]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/vdev.c
Fix typos in module/zfs/
[FreeBSD/FreeBSD.git] / module / zfs / vdev.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25  * Copyright 2017 Nexenta Systems, Inc.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  * Copyright 2017 Joyent, Inc.
29  * Copyright (c) 2017, Intel Corporation.
30  */
31
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/vdev_initialize.h>
54 #include <sys/vdev_trim.h>
55 #include <sys/zvol.h>
56 #include <sys/zfs_ratelimit.h>
57
58 /* default target for number of metaslabs per top-level vdev */
59 int zfs_vdev_default_ms_count = 200;
60
61 /* minimum number of metaslabs per top-level vdev */
62 int zfs_vdev_min_ms_count = 16;
63
64 /* practical upper limit of total metaslabs per top-level vdev */
65 int zfs_vdev_ms_count_limit = 1ULL << 17;
66
67 /* lower limit for metaslab size (512M) */
68 int zfs_vdev_default_ms_shift = 29;
69
70 /* upper limit for metaslab size (16G) */
71 int zfs_vdev_max_ms_shift = 34;
72
73 int vdev_validate_skip = B_FALSE;
74
75 /*
76  * Since the DTL space map of a vdev is not expected to have a lot of
77  * entries, we default its block size to 4K.
78  */
79 int zfs_vdev_dtl_sm_blksz = (1 << 12);
80
81 /*
82  * Rate limit slow IO (delay) events to this many per second.
83  */
84 unsigned int zfs_slow_io_events_per_second = 20;
85
86 /*
87  * Rate limit checksum events after this many checksum errors per second.
88  */
89 unsigned int zfs_checksum_events_per_second = 20;
90
91 /*
92  * Ignore errors during scrub/resilver.  Allows to work around resilver
93  * upon import when there are pool errors.
94  */
95 int zfs_scan_ignore_errors = 0;
96
97 /*
98  * vdev-wide space maps that have lots of entries written to them at
99  * the end of each transaction can benefit from a higher I/O bandwidth
100  * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
101  */
102 int zfs_vdev_standard_sm_blksz = (1 << 17);
103
104 /*
105  * Tunable parameter for debugging or performance analysis. Setting this
106  * will cause pool corruption on power loss if a volatile out-of-order
107  * write cache is enabled.
108  */
109 int zfs_nocacheflush = 0;
110
111 /*PRINTFLIKE2*/
112 void
113 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
114 {
115         va_list adx;
116         char buf[256];
117
118         va_start(adx, fmt);
119         (void) vsnprintf(buf, sizeof (buf), fmt, adx);
120         va_end(adx);
121
122         if (vd->vdev_path != NULL) {
123                 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
124                     vd->vdev_path, buf);
125         } else {
126                 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
127                     vd->vdev_ops->vdev_op_type,
128                     (u_longlong_t)vd->vdev_id,
129                     (u_longlong_t)vd->vdev_guid, buf);
130         }
131 }
132
133 void
134 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
135 {
136         char state[20];
137
138         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
139                 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
140                     vd->vdev_ops->vdev_op_type);
141                 return;
142         }
143
144         switch (vd->vdev_state) {
145         case VDEV_STATE_UNKNOWN:
146                 (void) snprintf(state, sizeof (state), "unknown");
147                 break;
148         case VDEV_STATE_CLOSED:
149                 (void) snprintf(state, sizeof (state), "closed");
150                 break;
151         case VDEV_STATE_OFFLINE:
152                 (void) snprintf(state, sizeof (state), "offline");
153                 break;
154         case VDEV_STATE_REMOVED:
155                 (void) snprintf(state, sizeof (state), "removed");
156                 break;
157         case VDEV_STATE_CANT_OPEN:
158                 (void) snprintf(state, sizeof (state), "can't open");
159                 break;
160         case VDEV_STATE_FAULTED:
161                 (void) snprintf(state, sizeof (state), "faulted");
162                 break;
163         case VDEV_STATE_DEGRADED:
164                 (void) snprintf(state, sizeof (state), "degraded");
165                 break;
166         case VDEV_STATE_HEALTHY:
167                 (void) snprintf(state, sizeof (state), "healthy");
168                 break;
169         default:
170                 (void) snprintf(state, sizeof (state), "<state %u>",
171                     (uint_t)vd->vdev_state);
172         }
173
174         zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
175             "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
176             vd->vdev_islog ? " (log)" : "",
177             (u_longlong_t)vd->vdev_guid,
178             vd->vdev_path ? vd->vdev_path : "N/A", state);
179
180         for (uint64_t i = 0; i < vd->vdev_children; i++)
181                 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
182 }
183
184 /*
185  * Virtual device management.
186  */
187
188 static vdev_ops_t *vdev_ops_table[] = {
189         &vdev_root_ops,
190         &vdev_raidz_ops,
191         &vdev_mirror_ops,
192         &vdev_replacing_ops,
193         &vdev_spare_ops,
194         &vdev_disk_ops,
195         &vdev_file_ops,
196         &vdev_missing_ops,
197         &vdev_hole_ops,
198         &vdev_indirect_ops,
199         NULL
200 };
201
202 /*
203  * Given a vdev type, return the appropriate ops vector.
204  */
205 static vdev_ops_t *
206 vdev_getops(const char *type)
207 {
208         vdev_ops_t *ops, **opspp;
209
210         for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
211                 if (strcmp(ops->vdev_op_type, type) == 0)
212                         break;
213
214         return (ops);
215 }
216
217 /* ARGSUSED */
218 void
219 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
220 {
221         res->rs_start = in->rs_start;
222         res->rs_end = in->rs_end;
223 }
224
225 /*
226  * Derive the enumerated allocation bias from string input.
227  * String origin is either the per-vdev zap or zpool(1M).
228  */
229 static vdev_alloc_bias_t
230 vdev_derive_alloc_bias(const char *bias)
231 {
232         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
233
234         if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
235                 alloc_bias = VDEV_BIAS_LOG;
236         else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
237                 alloc_bias = VDEV_BIAS_SPECIAL;
238         else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
239                 alloc_bias = VDEV_BIAS_DEDUP;
240
241         return (alloc_bias);
242 }
243
244 /*
245  * Default asize function: return the MAX of psize with the asize of
246  * all children.  This is what's used by anything other than RAID-Z.
247  */
248 uint64_t
249 vdev_default_asize(vdev_t *vd, uint64_t psize)
250 {
251         uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
252         uint64_t csize;
253
254         for (int c = 0; c < vd->vdev_children; c++) {
255                 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
256                 asize = MAX(asize, csize);
257         }
258
259         return (asize);
260 }
261
262 /*
263  * Get the minimum allocatable size. We define the allocatable size as
264  * the vdev's asize rounded to the nearest metaslab. This allows us to
265  * replace or attach devices which don't have the same physical size but
266  * can still satisfy the same number of allocations.
267  */
268 uint64_t
269 vdev_get_min_asize(vdev_t *vd)
270 {
271         vdev_t *pvd = vd->vdev_parent;
272
273         /*
274          * If our parent is NULL (inactive spare or cache) or is the root,
275          * just return our own asize.
276          */
277         if (pvd == NULL)
278                 return (vd->vdev_asize);
279
280         /*
281          * The top-level vdev just returns the allocatable size rounded
282          * to the nearest metaslab.
283          */
284         if (vd == vd->vdev_top)
285                 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
286
287         /*
288          * The allocatable space for a raidz vdev is N * sizeof(smallest child),
289          * so each child must provide at least 1/Nth of its asize.
290          */
291         if (pvd->vdev_ops == &vdev_raidz_ops)
292                 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
293                     pvd->vdev_children);
294
295         return (pvd->vdev_min_asize);
296 }
297
298 void
299 vdev_set_min_asize(vdev_t *vd)
300 {
301         vd->vdev_min_asize = vdev_get_min_asize(vd);
302
303         for (int c = 0; c < vd->vdev_children; c++)
304                 vdev_set_min_asize(vd->vdev_child[c]);
305 }
306
307 vdev_t *
308 vdev_lookup_top(spa_t *spa, uint64_t vdev)
309 {
310         vdev_t *rvd = spa->spa_root_vdev;
311
312         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
313
314         if (vdev < rvd->vdev_children) {
315                 ASSERT(rvd->vdev_child[vdev] != NULL);
316                 return (rvd->vdev_child[vdev]);
317         }
318
319         return (NULL);
320 }
321
322 vdev_t *
323 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
324 {
325         vdev_t *mvd;
326
327         if (vd->vdev_guid == guid)
328                 return (vd);
329
330         for (int c = 0; c < vd->vdev_children; c++)
331                 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
332                     NULL)
333                         return (mvd);
334
335         return (NULL);
336 }
337
338 static int
339 vdev_count_leaves_impl(vdev_t *vd)
340 {
341         int n = 0;
342
343         if (vd->vdev_ops->vdev_op_leaf)
344                 return (1);
345
346         for (int c = 0; c < vd->vdev_children; c++)
347                 n += vdev_count_leaves_impl(vd->vdev_child[c]);
348
349         return (n);
350 }
351
352 int
353 vdev_count_leaves(spa_t *spa)
354 {
355         int rc;
356
357         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
358         rc = vdev_count_leaves_impl(spa->spa_root_vdev);
359         spa_config_exit(spa, SCL_VDEV, FTAG);
360
361         return (rc);
362 }
363
364 void
365 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
366 {
367         size_t oldsize, newsize;
368         uint64_t id = cvd->vdev_id;
369         vdev_t **newchild;
370
371         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
372         ASSERT(cvd->vdev_parent == NULL);
373
374         cvd->vdev_parent = pvd;
375
376         if (pvd == NULL)
377                 return;
378
379         ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
380
381         oldsize = pvd->vdev_children * sizeof (vdev_t *);
382         pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
383         newsize = pvd->vdev_children * sizeof (vdev_t *);
384
385         newchild = kmem_alloc(newsize, KM_SLEEP);
386         if (pvd->vdev_child != NULL) {
387                 bcopy(pvd->vdev_child, newchild, oldsize);
388                 kmem_free(pvd->vdev_child, oldsize);
389         }
390
391         pvd->vdev_child = newchild;
392         pvd->vdev_child[id] = cvd;
393
394         cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
395         ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
396
397         /*
398          * Walk up all ancestors to update guid sum.
399          */
400         for (; pvd != NULL; pvd = pvd->vdev_parent)
401                 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
402
403         if (cvd->vdev_ops->vdev_op_leaf) {
404                 list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd);
405                 cvd->vdev_spa->spa_leaf_list_gen++;
406         }
407 }
408
409 void
410 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
411 {
412         int c;
413         uint_t id = cvd->vdev_id;
414
415         ASSERT(cvd->vdev_parent == pvd);
416
417         if (pvd == NULL)
418                 return;
419
420         ASSERT(id < pvd->vdev_children);
421         ASSERT(pvd->vdev_child[id] == cvd);
422
423         pvd->vdev_child[id] = NULL;
424         cvd->vdev_parent = NULL;
425
426         for (c = 0; c < pvd->vdev_children; c++)
427                 if (pvd->vdev_child[c])
428                         break;
429
430         if (c == pvd->vdev_children) {
431                 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
432                 pvd->vdev_child = NULL;
433                 pvd->vdev_children = 0;
434         }
435
436         if (cvd->vdev_ops->vdev_op_leaf) {
437                 spa_t *spa = cvd->vdev_spa;
438                 list_remove(&spa->spa_leaf_list, cvd);
439                 spa->spa_leaf_list_gen++;
440         }
441
442         /*
443          * Walk up all ancestors to update guid sum.
444          */
445         for (; pvd != NULL; pvd = pvd->vdev_parent)
446                 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
447 }
448
449 /*
450  * Remove any holes in the child array.
451  */
452 void
453 vdev_compact_children(vdev_t *pvd)
454 {
455         vdev_t **newchild, *cvd;
456         int oldc = pvd->vdev_children;
457         int newc;
458
459         ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
460
461         if (oldc == 0)
462                 return;
463
464         for (int c = newc = 0; c < oldc; c++)
465                 if (pvd->vdev_child[c])
466                         newc++;
467
468         if (newc > 0) {
469                 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
470
471                 for (int c = newc = 0; c < oldc; c++) {
472                         if ((cvd = pvd->vdev_child[c]) != NULL) {
473                                 newchild[newc] = cvd;
474                                 cvd->vdev_id = newc++;
475                         }
476                 }
477         } else {
478                 newchild = NULL;
479         }
480
481         kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
482         pvd->vdev_child = newchild;
483         pvd->vdev_children = newc;
484 }
485
486 /*
487  * Allocate and minimally initialize a vdev_t.
488  */
489 vdev_t *
490 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
491 {
492         vdev_t *vd;
493         vdev_indirect_config_t *vic;
494
495         vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
496         vic = &vd->vdev_indirect_config;
497
498         if (spa->spa_root_vdev == NULL) {
499                 ASSERT(ops == &vdev_root_ops);
500                 spa->spa_root_vdev = vd;
501                 spa->spa_load_guid = spa_generate_guid(NULL);
502         }
503
504         if (guid == 0 && ops != &vdev_hole_ops) {
505                 if (spa->spa_root_vdev == vd) {
506                         /*
507                          * The root vdev's guid will also be the pool guid,
508                          * which must be unique among all pools.
509                          */
510                         guid = spa_generate_guid(NULL);
511                 } else {
512                         /*
513                          * Any other vdev's guid must be unique within the pool.
514                          */
515                         guid = spa_generate_guid(spa);
516                 }
517                 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
518         }
519
520         vd->vdev_spa = spa;
521         vd->vdev_id = id;
522         vd->vdev_guid = guid;
523         vd->vdev_guid_sum = guid;
524         vd->vdev_ops = ops;
525         vd->vdev_state = VDEV_STATE_CLOSED;
526         vd->vdev_ishole = (ops == &vdev_hole_ops);
527         vic->vic_prev_indirect_vdev = UINT64_MAX;
528
529         rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
530         mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
531         vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
532
533         /*
534          * Initialize rate limit structs for events.  We rate limit ZIO delay
535          * and checksum events so that we don't overwhelm ZED with thousands
536          * of events when a disk is acting up.
537          */
538         zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
539             1);
540         zfs_ratelimit_init(&vd->vdev_checksum_rl,
541             &zfs_checksum_events_per_second, 1);
542
543         list_link_init(&vd->vdev_config_dirty_node);
544         list_link_init(&vd->vdev_state_dirty_node);
545         list_link_init(&vd->vdev_initialize_node);
546         list_link_init(&vd->vdev_leaf_node);
547         list_link_init(&vd->vdev_trim_node);
548         mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
549         mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
550         mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
551         mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
552         mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
553         mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
554         cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
555         cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
556         mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL);
557         mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL);
558         mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL);
559         cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL);
560         cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL);
561         cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL);
562
563         for (int t = 0; t < DTL_TYPES; t++) {
564                 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
565         }
566         txg_list_create(&vd->vdev_ms_list, spa,
567             offsetof(struct metaslab, ms_txg_node));
568         txg_list_create(&vd->vdev_dtl_list, spa,
569             offsetof(struct vdev, vdev_dtl_node));
570         vd->vdev_stat.vs_timestamp = gethrtime();
571         vdev_queue_init(vd);
572         vdev_cache_init(vd);
573
574         return (vd);
575 }
576
577 /*
578  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
579  * creating a new vdev or loading an existing one - the behavior is slightly
580  * different for each case.
581  */
582 int
583 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
584     int alloctype)
585 {
586         vdev_ops_t *ops;
587         char *type;
588         uint64_t guid = 0, islog, nparity;
589         vdev_t *vd;
590         vdev_indirect_config_t *vic;
591         char *tmp = NULL;
592         int rc;
593         vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
594         boolean_t top_level = (parent && !parent->vdev_parent);
595
596         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
597
598         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
599                 return (SET_ERROR(EINVAL));
600
601         if ((ops = vdev_getops(type)) == NULL)
602                 return (SET_ERROR(EINVAL));
603
604         /*
605          * If this is a load, get the vdev guid from the nvlist.
606          * Otherwise, vdev_alloc_common() will generate one for us.
607          */
608         if (alloctype == VDEV_ALLOC_LOAD) {
609                 uint64_t label_id;
610
611                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
612                     label_id != id)
613                         return (SET_ERROR(EINVAL));
614
615                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
616                         return (SET_ERROR(EINVAL));
617         } else if (alloctype == VDEV_ALLOC_SPARE) {
618                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
619                         return (SET_ERROR(EINVAL));
620         } else if (alloctype == VDEV_ALLOC_L2CACHE) {
621                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
622                         return (SET_ERROR(EINVAL));
623         } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
624                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
625                         return (SET_ERROR(EINVAL));
626         }
627
628         /*
629          * The first allocated vdev must be of type 'root'.
630          */
631         if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
632                 return (SET_ERROR(EINVAL));
633
634         /*
635          * Determine whether we're a log vdev.
636          */
637         islog = 0;
638         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
639         if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
640                 return (SET_ERROR(ENOTSUP));
641
642         if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
643                 return (SET_ERROR(ENOTSUP));
644
645         /*
646          * Set the nparity property for RAID-Z vdevs.
647          */
648         nparity = -1ULL;
649         if (ops == &vdev_raidz_ops) {
650                 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
651                     &nparity) == 0) {
652                         if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
653                                 return (SET_ERROR(EINVAL));
654                         /*
655                          * Previous versions could only support 1 or 2 parity
656                          * device.
657                          */
658                         if (nparity > 1 &&
659                             spa_version(spa) < SPA_VERSION_RAIDZ2)
660                                 return (SET_ERROR(ENOTSUP));
661                         if (nparity > 2 &&
662                             spa_version(spa) < SPA_VERSION_RAIDZ3)
663                                 return (SET_ERROR(ENOTSUP));
664                 } else {
665                         /*
666                          * We require the parity to be specified for SPAs that
667                          * support multiple parity levels.
668                          */
669                         if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
670                                 return (SET_ERROR(EINVAL));
671                         /*
672                          * Otherwise, we default to 1 parity device for RAID-Z.
673                          */
674                         nparity = 1;
675                 }
676         } else {
677                 nparity = 0;
678         }
679         ASSERT(nparity != -1ULL);
680
681         /*
682          * If creating a top-level vdev, check for allocation classes input
683          */
684         if (top_level && alloctype == VDEV_ALLOC_ADD) {
685                 char *bias;
686
687                 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
688                     &bias) == 0) {
689                         alloc_bias = vdev_derive_alloc_bias(bias);
690
691                         /* spa_vdev_add() expects feature to be enabled */
692                         if (spa->spa_load_state != SPA_LOAD_CREATE &&
693                             !spa_feature_is_enabled(spa,
694                             SPA_FEATURE_ALLOCATION_CLASSES)) {
695                                 return (SET_ERROR(ENOTSUP));
696                         }
697                 }
698         }
699
700         vd = vdev_alloc_common(spa, id, guid, ops);
701         vic = &vd->vdev_indirect_config;
702
703         vd->vdev_islog = islog;
704         vd->vdev_nparity = nparity;
705         if (top_level && alloc_bias != VDEV_BIAS_NONE)
706                 vd->vdev_alloc_bias = alloc_bias;
707
708         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
709                 vd->vdev_path = spa_strdup(vd->vdev_path);
710
711         /*
712          * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
713          * fault on a vdev and want it to persist across imports (like with
714          * zpool offline -f).
