could have detached an offline device, and when we
858          * go to import the pool we'll think we have two top-level vdevs,
859          * instead of a different version of the same top-level vdev.
860          */
861         if (mvd->vdev_top == mvd) {
862                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
863                 cvd->vdev_orig_guid = cvd->vdev_guid;
864                 cvd->vdev_guid += guid_delta;
865                 cvd->vdev_guid_sum += guid_delta;
866
867                 /*
868                  * If pool not set for autoexpand, we need to also preserve
869                  * mvd's asize to prevent automatic expansion of cvd.
870                  * Otherwise if we are adjusting the mirror by attaching and
871                  * detaching children of non-uniform sizes, the mirror could
872                  * autoexpand, unexpectedly requiring larger devices to
873                  * re-establish the mirror.
874                  */
875                 if (!cvd->vdev_spa->spa_autoexpand)
876                         cvd->vdev_asize = mvd->vdev_asize;
877         }
878         cvd->vdev_id = mvd->vdev_id;
879         vdev_add_child(pvd, cvd);
880         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
881
882         if (cvd == cvd->vdev_top)
883                 vdev_top_transfer(mvd, cvd);
884
885         ASSERT(mvd->vdev_children == 0);
886         vdev_free(mvd);
887 }
888
889 int
890 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
891 {
892         spa_t *spa = vd->vdev_spa;
893         objset_t *mos = spa->spa_meta_objset;
894         uint64_t m;
895         uint64_t oldc = vd->vdev_ms_count;
896         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
897         metaslab_t **mspp;
898         int error;
899
900         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
901
902         /*
903          * This vdev is not being allocated from yet or is a hole.
904          */
905         if (vd->vdev_ms_shift == 0)
906                 return (0);
907
908         ASSERT(!vd->vdev_ishole);
909
910         /*
911          * Compute the raidz-deflation ratio.  Note, we hard-code
912          * in 128k (1 << 17) because it is the "typical" blocksize.
913          * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
914          * otherwise it would inconsistently account for existing bp's.
915          */
916         vd->vdev_deflate_ratio = (1 << 17) /
917             (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
918
919         ASSERT(oldc <= newc);
920
921         mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
922
923         if (oldc != 0) {
924                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
925                 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
926         }
927
928         vd->vdev_ms = mspp;
929         vd->vdev_ms_count = newc;
930
931         for (m = oldc; m < newc; m++) {
932                 uint64_t object = 0;
933
934                 if (txg == 0) {
935                         error = dmu_read(mos, vd->vdev_ms_array,
936                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
937                             DMU_READ_PREFETCH);
938                         if (error)
939                                 return (error);
940                 }
941
942                 error = metaslab_init(vd->vdev_mg, m, object, txg,
943                     &(vd->vdev_ms[m]));
944                 if (error)
945                         return (error);
946         }
947
948         if (txg == 0)
949                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
950
951         /*
952          * If the vdev is being removed we don't activate
953          * the metaslabs since we want to ensure that no new
954          * allocations are performed on this device.
955          */
956         if (oldc == 0 && !vd->vdev_removing)
957                 metaslab_group_activate(vd->vdev_mg);
958
959         if (txg == 0)
960                 spa_config_exit(spa, SCL_ALLOC, FTAG);
961
962         return (0);
963 }
964
965 void
966 vdev_metaslab_fini(vdev_t *vd)
967 {
968         uint64_t m;
969         uint64_t count = vd->vdev_ms_count;
970
971         if (vd->vdev_ms != NULL) {
972                 metaslab_group_passivate(vd->vdev_mg);
973                 for (m = 0; m < count; m++) {
974                         metaslab_t *msp = vd->vdev_ms[m];
975
976                         if (msp != NULL)
977                                 metaslab_fini(msp);
978                 }
979                 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
980                 vd->vdev_ms = NULL;
981         }
982
983         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
984 }
985
986 typedef struct vdev_probe_stats {
987         boolean_t       vps_readable;
988         boolean_t       vps_writeable;
989         int             vps_flags;
990 } vdev_probe_stats_t;
991
992 static void
993 vdev_probe_done(zio_t *zio)
994 {
995         spa_t *spa = zio->io_spa;
996         vdev_t *vd = zio->io_vd;
997         vdev_probe_stats_t *vps = zio->io_private;
998
999         ASSERT(vd->vdev_probe_zio != NULL);
1000
1001         if (zio->io_type == ZIO_TYPE_READ) {
1002                 if (zio->io_error == 0)
1003                         vps->vps_readable = 1;
1004                 if (zio->io_error == 0 && spa_writeable(spa)) {
1005                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1006                             zio->io_offset, zio->io_size, zio->io_abd,
1007                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1008                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1009                 } else {
1010                         abd_free(zio->io_abd);
1011                 }
1012         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1013                 if (zio->io_error == 0)
1014                         vps->vps_writeable = 1;
1015                 abd_free(zio->io_abd);
1016         } else if (zio->io_type == ZIO_TYPE_NULL) {
1017                 zio_t *pio;
1018                 zio_link_t *zl;
1019
1020                 vd->vdev_cant_read |= !vps->vps_readable;
1021                 vd->vdev_cant_write |= !vps->vps_writeable;
1022
1023                 if (vdev_readable(vd) &&
1024                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1025                         zio->io_error = 0;
1026                 } else {
1027                         ASSERT(zio->io_error != 0);
1028                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1029                             spa, vd, NULL, 0, 0);
1030                         zio->io_error = SET_ERROR(ENXIO);
1031                 }
1032
1033                 mutex_enter(&vd->vdev_probe_lock);
1034                 ASSERT(vd->vdev_probe_zio == zio);
1035                 vd->vdev_probe_zio = NULL;
1036                 mutex_exit(&vd->vdev_probe_lock);
1037
1038                 zl = NULL;
1039                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1040                         if (!vdev_accessible(vd, pio))
1041                                 pio->io_error = SET_ERROR(ENXIO);
1042
1043                 kmem_free(vps, sizeof (*vps));
1044         }
1045 }
1046
1047 /*
1048  * Determine whether this device is accessible.
1049  *
1050  * Read and write to several known locations: the pad regions of each
1051  * vdev label but the first, which we leave alone in case it contains
1052  * a VTOC.
1053  */
1054 zio_t *
1055 vdev_probe(vdev_t *vd, zio_t *zio)
1056 {
1057         spa_t *spa = vd->vdev_spa;
1058         vdev_probe_stats_t *vps = NULL;
1059         zio_t *pio;
1060         int l;
1061
1062         ASSERT(vd->vdev_ops->vdev_op_leaf);
1063
1064         /*
1065          * Don't probe the probe.
1066          */
1067         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1068                 return (NULL);
1069
1070         /*
1071          * To prevent 'probe storms' when a device fails, we create
1072          * just one probe i/o at a time.  All zios that want to probe
1073          * this vdev will become parents of the probe io.
1074          */
1075         mutex_enter(&vd->vdev_probe_lock);
1076
1077         if ((pio = vd->vdev_probe_zio) == NULL) {
1078                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1079
1080                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1081                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1082                     ZIO_FLAG_TRYHARD;
1083
1084                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1085                         /*
1086                          * vdev_cant_read and vdev_cant_write can only
1087                          * transition from TRUE to FALSE when we have the
1088                          * SCL_ZIO lock as writer; otherwise they can only
1089                          * transition from FALSE to TRUE.  This ensures that
1090                          * any zio looking at these values can assume that
1091                          * failures persist for the life of the I/O.  That's
1092                          * important because when a device has intermittent
1093                          * connectivity problems, we want to ensure that
1094                          * they're ascribed to the device (ENXIO) and not
1095                          * the zio (EIO).
1096                          *
1097                          * Since we hold SCL_ZIO as writer here, clear both
1098                          * values so the probe can reevaluate from first
1099                          * principles.
1100                          */
1101                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1102                         vd->vdev_cant_read = B_FALSE;
1103                         vd->vdev_cant_write = B_FALSE;
1104                 }
1105
1106                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1107                     vdev_probe_done, vps,
1108                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1109
1110                 /*
1111                  * We can't change the vdev state in this context, so we
1112                  * kick off an async task to do it on our behalf.
1113                  */
1114                 if (zio != NULL) {
1115                         vd->vdev_probe_wanted = B_TRUE;
1116                         spa_async_request(spa, SPA_ASYNC_PROBE);
1117                 }
1118         }
1119
1120         if (zio != NULL)
1121                 zio_add_child(zio, pio);
1122
1123         mutex_exit(&vd->vdev_probe_lock);
1124
1125         if (vps == NULL) {
1126                 ASSERT(zio != NULL);
1127                 return (NULL);
1128         }
1129
1130         for (l = 1; l < VDEV_LABELS; l++) {
1131                 zio_nowait(zio_read_phys(pio, vd,
1132                     vdev_label_offset(vd->vdev_psize, l,
1133                     offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1134                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1135                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1136                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1137         }
1138
1139         if (zio == NULL)
1140                 return (pio);
1141
1142         zio_nowait(pio);
1143         return (NULL);
1144 }
1145
1146 static void
1147 vdev_open_child(void *arg)
1148 {
1149         vdev_t *vd = arg;
1150
1151         vd->vdev_open_thread = curthread;
1152         vd->vdev_open_error = vdev_open(vd);
1153         vd->vdev_open_thread = NULL;
1154 }
1155
1156 static boolean_t
1157 vdev_uses_zvols(vdev_t *vd)
1158 {
1159         int c;
1160
1161 #ifdef _KERNEL
1162         if (zvol_is_zvol(vd->vdev_path))
1163                 return (B_TRUE);
1164 #endif
1165
1166         for (c = 0; c < vd->vdev_children; c++)
1167                 if (vdev_uses_zvols(vd->vdev_child[c]))
1168                         return (B_TRUE);
1169
1170         return (B_FALSE);
1171 }
1172
1173 void
1174 vdev_open_children(vdev_t *vd)
1175 {
1176         taskq_t *tq;
1177         int children = vd->vdev_children;
1178         int c;
1179
1180         /*
1181          * in order to handle pools on top of zvols, do the opens
1182          * in a single thread so that the same thread holds the
1183          * spa_namespace_lock
1184          */
1185         if (vdev_uses_zvols(vd)) {
1186 retry_sync:
1187                 for (c = 0; c < children; c++)
1188                         vd->vdev_child[c]->vdev_open_error =
1189                             vdev_open(vd->vdev_child[c]);
1190         } else {
1191                 tq = taskq_create("vdev_open", children, minclsyspri,
1192                     children, children, TASKQ_PREPOPULATE);
1193                 if (tq == NULL)
1194                         goto retry_sync;
1195
1196                 for (c = 0; c < children; c++)
1197                         VERIFY(taskq_dispatch(tq, vdev_open_child,
1198                             vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1199
1200                 taskq_destroy(tq);
1201         }
1202
1203         vd->vdev_nonrot = B_TRUE;
1204
1205         for (c = 0; c < children; c++)
1206                 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1207 }
1208
1209 /*
1210  * Prepare a virtual device for access.
