]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/vdev_indirect.c
Serialize ZTHR operations to eliminate races
[FreeBSD/FreeBSD.git] / module / zfs / vdev_indirect.c
1 /*
2  * CDDL HEADER START
3  *
4  * This file and its contents are supplied under the terms of the
5  * Common Development and Distribution License ("CDDL"), version 1.0.
6  * You may only use this file in accordance with the terms of version
7  * 1.0 of the CDDL.
8  *
9  * A full copy of the text of the CDDL should have accompanied this
10  * source.  A copy of the CDDL is also available via the Internet at
11  * http://www.illumos.org/license/CDDL.
12  *
13  * CDDL HEADER END
14  */
15
16 /*
17  * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18  */
19
20 #include <sys/zfs_context.h>
21 #include <sys/spa.h>
22 #include <sys/spa_impl.h>
23 #include <sys/vdev_impl.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zio_checksum.h>
27 #include <sys/metaslab.h>
28 #include <sys/refcount.h>
29 #include <sys/dmu.h>
30 #include <sys/vdev_indirect_mapping.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/abd.h>
35 #include <sys/zthr.h>
36
37 /*
38  * An indirect vdev corresponds to a vdev that has been removed.  Since
39  * we cannot rewrite block pointers of snapshots, etc., we keep a
40  * mapping from old location on the removed device to the new location
41  * on another device in the pool and use this mapping whenever we need
42  * to access the DVA.  Unfortunately, this mapping did not respect
43  * logical block boundaries when it was first created, and so a DVA on
44  * this indirect vdev may be "split" into multiple sections that each
45  * map to a different location.  As a consequence, not all DVAs can be
46  * translated to an equivalent new DVA.  Instead we must provide a
47  * "vdev_remap" operation that executes a callback on each contiguous
48  * segment of the new location.  This function is used in multiple ways:
49  *
50  *  - i/os to this vdev use the callback to determine where the
51  *    data is now located, and issue child i/os for each segment's new
52  *    location.
53  *
54  *  - frees and claims to this vdev use the callback to free or claim
55  *    each mapped segment.  (Note that we don't actually need to claim
56  *    log blocks on indirect vdevs, because we don't allocate to
57  *    removing vdevs.  However, zdb uses zio_claim() for its leak
58  *    detection.)
59  */
60
61 /*
62  * "Big theory statement" for how we mark blocks obsolete.
63  *
64  * When a block on an indirect vdev is freed or remapped, a section of
65  * that vdev's mapping may no longer be referenced (aka "obsolete").  We
66  * keep track of how much of each mapping entry is obsolete.  When
67  * an entry becomes completely obsolete, we can remove it, thus reducing
68  * the memory used by the mapping.  The complete picture of obsolescence
69  * is given by the following data structures, described below:
70  *  - the entry-specific obsolete count
71  *  - the vdev-specific obsolete spacemap
72  *  - the pool-specific obsolete bpobj
73  *
74  * == On disk data structures used ==
75  *
76  * We track the obsolete space for the pool using several objects.  Each
77  * of these objects is created on demand and freed when no longer
78  * needed, and is assumed to be empty if it does not exist.
79  * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80  *
81  *  - Each vic_mapping_object (associated with an indirect vdev) can
82  *    have a vimp_counts_object.  This is an array of uint32_t's
83  *    with the same number of entries as the vic_mapping_object.  When
84  *    the mapping is condensed, entries from the vic_obsolete_sm_object
85  *    (see below) are folded into the counts.  Therefore, each
86  *    obsolete_counts entry tells us the number of bytes in the
87  *    corresponding mapping entry that were not referenced when the
88  *    mapping was last condensed.
89  *
90  *  - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91  *    This is a space map containing an alloc entry for every DVA that
92  *    has been obsoleted since the last time this indirect vdev was
93  *    condensed.  We use this object in order to improve performance
94  *    when marking a DVA as obsolete.  Instead of modifying an arbitrary
95  *    offset of the vimp_counts_object, we only need to append an entry
96  *    to the end of this object.  When a DVA becomes obsolete, it is
97  *    added to the obsolete space map.  This happens when the DVA is
98  *    freed, remapped and not referenced by a snapshot, or the last
99  *    snapshot referencing it is destroyed.
100  *
101  *  - Each dataset can have a ds_remap_deadlist object.  This is a
102  *    deadlist object containing all blocks that were remapped in this
103  *    dataset but referenced in a previous snapshot.  Blocks can *only*
104  *    appear on this list if they were remapped (dsl_dataset_block_remapped);
105  *    blocks that were killed in a head dataset are put on the normal
106  *    ds_deadlist and marked obsolete when they are freed.
107  *
108  *  - The pool can have a dp_obsolete_bpobj.  This is a list of blocks
109  *    in the pool that need to be marked obsolete.  When a snapshot is
110  *    destroyed, we move some of the ds_remap_deadlist to the obsolete
111  *    bpobj (see dsl_destroy_snapshot_handle_remaps()).  We then
112  *    asynchronously process the obsolete bpobj, moving its entries to
113  *    the specific vdevs' obsolete space maps.
114  *
115  * == Summary of how we mark blocks as obsolete ==
116  *
117  * - When freeing a block: if any DVA is on an indirect vdev, append to
118  *   vic_obsolete_sm_object.