715          */
716         rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
717         if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
718                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
719                 vd->vdev_faulted = 1;
720                 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
721         }
722
723         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
724                 vd->vdev_devid = spa_strdup(vd->vdev_devid);
725         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
726             &vd->vdev_physpath) == 0)
727                 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
728
729         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
730             &vd->vdev_enc_sysfs_path) == 0)
731                 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
732
733         if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
734                 vd->vdev_fru = spa_strdup(vd->vdev_fru);
735
736         /*
737          * Set the whole_disk property.  If it's not specified, leave the value
738          * as -1.
739          */
740         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
741             &vd->vdev_wholedisk) != 0)
742                 vd->vdev_wholedisk = -1ULL;
743
744         ASSERT0(vic->vic_mapping_object);
745         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
746             &vic->vic_mapping_object);
747         ASSERT0(vic->vic_births_object);
748         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
749             &vic->vic_births_object);
750         ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
751         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
752             &vic->vic_prev_indirect_vdev);
753
754         /*
755          * Look for the 'not present' flag.  This will only be set if the device
756          * was not present at the time of import.
757          */
758         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
759             &vd->vdev_not_present);
760
761         /*
762          * Get the alignment requirement.
763          */
764         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
765
766         /*
767          * Retrieve the vdev creation time.
768          */
769         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
770             &vd->vdev_crtxg);
771
772         /*
773          * If we're a top-level vdev, try to load the allocation parameters.
774          */
775         if (top_level &&
776             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
777                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
778                     &vd->vdev_ms_array);
779                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
780                     &vd->vdev_ms_shift);
781                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
782                     &vd->vdev_asize);
783                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
784                     &vd->vdev_removing);
785                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
786                     &vd->vdev_top_zap);
787         } else {
788                 ASSERT0(vd->vdev_top_zap);
789         }
790
791         if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
792                 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
793                     alloctype == VDEV_ALLOC_ADD ||
794                     alloctype == VDEV_ALLOC_SPLIT ||
795                     alloctype == VDEV_ALLOC_ROOTPOOL);
796                 /* Note: metaslab_group_create() is now deferred */
797         }
798
799         if (vd->vdev_ops->vdev_op_leaf &&
800             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
801                 (void) nvlist_lookup_uint64(nv,
802                     ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
803         } else {
804                 ASSERT0(vd->vdev_leaf_zap);
805         }
806
807         /*
808          * If we're a leaf vdev, try to load the DTL object and other state.
809          */
810
811         if (vd->vdev_ops->vdev_op_leaf &&
812             (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
813             alloctype == VDEV_ALLOC_ROOTPOOL)) {
814                 if (alloctype == VDEV_ALLOC_LOAD) {
815                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
816                             &vd->vdev_dtl_object);
817                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
818                             &vd->vdev_unspare);
819                 }
820
821                 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
822                         uint64_t spare = 0;
823
824                         if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
825                             &spare) == 0 && spare)
826                                 spa_spare_add(vd);
827                 }
828
829                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
830                     &vd->vdev_offline);
831
832                 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
833                     &vd->vdev_resilver_txg);
834
835                 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
836                         vdev_set_deferred_resilver(spa, vd);
837
838                 /*
839                  * In general, when importing a pool we want to ignore the
840                  * persistent fault state, as the diagnosis made on another
841                  * system may not be valid in the current context.  The only
842                  * exception is if we forced a vdev to a persistently faulted
843                  * state with 'zpool offline -f'.  The persistent fault will
844                  * remain across imports until cleared.
845                  *
846                  * Local vdevs will remain in the faulted state.
847                  */
848                 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
849                     spa_load_state(spa) == SPA_LOAD_IMPORT) {
850                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
851                             &vd->vdev_faulted);
852                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
853                             &vd->vdev_degraded);
854                         (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
855                             &vd->vdev_removed);
856
857                         if (vd->vdev_faulted || vd->vdev_degraded) {
858                                 char *aux;
859
860                                 vd->vdev_label_aux =
861                                     VDEV_AUX_ERR_EXCEEDED;
862                                 if (nvlist_lookup_string(nv,
863                                     ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
864                                     strcmp(aux, "external") == 0)
865                                         vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
866                                 else
867                                         vd->vdev_faulted = 0ULL;
868                         }
869                 }
870         }
871
872         /*
873          * Add ourselves to the parent's list of children.
874          */
875         vdev_add_child(parent, vd);
876
877         *vdp = vd;
878
879         return (0);
880 }
881
882 void
883 vdev_free(vdev_t *vd)
884 {
885         spa_t *spa = vd->vdev_spa;
886
887         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
888         ASSERT3P(vd->vdev_trim_thread, ==, NULL);
889         ASSERT3P(vd->vdev_autotrim_thread, ==, NULL);
890
891         /*
892          * Scan queues are normally destroyed at the end of a scan. If the
893          * queue exists here, that implies the vdev is being removed while
894          * the scan is still running.
895          */
896         if (vd->vdev_scan_io_queue != NULL) {
897                 mutex_enter(&vd->vdev_scan_io_queue_lock);
898                 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
899                 vd->vdev_scan_io_queue = NULL;
900                 mutex_exit(&vd->vdev_scan_io_queue_lock);
901         }
902
903         /*
904          * vdev_free() implies closing the vdev first.  This is simpler than
905          * trying to ensure complicated semantics for all callers.
906          */
907         vdev_close(vd);
908
909         ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
910         ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
911
912         /*
913          * Free all children.
914          */
915         for (int c = 0; c < vd->vdev_children; c++)
916                 vdev_free(vd->vdev_child[c]);
917
918         ASSERT(vd->vdev_child == NULL);
919         ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
920
921         /*
922          * Discard allocation state.
923          */
924         if (vd->vdev_mg != NULL) {
925                 vdev_metaslab_fini(vd);
926                 metaslab_group_destroy(vd->vdev_mg);
927                 vd->vdev_mg = NULL;
928         }
929
930         ASSERT0(vd->vdev_stat.vs_space);
931         ASSERT0(vd->vdev_stat.vs_dspace);
932         ASSERT0(vd->vdev_stat.vs_alloc);
933
934         /*
935          * Remove this vdev from its parent's child list.
936          */
937         vdev_remove_child(vd->vdev_parent, vd);
938
939         ASSERT(vd->vdev_parent == NULL);
940         ASSERT(!list_link_active(&vd->vdev_leaf_node));
941
942         /*
943          * Clean up vdev structure.
944          */
945         vdev_queue_fini(vd);
946         vdev_cache_fini(vd);
947
948         if (vd->vdev_path)
949                 spa_strfree(vd->vdev_path);
950         if (vd->vdev_devid)
951                 spa_strfree(vd->vdev_devid);
952         if (vd->vdev_physpath)
953                 spa_strfree(vd->vdev_physpath);
954
955         if (vd->vdev_enc_sysfs_path)
956                 spa_strfree(vd->vdev_enc_sysfs_path);
957
958         if (vd->vdev_fru)
959                 spa_strfree(vd->vdev_fru);
960
961         if (vd->vdev_isspare)
962                 spa_spare_remove(vd);
963         if (vd->vdev_isl2cache)
964                 spa_l2cache_remove(vd);
965
966         txg_list_destroy(&vd->vdev_ms_list);
967         txg_list_destroy(&vd->vdev_dtl_list);
968
969         mutex_enter(&vd->vdev_dtl_lock);
970         space_map_close(vd->vdev_dtl_sm);
971         for (int t = 0; t < DTL_TYPES; t++) {
972                 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
973                 range_tree_destroy(vd->vdev_dtl[t]);
974         }
975         mutex_exit(&vd->vdev_dtl_lock);
976
977         EQUIV(vd->vdev_indirect_births != NULL,
978             vd->vdev_indirect_mapping != NULL);
979         if (vd->vdev_indirect_births != NULL) {
980                 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
981                 vdev_indirect_births_close(vd->vdev_indirect_births);
982         }
983
984         if (vd->vdev_obsolete_sm != NULL) {
985                 ASSERT(vd->vdev_removing ||
986                     vd->vdev_ops == &vdev_indirect_ops);
987                 space_map_close(vd->vdev_obsolete_sm);
988                 vd->vdev_obsolete_sm = NULL;
989         }
990         range_tree_destroy(vd->vdev_obsolete_segments);
991         rw_destroy(&vd->vdev_indirect_rwlock);
992         mutex_destroy(&vd->vdev_obsolete_lock);
993
994         mutex_destroy(&vd->vdev_dtl_lock);
995         mutex_destroy(&vd->vdev_stat_lock);
996         mutex_destroy(&vd->vdev_probe_lock);
997         mutex_destroy(&vd->vdev_scan_io_queue_lock);
998         mutex_destroy(&vd->vdev_initialize_lock);
999         mutex_destroy(&vd->vdev_initialize_io_lock);
1000         cv_destroy(&vd->vdev_initialize_io_cv);
1001         cv_destroy(&vd->vdev_initialize_cv);
1002         mutex_destroy(&vd->vdev_trim_lock);
1003         mutex_destroy(&vd->vdev_autotrim_lock);
1004         mutex_destroy(&vd->vdev_trim_io_lock);
1005         cv_destroy(&vd->vdev_trim_cv);
1006         cv_destroy(&vd->vdev_autotrim_cv);
1007         cv_destroy(&vd->vdev_trim_io_cv);
1008
1009         zfs_ratelimit_fini(&vd->vdev_delay_rl);
1010         zfs_ratelimit_fini(&vd->vdev_checksum_rl);
1011
1012         if (vd == spa->spa_root_vdev)
1013                 spa->spa_root_vdev = NULL;
1014
1015         kmem_free(vd, sizeof (vdev_t));
1016 }
1017
1018 /*
1019  * Transfer top-level vdev state from svd to tvd.
1020  */
1021 static void
1022 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
1023 {
1024         spa_t *spa = svd->vdev_spa;
1025         metaslab_t *msp;
1026         vdev_t *vd;
1027         int t;
1028
1029         ASSERT(tvd == tvd->vdev_top);
1030
1031         tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1032         tvd->vdev_ms_array = svd->vdev_ms_array;
1033         tvd->vdev_ms_shift = svd->vdev_ms_shift;
1034         tvd->vdev_ms_count = svd->vdev_ms_count;
1035         tvd->vdev_top_zap = svd->vdev_top_zap;
1036
1037         svd->vdev_ms_array = 0;
1038         svd->vdev_ms_shift = 0;
1039         svd->vdev_ms_count = 0;
1040         svd->vdev_top_zap = 0;
1041
1042         if (tvd->vdev_mg)
1043                 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1044         tvd->vdev_mg = svd->vdev_mg;
1045         tvd->vdev_ms = svd->vdev_ms;
1046
1047         svd->vdev_mg = NULL;
1048         svd->vdev_ms = NULL;
1049
1050         if (tvd->vdev_mg != NULL)
1051                 tvd->vdev_mg->mg_vd = tvd;
1052
1053         tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1054         svd->vdev_checkpoint_sm = NULL;
1055
1056         tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1057         svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1058
1059         tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1060         tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1061         tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1062
1063         svd->vdev_stat.vs_alloc = 0;
1064         svd->vdev_stat.vs_space = 0;
1065         svd->vdev_stat.vs_dspace = 0;
1066
1067         /*
1068          * State which may be set on a top-level vdev that's in the
1069          * process of being removed.
1070          */
1071         ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1072         ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1073         ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1074         ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1075         ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1076         ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1077         ASSERT0(tvd->vdev_removing);
1078         tvd->vdev_removing = svd->vdev_removing;
1079         tvd->vdev_indirect_config = svd->vdev_indirect_config;
1080         tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1081         tvd->vdev_indirect_births = svd->vdev_indirect_births;
1082         range_tree_swap(&svd->vdev_obsolete_segments,
1083             &tvd->vdev_obsolete_segments);
1084         tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1085         svd->vdev_indirect_config.vic_mapping_object = 0;
1086         svd->vdev_indirect_config.vic_births_object = 0;
1087         svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1088         svd->vdev_indirect_mapping = NULL;
1089         svd->vdev_indirect_births = NULL;
1090         svd->vdev_obsolete_sm = NULL;
1091         svd->vdev_removing = 0;
1092
1093         for (t = 0; t < TXG_SIZE; t++) {
1094                 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1095                         (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1096                 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1097                         (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1098                 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1099                         (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1100         }
1101
1102         if (list_link_active(&svd->vdev_config_dirty_node)) {
1103                 vdev_config_clean(svd);
1104                 vdev_config_dirty(tvd);
1105         }
1106
1107         if (list_link_active(&svd->vdev_state_dirty_node)) {
1108                 vdev_state_clean(svd);
1109                 vdev_state_dirty(tvd);
1110         }
1111
1112         tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1113         svd->vdev_deflate_ratio = 0;
1114
1115         tvd->vdev_islog = svd->vdev_islog;
1116         svd->vdev_islog = 0;
1117
1118         dsl_scan_io_queue_vdev_xfer(svd, tvd);
1119 }
1120
1121 static void
1122 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1123 {
1124         if (vd == NULL)
1125                 return;
1126
1127         vd->vdev_top = tvd;
1128
1129         for (int c = 0; c < vd->vdev_children; c++)
1130                 vdev_top_update(tvd, vd->vdev_child[c]);
1131 }
1132
1133 /*
1134  * Add a mirror/replacing vdev above an existing vdev.
1135  */
1136 vdev_t *
1137 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1138 {
1139         spa_t *spa = cvd->vdev_spa;
1140         vdev_t *pvd = cvd->vdev_parent;
1141         vdev_t *mvd;
1142
1143         ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1144
1145         mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1146
1147         mvd->vdev_asize = cvd->vdev_asize;
1148         mvd->vdev_min_asize = cvd->vdev_min_asize;
1149         mvd->vdev_max_asize = cvd->vdev_max_asize;
1150         mvd->vdev_psize = cvd->vdev_psize;
1151         mvd->vdev_ashift = cvd->vdev_ashift;
1152         mvd->vdev_state = cvd->vdev_state;
1153         mvd->vdev_crtxg = cvd->vdev_crtxg;
1154
1155         vdev_remove_child(pvd, cvd);
1156         vdev_add_child(pvd, mvd);
1157         cvd->vdev_id = mvd->vdev_children;
1158         vdev_add_child(mvd, cvd);
1159         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1160
1161         if (mvd == mvd->vdev_top)
1162                 vdev_top_transfer(cvd, mvd);
1163
1164         return (mvd);
1165 }
1166
1167 /*
1168  * Remove a 1-way mirror/replacing vdev from the tree.
1169  */
1170 void
1171 vdev_remove_parent(vdev_t *cvd)
1172 {
1173         vdev_t *mvd = cvd->vdev_parent;
1174         vdev_t *pvd = mvd->vdev_parent;
1175
1176         ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1177
1178         ASSERT(mvd->vdev_children == 1);
1179         ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1180             mvd->vdev_ops == &vdev_replacing_ops ||
1181             mvd->vdev_ops == &vdev_spare_ops);
1182         cvd->vdev_ashift = mvd->vdev_ashift;
1183
1184         vdev_remove_child(mvd, cvd);
1185         vdev_remove_child(pvd, mvd);
1186
1187         /*
1188          * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1189          * Otherwise, we could have detached an offline device, and when we
1190          * go to import the pool we'll think we have two top-level vdevs,
1191          * instead of a different version of the same top-level vdev.
1192          */
1193         if (mvd->vdev_top == mvd) {
1194                 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1195                 cvd->vdev_orig_guid = cvd->vdev_guid;
1196                 cvd->vdev_guid += guid_delta;
1197                 cvd->vdev_guid_sum += guid_delta;
1198
1199                 /*
1200                  * If pool not set for autoexpand, we need to also preserve
1201                  * mvd's asize to prevent automatic expansion of cvd.
1202                  * Otherwise if we are adjusting the mirror by attaching and
1203                  * detaching children of non-uniform sizes, the mirror could
1204                  * autoexpand, unexpectedly requiring larger devices to
1205                  * re-establish the mirror.
1206                  */
1207                 if (!cvd->vdev_spa->spa_autoexpand)
1208                         cvd->vdev_asize = mvd->vdev_asize;
1209         }
1210         cvd->vdev_id = mvd->vdev_id;
1211         vdev_add_child(pvd, cvd);
1212         vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1213
1214         if (cvd == cvd->vdev_top)
1215                 vdev_top_transfer(mvd, cvd);
1216
1217         ASSERT(mvd->vdev_children == 0);
1218         vdev_free(mvd);
1219 }
1220
1221 static void
1222 vdev_metaslab_group_create(vdev_t *vd)
1223 {
1224         spa_t *spa = vd->vdev_spa;
1225
1226         /*
1227          * metaslab_group_create was delayed until allocation bias was available
1228          */
1229         if (vd->vdev_mg == NULL) {
1230                 metaslab_class_t *mc;
1231
1232                 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1233                         vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1234
1235                 ASSERT3U(vd->vdev_islog, ==,
1236                     (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1237
1238                 switch (vd->vdev_alloc_bias) {
1239                 case VDEV_BIAS_LOG:
1240                         mc = spa_log_class(spa);
1241                         break;
1242                 case VDEV_BIAS_SPECIAL:
1243                         mc = spa_special_class(spa);
1244                         break;
1245                 case VDEV_BIAS_DEDUP:
1246                         mc = spa_dedup_class(spa);
1247                         break;
1248                 default:
1249                         mc = spa_normal_class(spa);
1250                 }
1251
1252                 vd->vdev_mg = metaslab_group_create(mc, vd,
1253                     spa->spa_alloc_count);
1254
1255                 /*
1256                  * The spa ashift values currently only reflect the
1257                  * general vdev classes. Class destination is late
1258                  * binding so ashift checking had to wait until now
1259                  */
1260                 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1261                     mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1262                         if (vd->vdev_ashift > spa->spa_max_ashift)
1263                                 spa->spa_max_ashift = vd->vdev_ashift;
1264                         if (vd->vdev_ashift < spa->spa_min_ashift)
1265                                 spa->spa_min_ashift = vd->vdev_ashift;
1266                 }
1267         }
1268 }
1269
1270 int
1271 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1272 {
1273         spa_t *spa = vd->vdev_spa;
1274         objset_t *mos = spa->spa_meta_objset;
1275         uint64_t m;
1276         uint64_t oldc = vd->vdev_ms_count;
1277         uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1278         metaslab_t **mspp;
1279         int error;
1280         boolean_t expanding = (oldc != 0);
1281
1282         ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1283
1284         /*
1285          * This vdev is not being allocated from yet or is a hole.