1211  */
1212 int
1213 vdev_open(vdev_t *vd)
1214 {
1215         spa_t *spa = vd->vdev_spa;
1216         int error;
1217         uint64_t osize = 0;
1218         uint64_t max_osize = 0;
1219         uint64_t asize, max_asize, psize;
1220         uint64_t ashift = 0;
1221         int c;
1222
1223         ASSERT(vd->vdev_open_thread == curthread ||
1224             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1225         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1226             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1227             vd->vdev_state == VDEV_STATE_OFFLINE);
1228
1229         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1230         vd->vdev_cant_read = B_FALSE;
1231         vd->vdev_cant_write = B_FALSE;
1232         vd->vdev_min_asize = vdev_get_min_asize(vd);
1233
1234         /*
1235          * If this vdev is not removed, check its fault status.  If it's
1236          * faulted, bail out of the open.
1237          */
1238         if (!vd->vdev_removed && vd->vdev_faulted) {
1239                 ASSERT(vd->vdev_children == 0);
1240                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1241                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1242                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1243                     vd->vdev_label_aux);
1244                 return (SET_ERROR(ENXIO));
1245         } else if (vd->vdev_offline) {
1246                 ASSERT(vd->vdev_children == 0);
1247                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1248                 return (SET_ERROR(ENXIO));
1249         }
1250
1251         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1252
1253         /*
1254          * Reset the vdev_reopening flag so that we actually close
1255          * the vdev on error.
1256          */
1257         vd->vdev_reopening = B_FALSE;
1258         if (zio_injection_enabled && error == 0)
1259                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1260
1261         if (error) {
1262                 if (vd->vdev_removed &&
1263                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1264                         vd->vdev_removed = B_FALSE;
1265
1266                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1267                     vd->vdev_stat.vs_aux);
1268                 return (error);
1269         }
1270
1271         vd->vdev_removed = B_FALSE;
1272
1273         /*
1274          * Recheck the faulted flag now that we have confirmed that
1275          * the vdev is accessible.  If we're faulted, bail.
1276          */
1277         if (vd->vdev_faulted) {
1278                 ASSERT(vd->vdev_children == 0);
1279                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1280                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1281                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1282                     vd->vdev_label_aux);
1283                 return (SET_ERROR(ENXIO));
1284         }
1285
1286         if (vd->vdev_degraded) {
1287                 ASSERT(vd->vdev_children == 0);
1288                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1289                     VDEV_AUX_ERR_EXCEEDED);
1290         } else {
1291                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1292         }
1293
1294         /*
1295          * For hole or missing vdevs we just return success.
1296          */
1297         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1298                 return (0);
1299
1300         for (c = 0; c < vd->vdev_children; c++) {
1301                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1302                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1303                             VDEV_AUX_NONE);
1304                         break;
1305                 }
1306         }
1307
1308         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1309         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1310
1311         if (vd->vdev_children == 0) {
1312                 if (osize < SPA_MINDEVSIZE) {
1313                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1314                             VDEV_AUX_TOO_SMALL);
1315                         return (SET_ERROR(EOVERFLOW));
1316                 }
1317                 psize = osize;
1318                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1319                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1320                     VDEV_LABEL_END_SIZE);
1321         } else {
1322                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1323                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1324                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1325                             VDEV_AUX_TOO_SMALL);
1326                         return (SET_ERROR(EOVERFLOW));
1327                 }
1328                 psize = 0;
1329                 asize = osize;
1330                 max_asize = max_osize;
1331         }
1332
1333         /*
1334          * If the vdev was expanded, record this so that we can re-create the
1335          * uberblock rings in labels {2,3}, during the next sync.
1336          */
1337         if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1338                 vd->vdev_copy_uberblocks = B_TRUE;
1339
1340         vd->vdev_psize = psize;
1341
1342         /*
1343          * Make sure the allocatable size hasn't shrunk too much.
1344          */
1345         if (asize < vd->vdev_min_asize) {
1346                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1347                     VDEV_AUX_BAD_LABEL);
1348                 return (SET_ERROR(EINVAL));
1349         }
1350
1351         if (vd->vdev_asize == 0) {
1352                 /*
1353                  * This is the first-ever open, so use the computed values.
1354                  * For compatibility, a different ashift can be requested.
1355                  */
1356                 vd->vdev_asize = asize;
1357                 vd->vdev_max_asize = max_asize;
1358                 if (vd->vdev_ashift == 0) {
1359                         vd->vdev_ashift = ashift; /* use detected value */
1360                 }
1361                 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1362                     vd->vdev_ashift > ASHIFT_MAX)) {
1363                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1364                             VDEV_AUX_BAD_ASHIFT);
1365                         return (SET_ERROR(EDOM));
1366                 }
1367         } else {
1368                 /*
1369                  * Detect if the alignment requirement has increased.
1370                  * We don't want to make the pool unavailable, just
1371                  * post an event instead.
1372                  */
1373                 if (ashift > vd->vdev_top->vdev_ashift &&
1374                     vd->vdev_ops->vdev_op_leaf) {
1375                         zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1376                             spa, vd, NULL, 0, 0);
1377                 }
1378
1379                 vd->vdev_max_asize = max_asize;
1380         }
1381
1382         /*
1383          * If all children are healthy we update asize if either:
1384          * The asize has increased, due to a device expansion caused by dynamic
1385          * LUN growth or vdev replacement, and automatic expansion is enabled;
1386          * making the additional space available.
1387          *
1388          * The asize has decreased, due to a device shrink usually caused by a
1389          * vdev replace with a smaller device. This ensures that calculations
1390          * based of max_asize and asize e.g. esize are always valid. It's safe
1391          * to do this as we've already validated that asize is greater than
1392          * vdev_min_asize.
1393          */
1394         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1395             ((asize > vd->vdev_asize &&
1396             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1397             (asize < vd->vdev_asize)))
1398                 vd->vdev_asize = asize;
1399
1400         vdev_set_min_asize(vd);
1401
1402         /*
1403          * Ensure we can issue some IO before declaring the
1404          * vdev open for business.
1405          */
1406         if (vd->vdev_ops->vdev_op_leaf &&
1407             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1408                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1409                     VDEV_AUX_ERR_EXCEEDED);
1410                 return (error);
1411         }
1412
1413         /*
1414          * Track the min and max ashift values for normal data devices.
1415          */
1416         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1417             !vd->vdev_islog && vd->vdev_aux == NULL) {
1418                 if (vd->vdev_ashift > spa->spa_max_ashift)
1419                         spa->spa_max_ashift = vd->vdev_ashift;
1420                 if (vd->vdev_ashift < spa->spa_min_ashift)
1421                         spa->spa_min_ashift = vd->vdev_ashift;
1422         }
1423
1424         /*
1425          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1426          * resilver.  But don't do this if we are doing a reopen for a scrub,
1427          * since this would just restart the scrub we are already doing.
1428          */
1429         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1430             vdev_resilver_needed(vd, NULL, NULL))
1431                 spa_async_request(spa, SPA_ASYNC_RESILVER);
1432
1433         return (0);
1434 }
1435
1436 /*
1437  * Called once the vdevs are all opened, this routine validates the label
1438  * contents.  This needs to be done before vdev_load() so that we don't
1439  * inadvertently do repair I/Os to the wrong device.
1440  *
1441  * If 'strict' is false ignore the spa guid check. This is necessary because
1442  * if the machine crashed during a re-guid the new guid might have been written
1443  * to all of the vdev labels, but not the cached config. The strict check
1444  * will be performed when the pool is opened again using the mos config.
1445  *
1446  * This function will only return failure if one of the vdevs indicates that it
1447  * has since been destroyed or exported.  This is only possible if
1448  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1449  * will be updated but the function will return 0.
1450  */
1451 int
1452 vdev_validate(vdev_t *vd, boolean_t strict)
1453 {
1454         spa_t *spa = vd->vdev_spa;
1455         nvlist_t *label;
1456         uint64_t guid = 0, top_guid;
1457         uint64_t state;
1458         int c;
1459
1460         for (c = 0; c < vd->vdev_children; c++)
1461                 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1462                         return (SET_ERROR(EBADF));
1463
1464         /*
1465          * If the device has already failed, or was marked offline, don't do
1466          * any further validation.  Otherwise, label I/O will fail and we will
1467          * overwrite the previous state.
1468          */
1469         if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1470                 uint64_t aux_guid = 0;
1471                 nvlist_t *nvl;
1472                 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1473                     spa_last_synced_txg(spa) : -1ULL;
1474
1475                 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1476                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1477                             VDEV_AUX_BAD_LABEL);
1478                         return (0);
1479                 }
1480
1481                 /*
1482                  * Determine if this vdev has been split off into another
1483                  * pool.  If so, then refuse to open it.
1484                  */
1485                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1486                     &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1487                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1488                             VDEV_AUX_SPLIT_POOL);
1489                         nvlist_free(label);
1490                         return (0);
1491                 }
1492
1493                 if (strict && (nvlist_lookup_uint64(label,
1494                     ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1495                     guid != spa_guid(spa))) {
1496                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1497                             VDEV_AUX_CORRUPT_DATA);
1498                         nvlist_free(label);
1499                         return (0);
1500                 }
1501
1502                 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1503                     != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1504                     &aux_guid) != 0)
1505                         aux_guid = 0;
1506
1507                 /*
1508                  * If this vdev just became a top-level vdev because its
1509                  * sibling was detached, it will have adopted the parent's
1510                  * vdev guid -- but the label may or may not be on disk yet.
1511                  * Fortunately, either version of the label will have the
1512                  * same top guid, so if we're a top-level vdev, we can
1513                  * safely compare to that instead.
1514                  *
1515                  * If we split this vdev off instead, then we also check the
1516                  * original pool's guid.  We don't want to consider the vdev
1517                  * corrupt if it is partway through a split operation.
1518                  */
1519                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1520                     &guid) != 0 ||
1521                     nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1522                     &top_guid) != 0 ||
1523                     ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1524                     (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1525                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1526                             VDEV_AUX_CORRUPT_DATA);
1527                         nvlist_free(label);
1528                         return (0);
1529                 }
1530
1531                 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1532                     &state) != 0) {
1533                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1534                             VDEV_AUX_CORRUPT_DATA);
1535                         nvlist_free(label);
1536                         return (0);
1537                 }
1538
1539                 nvlist_free(label);
1540
1541                 /*
1542                  * If this is a verbatim import, no need to check the
1543                  * state of the pool.
1544                  */
1545                 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1546                     spa_load_state(spa) == SPA_LOAD_OPEN &&
1547                     state != POOL_STATE_ACTIVE)
1548                         return (SET_ERROR(EBADF));
1549
1550                 /*
1551                  * If we were able to open and validate a vdev that was
1552                  * previously marked permanently unavailable, clear that state
1553                  * now.
1554                  */
1555                 if (vd->vdev_not_present)
1556                         vd->vdev_not_present = 0;
1557         }
1558
1559         return (0);
1560 }
1561
1562 /*
1563  * Close a virtual device.
1564  */
1565 void
1566 vdev_close(vdev_t *vd)
1567 {
1568         vdev_t *pvd = vd->vdev_parent;
1569         ASSERTV(spa_t *spa = vd->vdev_spa);
1570
1571         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1572
1573         /*
1574          * If our parent is reopening, then we are as well, unless we are
1575          * going offline.