119  * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120  *   references; otherwise append to vic_obsolete_sm_object).
121  * - When freeing a snapshot: move parts of ds_remap_deadlist to
122  *   dp_obsolete_bpobj (same algorithm as ds_deadlist).
123  * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124  *   individual vdev's vic_obsolete_sm_object.
125  */
126
127 /*
128  * "Big theory statement" for how we condense indirect vdevs.
129  *
130  * Condensing an indirect vdev's mapping is the process of determining
131  * the precise counts of obsolete space for each mapping entry (by
132  * integrating the obsolete spacemap into the obsolete counts) and
133  * writing out a new mapping that contains only referenced entries.
134  *
135  * We condense a vdev when we expect the mapping to shrink (see
136  * vdev_indirect_should_condense()), but only perform one condense at a
137  * time to limit the memory usage.  In addition, we use a separate
138  * open-context thread (spa_condense_indirect_thread) to incrementally
139  * create the new mapping object in a way that minimizes the impact on
140  * the rest of the system.
141  *
142  * == Generating a new mapping ==
143  *
144  * To generate a new mapping, we follow these steps:
145  *
146  * 1. Save the old obsolete space map and create a new mapping object
147  *    (see spa_condense_indirect_start_sync()).  This initializes the
148  *    spa_condensing_indirect_phys with the "previous obsolete space map",
149  *    which is now read only.  Newly obsolete DVAs will be added to a
150  *    new (initially empty) obsolete space map, and will not be
151  *    considered as part of this condense operation.
152  *
153  * 2. Construct in memory the precise counts of obsolete space for each
154  *    mapping entry, by incorporating the obsolete space map into the
155  *    counts.  (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156  *
157  * 3. Iterate through each mapping entry, writing to the new mapping any
158  *    entries that are not completely obsolete (i.e. which don't have
159  *    obsolete count == mapping length).  (See
160  *    spa_condense_indirect_generate_new_mapping().)
161  *
162  * 4. Destroy the old mapping object and switch over to the new one
163  *    (spa_condense_indirect_complete_sync).
164  *
165  * == Restarting from failure ==
166  *
167  * To restart the condense when we import/open the pool, we must start
168  * at the 2nd step above: reconstruct the precise counts in memory,
169  * based on the space map + counts.  Then in the 3rd step, we start
170  * iterating where we left off: at vimp_max_offset of the new mapping
171  * object.
172  */
173
174 int zfs_condense_indirect_vdevs_enable = B_TRUE;
175
176 /*
177  * Condense if at least this percent of the bytes in the mapping is
178  * obsolete.  With the default of 25%, the amount of space mapped
179  * will be reduced to 1% of its original size after at most 16
180  * condenses.  Higher values will condense less often (causing less
181  * i/o); lower values will reduce the mapping size more quickly.
182  */
183 int zfs_indirect_condense_obsolete_pct = 25;
184
185 /*
186  * Condense if the obsolete space map takes up more than this amount of
187  * space on disk (logically).  This limits the amount of disk space
188  * consumed by the obsolete space map; the default of 1GB is small enough
189  * that we typically don't mind "wasting" it.
190  */
191 unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
192
193 /*
194  * Don't bother condensing if the mapping uses less than this amount of
195  * memory.  The default of 128KB is considered a "trivial" amount of
196  * memory and not worth reducing.
197  */
198 unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
199
200 /*
201  * This is used by the test suite so that it can ensure that certain
202  * actions happen while in the middle of a condense (which might otherwise
203  * complete too quickly).  If used to reduce the performance impact of
204  * condensing in production, a maximum value of 1 should be sufficient.
205  */
206 int zfs_condense_indirect_commit_entry_delay_ms = 0;
207
208 /*
209  * If an indirect split block contains more than this many possible unique
210  * combinations when being reconstructed, consider it too computationally
211  * expensive to check them all. Instead, try at most 100 randomly-selected
212  * combinations each time the block is accessed.  This allows all segment
213  * copies to participate fairly in the reconstruction when all combinations
214  * cannot be checked and prevents repeated use of one bad copy.
215  */
216 int zfs_reconstruct_indirect_combinations_max = 256;
217
218
219 /*
220  * Enable to simulate damaged segments and validate reconstruction.  This
221  * is intentionally not exposed as a module parameter.
222  */
223 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
224
225 /*
226  * The indirect_child_t represents the vdev that we will read from, when we
227  * need to read all copies of the data (e.g. for scrub or reconstruction).
228  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
229  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
230  * ic_vdev is a child of the mirror.
231  */
232 typedef struct indirect_child {
233         abd_t *ic_data;
234         vdev_t *ic_vdev;
235
236         /*
237          * ic_duplicate is NULL when the ic_data contents are unique, when it
238          * is determined to be a duplicate it references the primary child.
239          */
240         struct indirect_child *ic_duplicate;
241         list_node_t ic_node; /* node on is_unique_child */
242 } indirect_child_t;
243
244 /*
245  * The indirect_split_t represents one mapped segment of an i/o to the
246  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
247  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
248  * For split blocks, there will be several of these.