1286          */
1287         if (vd->vdev_ms_shift == 0)
1288                 return (0);
1289
1290         ASSERT(!vd->vdev_ishole);
1291
1292         ASSERT(oldc <= newc);
1293
1294         mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1295
1296         if (expanding) {
1297                 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1298                 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1299         }
1300
1301         vd->vdev_ms = mspp;
1302         vd->vdev_ms_count = newc;
1303         for (m = oldc; m < newc; m++) {
1304                 uint64_t object = 0;
1305
1306                 /*
1307                  * vdev_ms_array may be 0 if we are creating the "fake"
1308                  * metaslabs for an indirect vdev for zdb's leak detection.
1309                  * See zdb_leak_init().
1310                  */
1311                 if (txg == 0 && vd->vdev_ms_array != 0) {
1312                         error = dmu_read(mos, vd->vdev_ms_array,
1313                             m * sizeof (uint64_t), sizeof (uint64_t), &object,
1314                             DMU_READ_PREFETCH);
1315                         if (error != 0) {
1316                                 vdev_dbgmsg(vd, "unable to read the metaslab "
1317                                     "array [error=%d]", error);
1318                                 return (error);
1319                         }
1320                 }
1321
1322 #ifndef _KERNEL
1323                 /*
1324                  * To accommodate zdb_leak_init() fake indirect
1325                  * metaslabs, we allocate a metaslab group for
1326                  * indirect vdevs which normally don't have one.
1327                  */
1328                 if (vd->vdev_mg == NULL) {
1329                         ASSERT0(vdev_is_concrete(vd));
1330                         vdev_metaslab_group_create(vd);
1331                 }
1332 #endif
1333                 error = metaslab_init(vd->vdev_mg, m, object, txg,
1334                     &(vd->vdev_ms[m]));
1335                 if (error != 0) {
1336                         vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1337                             error);
1338                         return (error);
1339                 }
1340         }
1341
1342         if (txg == 0)
1343                 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1344
1345         /*
1346          * If the vdev is being removed we don't activate
1347          * the metaslabs since we want to ensure that no new
1348          * allocations are performed on this device.
1349          */
1350         if (!expanding && !vd->vdev_removing) {
1351                 metaslab_group_activate(vd->vdev_mg);
1352         }
1353
1354         if (txg == 0)
1355                 spa_config_exit(spa, SCL_ALLOC, FTAG);
1356
1357         /*
1358          * Regardless whether this vdev was just added or it is being
1359          * expanded, the metaslab count has changed. Recalculate the
1360          * block limit.
1361          */
1362         spa_log_sm_set_blocklimit(spa);
1363
1364         return (0);
1365 }
1366
1367 void
1368 vdev_metaslab_fini(vdev_t *vd)
1369 {
1370         if (vd->vdev_checkpoint_sm != NULL) {
1371                 ASSERT(spa_feature_is_active(vd->vdev_spa,
1372                     SPA_FEATURE_POOL_CHECKPOINT));
1373                 space_map_close(vd->vdev_checkpoint_sm);
1374                 /*
1375                  * Even though we close the space map, we need to set its
1376                  * pointer to NULL. The reason is that vdev_metaslab_fini()
1377                  * may be called multiple times for certain operations
1378                  * (i.e. when destroying a pool) so we need to ensure that
1379                  * this clause never executes twice. This logic is similar
1380                  * to the one used for the vdev_ms clause below.
1381                  */
1382                 vd->vdev_checkpoint_sm = NULL;
1383         }
1384
1385         if (vd->vdev_ms != NULL) {
1386                 metaslab_group_t *mg = vd->vdev_mg;
1387                 metaslab_group_passivate(mg);
1388
1389                 uint64_t count = vd->vdev_ms_count;
1390                 for (uint64_t m = 0; m < count; m++) {
1391                         metaslab_t *msp = vd->vdev_ms[m];
1392                         if (msp != NULL)
1393                                 metaslab_fini(msp);
1394                 }
1395                 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1396                 vd->vdev_ms = NULL;
1397
1398                 vd->vdev_ms_count = 0;
1399
1400                 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
1401                         ASSERT0(mg->mg_histogram[i]);
1402         }
1403         ASSERT0(vd->vdev_ms_count);
1404         ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1405 }
1406
1407 typedef struct vdev_probe_stats {
1408         boolean_t       vps_readable;
1409         boolean_t       vps_writeable;
1410         int             vps_flags;
1411 } vdev_probe_stats_t;
1412
1413 static void
1414 vdev_probe_done(zio_t *zio)
1415 {
1416         spa_t *spa = zio->io_spa;
1417         vdev_t *vd = zio->io_vd;
1418         vdev_probe_stats_t *vps = zio->io_private;
1419
1420         ASSERT(vd->vdev_probe_zio != NULL);
1421
1422         if (zio->io_type == ZIO_TYPE_READ) {
1423                 if (zio->io_error == 0)
1424                         vps->vps_readable = 1;
1425                 if (zio->io_error == 0 && spa_writeable(spa)) {
1426                         zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1427                             zio->io_offset, zio->io_size, zio->io_abd,
1428                             ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1429                             ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1430                 } else {
1431                         abd_free(zio->io_abd);
1432                 }
1433         } else if (zio->io_type == ZIO_TYPE_WRITE) {
1434                 if (zio->io_error == 0)
1435                         vps->vps_writeable = 1;
1436                 abd_free(zio->io_abd);
1437         } else if (zio->io_type == ZIO_TYPE_NULL) {
1438                 zio_t *pio;
1439                 zio_link_t *zl;
1440
1441                 vd->vdev_cant_read |= !vps->vps_readable;
1442                 vd->vdev_cant_write |= !vps->vps_writeable;
1443
1444                 if (vdev_readable(vd) &&
1445                     (vdev_writeable(vd) || !spa_writeable(spa))) {
1446                         zio->io_error = 0;
1447                 } else {
1448                         ASSERT(zio->io_error != 0);
1449                         vdev_dbgmsg(vd, "failed probe");
1450                         zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1451                             spa, vd, NULL, NULL, 0, 0);
1452                         zio->io_error = SET_ERROR(ENXIO);
1453                 }
1454
1455                 mutex_enter(&vd->vdev_probe_lock);
1456                 ASSERT(vd->vdev_probe_zio == zio);
1457                 vd->vdev_probe_zio = NULL;
1458                 mutex_exit(&vd->vdev_probe_lock);
1459
1460                 zl = NULL;
1461                 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1462                         if (!vdev_accessible(vd, pio))
1463                                 pio->io_error = SET_ERROR(ENXIO);
1464
1465                 kmem_free(vps, sizeof (*vps));
1466         }
1467 }
1468
1469 /*
1470  * Determine whether this device is accessible.
1471  *
1472  * Read and write to several known locations: the pad regions of each
1473  * vdev label but the first, which we leave alone in case it contains
1474  * a VTOC.
1475  */
1476 zio_t *
1477 vdev_probe(vdev_t *vd, zio_t *zio)
1478 {
1479         spa_t *spa = vd->vdev_spa;
1480         vdev_probe_stats_t *vps = NULL;
1481         zio_t *pio;
1482
1483         ASSERT(vd->vdev_ops->vdev_op_leaf);
1484
1485         /*
1486          * Don't probe the probe.
1487          */
1488         if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1489                 return (NULL);
1490
1491         /*
1492          * To prevent 'probe storms' when a device fails, we create
1493          * just one probe i/o at a time.  All zios that want to probe
1494          * this vdev will become parents of the probe io.
1495          */
1496         mutex_enter(&vd->vdev_probe_lock);
1497
1498         if ((pio = vd->vdev_probe_zio) == NULL) {
1499                 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1500
1501                 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1502                     ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1503                     ZIO_FLAG_TRYHARD;
1504
1505                 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1506                         /*
1507                          * vdev_cant_read and vdev_cant_write can only
1508                          * transition from TRUE to FALSE when we have the
1509                          * SCL_ZIO lock as writer; otherwise they can only
1510                          * transition from FALSE to TRUE.  This ensures that
1511                          * any zio looking at these values can assume that
1512                          * failures persist for the life of the I/O.  That's
1513                          * important because when a device has intermittent
1514                          * connectivity problems, we want to ensure that
1515                          * they're ascribed to the device (ENXIO) and not
1516                          * the zio (EIO).
1517                          *
1518                          * Since we hold SCL_ZIO as writer here, clear both
1519                          * values so the probe can reevaluate from first
1520                          * principles.
1521                          */
1522                         vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1523                         vd->vdev_cant_read = B_FALSE;
1524                         vd->vdev_cant_write = B_FALSE;
1525                 }
1526
1527                 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1528                     vdev_probe_done, vps,
1529                     vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1530
1531                 /*
1532                  * We can't change the vdev state in this context, so we
1533                  * kick off an async task to do it on our behalf.
1534                  */
1535                 if (zio != NULL) {
1536                         vd->vdev_probe_wanted = B_TRUE;
1537                         spa_async_request(spa, SPA_ASYNC_PROBE);
1538                 }
1539         }
1540
1541         if (zio != NULL)
1542                 zio_add_child(zio, pio);
1543
1544         mutex_exit(&vd->vdev_probe_lock);
1545
1546         if (vps == NULL) {
1547                 ASSERT(zio != NULL);
1548                 return (NULL);
1549         }
1550
1551         for (int l = 1; l < VDEV_LABELS; l++) {
1552                 zio_nowait(zio_read_phys(pio, vd,
1553                     vdev_label_offset(vd->vdev_psize, l,
1554                     offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1555                     abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1556                     ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1557                     ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1558         }
1559
1560         if (zio == NULL)
1561                 return (pio);
1562
1563         zio_nowait(pio);
1564         return (NULL);
1565 }
1566
1567 static void
1568 vdev_open_child(void *arg)
1569 {
1570         vdev_t *vd = arg;
1571
1572         vd->vdev_open_thread = curthread;
1573         vd->vdev_open_error = vdev_open(vd);
1574         vd->vdev_open_thread = NULL;
1575 }
1576
1577 static boolean_t
1578 vdev_uses_zvols(vdev_t *vd)
1579 {
1580 #ifdef _KERNEL
1581         if (zvol_is_zvol(vd->vdev_path))
1582                 return (B_TRUE);
1583 #endif
1584
1585         for (int c = 0; c < vd->vdev_children; c++)
1586                 if (vdev_uses_zvols(vd->vdev_child[c]))
1587                         return (B_TRUE);
1588
1589         return (B_FALSE);
1590 }
1591
1592 void
1593 vdev_open_children(vdev_t *vd)
1594 {
1595         taskq_t *tq;
1596         int children = vd->vdev_children;
1597
1598         /*
1599          * in order to handle pools on top of zvols, do the opens
1600          * in a single thread so that the same thread holds the
1601          * spa_namespace_lock
1602          */
1603         if (vdev_uses_zvols(vd)) {
1604 retry_sync:
1605                 for (int c = 0; c < children; c++)
1606                         vd->vdev_child[c]->vdev_open_error =
1607                             vdev_open(vd->vdev_child[c]);
1608         } else {
1609                 tq = taskq_create("vdev_open", children, minclsyspri,
1610                     children, children, TASKQ_PREPOPULATE);
1611                 if (tq == NULL)
1612                         goto retry_sync;
1613
1614                 for (int c = 0; c < children; c++)
1615                         VERIFY(taskq_dispatch(tq, vdev_open_child,
1616                             vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1617
1618                 taskq_destroy(tq);
1619         }
1620
1621         vd->vdev_nonrot = B_TRUE;
1622
1623         for (int c = 0; c < children; c++)
1624                 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1625 }
1626
1627 /*
1628  * Compute the raidz-deflation ratio.  Note, we hard-code
1629  * in 128k (1 << 17) because it is the "typical" blocksize.
1630  * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1631  * otherwise it would inconsistently account for existing bp's.
1632  */
1633 static void
1634 vdev_set_deflate_ratio(vdev_t *vd)
1635 {
1636         if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1637                 vd->vdev_deflate_ratio = (1 << 17) /
1638                     (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1639         }
1640 }
1641
1642 /*
1643  * Prepare a virtual device for access.
1644  */
1645 int
1646 vdev_open(vdev_t *vd)
1647 {
1648         spa_t *spa = vd->vdev_spa;
1649         int error;
1650         uint64_t osize = 0;
1651         uint64_t max_osize = 0;
1652         uint64_t asize, max_asize, psize;
1653         uint64_t ashift = 0;
1654
1655         ASSERT(vd->vdev_open_thread == curthread ||
1656             spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1657         ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1658             vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1659             vd->vdev_state == VDEV_STATE_OFFLINE);
1660
1661         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1662         vd->vdev_cant_read = B_FALSE;
1663         vd->vdev_cant_write = B_FALSE;
1664         vd->vdev_min_asize = vdev_get_min_asize(vd);
1665
1666         /*
1667          * If this vdev is not removed, check its fault status.  If it's
1668          * faulted, bail out of the open.
1669          */
1670         if (!vd->vdev_removed && vd->vdev_faulted) {
1671                 ASSERT(vd->vdev_children == 0);
1672                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1673                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1674                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1675                     vd->vdev_label_aux);
1676                 return (SET_ERROR(ENXIO));
1677         } else if (vd->vdev_offline) {
1678                 ASSERT(vd->vdev_children == 0);
1679                 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1680                 return (SET_ERROR(ENXIO));
1681         }
1682
1683         error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1684
1685         /*
1686          * Physical volume size should never be larger than its max size, unless
1687          * the disk has shrunk while we were reading it or the device is buggy
1688          * or damaged: either way it's not safe for use, bail out of the open.
1689          */
1690         if (osize > max_osize) {
1691                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1692                     VDEV_AUX_OPEN_FAILED);
1693                 return (SET_ERROR(ENXIO));
1694         }
1695
1696         /*
1697          * Reset the vdev_reopening flag so that we actually close
1698          * the vdev on error.
1699          */
1700         vd->vdev_reopening = B_FALSE;
1701         if (zio_injection_enabled && error == 0)
1702                 error = zio_handle_device_injection(vd, NULL, ENXIO);
1703
1704         if (error) {
1705                 if (vd->vdev_removed &&
1706                     vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1707                         vd->vdev_removed = B_FALSE;
1708
1709                 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1710                         vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1711                             vd->vdev_stat.vs_aux);
1712                 } else {
1713                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1714                             vd->vdev_stat.vs_aux);
1715                 }
1716                 return (error);
1717         }
1718
1719         vd->vdev_removed = B_FALSE;
1720
1721         /*
1722          * Recheck the faulted flag now that we have confirmed that
1723          * the vdev is accessible.  If we're faulted, bail.
1724          */
1725         if (vd->vdev_faulted) {
1726                 ASSERT(vd->vdev_children == 0);
1727                 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1728                     vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1729                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1730                     vd->vdev_label_aux);
1731                 return (SET_ERROR(ENXIO));
1732         }
1733
1734         if (vd->vdev_degraded) {
1735                 ASSERT(vd->vdev_children == 0);
1736                 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1737                     VDEV_AUX_ERR_EXCEEDED);
1738         } else {
1739                 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1740         }
1741
1742         /*
1743          * For hole or missing vdevs we just return success.
1744          */
1745         if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1746                 return (0);
1747
1748         for (int c = 0; c < vd->vdev_children; c++) {
1749                 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1750                         vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1751                             VDEV_AUX_NONE);
1752                         break;
1753                 }
1754         }
1755
1756         osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1757         max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1758
1759         if (vd->vdev_children == 0) {
1760                 if (osize < SPA_MINDEVSIZE) {
1761                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1762                             VDEV_AUX_TOO_SMALL);
1763                         return (SET_ERROR(EOVERFLOW));
1764                 }
1765                 psize = osize;
1766                 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1767                 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1768                     VDEV_LABEL_END_SIZE);
1769         } else {
1770                 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1771                     (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1772                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1773                             VDEV_AUX_TOO_SMALL);
1774                         return (SET_ERROR(EOVERFLOW));
1775                 }
1776                 psize = 0;
1777                 asize = osize;
1778                 max_asize = max_osize;
1779         }
1780
1781         /*
1782          * If the vdev was expanded, record this so that we can re-create the
1783          * uberblock rings in labels {2,3}, during the next sync.
1784          */
1785         if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1786                 vd->vdev_copy_uberblocks = B_TRUE;
1787
1788         vd->vdev_psize = psize;
1789
1790         /*
1791          * Make sure the allocatable size hasn't shrunk too much.
1792          */
1793         if (asize < vd->vdev_min_asize) {
1794                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1795                     VDEV_AUX_BAD_LABEL);
1796                 return (SET_ERROR(EINVAL));
1797         }
1798
1799         if (vd->vdev_asize == 0) {
1800                 /*
1801                  * This is the first-ever open, so use the computed values.
1802                  * For compatibility, a different ashift can be requested.
1803                  */
1804                 vd->vdev_asize = asize;
1805                 vd->vdev_max_asize = max_asize;
1806                 if (vd->vdev_ashift == 0) {
1807                         vd->vdev_ashift = ashift; /* use detected value */
1808                 }
1809                 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1810                     vd->vdev_ashift > ASHIFT_MAX)) {
1811                         vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1812                             VDEV_AUX_BAD_ASHIFT);
1813                         return (SET_ERROR(EDOM));
1814                 }
1815         } else {
1816                 /*
1817                  * Detect if the alignment requirement has increased.
1818                  * We don't want to make the pool unavailable, just
1819                  * post an event instead.
1820                  */
1821                 if (ashift > vd->vdev_top->vdev_ashift &&
1822                     vd->vdev_ops->vdev_op_leaf) {
1823                         zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1824                             spa, vd, NULL, NULL, 0, 0);
1825                 }
1826
1827                 vd->vdev_max_asize = max_asize;
1828         }
1829
1830         /*
1831          * If all children are healthy we update asize if either:
1832          * The asize has increased, due to a device expansion caused by dynamic
1833          * LUN growth or vdev replacement, and automatic expansion is enabled;
1834          * making the additional space available.
1835          *
1836          * The asize has decreased, due to a device shrink usually caused by a
1837          * vdev replace with a smaller device. This ensures that calculations
1838          * based of max_asize and asize e.g. esize are always valid. It's safe
1839          * to do this as we've already validated that asize is greater than
1840          * vdev_min_asize.
1841          */
1842         if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1843             ((asize > vd->vdev_asize &&
1844             (vd->vdev_expanding || spa->spa_autoexpand)) ||
1845             (asize < vd->vdev_asize)))
1846                 vd->vdev_asize = asize;
1847
1848         vdev_set_min_asize(vd);
1849
1850         /*
1851          * Ensure we can issue some IO before declaring the
1852          * vdev open for business.
1853          */
1854         if (vd->vdev_ops->vdev_op_leaf &&
1855             (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1856                 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1857                     VDEV_AUX_ERR_EXCEEDED);
1858                 return (error);
1859         }
1860
1861         /*
1862          * Track the min and max ashift values for normal data devices.