1576          */
1577         if (pvd != NULL && pvd->vdev_reopening)
1578                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1579
1580         vd->vdev_ops->vdev_op_close(vd);
1581
1582         vdev_cache_purge(vd);
1583
1584         /*
1585          * We record the previous state before we close it, so that if we are
1586          * doing a reopen(), we don't generate FMA ereports if we notice that
1587          * it's still faulted.
1588          */
1589         vd->vdev_prevstate = vd->vdev_state;
1590
1591         if (vd->vdev_offline)
1592                 vd->vdev_state = VDEV_STATE_OFFLINE;
1593         else
1594                 vd->vdev_state = VDEV_STATE_CLOSED;
1595         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1596 }
1597
1598 void
1599 vdev_hold(vdev_t *vd)
1600 {
1601         spa_t *spa = vd->vdev_spa;
1602         int c;
1603
1604         ASSERT(spa_is_root(spa));
1605         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1606                 return;
1607
1608         for (c = 0; c < vd->vdev_children; c++)
1609                 vdev_hold(vd->vdev_child[c]);
1610
1611         if (vd->vdev_ops->vdev_op_leaf)
1612                 vd->vdev_ops->vdev_op_hold(vd);
1613 }
1614
1615 void
1616 vdev_rele(vdev_t *vd)
1617 {
1618         int c;
1619
1620         ASSERT(spa_is_root(vd->vdev_spa));
1621         for (c = 0; c < vd->vdev_children; c++)
1622                 vdev_rele(vd->vdev_child[c]);
1623
1624         if (vd->vdev_ops->vdev_op_leaf)
1625                 vd->vdev_ops->vdev_op_rele(vd);
1626 }
1627
1628 /*
1629  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1630  * reopen leaf vdevs which had previously been opened as they might deadlock
1631  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1632  * If the leaf has never been opened then open it, as usual.
1633  */
1634 void
1635 vdev_reopen(vdev_t *vd)
1636 {
1637         spa_t *spa = vd->vdev_spa;
1638
1639         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1640
1641         /* set the reopening flag unless we're taking the vdev offline */
1642         vd->vdev_reopening = !vd->vdev_offline;
1643         vdev_close(vd);
1644         (void) vdev_open(vd);
1645
1646         /*
1647          * Call vdev_validate() here to make sure we have the same device.
1648          * Otherwise, a device with an invalid label could be successfully
1649          * opened in response to vdev_reopen().
1650          */
1651         if (vd->vdev_aux) {
1652                 (void) vdev_validate_aux(vd);
1653                 if (vdev_readable(vd) && vdev_writeable(vd) &&
1654                     vd->vdev_aux == &spa->spa_l2cache &&
1655                     !l2arc_vdev_present(vd))
1656                         l2arc_add_vdev(spa, vd);
1657         } else {
1658                 (void) vdev_validate(vd, B_TRUE);
1659         }
1660
1661         /*
1662          * Reassess parent vdev's health.
1663          */
1664         vdev_propagate_state(vd);
1665 }
1666
1667 int
1668 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1669 {
1670         int error;
1671
1672         /*
1673          * Normally, partial opens (e.g. of a mirror) are allowed.
1674          * For a create, however, we want to fail the request if
1675          * there are any components we can't open.
1676          */
1677         error = vdev_open(vd);
1678
1679         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1680                 vdev_close(vd);
1681                 return (error ? error : ENXIO);
1682         }
1683
1684         /*
1685          * Recursively load DTLs and initialize all labels.
1686          */
1687         if ((error = vdev_dtl_load(vd)) != 0 ||
1688             (error = vdev_label_init(vd, txg, isreplacing ?
1689             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1690                 vdev_close(vd);
1691                 return (error);
1692         }
1693
1694         return (0);
1695 }
1696
1697 void
1698 vdev_metaslab_set_size(vdev_t *vd)
1699 {
1700         /*
1701          * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1702          */
1703         vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1704         vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1705 }
1706
1707 void
1708 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1709 {
1710         ASSERT(vd == vd->vdev_top);
1711         ASSERT(!vd->vdev_ishole);
1712         ASSERT(ISP2(flags));
1713         ASSERT(spa_writeable(vd->vdev_spa));
1714
1715         if (flags & VDD_METASLAB)
1716                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1717
1718         if (flags & VDD_DTL)
1719                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1720
1721         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1722 }
1723
1724 void
1725 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1726 {
1727         int c;
1728
1729         for (c = 0; c < vd->vdev_children; c++)
1730                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1731
1732         if (vd->vdev_ops->vdev_op_leaf)
1733                 vdev_dirty(vd->vdev_top, flags, vd, txg);
1734 }
1735
1736 /*
1737  * DTLs.
1738  *
1739  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1740  * the vdev has less than perfect replication.  There are four kinds of DTL:
1741  *
1742  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1743  *
1744  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1745  *
1746  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1747  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1748  *      txgs that was scrubbed.
1749  *
1750  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1751  *      persistent errors or just some device being offline.
1752  *      Unlike the other three, the DTL_OUTAGE map is not generally
1753  *      maintained; it's only computed when needed, typically to
1754  *      determine whether a device can be detached.
1755  *
1756  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1757  * either has the data or it doesn't.
1758  *
1759  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1760  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1761  * if any child is less than fully replicated, then so is its parent.
1762  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1763  * comprising only those txgs which appear in 'maxfaults' or more children;
1764  * those are the txgs we don't have enough replication to read.  For example,
1765  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1766  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1767  * two child DTL_MISSING maps.
1768  *
1769  * It should be clear from the above that to compute the DTLs and outage maps
1770  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1771  * Therefore, that is all we keep on disk.  When loading the pool, or after
1772  * a configuration change, we generate all other DTLs from first principles.
1773  */
1774 void
1775 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1776 {
1777         range_tree_t *rt = vd->vdev_dtl[t];
1778
1779         ASSERT(t < DTL_TYPES);
1780         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1781         ASSERT(spa_writeable(vd->vdev_spa));
1782
1783         mutex_enter(rt->rt_lock);
1784         if (!range_tree_contains(rt, txg, size))
1785                 range_tree_add(rt, txg, size);
1786         mutex_exit(rt->rt_lock);
1787 }
1788
1789 boolean_t
1790 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1791 {
1792         range_tree_t *rt = vd->vdev_dtl[t];
1793         boolean_t dirty = B_FALSE;
1794
1795         ASSERT(t < DTL_TYPES);
1796         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1797
1798         mutex_enter(rt->rt_lock);
1799         if (range_tree_space(rt) != 0)
1800                 dirty = range_tree_contains(rt, txg, size);
1801         mutex_exit(rt->rt_lock);
1802
1803         return (dirty);
1804 }
1805
1806 boolean_t
1807 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1808 {
1809         range_tree_t *rt = vd->vdev_dtl[t];
1810         boolean_t empty;
1811
1812         mutex_enter(rt->rt_lock);
1813         empty = (range_tree_space(rt) == 0);
1814         mutex_exit(rt->rt_lock);
1815
1816         return (empty);
1817 }
1818
1819 /*
1820  * Returns the lowest txg in the DTL range.
1821  */
1822 static uint64_t
1823 vdev_dtl_min(vdev_t *vd)
1824 {
1825         range_seg_t *rs;
1826
1827         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1828         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1829         ASSERT0(vd->vdev_children);
1830
1831         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1832         return (rs->rs_start - 1);
1833 }
1834
1835 /*
1836  * Returns the highest txg in the DTL.
1837  */
1838 static uint64_t
1839 vdev_dtl_max(vdev_t *vd)
1840 {
1841         range_seg_t *rs;
1842
1843         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1844         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1845         ASSERT0(vd->vdev_children);
1846
1847         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1848         return (rs->rs_end);
1849 }
1850
1851 /*
1852  * Determine if a resilvering vdev should remove any DTL entries from
1853  * its range. If the vdev was resilvering for the entire duration of the
1854  * scan then it should excise that range from its DTLs. Otherwise, this
1855  * vdev is considered partially resilvered and should leave its DTL
1856  * entries intact. The comment in vdev_dtl_reassess() describes how we
1857  * excise the DTLs.
1858  */
1859 static boolean_t
1860 vdev_dtl_should_excise(vdev_t *vd)
1861 {
1862         spa_t *spa = vd->vdev_spa;
1863         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1864
1865         ASSERT0(scn->scn_phys.scn_errors);
1866         ASSERT0(vd->vdev_children);
1867
1868         if (vd->vdev_resilver_txg == 0 ||
1869             range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1870                 return (B_TRUE);
1871
1872         /*
1873          * When a resilver is initiated the scan will assign the scn_max_txg
1874          * value to the highest txg value that exists in all DTLs. If this
1875          * device's max DTL is not part of this scan (i.e. it is not in
1876          * the range (scn_min_txg, scn_max_txg] then it is not eligible
1877          * for excision.
1878          */
1879         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1880                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1881                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1882                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1883                 return (B_TRUE);
1884         }
1885         return (B_FALSE);
1886 }
1887
1888 /*
1889  * Reassess DTLs after a config change or scrub completion.
1890  */
1891 void
1892 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1893 {
1894         spa_t *spa = vd->vdev_spa;
1895         avl_tree_t reftree;
1896         int c, t, minref;
1897
1898         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1899
1900         for (c = 0; c < vd->vdev_children; c++)
1901                 vdev_dtl_reassess(vd->vdev_child[c], txg,
1902                     scrub_txg, scrub_done);
1903
1904         if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1905                 return;
1906
1907         if (vd->vdev_ops->vdev_op_leaf) {
1908                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1909
1910                 mutex_enter(&vd->vdev_dtl_lock);
1911
1912                 /*
1913                  * If we've completed a scan cleanly then determine
1914                  * if this vdev should remove any DTLs. We only want to
1915                  * excise regions on vdevs that were available during
1916                  * the entire duration of this scan.
1917                  */
1918                 if (scrub_txg != 0 &&
1919                     (spa->spa_scrub_started ||
1920                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1921                     vdev_dtl_should_excise(vd)) {
1922                         /*
1923                          * We completed a scrub up to scrub_txg.  If we
1924                          * did it without rebooting, then the scrub dtl
1925                          * will be valid, so excise the old region and
1926                          * fold in the scrub dtl.  Otherwise, leave the
1927                          * dtl as-is if there was an error.
1928                          *
1929                          * There's little trick here: to excise the beginning
1930                          * of the DTL_MISSING map, we put it into a reference
1931                          * tree and then add a segment with refcnt -1 that
1932                          * covers the range [0, scrub_txg).  This means
1933                          * that each txg in that range has refcnt -1 or 0.
1934                          * We then add DTL_SCRUB with a refcnt of 2, so that
1935                          * entries in the range [0, scrub_txg) will have a
1936                          * positive refcnt -- either 1 or 2.  We then convert
1937                          * the reference tree into the new DTL_MISSING map.