249  */
250 typedef struct indirect_split {
251         list_node_t is_node; /* link on iv_splits */
252
253         /*
254          * is_split_offset is the offset into the i/o.
255          * This is the sum of the previous splits' is_size's.
256          */
257         uint64_t is_split_offset;
258
259         vdev_t *is_vdev; /* top-level vdev */
260         uint64_t is_target_offset; /* offset on is_vdev */
261         uint64_t is_size;
262         int is_children; /* number of entries in is_child[] */
263         int is_unique_children; /* number of entries in is_unique_child */
264         list_t is_unique_child;
265
266         /*
267          * is_good_child is the child that we are currently using to
268          * attempt reconstruction.
269          */
270         indirect_child_t *is_good_child;
271
272         indirect_child_t is_child[1]; /* variable-length */
273 } indirect_split_t;
274
275 /*
276  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
277  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
278  */
279 typedef struct indirect_vsd {
280         boolean_t iv_split_block;
281         boolean_t iv_reconstruct;
282         uint64_t iv_unique_combinations;
283         uint64_t iv_attempts;
284         uint64_t iv_attempts_max;
285
286         list_t iv_splits; /* list of indirect_split_t's */
287 } indirect_vsd_t;
288
289 static void
290 vdev_indirect_map_free(zio_t *zio)
291 {
292         indirect_vsd_t *iv = zio->io_vsd;
293
294         indirect_split_t *is;
295         while ((is = list_head(&iv->iv_splits)) != NULL) {
296                 for (int c = 0; c < is->is_children; c++) {
297                         indirect_child_t *ic = &is->is_child[c];
298                         if (ic->ic_data != NULL)
299                                 abd_free(ic->ic_data);
300                 }
301                 list_remove(&iv->iv_splits, is);
302
303                 indirect_child_t *ic;
304                 while ((ic = list_head(&is->is_unique_child)) != NULL)
305                         list_remove(&is->is_unique_child, ic);
306
307                 list_destroy(&is->is_unique_child);
308
309                 kmem_free(is,
310                     offsetof(indirect_split_t, is_child[is->is_children]));
311         }
312         kmem_free(iv, sizeof (*iv));
313 }
314
315 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
316         .vsd_free = vdev_indirect_map_free,
317         .vsd_cksum_report = zio_vsd_default_cksum_report
318 };
319
320 /*
321  * Mark the given offset and size as being obsolete.
322  */
323 void
324 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
325 {
326         spa_t *spa = vd->vdev_spa;
327
328         ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
329         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
330         ASSERT(size > 0);
331         VERIFY(vdev_indirect_mapping_entry_for_offset(
332             vd->vdev_indirect_mapping, offset) != NULL);
333
334         if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
335                 mutex_enter(&vd->vdev_obsolete_lock);
336                 range_tree_add(vd->vdev_obsolete_segments, offset, size);
337                 mutex_exit(&vd->vdev_obsolete_lock);
338                 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
339         }
340 }
341
342 /*
343  * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
344  * wrapper is provided because the DMU does not know about vdev_t's and
345  * cannot directly call vdev_indirect_mark_obsolete.
346  */
347 void
348 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
349     uint64_t size, dmu_tx_t *tx)
350 {
351         vdev_t *vd = vdev_lookup_top(spa, vdev_id);
352         ASSERT(dmu_tx_is_syncing(tx));
353
354         /* The DMU can only remap indirect vdevs. */
355         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
356         vdev_indirect_mark_obsolete(vd, offset, size);
357 }
358
359 static spa_condensing_indirect_t *
360 spa_condensing_indirect_create(spa_t *spa)
361 {
362         spa_condensing_indirect_phys_t *scip =
363             &spa->spa_condensing_indirect_phys;
364         spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
365         objset_t *mos = spa->spa_meta_objset;
366
367         for (int i = 0; i < TXG_SIZE; i++) {
368                 list_create(&sci->sci_new_mapping_entries[i],
369                     sizeof (vdev_indirect_mapping_entry_t),
370                     offsetof(vdev_indirect_mapping_entry_t, vime_node));
371         }
372
373         sci->sci_new_mapping =
374             vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
375
376         return (sci);
377 }
378
379 static void
380 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
381 {
382         for (int i = 0; i < TXG_SIZE; i++)
383                 list_destroy(&sci->sci_new_mapping_entries[i]);
384
385         if (sci->sci_new_mapping != NULL)
386                 vdev_indirect_mapping_close(sci->sci_new_mapping);
387
388         kmem_free(sci, sizeof (*sci));
389 }
390
391 boolean_t
392 vdev_indirect_should_condense(vdev_t *vd)
393 {
394         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
395         spa_t *spa = vd->vdev_spa;
396
397         ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
398
399         if (!zfs_condense_indirect_vdevs_enable)
400                 return (B_FALSE);
401
402         /*
403          * We can only condense one indirect vdev at a time.
404          */
405         if (spa->spa_condensing_indirect != NULL)
406                 return (B_FALSE);
407
408         if (spa_shutting_down(spa))
409                 return (B_FALSE);
410
411         /*
412          * The mapping object size must not change while we are
413          * condensing, so we can only condense indirect vdevs
414          * (not vdevs that are still in the middle of being removed).