1863          */
1864         if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1865             vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1866             vd->vdev_islog == 0 && vd->vdev_aux == NULL) {
1867                 if (vd->vdev_ashift > spa->spa_max_ashift)
1868                         spa->spa_max_ashift = vd->vdev_ashift;
1869                 if (vd->vdev_ashift < spa->spa_min_ashift)
1870                         spa->spa_min_ashift = vd->vdev_ashift;
1871         }
1872
1873         /*
1874          * If a leaf vdev has a DTL, and seems healthy, then kick off a
1875          * resilver.  But don't do this if we are doing a reopen for a scrub,
1876          * since this would just restart the scrub we are already doing.
1877          */
1878         if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1879             vdev_resilver_needed(vd, NULL, NULL)) {
1880                 if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
1881                     spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
1882                         vdev_set_deferred_resilver(spa, vd);
1883                 else
1884                         spa_async_request(spa, SPA_ASYNC_RESILVER);
1885         }
1886
1887         return (0);
1888 }
1889
1890 /*
1891  * Called once the vdevs are all opened, this routine validates the label
1892  * contents. This needs to be done before vdev_load() so that we don't
1893  * inadvertently do repair I/Os to the wrong device.
1894  *
1895  * This function will only return failure if one of the vdevs indicates that it
1896  * has since been destroyed or exported.  This is only possible if
1897  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1898  * will be updated but the function will return 0.
1899  */
1900 int
1901 vdev_validate(vdev_t *vd)
1902 {
1903         spa_t *spa = vd->vdev_spa;
1904         nvlist_t *label;
1905         uint64_t guid = 0, aux_guid = 0, top_guid;
1906         uint64_t state;
1907         nvlist_t *nvl;
1908         uint64_t txg;
1909
1910         if (vdev_validate_skip)
1911                 return (0);
1912
1913         for (uint64_t c = 0; c < vd->vdev_children; c++)
1914                 if (vdev_validate(vd->vdev_child[c]) != 0)
1915                         return (SET_ERROR(EBADF));
1916
1917         /*
1918          * If the device has already failed, or was marked offline, don't do
1919          * any further validation.  Otherwise, label I/O will fail and we will
1920          * overwrite the previous state.
1921          */
1922         if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1923                 return (0);
1924
1925         /*
1926          * If we are performing an extreme rewind, we allow for a label that
1927          * was modified at a point after the current txg.
1928          * If config lock is not held do not check for the txg. spa_sync could
1929          * be updating the vdev's label before updating spa_last_synced_txg.
1930          */
1931         if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1932             spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1933                 txg = UINT64_MAX;
1934         else
1935                 txg = spa_last_synced_txg(spa);
1936
1937         if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1938                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1939                     VDEV_AUX_BAD_LABEL);
1940                 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1941                     "txg %llu", (u_longlong_t)txg);
1942                 return (0);
1943         }
1944
1945         /*
1946          * Determine if this vdev has been split off into another
1947          * pool.  If so, then refuse to open it.
1948          */
1949         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1950             &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1951                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1952                     VDEV_AUX_SPLIT_POOL);
1953                 nvlist_free(label);
1954                 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1955                 return (0);
1956         }
1957
1958         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1959                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1960                     VDEV_AUX_CORRUPT_DATA);
1961                 nvlist_free(label);
1962                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1963                     ZPOOL_CONFIG_POOL_GUID);
1964                 return (0);
1965         }
1966
1967         /*
1968          * If config is not trusted then ignore the spa guid check. This is
1969          * necessary because if the machine crashed during a re-guid the new
1970          * guid might have been written to all of the vdev labels, but not the
1971          * cached config. The check will be performed again once we have the
1972          * trusted config from the MOS.
1973          */
1974         if (spa->spa_trust_config && guid != spa_guid(spa)) {
1975                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1976                     VDEV_AUX_CORRUPT_DATA);
1977                 nvlist_free(label);
1978                 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1979                     "match config (%llu != %llu)", (u_longlong_t)guid,
1980                     (u_longlong_t)spa_guid(spa));
1981                 return (0);
1982         }
1983
1984         if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1985             != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1986             &aux_guid) != 0)
1987                 aux_guid = 0;
1988
1989         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1990                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1991                     VDEV_AUX_CORRUPT_DATA);
1992                 nvlist_free(label);
1993                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1994                     ZPOOL_CONFIG_GUID);
1995                 return (0);
1996         }
1997
1998         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1999             != 0) {
2000                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2001                     VDEV_AUX_CORRUPT_DATA);
2002                 nvlist_free(label);
2003                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2004                     ZPOOL_CONFIG_TOP_GUID);
2005                 return (0);
2006         }
2007
2008         /*
2009          * If this vdev just became a top-level vdev because its sibling was
2010          * detached, it will have adopted the parent's vdev guid -- but the
2011          * label may or may not be on disk yet. Fortunately, either version
2012          * of the label will have the same top guid, so if we're a top-level
2013          * vdev, we can safely compare to that instead.
2014          * However, if the config comes from a cachefile that failed to update
2015          * after the detach, a top-level vdev will appear as a non top-level
2016          * vdev in the config. Also relax the constraints if we perform an
2017          * extreme rewind.
2018          *
2019          * If we split this vdev off instead, then we also check the
2020          * original pool's guid. We don't want to consider the vdev
2021          * corrupt if it is partway through a split operation.
2022          */
2023         if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
2024                 boolean_t mismatch = B_FALSE;
2025                 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
2026                         if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
2027                                 mismatch = B_TRUE;
2028                 } else {
2029                         if (vd->vdev_guid != top_guid &&
2030                             vd->vdev_top->vdev_guid != guid)
2031                                 mismatch = B_TRUE;
2032                 }
2033
2034                 if (mismatch) {
2035                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2036                             VDEV_AUX_CORRUPT_DATA);
2037                         nvlist_free(label);
2038                         vdev_dbgmsg(vd, "vdev_validate: config guid "
2039                             "doesn't match label guid");
2040                         vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
2041                             (u_longlong_t)vd->vdev_guid,
2042                             (u_longlong_t)vd->vdev_top->vdev_guid);
2043                         vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
2044                             "aux_guid %llu", (u_longlong_t)guid,
2045                             (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
2046                         return (0);
2047                 }
2048         }
2049
2050         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2051             &state) != 0) {
2052                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2053                     VDEV_AUX_CORRUPT_DATA);
2054                 nvlist_free(label);
2055                 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2056                     ZPOOL_CONFIG_POOL_STATE);
2057                 return (0);
2058         }
2059
2060         nvlist_free(label);
2061
2062         /*
2063          * If this is a verbatim import, no need to check the
2064          * state of the pool.
2065          */
2066         if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2067             spa_load_state(spa) == SPA_LOAD_OPEN &&
2068             state != POOL_STATE_ACTIVE) {
2069                 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2070                     "for spa %s", (u_longlong_t)state, spa->spa_name);
2071                 return (SET_ERROR(EBADF));
2072         }
2073
2074         /*
2075          * If we were able to open and validate a vdev that was
2076          * previously marked permanently unavailable, clear that state
2077          * now.
2078          */
2079         if (vd->vdev_not_present)
2080                 vd->vdev_not_present = 0;
2081
2082         return (0);
2083 }
2084
2085 static void
2086 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2087 {
2088         if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2089                 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2090                         zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2091                             "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2092                             dvd->vdev_path, svd->vdev_path);
2093                         spa_strfree(dvd->vdev_path);
2094                         dvd->vdev_path = spa_strdup(svd->vdev_path);
2095                 }
2096         } else if (svd->vdev_path != NULL) {
2097                 dvd->vdev_path = spa_strdup(svd->vdev_path);
2098                 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2099                     (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2100         }
2101 }
2102
2103 /*
2104  * Recursively copy vdev paths from one vdev to another. Source and destination
2105  * vdev trees must have same geometry otherwise return error. Intended to copy
2106  * paths from userland config into MOS config.
2107  */
2108 int
2109 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2110 {
2111         if ((svd->vdev_ops == &vdev_missing_ops) ||
2112             (svd->vdev_ishole && dvd->vdev_ishole) ||
2113             (dvd->vdev_ops == &vdev_indirect_ops))
2114                 return (0);
2115
2116         if (svd->vdev_ops != dvd->vdev_ops) {
2117                 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2118                     svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2119                 return (SET_ERROR(EINVAL));
2120         }
2121
2122         if (svd->vdev_guid != dvd->vdev_guid) {
2123                 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2124                     "%llu)", (u_longlong_t)svd->vdev_guid,
2125                     (u_longlong_t)dvd->vdev_guid);
2126                 return (SET_ERROR(EINVAL));
2127         }
2128
2129         if (svd->vdev_children != dvd->vdev_children) {
2130                 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2131                     "%llu != %llu", (u_longlong_t)svd->vdev_children,
2132                     (u_longlong_t)dvd->vdev_children);
2133                 return (SET_ERROR(EINVAL));
2134         }
2135
2136         for (uint64_t i = 0; i < svd->vdev_children; i++) {
2137                 int error = vdev_copy_path_strict(svd->vdev_child[i],
2138                     dvd->vdev_child[i]);
2139                 if (error != 0)
2140                         return (error);
2141         }
2142
2143         if (svd->vdev_ops->vdev_op_leaf)
2144                 vdev_copy_path_impl(svd, dvd);
2145
2146         return (0);
2147 }
2148
2149 static void
2150 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2151 {
2152         ASSERT(stvd->vdev_top == stvd);
2153         ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2154
2155         for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2156                 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2157         }
2158
2159         if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2160                 return;
2161
2162         /*
2163          * The idea here is that while a vdev can shift positions within
2164          * a top vdev (when replacing, attaching mirror, etc.) it cannot
2165          * step outside of it.
2166          */
2167         vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2168
2169         if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2170                 return;
2171
2172         ASSERT(vd->vdev_ops->vdev_op_leaf);
2173
2174         vdev_copy_path_impl(vd, dvd);
2175 }
2176
2177 /*
2178  * Recursively copy vdev paths from one root vdev to another. Source and
2179  * destination vdev trees may differ in geometry. For each destination leaf
2180  * vdev, search a vdev with the same guid and top vdev id in the source.
2181  * Intended to copy paths from userland config into MOS config.
2182  */
2183 void
2184 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2185 {
2186         uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2187         ASSERT(srvd->vdev_ops == &vdev_root_ops);
2188         ASSERT(drvd->vdev_ops == &vdev_root_ops);
2189
2190         for (uint64_t i = 0; i < children; i++) {
2191                 vdev_copy_path_search(srvd->vdev_child[i],
2192                     drvd->vdev_child[i]);
2193         }
2194 }
2195
2196 /*
2197  * Close a virtual device.
2198  */
2199 void
2200 vdev_close(vdev_t *vd)
2201 {
2202         vdev_t *pvd = vd->vdev_parent;
2203         ASSERTV(spa_t *spa = vd->vdev_spa);
2204
2205         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2206
2207         /*
2208          * If our parent is reopening, then we are as well, unless we are
2209          * going offline.
2210          */
2211         if (pvd != NULL && pvd->vdev_reopening)
2212                 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2213
2214         vd->vdev_ops->vdev_op_close(vd);
2215
2216         vdev_cache_purge(vd);
2217
2218         /*
2219          * We record the previous state before we close it, so that if we are
2220          * doing a reopen(), we don't generate FMA ereports if we notice that
2221          * it's still faulted.
2222          */
2223         vd->vdev_prevstate = vd->vdev_state;
2224
2225         if (vd->vdev_offline)
2226                 vd->vdev_state = VDEV_STATE_OFFLINE;
2227         else
2228                 vd->vdev_state = VDEV_STATE_CLOSED;
2229         vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2230 }
2231
2232 void
2233 vdev_hold(vdev_t *vd)
2234 {
2235         spa_t *spa = vd->vdev_spa;
2236
2237         ASSERT(spa_is_root(spa));
2238         if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2239                 return;
2240
2241         for (int c = 0; c < vd->vdev_children; c++)
2242                 vdev_hold(vd->vdev_child[c]);
2243
2244         if (vd->vdev_ops->vdev_op_leaf)
2245                 vd->vdev_ops->vdev_op_hold(vd);
2246 }
2247
2248 void
2249 vdev_rele(vdev_t *vd)
2250 {
2251         ASSERT(spa_is_root(vd->vdev_spa));
2252         for (int c = 0; c < vd->vdev_children; c++)
2253                 vdev_rele(vd->vdev_child[c]);
2254
2255         if (vd->vdev_ops->vdev_op_leaf)
2256                 vd->vdev_ops->vdev_op_rele(vd);
2257 }
2258
2259 /*
2260  * Reopen all interior vdevs and any unopened leaves.  We don't actually
2261  * reopen leaf vdevs which had previously been opened as they might deadlock
2262  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
2263  * If the leaf has never been opened then open it, as usual.
2264  */
2265 void
2266 vdev_reopen(vdev_t *vd)
2267 {
2268         spa_t *spa = vd->vdev_spa;
2269
2270         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2271
2272         /* set the reopening flag unless we're taking the vdev offline */
2273         vd->vdev_reopening = !vd->vdev_offline;
2274         vdev_close(vd);
2275         (void) vdev_open(vd);
2276
2277         /*
2278          * Call vdev_validate() here to make sure we have the same device.
2279          * Otherwise, a device with an invalid label could be successfully
2280          * opened in response to vdev_reopen().
2281          */
2282         if (vd->vdev_aux) {
2283                 (void) vdev_validate_aux(vd);
2284                 if (vdev_readable(vd) && vdev_writeable(vd) &&
2285                     vd->vdev_aux == &spa->spa_l2cache &&
2286                     !l2arc_vdev_present(vd))
2287                         l2arc_add_vdev(spa, vd);
2288         } else {
2289                 (void) vdev_validate(vd);
2290         }
2291
2292         /*
2293          * Reassess parent vdev's health.
2294          */
2295         vdev_propagate_state(vd);
2296 }
2297
2298 int
2299 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2300 {
2301         int error;
2302
2303         /*
2304          * Normally, partial opens (e.g. of a mirror) are allowed.
2305          * For a create, however, we want to fail the request if
2306          * there are any components we can't open.
2307          */
2308         error = vdev_open(vd);
2309
2310         if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2311                 vdev_close(vd);
2312                 return (error ? error : ENXIO);
2313         }
2314
2315         /*
2316          * Recursively load DTLs and initialize all labels.
2317          */
2318         if ((error = vdev_dtl_load(vd)) != 0 ||
2319             (error = vdev_label_init(vd, txg, isreplacing ?
2320             VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2321                 vdev_close(vd);
2322                 return (error);
2323         }
2324
2325         return (0);
2326 }
2327
2328 void
2329 vdev_metaslab_set_size(vdev_t *vd)
2330 {
2331         uint64_t asize = vd->vdev_asize;
2332         uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2333         uint64_t ms_shift;
2334
2335         /*
2336          * There are two dimensions to the metaslab sizing calculation:
2337          * the size of the metaslab and the count of metaslabs per vdev.
2338          *
2339          * The default values used below are a good balance between memory
2340          * usage (larger metaslab size means more memory needed for loaded
2341          * metaslabs; more metaslabs means more memory needed for the
2342          * metaslab_t structs), metaslab load time (larger metaslabs take
2343          * longer to load), and metaslab sync time (more metaslabs means
2344          * more time spent syncing all of them).
2345          *
2346          * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2347          * The range of the dimensions are as follows:
2348          *
2349          *      2^29 <= ms_size  <= 2^34
2350          *        16 <= ms_count <= 131,072
2351          *
2352          * On the lower end of vdev sizes, we aim for metaslabs sizes of
2353          * at least 512MB (2^29) to minimize fragmentation effects when
2354          * testing with smaller devices.  However, the count constraint
2355          * of at least 16 metaslabs will override this minimum size goal.
2356          *
2357          * On the upper end of vdev sizes, we aim for a maximum metaslab
2358          * size of 16GB.  However, we will cap the total count to 2^17
2359          * metaslabs to keep our memory footprint in check and let the
2360          * metaslab size grow from there if that limit is hit.
2361          *
2362          * The net effect of applying above constrains is summarized below.
2363          *
2364          *   vdev size       metaslab count
2365          *  --------------|-----------------
2366          *      < 8GB        ~16
2367          *  8GB   - 100GB   one per 512MB
2368          *  100GB - 3TB     ~200
2369          *  3TB   - 2PB     one per 16GB
2370          *      > 2PB       ~131,072
2371          *  --------------------------------
2372          *
2373          *  Finally, note that all of the above calculate the initial
2374          *  number of metaslabs. Expanding a top-level vdev will result
2375          *  in additional metaslabs being allocated making it possible
2376          *  to exceed the zfs_vdev_ms_count_limit.
2377          */
2378
2379         if (ms_count < zfs_vdev_min_ms_count)
2380                 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2381         else if (ms_count > zfs_vdev_default_ms_count)
2382                 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2383         else
2384                 ms_shift = zfs_vdev_default_ms_shift;
2385
2386         if (ms_shift < SPA_MAXBLOCKSHIFT) {
2387                 ms_shift = SPA_MAXBLOCKSHIFT;
2388         } else if (ms_shift > zfs_vdev_max_ms_shift) {
2389                 ms_shift = zfs_vdev_max_ms_shift;
2390                 /* cap the total count to constrain memory footprint */
2391                 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2392                         ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2393         }
2394
2395         vd->vdev_ms_shift = ms_shift;
2396         ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2397 }
2398
2399 void
2400 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2401 {
2402         ASSERT(vd == vd->vdev_top);
2403         /* indirect vdevs don't have metaslabs or dtls */
2404         ASSERT(vdev_is_concrete(vd) || flags == 0);
2405         ASSERT(ISP2(flags));
2406         ASSERT(spa_writeable(vd->vdev_spa));
2407
2408         if (flags & VDD_METASLAB)
2409                 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2410
2411         if (flags & VDD_DTL)
2412                 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2413
2414         (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2415 }
2416
2417 void
2418 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2419 {
2420         for (int c = 0; c < vd->vdev_children; c++)
2421                 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2422
2423         if (vd->vdev_ops->vdev_op_leaf)
2424                 vdev_dirty(vd->vdev_top, flags, vd, txg);
2425 }
2426
2427 /*
2428  * DTLs.
2429  *
2430  * A vdev's DTL (dirty time log) is the set of transaction groups for which
2431  * the vdev has less than perfect replication.  There are four kinds of DTL:
2432  *
2433  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2434  *
2435  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2436  *
2437  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2438  *      scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2439  *      txgs that was scrubbed.
2440  *
2441  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2442  *      persistent errors or just some device being offline.
2443  *      Unlike the other three, the DTL_OUTAGE map is not generally
2444  *      maintained; it's only computed when needed, typically to
2445  *      determine whether a device can be detached.
2446  *
2447  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2448  * either has the data or it doesn't.
2449  *
2450  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2451  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2452  * if any child is less than fully replicated, then so is its parent.
2453  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2454  * comprising only those txgs which appear in 'maxfaults' or more children;
2455  * those are the txgs we don't have enough replication to read.  For example,
2456  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2457  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2458  * two child DTL_MISSING maps.
2459  *
2460  * It should be clear from the above that to compute the DTLs and outage maps
2461  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2462  * Therefore, that is all we keep on disk.  When loading the pool, or after
2463  * a configuration change, we generate all other DTLs from first principles.