1938                          */
1939                         space_reftree_create(&reftree);
1940                         space_reftree_add_map(&reftree,
1941                             vd->vdev_dtl[DTL_MISSING], 1);
1942                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1943                         space_reftree_add_map(&reftree,
1944                             vd->vdev_dtl[DTL_SCRUB], 2);
1945                         space_reftree_generate_map(&reftree,
1946                             vd->vdev_dtl[DTL_MISSING], 1);
1947                         space_reftree_destroy(&reftree);
1948                 }
1949                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1950                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1951                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1952                 if (scrub_done)
1953                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1954                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1955                 if (!vdev_readable(vd))
1956                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1957                 else
1958                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1959                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1960
1961                 /*
1962                  * If the vdev was resilvering and no longer has any
1963                  * DTLs then reset its resilvering flag and dirty
1964                  * the top level so that we persist the change.
1965                  */
1966                 if (vd->vdev_resilver_txg != 0 &&
1967                     range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1968                     range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1969                         vd->vdev_resilver_txg = 0;
1970                         vdev_config_dirty(vd->vdev_top);
1971                 }
1972
1973                 mutex_exit(&vd->vdev_dtl_lock);
1974
1975                 if (txg != 0)
1976                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1977                 return;
1978         }
1979
1980         mutex_enter(&vd->vdev_dtl_lock);
1981         for (t = 0; t < DTL_TYPES; t++) {
1982                 int c;
1983
1984                 /* account for child's outage in parent's missing map */
1985                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1986                 if (t == DTL_SCRUB)
1987                         continue;                       /* leaf vdevs only */
1988                 if (t == DTL_PARTIAL)
1989                         minref = 1;                     /* i.e. non-zero */
1990                 else if (vd->vdev_nparity != 0)
1991                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
1992                 else
1993                         minref = vd->vdev_children;     /* any kind of mirror */
1994                 space_reftree_create(&reftree);
1995                 for (c = 0; c < vd->vdev_children; c++) {
1996                         vdev_t *cvd = vd->vdev_child[c];
1997                         mutex_enter(&cvd->vdev_dtl_lock);
1998                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1999                         mutex_exit(&cvd->vdev_dtl_lock);
2000                 }
2001                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2002                 space_reftree_destroy(&reftree);
2003         }
2004         mutex_exit(&vd->vdev_dtl_lock);
2005 }
2006
2007 int
2008 vdev_dtl_load(vdev_t *vd)
2009 {
2010         spa_t *spa = vd->vdev_spa;
2011         objset_t *mos = spa->spa_meta_objset;
2012         int error = 0;
2013         int c;
2014
2015         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2016                 ASSERT(!vd->vdev_ishole);
2017
2018                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2019                     vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2020                 if (error)
2021                         return (error);
2022                 ASSERT(vd->vdev_dtl_sm != NULL);
2023
2024                 mutex_enter(&vd->vdev_dtl_lock);
2025
2026                 /*
2027                  * Now that we've opened the space_map we need to update
2028                  * the in-core DTL.
2029                  */
2030                 space_map_update(vd->vdev_dtl_sm);
2031
2032                 error = space_map_load(vd->vdev_dtl_sm,
2033                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2034                 mutex_exit(&vd->vdev_dtl_lock);
2035
2036                 return (error);
2037         }
2038
2039         for (c = 0; c < vd->vdev_children; c++) {
2040                 error = vdev_dtl_load(vd->vdev_child[c]);
2041                 if (error != 0)
2042                         break;
2043         }
2044
2045         return (error);
2046 }
2047
2048 void
2049 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2050 {
2051         spa_t *spa = vd->vdev_spa;
2052
2053         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2054         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2055             zapobj, tx));
2056 }
2057
2058 uint64_t
2059 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2060 {
2061         spa_t *spa = vd->vdev_spa;
2062         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2063             DMU_OT_NONE, 0, tx);
2064
2065         ASSERT(zap != 0);
2066         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2067             zap, tx));
2068
2069         return (zap);
2070 }
2071
2072 void
2073 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2074 {
2075         uint64_t i;
2076
2077         if (vd->vdev_ops != &vdev_hole_ops &&
2078             vd->vdev_ops != &vdev_missing_ops &&
2079             vd->vdev_ops != &vdev_root_ops &&
2080             !vd->vdev_top->vdev_removing) {
2081                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2082                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2083                 }
2084                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2085                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2086                 }
2087         }
2088         for (i = 0; i < vd->vdev_children; i++) {
2089                 vdev_construct_zaps(vd->vdev_child[i], tx);
2090         }
2091 }
2092
2093 void
2094 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2095 {
2096         spa_t *spa = vd->vdev_spa;
2097         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2098         objset_t *mos = spa->spa_meta_objset;
2099         range_tree_t *rtsync;
2100         kmutex_t rtlock;
2101         dmu_tx_t *tx;
2102         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2103
2104         ASSERT(!vd->vdev_ishole);
2105         ASSERT(vd->vdev_ops->vdev_op_leaf);
2106
2107         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2108
2109         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2110                 mutex_enter(&vd->vdev_dtl_lock);
2111                 space_map_free(vd->vdev_dtl_sm, tx);
2112                 space_map_close(vd->vdev_dtl_sm);
2113                 vd->vdev_dtl_sm = NULL;
2114                 mutex_exit(&vd->vdev_dtl_lock);
2115
2116                 /*
2117                  * We only destroy the leaf ZAP for detached leaves or for
2118                  * removed log devices. Removed data devices handle leaf ZAP
2119                  * cleanup later, once cancellation is no longer possible.
2120                  */
2121                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2122                     vd->vdev_top->vdev_islog)) {
2123                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2124                         vd->vdev_leaf_zap = 0;
2125                 }
2126
2127                 dmu_tx_commit(tx);
2128                 return;
2129         }
2130
2131         if (vd->vdev_dtl_sm == NULL) {
2132                 uint64_t new_object;
2133
2134                 new_object = space_map_alloc(mos, tx);
2135                 VERIFY3U(new_object, !=, 0);
2136
2137                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2138                     0, -1ULL, 0, &vd->vdev_dtl_lock));
2139                 ASSERT(vd->vdev_dtl_sm != NULL);
2140         }
2141
2142         mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2143
2144         rtsync = range_tree_create(NULL, NULL, &rtlock);
2145
2146         mutex_enter(&rtlock);
2147
2148         mutex_enter(&vd->vdev_dtl_lock);
2149         range_tree_walk(rt, range_tree_add, rtsync);
2150         mutex_exit(&vd->vdev_dtl_lock);
2151
2152         space_map_truncate(vd->vdev_dtl_sm, tx);
2153         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2154         range_tree_vacate(rtsync, NULL, NULL);
2155
2156         range_tree_destroy(rtsync);
2157
2158         mutex_exit(&rtlock);
2159         mutex_destroy(&rtlock);
2160
2161         /*
2162          * If the object for the space map has changed then dirty
2163          * the top level so that we update the config.
2164          */
2165         if (object != space_map_object(vd->vdev_dtl_sm)) {
2166                 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2167                     "new object %llu", txg, spa_name(spa), object,
2168                     space_map_object(vd->vdev_dtl_sm));
2169                 vdev_config_dirty(vd->vdev_top);
2170         }
2171
2172         dmu_tx_commit(tx);
2173
2174         mutex_enter(&vd->vdev_dtl_lock);
2175         space_map_update(vd->vdev_dtl_sm);
2176         mutex_exit(&vd->vdev_dtl_lock);
2177 }
2178
2179 /*
2180  * Determine whether the specified vdev can be offlined/detached/removed
2181  * without losing data.
2182  */
2183 boolean_t
2184 vdev_dtl_required(vdev_t *vd)
2185 {
2186         spa_t *spa = vd->vdev_spa;
2187         vdev_t *tvd = vd->vdev_top;
2188         uint8_t cant_read = vd->vdev_cant_read;
2189         boolean_t required;
2190
2191         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2192
2193         if (vd == spa->spa_root_vdev || vd == tvd)
2194                 return (B_TRUE);
2195
2196         /*
2197          * Temporarily mark the device as unreadable, and then determine
2198          * whether this results in any DTL outages in the top-level vdev.
2199          * If not, we can safely offline/detach/remove the device.
2200          */
2201         vd->vdev_cant_read = B_TRUE;
2202         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2203         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2204         vd->vdev_cant_read = cant_read;
2205         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2206
2207         if (!required && zio_injection_enabled)
2208                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2209
2210         return (required);
2211 }
2212
2213 /*
2214  * Determine if resilver is needed, and if so the txg range.
2215  */
2216 boolean_t
2217 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2218 {
2219         boolean_t needed = B_FALSE;
2220         uint64_t thismin = UINT64_MAX;
2221         uint64_t thismax = 0;
2222         int c;
2223
2224         if (vd->vdev_children == 0) {
2225                 mutex_enter(&vd->vdev_dtl_lock);
2226                 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2227                     vdev_writeable(vd)) {
2228
2229                         thismin = vdev_dtl_min(vd);
2230                         thismax = vdev_dtl_max(vd);
2231                         needed = B_TRUE;
2232                 }
2233                 mutex_exit(&vd->vdev_dtl_lock);
2234         } else {
2235                 for (c = 0; c < vd->vdev_children; c++) {
2236                         vdev_t *cvd = vd->vdev_child[c];
2237                         uint64_t cmin, cmax;
2238
2239                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2240                                 thismin = MIN(thismin, cmin);
2241                                 thismax = MAX(thismax, cmax);
2242                                 needed = B_TRUE;
2243                         }
2244                 }
2245         }
2246
2247         if (needed && minp) {
2248                 *minp = thismin;
2249                 *maxp = thismax;
2250         }
2251         return (needed);
2252 }
2253
2254 void
2255 vdev_load(vdev_t *vd)
2256 {
2257         int c;
2258
2259         /*
2260          * Recursively load all children.
2261          */
2262         for (c = 0; c < vd->vdev_children; c++)
2263                 vdev_load(vd->vdev_child[c]);
2264
2265         /*
2266          * If this is a top-level vdev, initialize its metaslabs.
2267          */
2268         if (vd == vd->vdev_top && !vd->vdev_ishole &&
2269             (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2270             vdev_metaslab_init(vd, 0) != 0))
2271                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2272                     VDEV_AUX_CORRUPT_DATA);
2273         /*
2274          * If this is a leaf vdev, load its DTL.
2275          */
2276         if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2277                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2278                     VDEV_AUX_CORRUPT_DATA);
2279 }
2280
2281 /*
2282  * The special vdev case is used for hot spares and l2cache devices.  Its
2283  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2284  * we make sure that we can open the underlying device, then try to read the
2285  * label, and make sure that the label is sane and that it hasn't been
2286  * repurposed to another pool.
2287  */
2288 int
2289 vdev_validate_aux(vdev_t *vd)
2290 {
2291         nvlist_t *label;
2292         uint64_t guid, version;
2293         uint64_t state;
2294
2295         if (!vdev_readable(vd))
2296                 return (0);
2297
2298         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2299                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2300                     VDEV_AUX_CORRUPT_DATA);
2301                 return (-1);
2302         }
2303
2304         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2305             !SPA_VERSION_IS_SUPPORTED(version) ||
2306             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2307             guid != vd->vdev_guid ||
2308             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2309                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2310                     VDEV_AUX_CORRUPT_DATA);
2311                 nvlist_free(label);
2312                 return (-1);
2313         }
2314
2315         /*
2316          * We don't actually check the pool state here.  If it's in fact in
2317          * use by another pool, we update this fact on the fly when requested.