415          */
416         if (vd->vdev_ops != &vdev_indirect_ops)
417                 return (B_FALSE);
418
419         /*
420          * If nothing new has been marked obsolete, there is no
421          * point in condensing.
422          */
423         ASSERTV(uint64_t obsolete_sm_obj);
424         ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
425         if (vd->vdev_obsolete_sm == NULL) {
426                 ASSERT0(obsolete_sm_obj);
427                 return (B_FALSE);
428         }
429
430         ASSERT(vd->vdev_obsolete_sm != NULL);
431
432         ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm));
433
434         uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
435         uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
436         uint64_t mapping_size = vdev_indirect_mapping_size(vim);
437         uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
438
439         ASSERT3U(bytes_obsolete, <=, bytes_mapped);
440
441         /*
442          * If a high percentage of the bytes that are mapped have become
443          * obsolete, condense (unless the mapping is already small enough).
444          * This has a good chance of reducing the amount of memory used
445          * by the mapping.
446          */
447         if (bytes_obsolete * 100 / bytes_mapped >=
448             zfs_indirect_condense_obsolete_pct &&
449             mapping_size > zfs_condense_min_mapping_bytes) {
450                 zfs_dbgmsg("should condense vdev %llu because obsolete "
451                     "spacemap covers %d%% of %lluMB mapping",
452                     (u_longlong_t)vd->vdev_id,
453                     (int)(bytes_obsolete * 100 / bytes_mapped),
454                     (u_longlong_t)bytes_mapped / 1024 / 1024);
455                 return (B_TRUE);
456         }
457
458         /*
459          * If the obsolete space map takes up too much space on disk,
460          * condense in order to free up this disk space.
461          */
462         if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
463                 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
464                     "length %lluMB >= max size %lluMB",
465                     (u_longlong_t)vd->vdev_id,
466                     (u_longlong_t)obsolete_sm_size / 1024 / 1024,
467                     (u_longlong_t)zfs_condense_max_obsolete_bytes /
468                     1024 / 1024);
469                 return (B_TRUE);
470         }
471
472         return (B_FALSE);
473 }
474
475 /*
476  * This sync task completes (finishes) a condense, deleting the old
477  * mapping and replacing it with the new one.
478  */
479 static void
480 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
481 {
482         spa_condensing_indirect_t *sci = arg;
483         spa_t *spa = dmu_tx_pool(tx)->dp_spa;
484         spa_condensing_indirect_phys_t *scip =
485             &spa->spa_condensing_indirect_phys;
486         vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
487         vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
488         objset_t *mos = spa->spa_meta_objset;
489         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
490         uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
491         uint64_t new_count =
492             vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
493
494         ASSERT(dmu_tx_is_syncing(tx));
495         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
496         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
497         for (int i = 0; i < TXG_SIZE; i++) {
498                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
499         }
500         ASSERT(vic->vic_mapping_object != 0);
501         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
502         ASSERT(scip->scip_next_mapping_object != 0);
503         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
504
505         /*
506          * Reset vdev_indirect_mapping to refer to the new object.
507          */
508         rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
509         vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
510         vd->vdev_indirect_mapping = sci->sci_new_mapping;
511         rw_exit(&vd->vdev_indirect_rwlock);
512
513         sci->sci_new_mapping = NULL;
514         vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
515         vic->vic_mapping_object = scip->scip_next_mapping_object;
516         scip->scip_next_mapping_object = 0;
517
518         space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
519         spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
520         scip->scip_prev_obsolete_sm_object = 0;
521
522         scip->scip_vdev = 0;
523
524         VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
525             DMU_POOL_CONDENSING_INDIRECT, tx));
526         spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
527         spa->spa_condensing_indirect = NULL;
528
529         zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
530             "new mapping object %llu has %llu entries "
531             "(was %llu entries)",
532             vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
533             new_count, old_count);
534
535         vdev_config_dirty(spa->spa_root_vdev);
536 }
537
538 /*
539  * This sync task appends entries to the new mapping object.
540  */
541 static void
542 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
543 {
544         spa_condensing_indirect_t *sci = arg;
545         uint64_t txg = dmu_tx_get_txg(tx);
546         ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
547
548         ASSERT(dmu_tx_is_syncing(tx));
549         ASSERT3P(sci, ==, spa->spa_condensing_indirect);
550
551         vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
552             &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
553         ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
554 }
555
556 /*
557  * Open-context function to add one entry to the new mapping.  The new
558  * entry will be remembered and written from syncing context.
559  */
560 static void
561 spa_condense_indirect_commit_entry(spa_t *spa,
562     vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
563 {
564         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
565
566         ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
567
568         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
569         dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
570         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
571         int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
572
573         /*
574          * If we are the first entry committed this txg, kick off the sync
575          * task to write to the MOS on our behalf.