2464  */
2465 void
2466 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2467 {
2468         range_tree_t *rt = vd->vdev_dtl[t];
2469
2470         ASSERT(t < DTL_TYPES);
2471         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2472         ASSERT(spa_writeable(vd->vdev_spa));
2473
2474         mutex_enter(&vd->vdev_dtl_lock);
2475         if (!range_tree_contains(rt, txg, size))
2476                 range_tree_add(rt, txg, size);
2477         mutex_exit(&vd->vdev_dtl_lock);
2478 }
2479
2480 boolean_t
2481 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2482 {
2483         range_tree_t *rt = vd->vdev_dtl[t];
2484         boolean_t dirty = B_FALSE;
2485
2486         ASSERT(t < DTL_TYPES);
2487         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2488
2489         /*
2490          * While we are loading the pool, the DTLs have not been loaded yet.
2491          * Ignore the DTLs and try all devices.  This avoids a recursive
2492          * mutex enter on the vdev_dtl_lock, and also makes us try hard
2493          * when loading the pool (relying on the checksum to ensure that
2494          * we get the right data -- note that we while loading, we are
2495          * only reading the MOS, which is always checksummed).
2496          */
2497         if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2498                 return (B_FALSE);
2499
2500         mutex_enter(&vd->vdev_dtl_lock);
2501         if (!range_tree_is_empty(rt))
2502                 dirty = range_tree_contains(rt, txg, size);
2503         mutex_exit(&vd->vdev_dtl_lock);
2504
2505         return (dirty);
2506 }
2507
2508 boolean_t
2509 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2510 {
2511         range_tree_t *rt = vd->vdev_dtl[t];
2512         boolean_t empty;
2513
2514         mutex_enter(&vd->vdev_dtl_lock);
2515         empty = range_tree_is_empty(rt);
2516         mutex_exit(&vd->vdev_dtl_lock);
2517
2518         return (empty);
2519 }
2520
2521 /*
2522  * Returns B_TRUE if vdev determines offset needs to be resilvered.
2523  */
2524 boolean_t
2525 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2526 {
2527         ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2528
2529         if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2530             vd->vdev_ops->vdev_op_leaf)
2531                 return (B_TRUE);
2532
2533         return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2534 }
2535
2536 /*
2537  * Returns the lowest txg in the DTL range.
2538  */
2539 static uint64_t
2540 vdev_dtl_min(vdev_t *vd)
2541 {
2542         range_seg_t *rs;
2543
2544         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2545         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2546         ASSERT0(vd->vdev_children);
2547
2548         rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2549         return (rs->rs_start - 1);
2550 }
2551
2552 /*
2553  * Returns the highest txg in the DTL.
2554  */
2555 static uint64_t
2556 vdev_dtl_max(vdev_t *vd)
2557 {
2558         range_seg_t *rs;
2559
2560         ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2561         ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2562         ASSERT0(vd->vdev_children);
2563
2564         rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2565         return (rs->rs_end);
2566 }
2567
2568 /*
2569  * Determine if a resilvering vdev should remove any DTL entries from
2570  * its range. If the vdev was resilvering for the entire duration of the
2571  * scan then it should excise that range from its DTLs. Otherwise, this
2572  * vdev is considered partially resilvered and should leave its DTL
2573  * entries intact. The comment in vdev_dtl_reassess() describes how we
2574  * excise the DTLs.
2575  */
2576 static boolean_t
2577 vdev_dtl_should_excise(vdev_t *vd)
2578 {
2579         spa_t *spa = vd->vdev_spa;
2580         dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2581
2582         ASSERT0(scn->scn_phys.scn_errors);
2583         ASSERT0(vd->vdev_children);
2584
2585         if (vd->vdev_state < VDEV_STATE_DEGRADED)
2586                 return (B_FALSE);
2587
2588         if (vd->vdev_resilver_deferred)
2589                 return (B_FALSE);
2590
2591         if (vd->vdev_resilver_txg == 0 ||
2592             range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2593                 return (B_TRUE);
2594
2595         /*
2596          * When a resilver is initiated the scan will assign the scn_max_txg
2597          * value to the highest txg value that exists in all DTLs. If this
2598          * device's max DTL is not part of this scan (i.e. it is not in
2599          * the range (scn_min_txg, scn_max_txg] then it is not eligible
2600          * for excision.
2601          */
2602         if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2603                 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2604                 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2605                 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2606                 return (B_TRUE);
2607         }
2608         return (B_FALSE);
2609 }
2610
2611 /*
2612  * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2613  * write operations will be issued to the pool.
2614  */
2615 void
2616 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2617 {
2618         spa_t *spa = vd->vdev_spa;
2619         avl_tree_t reftree;
2620         int minref;
2621
2622         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2623
2624         for (int c = 0; c < vd->vdev_children; c++)
2625                 vdev_dtl_reassess(vd->vdev_child[c], txg,
2626                     scrub_txg, scrub_done);
2627
2628         if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2629                 return;
2630
2631         if (vd->vdev_ops->vdev_op_leaf) {
2632                 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2633
2634                 mutex_enter(&vd->vdev_dtl_lock);
2635
2636                 /*
2637                  * If requested, pretend the scan completed cleanly.
2638                  */
2639                 if (zfs_scan_ignore_errors && scn)
2640                         scn->scn_phys.scn_errors = 0;
2641
2642                 /*
2643                  * If we've completed a scan cleanly then determine
2644                  * if this vdev should remove any DTLs. We only want to
2645                  * excise regions on vdevs that were available during
2646                  * the entire duration of this scan.
2647                  */
2648                 if (scrub_txg != 0 &&
2649                     (spa->spa_scrub_started ||
2650                     (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2651                     vdev_dtl_should_excise(vd)) {
2652                         /*
2653                          * We completed a scrub up to scrub_txg.  If we
2654                          * did it without rebooting, then the scrub dtl
2655                          * will be valid, so excise the old region and
2656                          * fold in the scrub dtl.  Otherwise, leave the
2657                          * dtl as-is if there was an error.
2658                          *
2659                          * There's little trick here: to excise the beginning
2660                          * of the DTL_MISSING map, we put it into a reference
2661                          * tree and then add a segment with refcnt -1 that
2662                          * covers the range [0, scrub_txg).  This means
2663                          * that each txg in that range has refcnt -1 or 0.
2664                          * We then add DTL_SCRUB with a refcnt of 2, so that
2665                          * entries in the range [0, scrub_txg) will have a
2666                          * positive refcnt -- either 1 or 2.  We then convert
2667                          * the reference tree into the new DTL_MISSING map.
2668                          */
2669                         space_reftree_create(&reftree);
2670                         space_reftree_add_map(&reftree,
2671                             vd->vdev_dtl[DTL_MISSING], 1);
2672                         space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2673                         space_reftree_add_map(&reftree,
2674                             vd->vdev_dtl[DTL_SCRUB], 2);
2675                         space_reftree_generate_map(&reftree,
2676                             vd->vdev_dtl[DTL_MISSING], 1);
2677                         space_reftree_destroy(&reftree);
2678                 }
2679                 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2680                 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2681                     range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2682                 if (scrub_done)
2683                         range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2684                 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2685                 if (!vdev_readable(vd))
2686                         range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2687                 else
2688                         range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2689                             range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2690
2691                 /*
2692                  * If the vdev was resilvering and no longer has any
2693                  * DTLs then reset its resilvering flag and dirty
2694                  * the top level so that we persist the change.
2695                  */
2696                 if (txg != 0 && vd->vdev_resilver_txg != 0 &&
2697                     range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2698                     range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2699                         vd->vdev_resilver_txg = 0;
2700                         vdev_config_dirty(vd->vdev_top);
2701                 }
2702
2703                 mutex_exit(&vd->vdev_dtl_lock);
2704
2705                 if (txg != 0)
2706                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2707                 return;
2708         }
2709
2710         mutex_enter(&vd->vdev_dtl_lock);
2711         for (int t = 0; t < DTL_TYPES; t++) {
2712                 /* account for child's outage in parent's missing map */
2713                 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2714                 if (t == DTL_SCRUB)
2715                         continue;                       /* leaf vdevs only */
2716                 if (t == DTL_PARTIAL)
2717                         minref = 1;                     /* i.e. non-zero */
2718                 else if (vd->vdev_nparity != 0)
2719                         minref = vd->vdev_nparity + 1;  /* RAID-Z */
2720                 else
2721                         minref = vd->vdev_children;     /* any kind of mirror */
2722                 space_reftree_create(&reftree);
2723                 for (int c = 0; c < vd->vdev_children; c++) {
2724                         vdev_t *cvd = vd->vdev_child[c];
2725                         mutex_enter(&cvd->vdev_dtl_lock);
2726                         space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2727                         mutex_exit(&cvd->vdev_dtl_lock);
2728                 }
2729                 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2730                 space_reftree_destroy(&reftree);
2731         }
2732         mutex_exit(&vd->vdev_dtl_lock);
2733 }
2734
2735 int
2736 vdev_dtl_load(vdev_t *vd)
2737 {
2738         spa_t *spa = vd->vdev_spa;
2739         objset_t *mos = spa->spa_meta_objset;
2740         int error = 0;
2741
2742         if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2743                 ASSERT(vdev_is_concrete(vd));
2744
2745                 error = space_map_open(&vd->vdev_dtl_sm, mos,
2746                     vd->vdev_dtl_object, 0, -1ULL, 0);
2747                 if (error)
2748                         return (error);
2749                 ASSERT(vd->vdev_dtl_sm != NULL);
2750
2751                 mutex_enter(&vd->vdev_dtl_lock);
2752                 error = space_map_load(vd->vdev_dtl_sm,
2753                     vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2754                 mutex_exit(&vd->vdev_dtl_lock);
2755
2756                 return (error);
2757         }
2758
2759         for (int c = 0; c < vd->vdev_children; c++) {
2760                 error = vdev_dtl_load(vd->vdev_child[c]);
2761                 if (error != 0)
2762                         break;
2763         }
2764
2765         return (error);
2766 }
2767
2768 static void
2769 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2770 {
2771         spa_t *spa = vd->vdev_spa;
2772         objset_t *mos = spa->spa_meta_objset;
2773         vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2774         const char *string;
2775
2776         ASSERT(alloc_bias != VDEV_BIAS_NONE);
2777
2778         string =
2779             (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2780             (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2781             (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2782
2783         ASSERT(string != NULL);
2784         VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2785             1, strlen(string) + 1, string, tx));
2786
2787         if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2788                 spa_activate_allocation_classes(spa, tx);
2789         }
2790 }
2791
2792 void
2793 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2794 {
2795         spa_t *spa = vd->vdev_spa;
2796
2797         VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2798         VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2799             zapobj, tx));
2800 }
2801
2802 uint64_t
2803 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2804 {
2805         spa_t *spa = vd->vdev_spa;
2806         uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2807             DMU_OT_NONE, 0, tx);
2808
2809         ASSERT(zap != 0);
2810         VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2811             zap, tx));
2812
2813         return (zap);
2814 }
2815
2816 void
2817 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2818 {
2819         if (vd->vdev_ops != &vdev_hole_ops &&
2820             vd->vdev_ops != &vdev_missing_ops &&
2821             vd->vdev_ops != &vdev_root_ops &&
2822             !vd->vdev_top->vdev_removing) {
2823                 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2824                         vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2825                 }
2826                 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2827                         vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2828                         if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2829                                 vdev_zap_allocation_data(vd, tx);
2830                 }
2831         }
2832
2833         for (uint64_t i = 0; i < vd->vdev_children; i++) {
2834                 vdev_construct_zaps(vd->vdev_child[i], tx);
2835         }
2836 }
2837
2838 void
2839 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2840 {
2841         spa_t *spa = vd->vdev_spa;
2842         range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2843         objset_t *mos = spa->spa_meta_objset;
2844         range_tree_t *rtsync;
2845         dmu_tx_t *tx;
2846         uint64_t object = space_map_object(vd->vdev_dtl_sm);
2847
2848         ASSERT(vdev_is_concrete(vd));
2849         ASSERT(vd->vdev_ops->vdev_op_leaf);
2850
2851         tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2852
2853         if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2854                 mutex_enter(&vd->vdev_dtl_lock);
2855                 space_map_free(vd->vdev_dtl_sm, tx);
2856                 space_map_close(vd->vdev_dtl_sm);
2857                 vd->vdev_dtl_sm = NULL;
2858                 mutex_exit(&vd->vdev_dtl_lock);
2859
2860                 /*
2861                  * We only destroy the leaf ZAP for detached leaves or for
2862                  * removed log devices. Removed data devices handle leaf ZAP
2863                  * cleanup later, once cancellation is no longer possible.
2864                  */
2865                 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2866                     vd->vdev_top->vdev_islog)) {
2867                         vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2868                         vd->vdev_leaf_zap = 0;
2869                 }
2870
2871                 dmu_tx_commit(tx);
2872                 return;
2873         }
2874
2875         if (vd->vdev_dtl_sm == NULL) {
2876                 uint64_t new_object;
2877
2878                 new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx);
2879                 VERIFY3U(new_object, !=, 0);
2880
2881                 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2882                     0, -1ULL, 0));
2883                 ASSERT(vd->vdev_dtl_sm != NULL);
2884         }
2885
2886         rtsync = range_tree_create(NULL, NULL);
2887
2888         mutex_enter(&vd->vdev_dtl_lock);
2889         range_tree_walk(rt, range_tree_add, rtsync);
2890         mutex_exit(&vd->vdev_dtl_lock);
2891
2892         space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx);
2893         space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2894         range_tree_vacate(rtsync, NULL, NULL);
2895
2896         range_tree_destroy(rtsync);
2897
2898         /*
2899          * If the object for the space map has changed then dirty
2900          * the top level so that we update the config.
2901          */
2902         if (object != space_map_object(vd->vdev_dtl_sm)) {
2903                 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2904                     "new object %llu", (u_longlong_t)txg, spa_name(spa),
2905                     (u_longlong_t)object,
2906                     (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2907                 vdev_config_dirty(vd->vdev_top);
2908         }
2909
2910         dmu_tx_commit(tx);
2911 }
2912
2913 /*
2914  * Determine whether the specified vdev can be offlined/detached/removed
2915  * without losing data.
2916  */
2917 boolean_t
2918 vdev_dtl_required(vdev_t *vd)
2919 {
2920         spa_t *spa = vd->vdev_spa;
2921         vdev_t *tvd = vd->vdev_top;
2922         uint8_t cant_read = vd->vdev_cant_read;
2923         boolean_t required;
2924
2925         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2926
2927         if (vd == spa->spa_root_vdev || vd == tvd)
2928                 return (B_TRUE);
2929
2930         /*
2931          * Temporarily mark the device as unreadable, and then determine
2932          * whether this results in any DTL outages in the top-level vdev.
2933          * If not, we can safely offline/detach/remove the device.
2934          */
2935         vd->vdev_cant_read = B_TRUE;
2936         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2937         required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2938         vd->vdev_cant_read = cant_read;
2939         vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2940
2941         if (!required && zio_injection_enabled)
2942                 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2943
2944         return (required);
2945 }
2946
2947 /*
2948  * Determine if resilver is needed, and if so the txg range.
2949  */
2950 boolean_t
2951 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2952 {
2953         boolean_t needed = B_FALSE;
2954         uint64_t thismin = UINT64_MAX;
2955         uint64_t thismax = 0;
2956
2957         if (vd->vdev_children == 0) {
2958                 mutex_enter(&vd->vdev_dtl_lock);
2959                 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2960                     vdev_writeable(vd)) {
2961
2962                         thismin = vdev_dtl_min(vd);
2963                         thismax = vdev_dtl_max(vd);
2964                         needed = B_TRUE;
2965                 }
2966                 mutex_exit(&vd->vdev_dtl_lock);
2967         } else {
2968                 for (int c = 0; c < vd->vdev_children; c++) {
2969                         vdev_t *cvd = vd->vdev_child[c];
2970                         uint64_t cmin, cmax;
2971
2972                         if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2973                                 thismin = MIN(thismin, cmin);
2974                                 thismax = MAX(thismax, cmax);
2975                                 needed = B_TRUE;
2976                         }
2977                 }
2978         }
2979
2980         if (needed && minp) {
2981                 *minp = thismin;
2982                 *maxp = thismax;
2983         }
2984         return (needed);
2985 }
2986
2987 /*
2988  * Gets the checkpoint space map object from the vdev's ZAP.  On success sm_obj
2989  * will contain either the checkpoint spacemap object or zero if none exists.
2990  * All other errors are returned to the caller.
2991  */
2992 int
2993 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
2994 {
2995         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2996
2997         if (vd->vdev_top_zap == 0) {
2998                 *sm_obj = 0;
2999                 return (0);
3000         }
3001
3002         int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
3003             VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
3004         if (error == ENOENT) {
3005                 *sm_obj = 0;
3006                 error = 0;
3007         }
3008
3009         return (error);
3010 }
3011
3012 int
3013 vdev_load(vdev_t *vd)
3014 {
3015         int error = 0;
3016
3017         /*
3018          * Recursively load all children.
3019          */
3020         for (int c = 0; c < vd->vdev_children; c++) {
3021                 error = vdev_load(vd->vdev_child[c]);
3022                 if (error != 0) {
3023                         return (error);
3024                 }
3025         }
3026
3027         vdev_set_deflate_ratio(vd);
3028
3029         /*
3030          * On spa_load path, grab the allocation bias from our zap
3031          */
3032         if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
3033                 spa_t *spa = vd->vdev_spa;
3034                 char bias_str[64];
3035
3036                 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3037                     VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3038                     bias_str) == 0) {
3039                         ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3040                         vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3041                 }
3042         }
3043
3044         /*
3045          * If this is a top-level vdev, initialize its metaslabs.
3046          */
3047         if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3048                 vdev_metaslab_group_create(vd);
3049
3050                 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3051                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3052                             VDEV_AUX_CORRUPT_DATA);
3053                         vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3054                             "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3055                             (u_longlong_t)vd->vdev_asize);
3056                         return (SET_ERROR(ENXIO));
3057                 }
3058
3059                 error = vdev_metaslab_init(vd, 0);
3060                 if (error != 0) {
3061                         vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3062                             "[error=%d]", error);
3063                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3064                             VDEV_AUX_CORRUPT_DATA);
3065                         return (error);
3066                 }
3067
3068                 uint64_t checkpoint_sm_obj;
3069                 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3070                 if (error == 0 && checkpoint_sm_obj != 0) {
3071                         objset_t *mos = spa_meta_objset(vd->vdev_spa);
3072                         ASSERT(vd->vdev_asize != 0);
3073                         ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3074
3075                         error = space_map_open(&vd->vdev_checkpoint_sm,
3076                             mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3077                             vd->vdev_ashift);
3078                         if (error != 0) {
3079                                 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3080                                     "failed for checkpoint spacemap (obj %llu) "
3081                                     "[error=%d]",
3082                                     (u_longlong_t)checkpoint_sm_obj, error);
3083                                 return (error);
3084                         }
3085                         ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3086
3087                         /*
3088                          * Since the checkpoint_sm contains free entries
3089                          * exclusively we can use space_map_allocated() to
3090                          * indicate the cumulative checkpointed space that
3091                          * has been freed.