2318          */
2319         nvlist_free(label);
2320         return (0);
2321 }
2322
2323 void
2324 vdev_remove(vdev_t *vd, uint64_t txg)
2325 {
2326         spa_t *spa = vd->vdev_spa;
2327         objset_t *mos = spa->spa_meta_objset;
2328         dmu_tx_t *tx;
2329         int m, i;
2330
2331         tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2332         ASSERT(vd == vd->vdev_top);
2333         ASSERT3U(txg, ==, spa_syncing_txg(spa));
2334
2335         if (vd->vdev_ms != NULL) {
2336                 metaslab_group_t *mg = vd->vdev_mg;
2337
2338                 metaslab_group_histogram_verify(mg);
2339                 metaslab_class_histogram_verify(mg->mg_class);
2340
2341                 for (m = 0; m < vd->vdev_ms_count; m++) {
2342                         metaslab_t *msp = vd->vdev_ms[m];
2343
2344                         if (msp == NULL || msp->ms_sm == NULL)
2345                                 continue;
2346
2347                         mutex_enter(&msp->ms_lock);
2348                         /*
2349                          * If the metaslab was not loaded when the vdev
2350                          * was removed then the histogram accounting may
2351                          * not be accurate. Update the histogram information
2352                          * here so that we ensure that the metaslab group
2353                          * and metaslab class are up-to-date.
2354                          */
2355                         metaslab_group_histogram_remove(mg, msp);
2356
2357                         VERIFY0(space_map_allocated(msp->ms_sm));
2358                         space_map_free(msp->ms_sm, tx);
2359                         space_map_close(msp->ms_sm);
2360                         msp->ms_sm = NULL;
2361                         mutex_exit(&msp->ms_lock);
2362                 }
2363
2364                 metaslab_group_histogram_verify(mg);
2365                 metaslab_class_histogram_verify(mg->mg_class);
2366                 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2367                         ASSERT0(mg->mg_histogram[i]);
2368
2369         }
2370
2371         if (vd->vdev_ms_array) {
2372                 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2373                 vd->vdev_ms_array = 0;
2374         }
2375
2376         if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2377                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2378                 vd->vdev_top_zap = 0;
2379         }
2380         dmu_tx_commit(tx);
2381 }
2382
2383 void
2384 vdev_sync_done(vdev_t *vd, uint64_t txg)
2385 {
2386         metaslab_t *msp;
2387         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2388
2389         ASSERT(!vd->vdev_ishole);
2390
2391         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2392                 metaslab_sync_done(msp, txg);
2393
2394         if (reassess)
2395                 metaslab_sync_reassess(vd->vdev_mg);
2396 }
2397
2398 void
2399 vdev_sync(vdev_t *vd, uint64_t txg)
2400 {
2401         spa_t *spa = vd->vdev_spa;
2402         vdev_t *lvd;
2403         metaslab_t *msp;
2404         dmu_tx_t *tx;
2405
2406         ASSERT(!vd->vdev_ishole);
2407
2408         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2409                 ASSERT(vd == vd->vdev_top);
2410                 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2411                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2412                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2413                 ASSERT(vd->vdev_ms_array != 0);
2414                 vdev_config_dirty(vd);
2415                 dmu_tx_commit(tx);
2416         }
2417
2418         /*
2419          * Remove the metadata associated with this vdev once it's empty.
2420          */
2421         if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2422                 vdev_remove(vd, txg);
2423
2424         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2425                 metaslab_sync(msp, txg);
2426                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2427         }
2428
2429         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2430                 vdev_dtl_sync(lvd, txg);
2431
2432         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2433 }
2434
2435 uint64_t
2436 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2437 {
2438         return (vd->vdev_ops->vdev_op_asize(vd, psize));
2439 }
2440
2441 /*
2442  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2443  * not be opened, and no I/O is attempted.
2444  */
2445 int
2446 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2447 {
2448         vdev_t *vd, *tvd;
2449
2450         spa_vdev_state_enter(spa, SCL_NONE);
2451
2452         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2453                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2454
2455         if (!vd->vdev_ops->vdev_op_leaf)
2456                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2457
2458         tvd = vd->vdev_top;
2459
2460         /*
2461          * We don't directly use the aux state here, but if we do a
2462          * vdev_reopen(), we need this value to be present to remember why we
2463          * were faulted.
2464          */
2465         vd->vdev_label_aux = aux;
2466
2467         /*
2468          * Faulted state takes precedence over degraded.
2469          */
2470         vd->vdev_delayed_close = B_FALSE;
2471         vd->vdev_faulted = 1ULL;
2472         vd->vdev_degraded = 0ULL;
2473         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2474
2475         /*
2476          * If this device has the only valid copy of the data, then
2477          * back off and simply mark the vdev as degraded instead.
2478          */
2479         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2480                 vd->vdev_degraded = 1ULL;
2481                 vd->vdev_faulted = 0ULL;
2482
2483                 /*
2484                  * If we reopen the device and it's not dead, only then do we
2485                  * mark it degraded.
2486                  */
2487                 vdev_reopen(tvd);
2488
2489                 if (vdev_readable(vd))
2490                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2491         }
2492
2493         return (spa_vdev_state_exit(spa, vd, 0));
2494 }
2495
2496 /*
2497  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2498  * user that something is wrong.  The vdev continues to operate as normal as far
2499  * as I/O is concerned.
2500  */
2501 int
2502 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2503 {
2504         vdev_t *vd;
2505
2506         spa_vdev_state_enter(spa, SCL_NONE);
2507
2508         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2509                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2510
2511         if (!vd->vdev_ops->vdev_op_leaf)
2512                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2513
2514         /*
2515          * If the vdev is already faulted, then don't do anything.
2516          */
2517         if (vd->vdev_faulted || vd->vdev_degraded)
2518                 return (spa_vdev_state_exit(spa, NULL, 0));
2519
2520         vd->vdev_degraded = 1ULL;
2521         if (!vdev_is_dead(vd))
2522                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2523                     aux);
2524
2525         return (spa_vdev_state_exit(spa, vd, 0));
2526 }
2527
2528 /*
2529  * Online the given vdev.
2530  *
2531  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2532  * spare device should be detached when the device finishes resilvering.
2533  * Second, the online should be treated like a 'test' online case, so no FMA
2534  * events are generated if the device fails to open.
2535  */
2536 int
2537 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2538 {
2539         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2540         boolean_t wasoffline;
2541         vdev_state_t oldstate;
2542
2543         spa_vdev_state_enter(spa, SCL_NONE);
2544
2545         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2546                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2547
2548         if (!vd->vdev_ops->vdev_op_leaf)
2549                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2550
2551         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2552         oldstate = vd->vdev_state;
2553
2554         tvd = vd->vdev_top;
2555         vd->vdev_offline = B_FALSE;
2556         vd->vdev_tmpoffline = B_FALSE;
2557         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2558         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2559
2560         /* XXX - L2ARC 1.0 does not support expansion */
2561         if (!vd->vdev_aux) {
2562                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2563                         pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2564         }
2565
2566         vdev_reopen(tvd);
2567         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2568
2569         if (!vd->vdev_aux) {
2570                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2571                         pvd->vdev_expanding = B_FALSE;
2572         }
2573
2574         if (newstate)
2575                 *newstate = vd->vdev_state;
2576         if ((flags & ZFS_ONLINE_UNSPARE) &&
2577             !vdev_is_dead(vd) && vd->vdev_parent &&
2578             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2579             vd->vdev_parent->vdev_child[0] == vd)
2580                 vd->vdev_unspare = B_TRUE;
2581
2582         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2583
2584                 /* XXX - L2ARC 1.0 does not support expansion */
2585                 if (vd->vdev_aux)
2586                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2587                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2588         }
2589
2590         if (wasoffline ||
2591             (oldstate < VDEV_STATE_DEGRADED &&
2592             vd->vdev_state >= VDEV_STATE_DEGRADED))
2593                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2594
2595         return (spa_vdev_state_exit(spa, vd, 0));
2596 }
2597
2598 static int
2599 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2600 {
2601         vdev_t *vd, *tvd;
2602         int error = 0;
2603         uint64_t generation;
2604         metaslab_group_t *mg;
2605
2606 top:
2607         spa_vdev_state_enter(spa, SCL_ALLOC);
2608
2609         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2610                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2611
2612         if (!vd->vdev_ops->vdev_op_leaf)
2613                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2614
2615         tvd = vd->vdev_top;
2616         mg = tvd->vdev_mg;
2617         generation = spa->spa_config_generation + 1;
2618
2619         /*
2620          * If the device isn't already offline, try to offline it.
2621          */
2622         if (!vd->vdev_offline) {
2623                 /*
2624                  * If this device has the only valid copy of some data,
2625                  * don't allow it to be offlined. Log devices are always
2626                  * expendable.
2627                  */
2628                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2629                     vdev_dtl_required(vd))
2630                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2631
2632                 /*
2633                  * If the top-level is a slog and it has had allocations
2634                  * then proceed.  We check that the vdev's metaslab group
2635                  * is not NULL since it's possible that we may have just
2636                  * added this vdev but not yet initialized its metaslabs.
2637                  */
2638                 if (tvd->vdev_islog && mg != NULL) {
2639                         /*
2640                          * Prevent any future allocations.
2641                          */
2642                         metaslab_group_passivate(mg);
2643                         (void) spa_vdev_state_exit(spa, vd, 0);
2644
2645                         error = spa_offline_log(spa);
2646
2647                         spa_vdev_state_enter(spa, SCL_ALLOC);
2648
2649                         /*
2650                          * Check to see if the config has changed.
2651                          */
2652                         if (error || generation != spa->spa_config_generation) {
2653                                 metaslab_group_activate(mg);
2654                                 if (error)
2655                                         return (spa_vdev_state_exit(spa,
2656                                             vd, error));
2657                                 (void) spa_vdev_state_exit(spa, vd, 0);
2658                                 goto top;
2659                         }
2660                         ASSERT0(tvd->vdev_stat.vs_alloc);
2661                 }
2662
2663                 /*
2664                  * Offline this device and reopen its top-level vdev.
2665                  * If the top-level vdev is a log device then just offline
2666                  * it. Otherwise, if this action results in the top-level
2667                  * vdev becoming unusable, undo it and fail the request.
2668                  */
2669                 vd->vdev_offline = B_TRUE;
2670                 vdev_reopen(tvd);
2671
2672                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2673                     vdev_is_dead(tvd)) {
2674                         vd->vdev_offline = B_FALSE;
2675                         vdev_reopen(tvd);
2676                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
2677                 }
2678
2679                 /*
2680                  * Add the device back into the metaslab rotor so that
2681                  * once we online the device it's open for business.