576          */
577         if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
578                 dsl_sync_task_nowait(dmu_tx_pool(tx),
579                     spa_condense_indirect_commit_sync, sci,
580                     0, ZFS_SPACE_CHECK_NONE, tx);
581         }
582
583         vdev_indirect_mapping_entry_t *vime =
584             kmem_alloc(sizeof (*vime), KM_SLEEP);
585         vime->vime_mapping = *vimep;
586         vime->vime_obsolete_count = count;
587         list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
588
589         dmu_tx_commit(tx);
590 }
591
592 static void
593 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
594     uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
595 {
596         spa_t *spa = vd->vdev_spa;
597         uint64_t mapi = start_index;
598         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
599         uint64_t old_num_entries =
600             vdev_indirect_mapping_num_entries(old_mapping);
601
602         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
603         ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
604
605         zfs_dbgmsg("starting condense of vdev %llu from index %llu",
606             (u_longlong_t)vd->vdev_id,
607             (u_longlong_t)mapi);
608
609         while (mapi < old_num_entries) {
610
611                 if (zthr_iscancelled(zthr)) {
612                         zfs_dbgmsg("pausing condense of vdev %llu "
613                             "at index %llu", (u_longlong_t)vd->vdev_id,
614                             (u_longlong_t)mapi);
615                         break;
616                 }
617
618                 vdev_indirect_mapping_entry_phys_t *entry =
619                     &old_mapping->vim_entries[mapi];
620                 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
621                 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
622                 if (obsolete_counts[mapi] < entry_size) {
623                         spa_condense_indirect_commit_entry(spa, entry,
624                             obsolete_counts[mapi]);
625
626                         /*
627                          * This delay may be requested for testing, debugging,
628                          * or performance reasons.
629                          */
630                         hrtime_t now = gethrtime();
631                         hrtime_t sleep_until = now + MSEC2NSEC(
632                             zfs_condense_indirect_commit_entry_delay_ms);
633                         zfs_sleep_until(sleep_until);
634                 }
635
636                 mapi++;
637         }
638 }
639
640 /* ARGSUSED */
641 static boolean_t
642 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
643 {
644         spa_t *spa = arg;
645
646         return (spa->spa_condensing_indirect != NULL);
647 }
648
649 /* ARGSUSED */
650 static void
651 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
652 {
653         spa_t *spa = arg;
654         vdev_t *vd;
655
656         ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
657         spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
658         vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
659         ASSERT3P(vd, !=, NULL);
660         spa_config_exit(spa, SCL_VDEV, FTAG);
661
662         spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
663         spa_condensing_indirect_phys_t *scip =
664             &spa->spa_condensing_indirect_phys;
665         uint32_t *counts;
666         uint64_t start_index;
667         vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
668         space_map_t *prev_obsolete_sm = NULL;
669
670         ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
671         ASSERT(scip->scip_next_mapping_object != 0);
672         ASSERT(scip->scip_prev_obsolete_sm_object != 0);
673         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
674
675         for (int i = 0; i < TXG_SIZE; i++) {
676                 /*
677                  * The list must start out empty in order for the
678                  * _commit_sync() sync task to be properly registered
679                  * on the first call to _commit_entry(); so it's wise
680                  * to double check and ensure we actually are starting
681                  * with empty lists.
682                  */
683                 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
684         }
685
686         VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
687             scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
688         space_map_update(prev_obsolete_sm);
689         counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
690         if (prev_obsolete_sm != NULL) {
691                 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
692                     counts, prev_obsolete_sm);
693         }
694         space_map_close(prev_obsolete_sm);
695
696         /*
697          * Generate new mapping.  Determine what index to continue from
698          * based on the max offset that we've already written in the
699          * new mapping.
700          */
701         uint64_t max_offset =
702             vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
703         if (max_offset == 0) {
704                 /* We haven't written anything to the new mapping yet. */
705                 start_index = 0;
706         } else {
707                 /*
708                  * Pick up from where we left off. _entry_for_offset()
709                  * returns a pointer into the vim_entries array. If
710                  * max_offset is greater than any of the mappings
711                  * contained in the table  NULL will be returned and
712                  * that indicates we've exhausted our iteration of the
713                  * old_mapping.
714                  */
715
716                 vdev_indirect_mapping_entry_phys_t *entry =
717                     vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
718                     max_offset);
719
720                 if (entry == NULL) {
721                         /*
722                          * We've already written the whole new mapping.
723                          * This special value will cause us to skip the
724                          * generate_new_mapping step and just do the sync
725                          * task to complete the condense.
726                          */
727                         start_index = UINT64_MAX;
728                 } else {
729                         start_index = entry - old_mapping->vim_entries;
730                         ASSERT3U(start_index, <,
731                             vdev_indirect_mapping_num_entries(old_mapping));
732                 }
733         }
734
735         spa_condense_indirect_generate_new_mapping(vd, counts,
736             start_index, zthr);
737
738         vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
739
740         /*
741          * If the zthr has received a cancellation signal while running
742          * in generate_new_mapping() or at any point after that, then bail
743          * early. We don't want to complete the condense if the spa is
744          * shutting down.
745          */
746         if (zthr_iscancelled(zthr))
747                 return;
748
749         VERIFY0(dsl_sync_task(spa_name(spa), NULL,
750             spa_condense_indirect_complete_sync, sci, 0,
751             ZFS_SPACE_CHECK_EXTRA_RESERVED));
752 }
753
754 /*
755  * Sync task to begin the condensing process.