3092                          */
3093                         vd->vdev_stat.vs_checkpoint_space =
3094                             -space_map_allocated(vd->vdev_checkpoint_sm);
3095                         vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3096                             vd->vdev_stat.vs_checkpoint_space;
3097                 } else if (error != 0) {
3098                         vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3099                             "checkpoint space map object from vdev ZAP "
3100                             "[error=%d]", error);
3101                         return (error);
3102                 }
3103         }
3104
3105         /*
3106          * If this is a leaf vdev, load its DTL.
3107          */
3108         if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3109                 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3110                     VDEV_AUX_CORRUPT_DATA);
3111                 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3112                     "[error=%d]", error);
3113                 return (error);
3114         }
3115
3116         uint64_t obsolete_sm_object;
3117         error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3118         if (error == 0 && obsolete_sm_object != 0) {
3119                 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3120                 ASSERT(vd->vdev_asize != 0);
3121                 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3122
3123                 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3124                     obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3125                         vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3126                             VDEV_AUX_CORRUPT_DATA);
3127                         vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3128                             "obsolete spacemap (obj %llu) [error=%d]",
3129                             (u_longlong_t)obsolete_sm_object, error);
3130                         return (error);
3131                 }
3132         } else if (error != 0) {
3133                 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3134                     "space map object from vdev ZAP [error=%d]", error);
3135                 return (error);
3136         }
3137
3138         return (0);
3139 }
3140
3141 /*
3142  * The special vdev case is used for hot spares and l2cache devices.  Its
3143  * sole purpose it to set the vdev state for the associated vdev.  To do this,
3144  * we make sure that we can open the underlying device, then try to read the
3145  * label, and make sure that the label is sane and that it hasn't been
3146  * repurposed to another pool.
3147  */
3148 int
3149 vdev_validate_aux(vdev_t *vd)
3150 {
3151         nvlist_t *label;
3152         uint64_t guid, version;
3153         uint64_t state;
3154
3155         if (!vdev_readable(vd))
3156                 return (0);
3157
3158         if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3159                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3160                     VDEV_AUX_CORRUPT_DATA);
3161                 return (-1);
3162         }
3163
3164         if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3165             !SPA_VERSION_IS_SUPPORTED(version) ||
3166             nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3167             guid != vd->vdev_guid ||
3168             nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3169                 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3170                     VDEV_AUX_CORRUPT_DATA);
3171                 nvlist_free(label);
3172                 return (-1);
3173         }
3174
3175         /*
3176          * We don't actually check the pool state here.  If it's in fact in
3177          * use by another pool, we update this fact on the fly when requested.
3178          */
3179         nvlist_free(label);
3180         return (0);
3181 }
3182
3183 static void
3184 vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx)
3185 {
3186         objset_t *mos = spa_meta_objset(vd->vdev_spa);
3187
3188         if (vd->vdev_top_zap == 0)
3189                 return;
3190
3191         uint64_t object = 0;
3192         int err = zap_lookup(mos, vd->vdev_top_zap,
3193             VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object);
3194         if (err == ENOENT)
3195                 return;
3196
3197         VERIFY0(dmu_object_free(mos, object, tx));
3198         VERIFY0(zap_remove(mos, vd->vdev_top_zap,
3199             VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx));
3200 }
3201
3202 /*
3203  * Free the objects used to store this vdev's spacemaps, and the array
3204  * that points to them.
3205  */
3206 void
3207 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3208 {
3209         if (vd->vdev_ms_array == 0)
3210                 return;
3211
3212         objset_t *mos = vd->vdev_spa->spa_meta_objset;
3213         uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3214         size_t array_bytes = array_count * sizeof (uint64_t);
3215         uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3216         VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3217             array_bytes, smobj_array, 0));
3218
3219         for (uint64_t i = 0; i < array_count; i++) {
3220                 uint64_t smobj = smobj_array[i];
3221                 if (smobj == 0)
3222                         continue;
3223
3224                 space_map_free_obj(mos, smobj, tx);
3225         }
3226
3227         kmem_free(smobj_array, array_bytes);
3228         VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3229         vdev_destroy_ms_flush_data(vd, tx);
3230         vd->vdev_ms_array = 0;
3231 }
3232
3233 static void
3234 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3235 {
3236         spa_t *spa = vd->vdev_spa;
3237
3238         ASSERT(vd->vdev_islog);
3239         ASSERT(vd == vd->vdev_top);
3240         ASSERT3U(txg, ==, spa_syncing_txg(spa));
3241
3242         dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3243
3244         vdev_destroy_spacemaps(vd, tx);
3245         if (vd->vdev_top_zap != 0) {
3246                 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3247                 vd->vdev_top_zap = 0;
3248         }
3249
3250         dmu_tx_commit(tx);
3251 }
3252
3253 void
3254 vdev_sync_done(vdev_t *vd, uint64_t txg)
3255 {
3256         metaslab_t *msp;
3257         boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3258
3259         ASSERT(vdev_is_concrete(vd));
3260
3261         while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3262             != NULL)
3263                 metaslab_sync_done(msp, txg);
3264
3265         if (reassess)
3266                 metaslab_sync_reassess(vd->vdev_mg);
3267 }
3268
3269 void
3270 vdev_sync(vdev_t *vd, uint64_t txg)
3271 {
3272         spa_t *spa = vd->vdev_spa;
3273         vdev_t *lvd;
3274         metaslab_t *msp;
3275
3276         ASSERT3U(txg, ==, spa->spa_syncing_txg);
3277         dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3278         if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3279                 ASSERT(vd->vdev_removing ||
3280                     vd->vdev_ops == &vdev_indirect_ops);
3281
3282                 vdev_indirect_sync_obsolete(vd, tx);
3283
3284                 /*
3285                  * If the vdev is indirect, it can't have dirty
3286                  * metaslabs or DTLs.
3287                  */
3288                 if (vd->vdev_ops == &vdev_indirect_ops) {
3289                         ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3290                         ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3291                         dmu_tx_commit(tx);
3292                         return;
3293                 }
3294         }
3295
3296         ASSERT(vdev_is_concrete(vd));
3297
3298         if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3299             !vd->vdev_removing) {
3300                 ASSERT(vd == vd->vdev_top);
3301                 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3302                 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3303                     DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3304                 ASSERT(vd->vdev_ms_array != 0);
3305                 vdev_config_dirty(vd);
3306         }
3307
3308         while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3309                 metaslab_sync(msp, txg);
3310                 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3311         }
3312
3313         while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3314                 vdev_dtl_sync(lvd, txg);
3315
3316         /*
3317          * If this is an empty log device being removed, destroy the
3318          * metadata associated with it.
3319          */
3320         if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3321                 vdev_remove_empty_log(vd, txg);
3322
3323         (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3324         dmu_tx_commit(tx);
3325 }
3326
3327 uint64_t
3328 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3329 {
3330         return (vd->vdev_ops->vdev_op_asize(vd, psize));
3331 }
3332
3333 /*
3334  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
3335  * not be opened, and no I/O is attempted.
3336  */
3337 int
3338 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3339 {
3340         vdev_t *vd, *tvd;
3341
3342         spa_vdev_state_enter(spa, SCL_NONE);
3343
3344         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3345                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3346
3347         if (!vd->vdev_ops->vdev_op_leaf)
3348                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3349
3350         tvd = vd->vdev_top;
3351
3352         /*
3353          * If user did a 'zpool offline -f' then make the fault persist across
3354          * reboots.
3355          */
3356         if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3357                 /*
3358                  * There are two kinds of forced faults: temporary and
3359                  * persistent.  Temporary faults go away at pool import, while
3360                  * persistent faults stay set.  Both types of faults can be
3361                  * cleared with a zpool clear.
3362                  *
3363                  * We tell if a vdev is persistently faulted by looking at the
3364                  * ZPOOL_CONFIG_AUX_STATE nvpair.  If it's set to "external" at
3365                  * import then it's a persistent fault.  Otherwise, it's
3366                  * temporary.  We get ZPOOL_CONFIG_AUX_STATE set to "external"
3367                  * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL.  This
3368                  * tells vdev_config_generate() (which gets run later) to set
3369                  * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3370                  */
3371                 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3372                 vd->vdev_tmpoffline = B_FALSE;
3373                 aux = VDEV_AUX_EXTERNAL;
3374         } else {
3375                 vd->vdev_tmpoffline = B_TRUE;
3376         }
3377
3378         /*
3379          * We don't directly use the aux state here, but if we do a
3380          * vdev_reopen(), we need this value to be present to remember why we
3381          * were faulted.
3382          */
3383         vd->vdev_label_aux = aux;
3384
3385         /*
3386          * Faulted state takes precedence over degraded.
3387          */
3388         vd->vdev_delayed_close = B_FALSE;
3389         vd->vdev_faulted = 1ULL;
3390         vd->vdev_degraded = 0ULL;
3391         vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3392
3393         /*
3394          * If this device has the only valid copy of the data, then
3395          * back off and simply mark the vdev as degraded instead.
3396          */
3397         if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3398                 vd->vdev_degraded = 1ULL;
3399                 vd->vdev_faulted = 0ULL;
3400
3401                 /*
3402                  * If we reopen the device and it's not dead, only then do we
3403                  * mark it degraded.
3404                  */
3405                 vdev_reopen(tvd);
3406
3407                 if (vdev_readable(vd))
3408                         vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3409         }
3410
3411         return (spa_vdev_state_exit(spa, vd, 0));
3412 }
3413
3414 /*
3415  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
3416  * user that something is wrong.  The vdev continues to operate as normal as far
3417  * as I/O is concerned.
3418  */
3419 int
3420 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3421 {
3422         vdev_t *vd;
3423
3424         spa_vdev_state_enter(spa, SCL_NONE);
3425
3426         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3427                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3428
3429         if (!vd->vdev_ops->vdev_op_leaf)
3430                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3431
3432         /*
3433          * If the vdev is already faulted, then don't do anything.
3434          */
3435         if (vd->vdev_faulted || vd->vdev_degraded)
3436                 return (spa_vdev_state_exit(spa, NULL, 0));
3437
3438         vd->vdev_degraded = 1ULL;
3439         if (!vdev_is_dead(vd))
3440                 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3441                     aux);
3442
3443         return (spa_vdev_state_exit(spa, vd, 0));
3444 }
3445
3446 /*
3447  * Online the given vdev.
3448  *
3449  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
3450  * spare device should be detached when the device finishes resilvering.
3451  * Second, the online should be treated like a 'test' online case, so no FMA
3452  * events are generated if the device fails to open.
3453  */
3454 int
3455 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3456 {
3457         vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3458         boolean_t wasoffline;
3459         vdev_state_t oldstate;
3460
3461         spa_vdev_state_enter(spa, SCL_NONE);
3462
3463         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3464                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3465
3466         if (!vd->vdev_ops->vdev_op_leaf)
3467                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3468
3469         wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3470         oldstate = vd->vdev_state;
3471
3472         tvd = vd->vdev_top;
3473         vd->vdev_offline = B_FALSE;
3474         vd->vdev_tmpoffline = B_FALSE;
3475         vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3476         vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3477
3478         /* XXX - L2ARC 1.0 does not support expansion */
3479         if (!vd->vdev_aux) {
3480                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3481                         pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3482                             spa->spa_autoexpand);
3483                 vd->vdev_expansion_time = gethrestime_sec();
3484         }
3485
3486         vdev_reopen(tvd);
3487         vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3488
3489         if (!vd->vdev_aux) {
3490                 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3491                         pvd->vdev_expanding = B_FALSE;
3492         }
3493
3494         if (newstate)
3495                 *newstate = vd->vdev_state;
3496         if ((flags & ZFS_ONLINE_UNSPARE) &&
3497             !vdev_is_dead(vd) && vd->vdev_parent &&
3498             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3499             vd->vdev_parent->vdev_child[0] == vd)
3500                 vd->vdev_unspare = B_TRUE;
3501
3502         if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3503
3504                 /* XXX - L2ARC 1.0 does not support expansion */
3505                 if (vd->vdev_aux)
3506                         return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3507                 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3508         }
3509
3510         /* Restart initializing if necessary */
3511         mutex_enter(&vd->vdev_initialize_lock);
3512         if (vdev_writeable(vd) &&
3513             vd->vdev_initialize_thread == NULL &&
3514             vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3515                 (void) vdev_initialize(vd);
3516         }
3517         mutex_exit(&vd->vdev_initialize_lock);
3518
3519         /* Restart trimming if necessary */
3520         mutex_enter(&vd->vdev_trim_lock);
3521         if (vdev_writeable(vd) &&
3522             vd->vdev_trim_thread == NULL &&
3523             vd->vdev_trim_state == VDEV_TRIM_ACTIVE) {
3524                 (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial,
3525                     vd->vdev_trim_secure);
3526         }
3527         mutex_exit(&vd->vdev_trim_lock);
3528
3529         if (wasoffline ||
3530             (oldstate < VDEV_STATE_DEGRADED &&
3531             vd->vdev_state >= VDEV_STATE_DEGRADED))
3532                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3533
3534         return (spa_vdev_state_exit(spa, vd, 0));
3535 }
3536
3537 static int
3538 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3539 {
3540         vdev_t *vd, *tvd;
3541         int error = 0;
3542         uint64_t generation;
3543         metaslab_group_t *mg;
3544
3545 top:
3546         spa_vdev_state_enter(spa, SCL_ALLOC);
3547
3548         if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3549                 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3550
3551         if (!vd->vdev_ops->vdev_op_leaf)
3552                 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3553
3554         tvd = vd->vdev_top;
3555         mg = tvd->vdev_mg;
3556         generation = spa->spa_config_generation + 1;
3557
3558         /*
3559          * If the device isn't already offline, try to offline it.
3560          */
3561         if (!vd->vdev_offline) {
3562                 /*
3563                  * If this device has the only valid copy of some data,
3564                  * don't allow it to be offlined. Log devices are always
3565                  * expendable.
3566                  */
3567                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3568                     vdev_dtl_required(vd))
3569                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
3570
3571                 /*
3572                  * If the top-level is a slog and it has had allocations
3573                  * then proceed.  We check that the vdev's metaslab group
3574                  * is not NULL since it's possible that we may have just
3575                  * added this vdev but not yet initialized its metaslabs.
3576                  */
3577                 if (tvd->vdev_islog && mg != NULL) {
3578                         /*
3579                          * Prevent any future allocations.
3580                          */
3581                         metaslab_group_passivate(mg);
3582                         (void) spa_vdev_state_exit(spa, vd, 0);
3583
3584                         error = spa_reset_logs(spa);
3585
3586                         /*
3587                          * If the log device was successfully reset but has
3588                          * checkpointed data, do not offline it.
3589                          */
3590                         if (error == 0 &&
3591                             tvd->vdev_checkpoint_sm != NULL) {
3592                                 ASSERT3U(space_map_allocated(
3593                                     tvd->vdev_checkpoint_sm), !=, 0);
3594                                 error = ZFS_ERR_CHECKPOINT_EXISTS;
3595                         }
3596
3597                         spa_vdev_state_enter(spa, SCL_ALLOC);
3598
3599                         /*
3600                          * Check to see if the config has changed.
3601                          */
3602                         if (error || generation != spa->spa_config_generation) {
3603                                 metaslab_group_activate(mg);
3604                                 if (error)
3605                                         return (spa_vdev_state_exit(spa,
3606                                             vd, error));
3607                                 (void) spa_vdev_state_exit(spa, vd, 0);
3608                                 goto top;
3609                         }
3610                         ASSERT0(tvd->vdev_stat.vs_alloc);
3611                 }
3612
3613                 /*
3614                  * Offline this device and reopen its top-level vdev.
3615                  * If the top-level vdev is a log device then just offline
3616                  * it. Otherwise, if this action results in the top-level
3617                  * vdev becoming unusable, undo it and fail the request.
3618                  */
3619                 vd->vdev_offline = B_TRUE;
3620                 vdev_reopen(tvd);
3621
3622                 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3623                     vdev_is_dead(tvd)) {
3624                         vd->vdev_offline = B_FALSE;
3625                         vdev_reopen(tvd);
3626                         return (spa_vdev_state_exit(spa, NULL, EBUSY));
3627                 }
3628
3629                 /*
3630                  * Add the device back into the metaslab rotor so that
3631                  * once we online the device it's open for business.
3632                  */
3633                 if (tvd->vdev_islog && mg != NULL)
3634                         metaslab_group_activate(mg);
3635         }
3636
3637         vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3638
3639         return (spa_vdev_state_exit(spa, vd, 0));
3640 }
3641
3642 int
3643 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3644 {
3645         int error;
3646
3647         mutex_enter(&spa->spa_vdev_top_lock);
3648         error = vdev_offline_locked(spa, guid, flags);
3649         mutex_exit(&spa->spa_vdev_top_lock);
3650
3651         return (error);
3652 }
3653
3654 /*
3655  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
3656  * vdev_offline(), we assume the spa config is locked.  We also clear all
3657  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
3658  */
3659 void
3660 vdev_clear(spa_t *spa, vdev_t *vd)
3661 {
3662         vdev_t *rvd = spa->spa_root_vdev;
3663
3664         ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3665
3666         if (vd == NULL)
3667                 vd = rvd;
3668
3669         vd->vdev_stat.vs_read_errors = 0;
3670         vd->vdev_stat.vs_write_errors = 0;
3671         vd->vdev_stat.vs_checksum_errors = 0;
3672         vd->vdev_stat.vs_slow_ios = 0;
3673
3674         for (int c = 0; c < vd->vdev_children; c++)
3675                 vdev_clear(spa, vd->vdev_child[c]);
3676
3677         /*
3678          * It makes no sense to "clear" an indirect vdev.
3679          */
3680         if (!vdev_is_concrete(vd))
3681                 return;
3682
3683         /*
3684          * If we're in the FAULTED state or have experienced failed I/O, then
3685          * clear the persistent state and attempt to reopen the device.  We
3686          * also mark the vdev config dirty, so that the new faulted state is
3687          * written out to disk.
3688          */
3689         if (vd->vdev_faulted || vd->vdev_degraded ||
3690             !vdev_readable(vd) || !vdev_writeable(vd)) {
3691                 /*
3692                  * When reopening in response to a clear event, it may be due to
3693                  * a fmadm repair request.  In this case, if the device is
3694                  * still broken, we want to still post the ereport again.