2682                  */
2683                 if (tvd->vdev_islog && mg != NULL)
2684                         metaslab_group_activate(mg);
2685         }
2686
2687         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2688
2689         return (spa_vdev_state_exit(spa, vd, 0));
2690 }
2691
2692 int
2693 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2694 {
2695         int error;
2696
2697         mutex_enter(&spa->spa_vdev_top_lock);
2698         error = vdev_offline_locked(spa, guid, flags);
2699         mutex_exit(&spa->spa_vdev_top_lock);
2700
2701         return (error);
2702 }
2703
2704 /*
2705  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2706  * vdev_offline(), we assume the spa config is locked.  We also clear all
2707  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2708  */
2709 void
2710 vdev_clear(spa_t *spa, vdev_t *vd)
2711 {
2712         vdev_t *rvd = spa->spa_root_vdev;
2713         int c;
2714
2715         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2716
2717         if (vd == NULL)
2718                 vd = rvd;
2719
2720         vd->vdev_stat.vs_read_errors = 0;
2721         vd->vdev_stat.vs_write_errors = 0;
2722         vd->vdev_stat.vs_checksum_errors = 0;
2723
2724         for (c = 0; c < vd->vdev_children; c++)
2725                 vdev_clear(spa, vd->vdev_child[c]);
2726
2727         /*
2728          * If we're in the FAULTED state or have experienced failed I/O, then
2729          * clear the persistent state and attempt to reopen the device.  We
2730          * also mark the vdev config dirty, so that the new faulted state is
2731          * written out to disk.
2732          */
2733         if (vd->vdev_faulted || vd->vdev_degraded ||
2734             !vdev_readable(vd) || !vdev_writeable(vd)) {
2735
2736                 /*
2737                  * When reopening in response to a clear event, it may be due to
2738                  * a fmadm repair request.  In this case, if the device is
2739                  * still broken, we want to still post the ereport again.
2740                  */
2741                 vd->vdev_forcefault = B_TRUE;
2742
2743                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2744                 vd->vdev_cant_read = B_FALSE;
2745                 vd->vdev_cant_write = B_FALSE;
2746
2747                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2748
2749                 vd->vdev_forcefault = B_FALSE;
2750
2751                 if (vd != rvd && vdev_writeable(vd->vdev_top))
2752                         vdev_state_dirty(vd->vdev_top);
2753
2754                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2755                         spa_async_request(spa, SPA_ASYNC_RESILVER);
2756
2757                 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2758         }
2759
2760         /*
2761          * When clearing a FMA-diagnosed fault, we always want to
2762          * unspare the device, as we assume that the original spare was
2763          * done in response to the FMA fault.
2764          */
2765         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2766             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2767             vd->vdev_parent->vdev_child[0] == vd)
2768                 vd->vdev_unspare = B_TRUE;
2769 }
2770
2771 boolean_t
2772 vdev_is_dead(vdev_t *vd)
2773 {
2774         /*
2775          * Holes and missing devices are always considered "dead".
2776          * This simplifies the code since we don't have to check for
2777          * these types of devices in the various code paths.
2778          * Instead we rely on the fact that we skip over dead devices
2779          * before issuing I/O to them.
2780          */
2781         return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2782             vd->vdev_ops == &vdev_missing_ops);
2783 }
2784
2785 boolean_t
2786 vdev_readable(vdev_t *vd)
2787 {
2788         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2789 }
2790
2791 boolean_t
2792 vdev_writeable(vdev_t *vd)
2793 {
2794         return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2795 }
2796
2797 boolean_t
2798 vdev_allocatable(vdev_t *vd)
2799 {
2800         uint64_t state = vd->vdev_state;
2801
2802         /*
2803          * We currently allow allocations from vdevs which may be in the
2804          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2805          * fails to reopen then we'll catch it later when we're holding
2806          * the proper locks.  Note that we have to get the vdev state
2807          * in a local variable because although it changes atomically,
2808          * we're asking two separate questions about it.
2809          */
2810         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2811             !vd->vdev_cant_write && !vd->vdev_ishole &&
2812             vd->vdev_mg->mg_initialized);
2813 }
2814
2815 boolean_t
2816 vdev_accessible(vdev_t *vd, zio_t *zio)
2817 {
2818         ASSERT(zio->io_vd == vd);
2819
2820         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2821                 return (B_FALSE);
2822
2823         if (zio->io_type == ZIO_TYPE_READ)
2824                 return (!vd->vdev_cant_read);
2825
2826         if (zio->io_type == ZIO_TYPE_WRITE)
2827                 return (!vd->vdev_cant_write);
2828
2829         return (B_TRUE);
2830 }
2831
2832 static void
2833 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2834 {
2835         int t;
2836         for (t = 0; t < ZIO_TYPES; t++) {
2837                 vs->vs_ops[t] += cvs->vs_ops[t];
2838                 vs->vs_bytes[t] += cvs->vs_bytes[t];
2839         }
2840
2841         cvs->vs_scan_removing = cvd->vdev_removing;
2842 }
2843
2844 /*
2845  * Get extended stats
2846  */
2847 static void
2848 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2849 {
2850         int t, b;
2851         for (t = 0; t < ZIO_TYPES; t++) {
2852                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2853                         vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2854
2855                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2856                         vsx->vsx_total_histo[t][b] +=
2857                             cvsx->vsx_total_histo[t][b];
2858                 }
2859         }
2860
2861         for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2862                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2863                         vsx->vsx_queue_histo[t][b] +=
2864                             cvsx->vsx_queue_histo[t][b];
2865                 }
2866                 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2867                 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2868
2869                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2870                         vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2871
2872                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2873                         vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2874         }
2875
2876 }
2877
2878 /*
2879  * Get statistics for the given vdev.
2880  */
2881 static void
2882 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2883 {
2884         int c, t;
2885         /*
2886          * If we're getting stats on the root vdev, aggregate the I/O counts
2887          * over all top-level vdevs (i.e. the direct children of the root).
2888          */
2889         if (!vd->vdev_ops->vdev_op_leaf) {
2890                 if (vs) {
2891                         memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2892                         memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2893                 }
2894                 if (vsx)
2895                         memset(vsx, 0, sizeof (*vsx));
2896
2897                 for (c = 0; c < vd->vdev_children; c++) {
2898                         vdev_t *cvd = vd->vdev_child[c];
2899                         vdev_stat_t *cvs = &cvd->vdev_stat;
2900                         vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2901
2902                         vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2903                         if (vs)
2904                                 vdev_get_child_stat(cvd, vs, cvs);
2905                         if (vsx)
2906                                 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2907
2908                 }
2909         } else {
2910                 /*
2911                  * We're a leaf.  Just copy our ZIO active queue stats in.  The
2912                  * other leaf stats are updated in vdev_stat_update().
2913                  */
2914                 if (!vsx)
2915                         return;
2916
2917                 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2918
2919                 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2920                         vsx->vsx_active_queue[t] =
2921                             vd->vdev_queue.vq_class[t].vqc_active;
2922                         vsx->vsx_pend_queue[t] = avl_numnodes(
2923                             &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2924                 }
2925         }
2926 }
2927
2928 void
2929 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2930 {
2931         vdev_t *tvd = vd->vdev_top;
2932         mutex_enter(&vd->vdev_stat_lock);
2933         if (vs) {
2934                 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2935                 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2936                 vs->vs_state = vd->vdev_state;
2937                 vs->vs_rsize = vdev_get_min_asize(vd);
2938                 if (vd->vdev_ops->vdev_op_leaf)
2939                         vs->vs_rsize += VDEV_LABEL_START_SIZE +
2940                             VDEV_LABEL_END_SIZE;
2941                 /*
2942                  * Report expandable space on top-level, non-auxillary devices
2943                  * only. The expandable space is reported in terms of metaslab
2944                  * sized units since that determines how much space the pool
2945                  * can expand.
2946                  */
2947                 if (vd->vdev_aux == NULL && tvd != NULL) {
2948                         vs->vs_esize = P2ALIGN(
2949                             vd->vdev_max_asize - vd->vdev_asize,
2950                             1ULL << tvd->vdev_ms_shift);
2951                 }
2952                 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2953                 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2954                     !vd->vdev_ishole) {
2955                         vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2956                 }
2957         }
2958
2959         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2960         vdev_get_stats_ex_impl(vd, vs, vsx);
2961         mutex_exit(&vd->vdev_stat_lock);
2962 }
2963
2964 void
2965 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2966 {
2967         return (vdev_get_stats_ex(vd, vs, NULL));
2968 }
2969
2970 void
2971 vdev_clear_stats(vdev_t *vd)
2972 {
2973         mutex_enter(&vd->vdev_stat_lock);
2974         vd->vdev_stat.vs_space = 0;
2975         vd->vdev_stat.vs_dspace = 0;
2976         vd->vdev_stat.vs_alloc = 0;
2977         mutex_exit(&vd->vdev_stat_lock);
2978 }
2979
2980 void
2981 vdev_scan_stat_init(vdev_t *vd)
2982 {
2983         vdev_stat_t *vs = &vd->vdev_stat;
2984         int c;
2985
2986         for (c = 0; c < vd->vdev_children; c++)
2987                 vdev_scan_stat_init(vd->vdev_child[c]);
2988
2989         mutex_enter(&vd->vdev_stat_lock);
2990         vs->vs_scan_processed = 0;
2991         mutex_exit(&vd->vdev_stat_lock);
2992 }
2993
2994 void
2995 vdev_stat_update(zio_t *zio, uint64_t psize)
2996 {
2997         spa_t *spa = zio->io_spa;
2998         vdev_t *rvd = spa->spa_root_vdev;
2999         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3000         vdev_t *pvd;
3001         uint64_t txg = zio->io_txg;
3002         vdev_stat_t *vs = &vd->vdev_stat;
3003         vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
3004         zio_type_t type = zio->io_type;
3005         int flags = zio->io_flags;
3006
3007         /*
3008          * If this i/o is a gang leader, it didn't do any actual work.
3009          */
3010         if (zio->io_gang_tree)
3011                 return;
3012
3013         if (zio->io_error == 0) {
3014                 /*
3015                  * If this is a root i/o, don't count it -- we've already
3016                  * counted the top-level vdevs, and vdev_get_stats() will
3017                  * aggregate them when asked.  This reduces contention on
3018                  * the root vdev_stat_lock and implicitly handles blocks
3019                  * that compress away to holes, for which there is no i/o.
3020                  * (Holes never create vdev children, so all the counters
3021                  * remain zero, which is what we want.)
3022                  *
3023                  * Note: this only applies to successful i/o (io_error == 0)
3024                  * because unlike i/o counts, errors are not additive.
3025                  * When reading a ditto block, for example, failure of
3026                  * one top-level vdev does not imply a root-level error.
3027                  */
3028                 if (vd == rvd)
3029                         return;
3030
3031                 ASSERT(vd == zio->io_vd);
3032
3033                 if (flags & ZIO_FLAG_IO_BYPASS)
3034                         return;
3035
3036                 mutex_enter(&vd->vdev_stat_lock);
3037
3038                 if (flags & ZIO_FLAG_IO_REPAIR) {
3039                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3040                                 dsl_scan_phys_t *scn_phys =
3041                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
3042                                 uint64_t *processed = &scn_phys->scn_processed;
3043
3044                                 /* XXX cleanup? */
3045                                 if (vd->vdev_ops->vdev_op_leaf)
3046                                         atomic_add_64(processed, psize);
3047                                 vs->vs_scan_processed += psize;
3048                         }
3049
3050                         if (flags & ZIO_FLAG_SELF_HEAL)
3051                                 vs->vs_self_healed += psize;
3052                 }
3053
3054                 /*
3055                  * The bytes/ops/histograms are recorded at the leaf level and
3056                  * aggregated into the higher level vdevs in vdev_get_stats().