756  */
757 void
758 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
759 {
760         spa_t *spa = vd->vdev_spa;
761         spa_condensing_indirect_phys_t *scip =
762             &spa->spa_condensing_indirect_phys;
763
764         ASSERT0(scip->scip_next_mapping_object);
765         ASSERT0(scip->scip_prev_obsolete_sm_object);
766         ASSERT0(scip->scip_vdev);
767         ASSERT(dmu_tx_is_syncing(tx));
768         ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
769         ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
770         ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
771
772         uint64_t obsolete_sm_obj;
773         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
774         ASSERT3U(obsolete_sm_obj, !=, 0);
775
776         scip->scip_vdev = vd->vdev_id;
777         scip->scip_next_mapping_object =
778             vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
779
780         scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
781
782         /*
783          * We don't need to allocate a new space map object, since
784          * vdev_indirect_sync_obsolete will allocate one when needed.
785          */
786         space_map_close(vd->vdev_obsolete_sm);
787         vd->vdev_obsolete_sm = NULL;
788         VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
789             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
790
791         VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
792             DMU_POOL_DIRECTORY_OBJECT,
793             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
794             sizeof (*scip) / sizeof (uint64_t), scip, tx));
795
796         ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
797         spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
798
799         zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
800             "posm=%llu nm=%llu",
801             vd->vdev_id, dmu_tx_get_txg(tx),
802             (u_longlong_t)scip->scip_prev_obsolete_sm_object,
803             (u_longlong_t)scip->scip_next_mapping_object);
804
805         zthr_wakeup(spa->spa_condense_zthr);
806 }
807
808 /*
809  * Sync to the given vdev's obsolete space map any segments that are no longer
810  * referenced as of the given txg.
811  *
812  * If the obsolete space map doesn't exist yet, create and open it.
813  */
814 void
815 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
816 {
817         spa_t *spa = vd->vdev_spa;
818         ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
819
820         ASSERT3U(vic->vic_mapping_object, !=, 0);
821         ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
822         ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
823         ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
824
825         uint64_t obsolete_sm_object;
826         VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
827         if (obsolete_sm_object == 0) {
828                 obsolete_sm_object = space_map_alloc(spa->spa_meta_objset,
829                     vdev_standard_sm_blksz, tx);
830
831                 ASSERT(vd->vdev_top_zap != 0);
832                 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
833                     VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
834                     sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
835                 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
836                 ASSERT3U(obsolete_sm_object, !=, 0);
837
838                 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
839                 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
840                     spa->spa_meta_objset, obsolete_sm_object,
841                     0, vd->vdev_asize, 0));
842                 space_map_update(vd->vdev_obsolete_sm);
843         }
844
845         ASSERT(vd->vdev_obsolete_sm != NULL);
846         ASSERT3U(obsolete_sm_object, ==,
847             space_map_object(vd->vdev_obsolete_sm));
848
849         space_map_write(vd->vdev_obsolete_sm,
850             vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
851         space_map_update(vd->vdev_obsolete_sm);
852         range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
853 }
854
855 int
856 spa_condense_init(spa_t *spa)
857 {
858         int error = zap_lookup(spa->spa_meta_objset,
859             DMU_POOL_DIRECTORY_OBJECT,
860             DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
861             sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
862             &spa->spa_condensing_indirect_phys);
863         if (error == 0) {
864                 if (spa_writeable(spa)) {
865                         spa->spa_condensing_indirect =
866                             spa_condensing_indirect_create(spa);
867                 }
868                 return (0);
869         } else if (error == ENOENT) {
870                 return (0);
871         } else {
872                 return (error);
873         }
874 }
875
876 void
877 spa_condense_fini(spa_t *spa)
878 {
879         if (spa->spa_condensing_indirect != NULL) {
880                 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
881                 spa->spa_condensing_indirect = NULL;
882         }
883 }
884
885 void
886 spa_start_indirect_condensing_thread(spa_t *spa)
887 {
888         ASSERT3P(spa->spa_condense_zthr, ==, NULL);
889         spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
890             spa_condense_indirect_thread, spa);
891 }
892
893 /*
894  * Gets the obsolete spacemap object from the vdev's ZAP.  On success sm_obj
895  * will contain either the obsolete spacemap object or zero if none exists.
896  * All other errors are returned to the caller.
897  */
898 int
899 vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj)
900 {
901         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
902
903         if (vd->vdev_top_zap == 0) {
904                 *sm_obj = 0;
905                 return (0);
906         }
907
908         int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
909             VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, sm_obj);
910         if (error == ENOENT) {
911                 *sm_obj = 0;
912                 error = 0;
913         }
914
915         return (error);
916 }
917
918 /*
919  * Gets the obsolete count are precise spacemap object from the vdev's ZAP.
920  * On success are_precise will be set to reflect if the counts are precise.
921  * All other errors are returned to the caller.