3695                  */
3696                 vd->vdev_forcefault = B_TRUE;
3697
3698                 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3699                 vd->vdev_cant_read = B_FALSE;
3700                 vd->vdev_cant_write = B_FALSE;
3701                 vd->vdev_stat.vs_aux = 0;
3702
3703                 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3704
3705                 vd->vdev_forcefault = B_FALSE;
3706
3707                 if (vd != rvd && vdev_writeable(vd->vdev_top))
3708                         vdev_state_dirty(vd->vdev_top);
3709
3710                 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) {
3711                         if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
3712                             spa_feature_is_enabled(spa,
3713                             SPA_FEATURE_RESILVER_DEFER))
3714                                 vdev_set_deferred_resilver(spa, vd);
3715                         else
3716                                 spa_async_request(spa, SPA_ASYNC_RESILVER);
3717                 }
3718
3719                 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3720         }
3721
3722         /*
3723          * When clearing a FMA-diagnosed fault, we always want to
3724          * unspare the device, as we assume that the original spare was
3725          * done in response to the FMA fault.
3726          */
3727         if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3728             vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3729             vd->vdev_parent->vdev_child[0] == vd)
3730                 vd->vdev_unspare = B_TRUE;
3731 }
3732
3733 boolean_t
3734 vdev_is_dead(vdev_t *vd)
3735 {
3736         /*
3737          * Holes and missing devices are always considered "dead".
3738          * This simplifies the code since we don't have to check for
3739          * these types of devices in the various code paths.
3740          * Instead we rely on the fact that we skip over dead devices
3741          * before issuing I/O to them.
3742          */
3743         return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3744             vd->vdev_ops == &vdev_hole_ops ||
3745             vd->vdev_ops == &vdev_missing_ops);
3746 }
3747
3748 boolean_t
3749 vdev_readable(vdev_t *vd)
3750 {
3751         return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3752 }
3753
3754 boolean_t
3755 vdev_writeable(vdev_t *vd)
3756 {
3757         return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3758             vdev_is_concrete(vd));
3759 }
3760
3761 boolean_t
3762 vdev_allocatable(vdev_t *vd)
3763 {
3764         uint64_t state = vd->vdev_state;
3765
3766         /*
3767          * We currently allow allocations from vdevs which may be in the
3768          * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3769          * fails to reopen then we'll catch it later when we're holding
3770          * the proper locks.  Note that we have to get the vdev state
3771          * in a local variable because although it changes atomically,
3772          * we're asking two separate questions about it.
3773          */
3774         return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3775             !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3776             vd->vdev_mg->mg_initialized);
3777 }
3778
3779 boolean_t
3780 vdev_accessible(vdev_t *vd, zio_t *zio)
3781 {
3782         ASSERT(zio->io_vd == vd);
3783
3784         if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3785                 return (B_FALSE);
3786
3787         if (zio->io_type == ZIO_TYPE_READ)
3788                 return (!vd->vdev_cant_read);
3789
3790         if (zio->io_type == ZIO_TYPE_WRITE)
3791                 return (!vd->vdev_cant_write);
3792
3793         return (B_TRUE);
3794 }
3795
3796 static void
3797 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3798 {
3799         for (int t = 0; t < VS_ZIO_TYPES; t++) {
3800                 vs->vs_ops[t] += cvs->vs_ops[t];
3801                 vs->vs_bytes[t] += cvs->vs_bytes[t];
3802         }
3803
3804         cvs->vs_scan_removing = cvd->vdev_removing;
3805 }
3806
3807 /*
3808  * Get extended stats
3809  */
3810 static void
3811 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3812 {
3813         int t, b;
3814         for (t = 0; t < ZIO_TYPES; t++) {
3815                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
3816                         vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
3817
3818                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
3819                         vsx->vsx_total_histo[t][b] +=
3820                             cvsx->vsx_total_histo[t][b];
3821                 }
3822         }
3823
3824         for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
3825                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
3826                         vsx->vsx_queue_histo[t][b] +=
3827                             cvsx->vsx_queue_histo[t][b];
3828                 }
3829                 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
3830                 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
3831
3832                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
3833                         vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
3834
3835                 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
3836                         vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
3837         }
3838
3839 }
3840
3841 boolean_t
3842 vdev_is_spacemap_addressable(vdev_t *vd)
3843 {
3844         if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3845                 return (B_TRUE);
3846
3847         /*
3848          * If double-word space map entries are not enabled we assume
3849          * 47 bits of the space map entry are dedicated to the entry's
3850          * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3851          * to calculate the maximum address that can be described by a
3852          * space map entry for the given device.
3853          */
3854         uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
3855
3856         if (shift >= 63) /* detect potential overflow */
3857                 return (B_TRUE);
3858
3859         return (vd->vdev_asize < (1ULL << shift));
3860 }
3861
3862 /*
3863  * Get statistics for the given vdev.
3864  */
3865 static void
3866 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3867 {
3868         int t;
3869         /*
3870          * If we're getting stats on the root vdev, aggregate the I/O counts
3871          * over all top-level vdevs (i.e. the direct children of the root).
3872          */
3873         if (!vd->vdev_ops->vdev_op_leaf) {
3874                 if (vs) {
3875                         memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
3876                         memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
3877                 }
3878                 if (vsx)
3879                         memset(vsx, 0, sizeof (*vsx));
3880
3881                 for (int c = 0; c < vd->vdev_children; c++) {
3882                         vdev_t *cvd = vd->vdev_child[c];
3883                         vdev_stat_t *cvs = &cvd->vdev_stat;
3884                         vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
3885
3886                         vdev_get_stats_ex_impl(cvd, cvs, cvsx);
3887                         if (vs)
3888                                 vdev_get_child_stat(cvd, vs, cvs);
3889                         if (vsx)
3890                                 vdev_get_child_stat_ex(cvd, vsx, cvsx);
3891
3892                 }
3893         } else {
3894                 /*
3895                  * We're a leaf.  Just copy our ZIO active queue stats in.  The
3896                  * other leaf stats are updated in vdev_stat_update().
3897                  */
3898                 if (!vsx)
3899                         return;
3900
3901                 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
3902
3903                 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
3904                         vsx->vsx_active_queue[t] =
3905                             vd->vdev_queue.vq_class[t].vqc_active;
3906                         vsx->vsx_pend_queue[t] = avl_numnodes(
3907                             &vd->vdev_queue.vq_class[t].vqc_queued_tree);
3908                 }
3909         }
3910 }
3911
3912 void
3913 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3914 {
3915         vdev_t *tvd = vd->vdev_top;
3916         mutex_enter(&vd->vdev_stat_lock);
3917         if (vs) {
3918                 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3919                 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3920                 vs->vs_state = vd->vdev_state;
3921                 vs->vs_rsize = vdev_get_min_asize(vd);
3922                 if (vd->vdev_ops->vdev_op_leaf) {
3923                         vs->vs_rsize += VDEV_LABEL_START_SIZE +
3924                             VDEV_LABEL_END_SIZE;
3925                         /*
3926                          * Report initializing progress. Since we don't
3927                          * have the initializing locks held, this is only
3928                          * an estimate (although a fairly accurate one).
3929                          */
3930                         vs->vs_initialize_bytes_done =
3931                             vd->vdev_initialize_bytes_done;
3932                         vs->vs_initialize_bytes_est =
3933                             vd->vdev_initialize_bytes_est;
3934                         vs->vs_initialize_state = vd->vdev_initialize_state;
3935                         vs->vs_initialize_action_time =
3936                             vd->vdev_initialize_action_time;
3937
3938                         /*
3939                          * Report manual TRIM progress. Since we don't have
3940                          * the manual TRIM locks held, this is only an
3941                          * estimate (although fairly accurate one).
3942                          */
3943                         vs->vs_trim_notsup = !vd->vdev_has_trim;
3944                         vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done;
3945                         vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est;
3946                         vs->vs_trim_state = vd->vdev_trim_state;
3947                         vs->vs_trim_action_time = vd->vdev_trim_action_time;
3948                 }
3949                 /*
3950                  * Report expandable space on top-level, non-auxiliary devices
3951                  * only. The expandable space is reported in terms of metaslab
3952                  * sized units since that determines how much space the pool
3953                  * can expand.
3954                  */
3955                 if (vd->vdev_aux == NULL && tvd != NULL) {
3956                         vs->vs_esize = P2ALIGN(
3957                             vd->vdev_max_asize - vd->vdev_asize,
3958                             1ULL << tvd->vdev_ms_shift);
3959                 }
3960                 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3961                     vdev_is_concrete(vd)) {
3962                         vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3963                             vd->vdev_mg->mg_fragmentation : 0;
3964                 }
3965                 if (vd->vdev_ops->vdev_op_leaf)
3966                         vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
3967         }
3968
3969         vdev_get_stats_ex_impl(vd, vs, vsx);
3970         mutex_exit(&vd->vdev_stat_lock);
3971 }
3972
3973 void
3974 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3975 {
3976         return (vdev_get_stats_ex(vd, vs, NULL));
3977 }
3978
3979 void
3980 vdev_clear_stats(vdev_t *vd)
3981 {
3982         mutex_enter(&vd->vdev_stat_lock);
3983         vd->vdev_stat.vs_space = 0;
3984         vd->vdev_stat.vs_dspace = 0;
3985         vd->vdev_stat.vs_alloc = 0;
3986         mutex_exit(&vd->vdev_stat_lock);
3987 }
3988
3989 void
3990 vdev_scan_stat_init(vdev_t *vd)
3991 {
3992         vdev_stat_t *vs = &vd->vdev_stat;
3993
3994         for (int c = 0; c < vd->vdev_children; c++)
3995                 vdev_scan_stat_init(vd->vdev_child[c]);
3996
3997         mutex_enter(&vd->vdev_stat_lock);
3998         vs->vs_scan_processed = 0;
3999         mutex_exit(&vd->vdev_stat_lock);
4000 }
4001
4002 void
4003 vdev_stat_update(zio_t *zio, uint64_t psize)
4004 {
4005         spa_t *spa = zio->io_spa;
4006         vdev_t *rvd = spa->spa_root_vdev;
4007         vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
4008         vdev_t *pvd;
4009         uint64_t txg = zio->io_txg;
4010         vdev_stat_t *vs = &vd->vdev_stat;
4011         vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
4012         zio_type_t type = zio->io_type;
4013         int flags = zio->io_flags;
4014
4015         /*
4016          * If this i/o is a gang leader, it didn't do any actual work.
4017          */
4018         if (zio->io_gang_tree)
4019                 return;
4020
4021         if (zio->io_error == 0) {
4022                 /*
4023                  * If this is a root i/o, don't count it -- we've already
4024                  * counted the top-level vdevs, and vdev_get_stats() will
4025                  * aggregate them when asked.  This reduces contention on
4026                  * the root vdev_stat_lock and implicitly handles blocks
4027                  * that compress away to holes, for which there is no i/o.
4028                  * (Holes never create vdev children, so all the counters
4029                  * remain zero, which is what we want.)
4030                  *
4031                  * Note: this only applies to successful i/o (io_error == 0)
4032                  * because unlike i/o counts, errors are not additive.
4033                  * When reading a ditto block, for example, failure of
4034                  * one top-level vdev does not imply a root-level error.
4035                  */
4036                 if (vd == rvd)
4037                         return;
4038
4039                 ASSERT(vd == zio->io_vd);
4040
4041                 if (flags & ZIO_FLAG_IO_BYPASS)
4042                         return;
4043
4044                 mutex_enter(&vd->vdev_stat_lock);
4045
4046                 if (flags & ZIO_FLAG_IO_REPAIR) {
4047                         if (flags & ZIO_FLAG_SCAN_THREAD) {
4048                                 dsl_scan_phys_t *scn_phys =
4049                                     &spa->spa_dsl_pool->dp_scan->scn_phys;
4050                                 uint64_t *processed = &scn_phys->scn_processed;
4051
4052                                 /* XXX cleanup? */
4053                                 if (vd->vdev_ops->vdev_op_leaf)
4054                                         atomic_add_64(processed, psize);
4055                                 vs->vs_scan_processed += psize;
4056                         }
4057
4058                         if (flags & ZIO_FLAG_SELF_HEAL)
4059                                 vs->vs_self_healed += psize;
4060                 }
4061
4062                 /*
4063                  * The bytes/ops/histograms are recorded at the leaf level and
4064                  * aggregated into the higher level vdevs in vdev_get_stats().
4065                  */
4066                 if (vd->vdev_ops->vdev_op_leaf &&
4067                     (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4068                         zio_type_t vs_type = type;
4069
4070                         /*
4071                          * TRIM ops and bytes are reported to user space as
4072                          * ZIO_TYPE_IOCTL.  This is done to preserve the
4073                          * vdev_stat_t structure layout for user space.
4074                          */
4075                         if (type == ZIO_TYPE_TRIM)
4076                                 vs_type = ZIO_TYPE_IOCTL;
4077
4078                         vs->vs_ops[vs_type]++;
4079                         vs->vs_bytes[vs_type] += psize;
4080
4081                         if (flags & ZIO_FLAG_DELEGATED) {
4082                                 vsx->vsx_agg_histo[zio->io_priority]
4083                                     [RQ_HISTO(zio->io_size)]++;
4084                         } else {
4085                                 vsx->vsx_ind_histo[zio->io_priority]
4086                                     [RQ_HISTO(zio->io_size)]++;
4087                         }
4088
4089                         if (zio->io_delta && zio->io_delay) {
4090                                 vsx->vsx_queue_histo[zio->io_priority]
4091                                     [L_HISTO(zio->io_delta - zio->io_delay)]++;
4092                                 vsx->vsx_disk_histo[type]
4093                                     [L_HISTO(zio->io_delay)]++;
4094                                 vsx->vsx_total_histo[type]
4095                                     [L_HISTO(zio->io_delta)]++;
4096                         }
4097                 }
4098
4099                 mutex_exit(&vd->vdev_stat_lock);
4100                 return;
4101         }
4102
4103         if (flags & ZIO_FLAG_SPECULATIVE)
4104                 return;
4105
4106         /*
4107          * If this is an I/O error that is going to be retried, then ignore the
4108          * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
4109          * hard errors, when in reality they can happen for any number of
4110          * innocuous reasons (bus resets, MPxIO link failure, etc).
4111          */
4112         if (zio->io_error == EIO &&
4113             !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4114                 return;
4115
4116         /*
4117          * Intent logs writes won't propagate their error to the root
4118          * I/O so don't mark these types of failures as pool-level
4119          * errors.
4120          */
4121         if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4122                 return;
4123
4124         if (spa->spa_load_state == SPA_LOAD_NONE &&
4125             type == ZIO_TYPE_WRITE && txg != 0 &&
4126             (!(flags & ZIO_FLAG_IO_REPAIR) ||
4127             (flags & ZIO_FLAG_SCAN_THREAD) ||
4128             spa->spa_claiming)) {
4129                 /*
4130                  * This is either a normal write (not a repair), or it's
4131                  * a repair induced by the scrub thread, or it's a repair
4132                  * made by zil_claim() during spa_load() in the first txg.
4133                  * In the normal case, we commit the DTL change in the same
4134                  * txg as the block was born.  In the scrub-induced repair
4135                  * case, we know that scrubs run in first-pass syncing context,
4136                  * so we commit the DTL change in spa_syncing_txg(spa).
4137                  * In the zil_claim() case, we commit in spa_first_txg(spa).
4138                  *
4139                  * We currently do not make DTL entries for failed spontaneous
4140                  * self-healing writes triggered by normal (non-scrubbing)
4141                  * reads, because we have no transactional context in which to
4142                  * do so -- and it's not clear that it'd be desirable anyway.
4143                  */
4144                 if (vd->vdev_ops->vdev_op_leaf) {
4145                         uint64_t commit_txg = txg;
4146                         if (flags & ZIO_FLAG_SCAN_THREAD) {
4147                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4148                                 ASSERT(spa_sync_pass(spa) == 1);
4149                                 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4150                                 commit_txg = spa_syncing_txg(spa);
4151                         } else if (spa->spa_claiming) {
4152                                 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4153                                 commit_txg = spa_first_txg(spa);
4154                         }
4155                         ASSERT(commit_txg >= spa_syncing_txg(spa));
4156                         if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4157                                 return;
4158                         for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4159                                 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4160                         vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4161                 }
4162                 if (vd != rvd)
4163                         vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4164         }
4165 }
4166
4167 int64_t
4168 vdev_deflated_space(vdev_t *vd, int64_t space)
4169 {
4170         ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4171         ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4172
4173         return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4174 }
4175
4176 /*
4177  * Update the in-core space usage stats for this vdev, its metaslab class,
4178  * and the root vdev.
4179  */
4180 void
4181 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4182     int64_t space_delta)
4183 {
4184         int64_t dspace_delta;
4185         spa_t *spa = vd->vdev_spa;
4186         vdev_t *rvd = spa->spa_root_vdev;
4187
4188         ASSERT(vd == vd->vdev_top);
4189
4190         /*
4191          * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4192          * factor.  We must calculate this here and not at the root vdev
4193          * because the root vdev's psize-to-asize is simply the max of its
4194          * children's, thus not accurate enough for us.
4195          */
4196         dspace_delta = vdev_deflated_space(vd, space_delta);
4197
4198         mutex_enter(&vd->vdev_stat_lock);
4199         /* ensure we won't underflow */
4200         if (alloc_delta < 0) {
4201                 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4202         }
4203
4204         vd->vdev_stat.vs_alloc += alloc_delta;
4205         vd->vdev_stat.vs_space += space_delta;
4206         vd->vdev_stat.vs_dspace += dspace_delta;
4207         mutex_exit(&vd->vdev_stat_lock);
4208
4209         /* every class but log contributes to root space stats */
4210         if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4211                 ASSERT(!vd->vdev_isl2cache);
4212                 mutex_enter(&rvd->vdev_stat_lock);
4213                 rvd->vdev_stat.vs_alloc += alloc_delta;
4214                 rvd->vdev_stat.vs_space += space_delta;
4215                 rvd->vdev_stat.vs_dspace += dspace_delta;
4216                 mutex_exit(&rvd->vdev_stat_lock);
4217         }
4218         /* Note: metaslab_class_space_update moved to metaslab_space_update */
4219 }
4220
4221 /*
4222  * Mark a top-level vdev's config as dirty, placing it on the dirty list
4223  * so that it will be written out next time the vdev configuration is synced.
4224  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4225  */
4226 void
4227 vdev_config_dirty(vdev_t *vd)
4228 {
4229         spa_t *spa = vd->vdev_spa;
4230         vdev_t *rvd = spa->spa_root_vdev;
4231         int c;
4232
4233         ASSERT(spa_writeable(spa));
4234
4235         /*
4236          * If this is an aux vdev (as with l2cache and spare devices), then we
4237          * update the vdev config manually and set the sync flag.
4238          */
4239         if (vd->vdev_aux != NULL) {
4240                 spa_aux_vdev_t *sav = vd->vdev_aux;
4241                 nvlist_t **aux;
4242                 uint_t naux;
4243
4244                 for (c = 0; c < sav->sav_count; c++) {
4245                         if (sav->sav_vdevs[c] == vd)
4246                                 break;
4247                 }
4248
4249                 if (c == sav->sav_count) {
4250                         /*
4251                          * We're being removed.  There's nothing more to do.