3057                  */
3058                 if (vd->vdev_ops->vdev_op_leaf &&
3059                     (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3060
3061                         vs->vs_ops[type]++;
3062                         vs->vs_bytes[type] += psize;
3063
3064                         if (flags & ZIO_FLAG_DELEGATED) {
3065                                 vsx->vsx_agg_histo[zio->io_priority]
3066                                     [RQ_HISTO(zio->io_size)]++;
3067                         } else {
3068                                 vsx->vsx_ind_histo[zio->io_priority]
3069                                     [RQ_HISTO(zio->io_size)]++;
3070                         }
3071
3072                         if (zio->io_delta && zio->io_delay) {
3073                                 vsx->vsx_queue_histo[zio->io_priority]
3074                                     [L_HISTO(zio->io_delta - zio->io_delay)]++;
3075                                 vsx->vsx_disk_histo[type]
3076                                     [L_HISTO(zio->io_delay)]++;
3077                                 vsx->vsx_total_histo[type]
3078                                     [L_HISTO(zio->io_delta)]++;
3079                         }
3080                 }
3081
3082                 mutex_exit(&vd->vdev_stat_lock);
3083                 return;
3084         }
3085
3086         if (flags & ZIO_FLAG_SPECULATIVE)
3087                 return;
3088
3089         /*
3090          * If this is an I/O error that is going to be retried, then ignore the
3091          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
3092          * hard errors, when in reality they can happen for any number of
3093          * innocuous reasons (bus resets, MPxIO link failure, etc).
3094          */
3095         if (zio->io_error == EIO &&
3096             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3097                 return;
3098
3099         /*
3100          * Intent logs writes won't propagate their error to the root
3101          * I/O so don't mark these types of failures as pool-level
3102          * errors.
3103          */
3104         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3105                 return;
3106
3107         mutex_enter(&vd->vdev_stat_lock);
3108         if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3109                 if (zio->io_error == ECKSUM)
3110                         vs->vs_checksum_errors++;
3111                 else
3112                         vs->vs_read_errors++;
3113         }
3114         if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3115                 vs->vs_write_errors++;
3116         mutex_exit(&vd->vdev_stat_lock);
3117
3118         if (type == ZIO_TYPE_WRITE && txg != 0 &&
3119             (!(flags & ZIO_FLAG_IO_REPAIR) ||
3120             (flags & ZIO_FLAG_SCAN_THREAD) ||
3121             spa->spa_claiming)) {
3122                 /*
3123                  * This is either a normal write (not a repair), or it's
3124                  * a repair induced by the scrub thread, or it's a repair
3125                  * made by zil_claim() during spa_load() in the first txg.
3126                  * In the normal case, we commit the DTL change in the same
3127                  * txg as the block was born.  In the scrub-induced repair
3128                  * case, we know that scrubs run in first-pass syncing context,
3129                  * so we commit the DTL change in spa_syncing_txg(spa).
3130                  * In the zil_claim() case, we commit in spa_first_txg(spa).
3131                  *
3132                  * We currently do not make DTL entries for failed spontaneous
3133                  * self-healing writes triggered by normal (non-scrubbing)
3134                  * reads, because we have no transactional context in which to
3135                  * do so -- and it's not clear that it'd be desirable anyway.
3136                  */
3137                 if (vd->vdev_ops->vdev_op_leaf) {
3138                         uint64_t commit_txg = txg;
3139                         if (flags & ZIO_FLAG_SCAN_THREAD) {
3140                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3141                                 ASSERT(spa_sync_pass(spa) == 1);
3142                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3143                                 commit_txg = spa_syncing_txg(spa);
3144                         } else if (spa->spa_claiming) {
3145                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3146                                 commit_txg = spa_first_txg(spa);
3147                         }
3148                         ASSERT(commit_txg >= spa_syncing_txg(spa));
3149                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3150                                 return;
3151                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3152                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3153                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3154                 }
3155                 if (vd != rvd)
3156                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3157         }
3158 }
3159
3160 /*
3161  * Update the in-core space usage stats for this vdev, its metaslab class,
3162  * and the root vdev.
3163  */
3164 void
3165 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3166     int64_t space_delta)
3167 {
3168         int64_t dspace_delta = space_delta;
3169         spa_t *spa = vd->vdev_spa;
3170         vdev_t *rvd = spa->spa_root_vdev;
3171         metaslab_group_t *mg = vd->vdev_mg;
3172         metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3173
3174         ASSERT(vd == vd->vdev_top);
3175
3176         /*
3177          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3178          * factor.  We must calculate this here and not at the root vdev
3179          * because the root vdev's psize-to-asize is simply the max of its
3180          * childrens', thus not accurate enough for us.
3181          */
3182         ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3183         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3184         dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3185             vd->vdev_deflate_ratio;
3186
3187         mutex_enter(&vd->vdev_stat_lock);
3188         vd->vdev_stat.vs_alloc += alloc_delta;
3189         vd->vdev_stat.vs_space += space_delta;
3190         vd->vdev_stat.vs_dspace += dspace_delta;
3191         mutex_exit(&vd->vdev_stat_lock);
3192
3193         if (mc == spa_normal_class(spa)) {
3194                 mutex_enter(&rvd->vdev_stat_lock);
3195                 rvd->vdev_stat.vs_alloc += alloc_delta;
3196                 rvd->vdev_stat.vs_space += space_delta;
3197                 rvd->vdev_stat.vs_dspace += dspace_delta;
3198                 mutex_exit(&rvd->vdev_stat_lock);
3199         }
3200
3201         if (mc != NULL) {
3202                 ASSERT(rvd == vd->vdev_parent);
3203                 ASSERT(vd->vdev_ms_count != 0);
3204
3205                 metaslab_class_space_update(mc,
3206                     alloc_delta, defer_delta, space_delta, dspace_delta);
3207         }
3208 }
3209
3210 /*
3211  * Mark a top-level vdev's config as dirty, placing it on the dirty list
3212  * so that it will be written out next time the vdev configuration is synced.
3213  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3214  */
3215 void
3216 vdev_config_dirty(vdev_t *vd)
3217 {
3218         spa_t *spa = vd->vdev_spa;
3219         vdev_t *rvd = spa->spa_root_vdev;
3220         int c;
3221
3222         ASSERT(spa_writeable(spa));
3223
3224         /*
3225          * If this is an aux vdev (as with l2cache and spare devices), then we
3226          * update the vdev config manually and set the sync flag.
3227          */
3228         if (vd->vdev_aux != NULL) {
3229                 spa_aux_vdev_t *sav = vd->vdev_aux;
3230                 nvlist_t **aux;
3231                 uint_t naux;
3232
3233                 for (c = 0; c < sav->sav_count; c++) {
3234                         if (sav->sav_vdevs[c] == vd)
3235                                 break;
3236                 }
3237
3238                 if (c == sav->sav_count) {
3239                         /*
3240                          * We're being removed.  There's nothing more to do.
3241                          */
3242                         ASSERT(sav->sav_sync == B_TRUE);
3243                         return;
3244                 }
3245
3246                 sav->sav_sync = B_TRUE;
3247
3248                 if (nvlist_lookup_nvlist_array(sav->sav_config,
3249                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3250                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3251                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3252                 }
3253
3254                 ASSERT(c < naux);
3255
3256                 /*
3257                  * Setting the nvlist in the middle if the array is a little
3258                  * sketchy, but it will work.
3259                  */
3260                 nvlist_free(aux[c]);
3261                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3262
3263                 return;
3264         }
3265
3266         /*
3267          * The dirty list is protected by the SCL_CONFIG lock.  The caller
3268          * must either hold SCL_CONFIG as writer, or must be the sync thread
3269          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
3270          * so this is sufficient to ensure mutual exclusion.
3271          */
3272         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3273             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3274             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3275
3276         if (vd == rvd) {
3277                 for (c = 0; c < rvd->vdev_children; c++)
3278                         vdev_config_dirty(rvd->vdev_child[c]);
3279         } else {
3280                 ASSERT(vd == vd->vdev_top);
3281
3282                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3283                     !vd->vdev_ishole)
3284                         list_insert_head(&spa->spa_config_dirty_list, vd);
3285         }
3286 }
3287
3288 void
3289 vdev_config_clean(vdev_t *vd)
3290 {
3291         spa_t *spa = vd->vdev_spa;
3292
3293         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3294             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3295             spa_config_held(spa, SCL_CONFIG, RW_READER)));
3296
3297         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3298         list_remove(&spa->spa_config_dirty_list, vd);
3299 }
3300
3301 /*
3302  * Mark a top-level vdev's state as dirty, so that the next pass of
3303  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3304  * the state changes from larger config changes because they require
3305  * much less locking, and are often needed for administrative actions.
3306  */
3307 void
3308 vdev_state_dirty(vdev_t *vd)
3309 {
3310         spa_t *spa = vd->vdev_spa;
3311
3312         ASSERT(spa_writeable(spa));
3313         ASSERT(vd == vd->vdev_top);
3314
3315         /*
3316          * The state list is protected by the SCL_STATE lock.  The caller
3317          * must either hold SCL_STATE as writer, or must be the sync thread
3318          * (which holds SCL_STATE as reader).  There's only one sync thread,
3319          * so this is sufficient to ensure mutual exclusion.
3320          */
3321         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3322             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3323             spa_config_held(spa, SCL_STATE, RW_READER)));
3324
3325         if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3326                 list_insert_head(&spa->spa_state_dirty_list, vd);
3327 }
3328
3329 void
3330 vdev_state_clean(vdev_t *vd)
3331 {
3332         spa_t *spa = vd->vdev_spa;
3333
3334         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3335             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3336             spa_config_held(spa, SCL_STATE, RW_READER)));
3337
3338         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3339         list_remove(&spa->spa_state_dirty_list, vd);
3340 }
3341
3342 /*
3343  * Propagate vdev state up from children to parent.
3344  */
3345 void
3346 vdev_propagate_state(vdev_t *vd)
3347 {
3348         spa_t *spa = vd->vdev_spa;
3349         vdev_t *rvd = spa->spa_root_vdev;
3350         int degraded = 0, faulted = 0;
3351         int corrupted = 0;
3352         vdev_t *child;
3353         int c;
3354
3355         if (vd->vdev_children > 0) {
3356                 for (c = 0; c < vd->vdev_children; c++) {
3357                         child = vd->vdev_child[c];
3358
3359                         /*
3360                          * Don't factor holes into the decision.
3361                          */
3362                         if (child->vdev_ishole)
3363                                 continue;
3364
3365                         if (!vdev_readable(child) ||
3366                             (!vdev_writeable(child) && spa_writeable(spa))) {
3367                                 /*
3368                                  * Root special: if there is a top-level log
3369                                  * device, treat the root vdev as if it were
3370                                  * degraded.
3371                                  */
3372                                 if (child->vdev_islog && vd == rvd)
3373                                         degraded++;
3374                                 else
3375                                         faulted++;
3376                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3377                                 degraded++;
3378                         }
3379
3380                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3381                                 corrupted++;
3382                 }
3383
3384                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3385
3386                 /*
3387                  * Root special: if there is a top-level vdev that cannot be
3388                  * opened due to corrupted metadata, then propagate the root
3389                  * vdev's aux state as 'corrupt' rather than 'insufficient
3390                  * replicas'.