922  */
923 int
924 vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise)
925 {
926         ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
927
928         if (vd->vdev_top_zap == 0) {
929                 *are_precise = B_FALSE;
930                 return (0);
931         }
932
933         uint64_t val = 0;
934         int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
935             VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
936         if (error == 0) {
937                 *are_precise = (val != 0);
938         } else if (error == ENOENT) {
939                 *are_precise = B_FALSE;
940                 error = 0;
941         }
942
943         return (error);
944 }
945
946 /* ARGSUSED */
947 static void
948 vdev_indirect_close(vdev_t *vd)
949 {
950 }
951
952 /* ARGSUSED */
953 static int
954 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
955     uint64_t *ashift)
956 {
957         *psize = *max_psize = vd->vdev_asize +
958             VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
959         *ashift = vd->vdev_ashift;
960         return (0);
961 }
962
963 typedef struct remap_segment {
964         vdev_t *rs_vd;
965         uint64_t rs_offset;
966         uint64_t rs_asize;
967         uint64_t rs_split_offset;
968         list_node_t rs_node;
969 } remap_segment_t;
970
971 remap_segment_t *
972 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
973 {
974         remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
975         rs->rs_vd = vd;
976         rs->rs_offset = offset;
977         rs->rs_asize = asize;
978         rs->rs_split_offset = split_offset;
979         return (rs);
980 }
981
982 /*
983  * Given an indirect vdev and an extent on that vdev, it duplicates the
984  * physical entries of the indirect mapping that correspond to the extent
985  * to a new array and returns a pointer to it. In addition, copied_entries
986  * is populated with the number of mapping entries that were duplicated.
987  *
988  * Note that the function assumes that the caller holds vdev_indirect_rwlock.
989  * This ensures that the mapping won't change due to condensing as we
990  * copy over its contents.
991  *
992  * Finally, since we are doing an allocation, it is up to the caller to
993  * free the array allocated in this function.
994  */
995 vdev_indirect_mapping_entry_phys_t *
996 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
997     uint64_t asize, uint64_t *copied_entries)
998 {
999         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
1000         vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1001         uint64_t entries = 0;
1002
1003         ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
1004
1005         vdev_indirect_mapping_entry_phys_t *first_mapping =
1006             vdev_indirect_mapping_entry_for_offset(vim, offset);
1007         ASSERT3P(first_mapping, !=, NULL);
1008
1009         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
1010         while (asize > 0) {
1011                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1012
1013                 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
1014                 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1015
1016                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
1017                 uint64_t inner_size = MIN(asize, size - inner_offset);
1018
1019                 offset += inner_size;
1020                 asize -= inner_size;
1021                 entries++;
1022                 m++;
1023         }
1024
1025         size_t copy_length = entries * sizeof (*first_mapping);
1026         duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1027         bcopy(first_mapping, duplicate_mappings, copy_length);
1028         *copied_entries = entries;
1029
1030         return (duplicate_mappings);
1031 }
1032
1033 /*
1034  * Goes through the relevant indirect mappings until it hits a concrete vdev
1035  * and issues the callback. On the way to the concrete vdev, if any other
1036  * indirect vdevs are encountered, then the callback will also be called on
1037  * each of those indirect vdevs. For example, if the segment is mapped to
1038  * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1039  * mapped to segment B on concrete vdev 2, then the callback will be called on
1040  * both vdev 1 and vdev 2.
1041  *
1042  * While the callback passed to vdev_indirect_remap() is called on every vdev
1043  * the function encounters, certain callbacks only care about concrete vdevs.
1044  * These types of callbacks should return immediately and explicitly when they
1045  * are called on an indirect vdev.
1046  *
1047  * Because there is a possibility that a DVA section in the indirect device
1048  * has been split into multiple sections in our mapping, we keep track
1049  * of the relevant contiguous segments of the new location (remap_segment_t)
1050  * in a stack. This way we can call the callback for each of the new sections
1051  * created by a single section of the indirect device. Note though, that in
1052  * this scenario the callbacks in each split block won't occur in-order in
1053  * terms of offset, so callers should not make any assumptions about that.
1054  *
1055  * For callbacks that don't handle split blocks and immediately return when
1056  * they encounter them (as is the case for remap_blkptr_cb), the caller can
1057  * assume that its callback will be applied from the first indirect vdev
1058  * encountered to the last one and then the concrete vdev, in that order.
1059  */
1060 static void
1061 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1062     void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1063 {
1064         list_t stack;
1065         spa_t *spa = vd->vdev_spa;
1066
1067         list_create(&stack, sizeof (remap_segment_t),
1068             offsetof(remap_segment_t, rs_node));
1069
1070         for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1071             rs != NULL; rs = list_remove_head(&stack)) {
1072                 vdev_t *v = rs->rs_vd;
1073                 uint64_t num_entries = 0;
1074
1075                 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1076                 ASSERT(rs->rs_asize > 0);
1077
1078                 /*
1079                  * Note: As this function can be called from open context
1080                  * (e.g. zio_read()), we need the following rwlock to
1081                  * prevent the mapping from being changed by condensing.
1082                  *
1083                  * So we grab the lock and we make a copy of the entries
1084                  * that are relevant to the extent that we are working on.
1085                  * Once that is done, we drop the lock and iterate over
1086                  * our copy of the mapping. Once we are done with the with
1087                  * the remap segment and we free it, we also free our copy
1088                  * of the indirect mapping entries that are relevant to it.
1089                  *
1090                  * This way we don't need to wait until the function is
1091                  * finished with a segment, to condense it. In addition, we
1092                  * don't need a recursive rwlock for the case that a call to
1093                  * vdev_indirect_remap() needs to call itself (through the
1094                  * codepath of its callback) for the same vdev in the middle
1095                  * of its execution.