4252                          */
4253                         ASSERT(sav->sav_sync == B_TRUE);
4254                         return;
4255                 }
4256
4257                 sav->sav_sync = B_TRUE;
4258
4259                 if (nvlist_lookup_nvlist_array(sav->sav_config,
4260                     ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4261                         VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4262                             ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4263                 }
4264
4265                 ASSERT(c < naux);
4266
4267                 /*
4268                  * Setting the nvlist in the middle if the array is a little
4269                  * sketchy, but it will work.
4270                  */
4271                 nvlist_free(aux[c]);
4272                 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4273
4274                 return;
4275         }
4276
4277         /*
4278          * The dirty list is protected by the SCL_CONFIG lock.  The caller
4279          * must either hold SCL_CONFIG as writer, or must be the sync thread
4280          * (which holds SCL_CONFIG as reader).  There's only one sync thread,
4281          * so this is sufficient to ensure mutual exclusion.
4282          */
4283         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4284             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4285             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4286
4287         if (vd == rvd) {
4288                 for (c = 0; c < rvd->vdev_children; c++)
4289                         vdev_config_dirty(rvd->vdev_child[c]);
4290         } else {
4291                 ASSERT(vd == vd->vdev_top);
4292
4293                 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4294                     vdev_is_concrete(vd)) {
4295                         list_insert_head(&spa->spa_config_dirty_list, vd);
4296                 }
4297         }
4298 }
4299
4300 void
4301 vdev_config_clean(vdev_t *vd)
4302 {
4303         spa_t *spa = vd->vdev_spa;
4304
4305         ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4306             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4307             spa_config_held(spa, SCL_CONFIG, RW_READER)));
4308
4309         ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4310         list_remove(&spa->spa_config_dirty_list, vd);
4311 }
4312
4313 /*
4314  * Mark a top-level vdev's state as dirty, so that the next pass of
4315  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
4316  * the state changes from larger config changes because they require
4317  * much less locking, and are often needed for administrative actions.
4318  */
4319 void
4320 vdev_state_dirty(vdev_t *vd)
4321 {
4322         spa_t *spa = vd->vdev_spa;
4323
4324         ASSERT(spa_writeable(spa));
4325         ASSERT(vd == vd->vdev_top);
4326
4327         /*
4328          * The state list is protected by the SCL_STATE lock.  The caller
4329          * must either hold SCL_STATE as writer, or must be the sync thread
4330          * (which holds SCL_STATE as reader).  There's only one sync thread,
4331          * so this is sufficient to ensure mutual exclusion.
4332          */
4333         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4334             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4335             spa_config_held(spa, SCL_STATE, RW_READER)));
4336
4337         if (!list_link_active(&vd->vdev_state_dirty_node) &&
4338             vdev_is_concrete(vd))
4339                 list_insert_head(&spa->spa_state_dirty_list, vd);
4340 }
4341
4342 void
4343 vdev_state_clean(vdev_t *vd)
4344 {
4345         spa_t *spa = vd->vdev_spa;
4346
4347         ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4348             (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4349             spa_config_held(spa, SCL_STATE, RW_READER)));
4350
4351         ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4352         list_remove(&spa->spa_state_dirty_list, vd);
4353 }
4354
4355 /*
4356  * Propagate vdev state up from children to parent.
4357  */
4358 void
4359 vdev_propagate_state(vdev_t *vd)
4360 {
4361         spa_t *spa = vd->vdev_spa;
4362         vdev_t *rvd = spa->spa_root_vdev;
4363         int degraded = 0, faulted = 0;
4364         int corrupted = 0;
4365         vdev_t *child;
4366
4367         if (vd->vdev_children > 0) {
4368                 for (int c = 0; c < vd->vdev_children; c++) {
4369                         child = vd->vdev_child[c];
4370
4371                         /*
4372                          * Don't factor holes or indirect vdevs into the
4373                          * decision.
4374                          */
4375                         if (!vdev_is_concrete(child))
4376                                 continue;
4377
4378                         if (!vdev_readable(child) ||
4379                             (!vdev_writeable(child) && spa_writeable(spa))) {
4380                                 /*
4381                                  * Root special: if there is a top-level log
4382                                  * device, treat the root vdev as if it were
4383                                  * degraded.
4384                                  */
4385                                 if (child->vdev_islog && vd == rvd)
4386                                         degraded++;
4387                                 else
4388                                         faulted++;
4389                         } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4390                                 degraded++;
4391                         }
4392
4393                         if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4394                                 corrupted++;
4395                 }
4396
4397                 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4398
4399                 /*
4400                  * Root special: if there is a top-level vdev that cannot be
4401                  * opened due to corrupted metadata, then propagate the root
4402                  * vdev's aux state as 'corrupt' rather than 'insufficient
4403                  * replicas'.
4404                  */
4405                 if (corrupted && vd == rvd &&
4406                     rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4407                         vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4408                             VDEV_AUX_CORRUPT_DATA);
4409         }
4410
4411         if (vd->vdev_parent)
4412                 vdev_propagate_state(vd->vdev_parent);
4413 }
4414
4415 /*
4416  * Set a vdev's state.  If this is during an open, we don't update the parent
4417  * state, because we're in the process of opening children depth-first.
4418  * Otherwise, we propagate the change to the parent.
4419  *
4420  * If this routine places a device in a faulted state, an appropriate ereport is
4421  * generated.
4422  */
4423 void
4424 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4425 {
4426         uint64_t save_state;
4427         spa_t *spa = vd->vdev_spa;
4428
4429         if (state == vd->vdev_state) {
4430                 /*
4431                  * Since vdev_offline() code path is already in an offline
4432                  * state we can miss a statechange event to OFFLINE. Check
4433                  * the previous state to catch this condition.
4434                  */
4435                 if (vd->vdev_ops->vdev_op_leaf &&
4436                     (state == VDEV_STATE_OFFLINE) &&
4437                     (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4438                         /* post an offline state change */
4439                         zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4440                 }
4441                 vd->vdev_stat.vs_aux = aux;
4442                 return;
4443         }
4444
4445         save_state = vd->vdev_state;
4446
4447         vd->vdev_state = state;
4448         vd->vdev_stat.vs_aux = aux;
4449
4450         /*
4451          * If we are setting the vdev state to anything but an open state, then
4452          * always close the underlying device unless the device has requested
4453          * a delayed close (i.e. we're about to remove or fault the device).
4454          * Otherwise, we keep accessible but invalid devices open forever.
4455          * We don't call vdev_close() itself, because that implies some extra
4456          * checks (offline, etc) that we don't want here.  This is limited to
4457          * leaf devices, because otherwise closing the device will affect other
4458          * children.
4459          */
4460         if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4461             vd->vdev_ops->vdev_op_leaf)
4462                 vd->vdev_ops->vdev_op_close(vd);
4463
4464         if (vd->vdev_removed &&
4465             state == VDEV_STATE_CANT_OPEN &&
4466             (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4467                 /*
4468                  * If the previous state is set to VDEV_STATE_REMOVED, then this
4469                  * device was previously marked removed and someone attempted to
4470                  * reopen it.  If this failed due to a nonexistent device, then
4471                  * keep the device in the REMOVED state.  We also let this be if
4472                  * it is one of our special test online cases, which is only
4473                  * attempting to online the device and shouldn't generate an FMA
4474                  * fault.
4475                  */
4476                 vd->vdev_state = VDEV_STATE_REMOVED;
4477                 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4478         } else if (state == VDEV_STATE_REMOVED) {
4479                 vd->vdev_removed = B_TRUE;
4480         } else if (state == VDEV_STATE_CANT_OPEN) {
4481                 /*
4482                  * If we fail to open a vdev during an import or recovery, we
4483                  * mark it as "not available", which signifies that it was
4484                  * never there to begin with.  Failure to open such a device
4485                  * is not considered an error.
4486                  */
4487                 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4488                     spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4489                     vd->vdev_ops->vdev_op_leaf)
4490                         vd->vdev_not_present = 1;
4491
4492                 /*
4493                  * Post the appropriate ereport.  If the 'prevstate' field is
4494                  * set to something other than VDEV_STATE_UNKNOWN, it indicates
4495                  * that this is part of a vdev_reopen().  In this case, we don't
4496                  * want to post the ereport if the device was already in the
4497                  * CANT_OPEN state beforehand.
4498                  *
4499                  * If the 'checkremove' flag is set, then this is an attempt to
4500                  * online the device in response to an insertion event.  If we
4501                  * hit this case, then we have detected an insertion event for a
4502                  * faulted or offline device that wasn't in the removed state.
4503                  * In this scenario, we don't post an ereport because we are
4504                  * about to replace the device, or attempt an online with
4505                  * vdev_forcefault, which will generate the fault for us.
4506                  */
4507                 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4508                     !vd->vdev_not_present && !vd->vdev_checkremove &&
4509                     vd != spa->spa_root_vdev) {
4510                         const char *class;
4511
4512                         switch (aux) {
4513                         case VDEV_AUX_OPEN_FAILED:
4514                                 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4515                                 break;
4516                         case VDEV_AUX_CORRUPT_DATA:
4517                                 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4518                                 break;
4519                         case VDEV_AUX_NO_REPLICAS:
4520                                 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4521                                 break;
4522                         case VDEV_AUX_BAD_GUID_SUM:
4523                                 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4524                                 break;
4525                         case VDEV_AUX_TOO_SMALL:
4526                                 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4527                                 break;
4528                         case VDEV_AUX_BAD_LABEL:
4529                                 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4530                                 break;
4531                         case VDEV_AUX_BAD_ASHIFT:
4532                                 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4533                                 break;
4534                         default:
4535                                 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4536                         }
4537
4538                         zfs_ereport_post(class, spa, vd, NULL, NULL,
4539                             save_state, 0);
4540                 }
4541
4542                 /* Erase any notion of persistent removed state */
4543                 vd->vdev_removed = B_FALSE;
4544         } else {
4545                 vd->vdev_removed = B_FALSE;
4546         }
4547
4548         /*
4549          * Notify ZED of any significant state-change on a leaf vdev.
4550          *
4551          */
4552         if (vd->vdev_ops->vdev_op_leaf) {
4553                 /* preserve original state from a vdev_reopen() */
4554                 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4555                     (vd->vdev_prevstate != vd->vdev_state) &&
4556                     (save_state <= VDEV_STATE_CLOSED))
4557                         save_state = vd->vdev_prevstate;
4558
4559                 /* filter out state change due to initial vdev_open */
4560                 if (save_state > VDEV_STATE_CLOSED)
4561                         zfs_post_state_change(spa, vd, save_state);
4562         }
4563
4564         if (!isopen && vd->vdev_parent)
4565                 vdev_propagate_state(vd->vdev_parent);
4566 }
4567
4568 boolean_t
4569 vdev_children_are_offline(vdev_t *vd)
4570 {
4571         ASSERT(!vd->vdev_ops->vdev_op_leaf);
4572
4573         for (uint64_t i = 0; i < vd->vdev_children; i++) {
4574                 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4575                         return (B_FALSE);
4576         }
4577
4578         return (B_TRUE);
4579 }
4580
4581 /*
4582  * Check the vdev configuration to ensure that it's capable of supporting
4583  * a root pool. We do not support partial configuration.
4584  */
4585 boolean_t
4586 vdev_is_bootable(vdev_t *vd)
4587 {
4588         if (!vd->vdev_ops->vdev_op_leaf) {
4589                 const char *vdev_type = vd->vdev_ops->vdev_op_type;
4590
4591                 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4592                     strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4593                         return (B_FALSE);
4594                 }
4595         }
4596
4597         for (int c = 0; c < vd->vdev_children; c++) {
4598                 if (!vdev_is_bootable(vd->vdev_child[c]))
4599                         return (B_FALSE);
4600         }
4601         return (B_TRUE);
4602 }
4603
4604 boolean_t
4605 vdev_is_concrete(vdev_t *vd)
4606 {
4607         vdev_ops_t *ops = vd->vdev_ops;
4608         if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4609             ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4610                 return (B_FALSE);
4611         } else {
4612                 return (B_TRUE);
4613         }
4614 }
4615
4616 /*
4617  * Determine if a log device has valid content.  If the vdev was
4618  * removed or faulted in the MOS config then we know that
4619  * the content on the log device has already been written to the pool.
4620  */
4621 boolean_t
4622 vdev_log_state_valid(vdev_t *vd)
4623 {
4624         if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4625             !vd->vdev_removed)
4626                 return (B_TRUE);
4627
4628         for (int c = 0; c < vd->vdev_children; c++)
4629                 if (vdev_log_state_valid(vd->vdev_child[c]))
4630                         return (B_TRUE);
4631
4632         return (B_FALSE);
4633 }
4634
4635 /*
4636  * Expand a vdev if possible.
4637  */
4638 void
4639 vdev_expand(vdev_t *vd, uint64_t txg)
4640 {
4641         ASSERT(vd->vdev_top == vd);
4642         ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4643         ASSERT(vdev_is_concrete(vd));
4644
4645         vdev_set_deflate_ratio(vd);
4646
4647         if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4648             vdev_is_concrete(vd)) {
4649                 vdev_metaslab_group_create(vd);
4650                 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4651                 vdev_config_dirty(vd);
4652         }
4653 }
4654
4655 /*
4656  * Split a vdev.
4657  */
4658 void
4659 vdev_split(vdev_t *vd)
4660 {
4661         vdev_t *cvd, *pvd = vd->vdev_parent;
4662
4663         vdev_remove_child(pvd, vd);
4664         vdev_compact_children(pvd);
4665
4666         cvd = pvd->vdev_child[0];
4667         if (pvd->vdev_children == 1) {
4668                 vdev_remove_parent(cvd);
4669                 cvd->vdev_splitting = B_TRUE;
4670         }
4671         vdev_propagate_state(cvd);
4672 }
4673
4674 void
4675 vdev_deadman(vdev_t *vd, char *tag)
4676 {
4677         for (int c = 0; c < vd->vdev_children; c++) {
4678                 vdev_t *cvd = vd->vdev_child[c];
4679
4680                 vdev_deadman(cvd, tag);
4681         }
4682
4683         if (vd->vdev_ops->vdev_op_leaf) {
4684                 vdev_queue_t *vq = &vd->vdev_queue;
4685
4686                 mutex_enter(&vq->vq_lock);
4687                 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4688                         spa_t *spa = vd->vdev_spa;
4689                         zio_t *fio;
4690                         uint64_t delta;
4691
4692                         zfs_dbgmsg("slow vdev: %s has %d active IOs",
4693                             vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4694
4695                         /*
4696                          * Look at the head of all the pending queues,
4697                          * if any I/O has been outstanding for longer than
4698                          * the spa_deadman_synctime invoke the deadman logic.
4699                          */
4700                         fio = avl_first(&vq->vq_active_tree);
4701                         delta = gethrtime() - fio->io_timestamp;
4702                         if (delta > spa_deadman_synctime(spa))
4703                                 zio_deadman(fio, tag);
4704                 }
4705                 mutex_exit(&vq->vq_lock);
4706         }
4707 }
4708
4709 void
4710 vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd)
4711 {
4712         for (uint64_t i = 0; i < vd->vdev_children; i++)
4713                 vdev_set_deferred_resilver(spa, vd->vdev_child[i]);
4714
4715         if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) ||
4716             range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
4717                 return;
4718         }
4719
4720         vd->vdev_resilver_deferred = B_TRUE;
4721         spa->spa_resilver_deferred = B_TRUE;
4722 }
4723
4724 /*
4725  * Translate a logical range to the physical range for the specified vdev_t.
4726  * This function is initially called with a leaf vdev and will walk each
4727  * parent vdev until it reaches a top-level vdev. Once the top-level is
4728  * reached the physical range is initialized and the recursive function
4729  * begins to unwind. As it unwinds it calls the parent's vdev specific
4730  * translation function to do the real conversion.
4731  */
4732 void
4733 vdev_xlate(vdev_t *vd, const range_seg_t *logical_rs, range_seg_t *physical_rs)
4734 {
4735         /*
4736          * Walk up the vdev tree
4737          */
4738         if (vd != vd->vdev_top) {
4739                 vdev_xlate(vd->vdev_parent, logical_rs, physical_rs);
4740         } else {
4741                 /*
4742                  * We've reached the top-level vdev, initialize the
4743                  * physical range to the logical range and start to
4744                  * unwind.
4745                  */
4746                 physical_rs->rs_start = logical_rs->rs_start;
4747                 physical_rs->rs_end = logical_rs->rs_end;
4748                 return;
4749         }
4750
4751         vdev_t *pvd = vd->vdev_parent;
4752         ASSERT3P(pvd, !=, NULL);
4753         ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL);
4754
4755         /*
4756          * As this recursive function unwinds, translate the logical
4757          * range into its physical components by calling the
4758          * vdev specific translate function.
4759          */
4760         range_seg_t intermediate = { { { 0, 0 } } };
4761         pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate);
4762
4763         physical_rs->rs_start = intermediate.rs_start;
4764         physical_rs->rs_end = intermediate.rs_end;
4765 }
4766
4767 #if defined(_KERNEL)
4768 EXPORT_SYMBOL(vdev_fault);
4769 EXPORT_SYMBOL(vdev_degrade);
4770 EXPORT_SYMBOL(vdev_online);
4771 EXPORT_SYMBOL(vdev_offline);
4772 EXPORT_SYMBOL(vdev_clear);
4773
4774 /* BEGIN CSTYLED */
4775 module_param(zfs_vdev_default_ms_count, int, 0644);
4776 MODULE_PARM_DESC(zfs_vdev_default_ms_count,
4777         "Target number of metaslabs per top-level vdev");
4778
4779 module_param(zfs_vdev_default_ms_shift, int, 0644);
4780 MODULE_PARM_DESC(zfs_vdev_default_ms_shift,
4781         "Default limit for metaslab size");
4782
4783 module_param(zfs_vdev_min_ms_count, int, 0644);
4784 MODULE_PARM_DESC(zfs_vdev_min_ms_count,
4785         "Minimum number of metaslabs per top-level vdev");
4786
4787 module_param(zfs_vdev_ms_count_limit, int, 0644);
4788 MODULE_PARM_DESC(zfs_vdev_ms_count_limit,
4789         "Practical upper limit of total metaslabs per top-level vdev");
4790
4791 module_param(zfs_slow_io_events_per_second, uint, 0644);
4792 MODULE_PARM_DESC(zfs_slow_io_events_per_second,
4793         "Rate limit slow IO (delay) events to this many per second");
4794
4795 module_param(zfs_checksum_events_per_second, uint, 0644);
4796 MODULE_PARM_DESC(zfs_checksum_events_per_second, "Rate limit checksum events "
4797         "to this many checksum errors per second (do not set below zed"
4798         "threshold).");
4799
4800 module_param(zfs_scan_ignore_errors, int, 0644);
4801 MODULE_PARM_DESC(zfs_scan_ignore_errors,
4802         "Ignore errors during resilver/scrub");
4803
4804 module_param(vdev_validate_skip, int, 0644);
4805 MODULE_PARM_DESC(vdev_validate_skip,
4806         "Bypass vdev_validate()");
4807
4808 module_param(zfs_nocacheflush, int, 0644);
4809 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
4810 /* END CSTYLED */
4811 #endif