3391                  */
3392                 if (corrupted && vd == rvd &&
3393                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3394                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3395                             VDEV_AUX_CORRUPT_DATA);
3396         }
3397
3398         if (vd->vdev_parent)
3399                 vdev_propagate_state(vd->vdev_parent);
3400 }
3401
3402 /*
3403  * Set a vdev's state.  If this is during an open, we don't update the parent
3404  * state, because we're in the process of opening children depth-first.
3405  * Otherwise, we propagate the change to the parent.
3406  *
3407  * If this routine places a device in a faulted state, an appropriate ereport is
3408  * generated.
3409  */
3410 void
3411 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3412 {
3413         uint64_t save_state;
3414         spa_t *spa = vd->vdev_spa;
3415
3416         if (state == vd->vdev_state) {
3417                 /*
3418                  * Since vdev_offline() code path is already in an offline
3419                  * state we can miss a statechange event to OFFLINE. Check
3420                  * the previous state to catch this condition.
3421                  */
3422                 if (vd->vdev_ops->vdev_op_leaf &&
3423                     (state == VDEV_STATE_OFFLINE) &&
3424                     (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3425                         /* post an offline state change */
3426                         zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3427                 }
3428                 vd->vdev_stat.vs_aux = aux;
3429                 return;
3430         }
3431
3432         save_state = vd->vdev_state;
3433
3434         vd->vdev_state = state;
3435         vd->vdev_stat.vs_aux = aux;
3436
3437         /*
3438          * If we are setting the vdev state to anything but an open state, then
3439          * always close the underlying device unless the device has requested
3440          * a delayed close (i.e. we're about to remove or fault the device).
3441          * Otherwise, we keep accessible but invalid devices open forever.
3442          * We don't call vdev_close() itself, because that implies some extra
3443          * checks (offline, etc) that we don't want here.  This is limited to
3444          * leaf devices, because otherwise closing the device will affect other
3445          * children.
3446          */
3447         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3448             vd->vdev_ops->vdev_op_leaf)
3449                 vd->vdev_ops->vdev_op_close(vd);
3450
3451         if (vd->vdev_removed &&
3452             state == VDEV_STATE_CANT_OPEN &&
3453             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3454                 /*
3455                  * If the previous state is set to VDEV_STATE_REMOVED, then this
3456                  * device was previously marked removed and someone attempted to
3457                  * reopen it.  If this failed due to a nonexistent device, then
3458                  * keep the device in the REMOVED state.  We also let this be if
3459                  * it is one of our special test online cases, which is only
3460                  * attempting to online the device and shouldn't generate an FMA
3461                  * fault.
3462                  */
3463                 vd->vdev_state = VDEV_STATE_REMOVED;
3464                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3465         } else if (state == VDEV_STATE_REMOVED) {
3466                 vd->vdev_removed = B_TRUE;
3467         } else if (state == VDEV_STATE_CANT_OPEN) {
3468                 /*
3469                  * If we fail to open a vdev during an import or recovery, we
3470                  * mark it as "not available", which signifies that it was
3471                  * never there to begin with.  Failure to open such a device
3472                  * is not considered an error.
3473                  */
3474                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3475                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3476                     vd->vdev_ops->vdev_op_leaf)
3477                         vd->vdev_not_present = 1;
3478
3479                 /*
3480                  * Post the appropriate ereport.  If the 'prevstate' field is
3481                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
3482                  * that this is part of a vdev_reopen().  In this case, we don't
3483                  * want to post the ereport if the device was already in the
3484                  * CANT_OPEN state beforehand.
3485                  *
3486                  * If the 'checkremove' flag is set, then this is an attempt to
3487                  * online the device in response to an insertion event.  If we
3488                  * hit this case, then we have detected an insertion event for a
3489                  * faulted or offline device that wasn't in the removed state.
3490                  * In this scenario, we don't post an ereport because we are
3491                  * about to replace the device, or attempt an online with
3492                  * vdev_forcefault, which will generate the fault for us.
3493                  */
3494                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3495                     !vd->vdev_not_present && !vd->vdev_checkremove &&
3496                     vd != spa->spa_root_vdev) {
3497                         const char *class;
3498
3499                         switch (aux) {
3500                         case VDEV_AUX_OPEN_FAILED:
3501                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3502                                 break;
3503                         case VDEV_AUX_CORRUPT_DATA:
3504                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3505                                 break;
3506                         case VDEV_AUX_NO_REPLICAS:
3507                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3508                                 break;
3509                         case VDEV_AUX_BAD_GUID_SUM:
3510                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3511                                 break;
3512                         case VDEV_AUX_TOO_SMALL:
3513                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3514                                 break;
3515                         case VDEV_AUX_BAD_LABEL:
3516                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3517                                 break;
3518                         case VDEV_AUX_BAD_ASHIFT:
3519                                 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
3520                                 break;
3521                         default:
3522                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3523                         }
3524
3525                         zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3526                 }
3527
3528                 /* Erase any notion of persistent removed state */
3529                 vd->vdev_removed = B_FALSE;
3530         } else {
3531                 vd->vdev_removed = B_FALSE;
3532         }
3533
3534         /*
3535          * Notify ZED of any significant state-change on a leaf vdev.
3536          *
3537          */
3538         if (vd->vdev_ops->vdev_op_leaf) {
3539                 /* preserve original state from a vdev_reopen() */
3540                 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3541                     (vd->vdev_prevstate != vd->vdev_state) &&
3542                     (save_state <= VDEV_STATE_CLOSED))
3543                         save_state = vd->vdev_prevstate;
3544
3545                 /* filter out state change due to initial vdev_open */
3546                 if (save_state > VDEV_STATE_CLOSED)
3547                         zfs_post_state_change(spa, vd, save_state);
3548         }
3549
3550         if (!isopen && vd->vdev_parent)
3551                 vdev_propagate_state(vd->vdev_parent);
3552 }
3553
3554 /*
3555  * Check the vdev configuration to ensure that it's capable of supporting
3556  * a root pool. We do not support partial configuration.
3557  */
3558 boolean_t
3559 vdev_is_bootable(vdev_t *vd)
3560 {
3561         if (!vd->vdev_ops->vdev_op_leaf) {
3562                 const char *vdev_type = vd->vdev_ops->vdev_op_type;
3563
3564                 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
3565                         return (B_FALSE);
3566         }
3567
3568         for (int c = 0; c < vd->vdev_children; c++) {
3569                 if (!vdev_is_bootable(vd->vdev_child[c]))
3570                         return (B_FALSE);
3571         }
3572         return (B_TRUE);
3573 }
3574
3575 /*
3576  * Load the state from the original vdev tree (ovd) which
3577  * we've retrieved from the MOS config object. If the original
3578  * vdev was offline or faulted then we transfer that state to the
3579  * device in the current vdev tree (nvd).
3580  */
3581 void
3582 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3583 {
3584         int c;
3585
3586         ASSERT(nvd->vdev_top->vdev_islog);
3587         ASSERT(spa_config_held(nvd->vdev_spa,
3588             SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3589         ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3590
3591         for (c = 0; c < nvd->vdev_children; c++)
3592                 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3593
3594         if (nvd->vdev_ops->vdev_op_leaf) {
3595                 /*
3596                  * Restore the persistent vdev state
3597                  */
3598                 nvd->vdev_offline = ovd->vdev_offline;
3599                 nvd->vdev_faulted = ovd->vdev_faulted;
3600                 nvd->vdev_degraded = ovd->vdev_degraded;
3601                 nvd->vdev_removed = ovd->vdev_removed;
3602         }
3603 }
3604
3605 /*
3606  * Determine if a log device has valid content.  If the vdev was
3607  * removed or faulted in the MOS config then we know that
3608  * the content on the log device has already been written to the pool.
3609  */
3610 boolean_t
3611 vdev_log_state_valid(vdev_t *vd)
3612 {
3613         int c;
3614
3615         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3616             !vd->vdev_removed)
3617                 return (B_TRUE);
3618
3619         for (c = 0; c < vd->vdev_children; c++)
3620                 if (vdev_log_state_valid(vd->vdev_child[c]))
3621                         return (B_TRUE);
3622
3623         return (B_FALSE);
3624 }
3625
3626 /*
3627  * Expand a vdev if possible.
3628  */
3629 void
3630 vdev_expand(vdev_t *vd, uint64_t txg)
3631 {
3632         ASSERT(vd->vdev_top == vd);
3633         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3634
3635         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3636                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3637                 vdev_config_dirty(vd);
3638         }
3639 }
3640
3641 /*
3642  * Split a vdev.
3643  */
3644 void
3645 vdev_split(vdev_t *vd)
3646 {
3647         vdev_t *cvd, *pvd = vd->vdev_parent;
3648
3649         vdev_remove_child(pvd, vd);
3650         vdev_compact_children(pvd);
3651
3652         cvd = pvd->vdev_child[0];
3653         if (pvd->vdev_children == 1) {
3654                 vdev_remove_parent(cvd);
3655                 cvd->vdev_splitting = B_TRUE;
3656         }
3657         vdev_propagate_state(cvd);
3658 }
3659
3660 void
3661 vdev_deadman(vdev_t *vd)
3662 {
3663         int c;
3664
3665         for (c = 0; c < vd->vdev_children; c++) {
3666                 vdev_t *cvd = vd->vdev_child[c];
3667
3668                 vdev_deadman(cvd);
3669         }
3670
3671         if (vd->vdev_ops->vdev_op_leaf) {
3672                 vdev_queue_t *vq = &vd->vdev_queue;
3673
3674                 mutex_enter(&vq->vq_lock);
3675                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3676                         spa_t *spa = vd->vdev_spa;
3677                         zio_t *fio;
3678                         uint64_t delta;
3679
3680                         /*
3681                          * Look at the head of all the pending queues,
3682                          * if any I/O has been outstanding for longer than
3683                          * the spa_deadman_synctime we log a zevent.
3684                          */
3685                         fio = avl_first(&vq->vq_active_tree);
3686                         delta = gethrtime() - fio->io_timestamp;
3687                         if (delta > spa_deadman_synctime(spa)) {
3688                                 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3689                                     "delta %lluns, last io %lluns",
3690                                     fio->io_timestamp, delta,
3691                                     vq->vq_io_complete_ts);
3692                                 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3693                                     spa, vd, fio, 0, 0);
3694                         }
3695                 }
3696                 mutex_exit(&vq->vq_lock);
3697         }
3698 }
3699
3700 #if defined(_KERNEL) && defined(HAVE_SPL)
3701 EXPORT_SYMBOL(vdev_fault);
3702 EXPORT_SYMBOL(vdev_degrade);
3703 EXPORT_SYMBOL(vdev_online);
3704 EXPORT_SYMBOL(vdev_offline);
3705 EXPORT_SYMBOL(vdev_clear);
3706 /* BEGIN CSTYLED */
3707 module_param(metaslabs_per_vdev, int, 0644);
3708 MODULE_PARM_DESC(metaslabs_per_vdev,
3709         "Divide added vdev into approximately (but no more than) this number "
3710         "of metaslabs");
3711 /* END CSTYLED */
3712 #endif