1096                  */
1097                 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1098                 ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
1099
1100                 vdev_indirect_mapping_entry_phys_t *mapping =
1101                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
1102                     rs->rs_offset, rs->rs_asize, &num_entries);
1103                 ASSERT3P(mapping, !=, NULL);
1104                 ASSERT3U(num_entries, >, 0);
1105                 rw_exit(&v->vdev_indirect_rwlock);
1106
1107                 for (uint64_t i = 0; i < num_entries; i++) {
1108                         /*
1109                          * Note: the vdev_indirect_mapping can not change
1110                          * while we are running.  It only changes while the
1111                          * removal is in progress, and then only from syncing
1112                          * context. While a removal is in progress, this
1113                          * function is only called for frees, which also only
1114                          * happen from syncing context.
1115                          */
1116                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1117
1118                         ASSERT3P(m, !=, NULL);
1119                         ASSERT3U(rs->rs_asize, >, 0);
1120
1121                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1122                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1123                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1124
1125                         ASSERT3U(rs->rs_offset, >=,
1126                             DVA_MAPPING_GET_SRC_OFFSET(m));
1127                         ASSERT3U(rs->rs_offset, <,
1128                             DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1129                         ASSERT3U(dst_vdev, !=, v->vdev_id);
1130
1131                         uint64_t inner_offset = rs->rs_offset -
1132                             DVA_MAPPING_GET_SRC_OFFSET(m);
1133                         uint64_t inner_size =
1134                             MIN(rs->rs_asize, size - inner_offset);
1135
1136                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1137                         ASSERT3P(dst_v, !=, NULL);
1138
1139                         if (dst_v->vdev_ops == &vdev_indirect_ops) {
1140                                 list_insert_head(&stack,
1141                                     rs_alloc(dst_v, dst_offset + inner_offset,
1142                                     inner_size, rs->rs_split_offset));
1143
1144                         }
1145
1146                         if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1147                             IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1148                                 /*
1149                                  * Note: This clause exists only solely for
1150                                  * testing purposes. We use it to ensure that
1151                                  * split blocks work and that the callbacks
1152                                  * using them yield the same result if issued
1153                                  * in reverse order.
1154                                  */
1155                                 uint64_t inner_half = inner_size / 2;
1156
1157                                 func(rs->rs_split_offset + inner_half, dst_v,
1158                                     dst_offset + inner_offset + inner_half,
1159                                     inner_half, arg);
1160
1161                                 func(rs->rs_split_offset, dst_v,
1162                                     dst_offset + inner_offset,
1163                                     inner_half, arg);
1164                         } else {
1165                                 func(rs->rs_split_offset, dst_v,
1166                                     dst_offset + inner_offset,
1167                                     inner_size, arg);
1168                         }
1169
1170                         rs->rs_offset += inner_size;
1171                         rs->rs_asize -= inner_size;
1172                         rs->rs_split_offset += inner_size;
1173                 }
1174                 VERIFY0(rs->rs_asize);
1175
1176                 kmem_free(mapping, num_entries * sizeof (*mapping));
1177                 kmem_free(rs, sizeof (remap_segment_t));
1178         }
1179         list_destroy(&stack);
1180 }
1181
1182 static void
1183 vdev_indirect_child_io_done(zio_t *zio)
1184 {
1185         zio_t *pio = zio->io_private;
1186
1187         mutex_enter(&pio->io_lock);
1188         pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1189         mutex_exit(&pio->io_lock);
1190
1191         abd_put(zio->io_abd);
1192 }
1193
1194 /*
1195  * This is a callback for vdev_indirect_remap() which allocates an
1196  * indirect_split_t for each split segment and adds it to iv_splits.
1197  */
1198 static void
1199 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1200     uint64_t size, void *arg)
1201 {
1202         zio_t *zio = arg;
1203         indirect_vsd_t *iv = zio->io_vsd;
1204
1205         ASSERT3P(vd, !=, NULL);
1206
1207         if (vd->vdev_ops == &vdev_indirect_ops)
1208                 return;
1209
1210         int n = 1;
1211         if (vd->vdev_ops == &vdev_mirror_ops)
1212                 n = vd->vdev_children;
1213
1214         indirect_split_t *is =
1215             kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1216
1217         is->is_children = n;
1218         is->is_size = size;
1219         is->is_split_offset = split_offset;
1220         is->is_target_offset = offset;
1221         is->is_vdev = vd;
1222         list_create(&is->is_unique_child, sizeof (indirect_child_t),
1223             offsetof(indirect_child_t, ic_node));
1224
1225         /*
1226          * Note that we only consider multiple copies of the data for
1227          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
1228          * though they use the same ops as mirror, because there's only one
1229          * "good" copy under the replacing/spare.
1230          */
1231         if (vd->vdev_ops == &vdev_mirror_ops) {
1232                 for (int i = 0; i < n; i++) {
1233                         is->is_child[i].ic_vdev = vd->vdev_child[i];
1234                         list_link_init(&is->is_child[i].ic_node);
1235                 }
1236         } else {
1237                 is->is_child[0].ic_vdev = vd;
1238         }
1239
1240         list_insert_tail(&iv->iv_splits, is);
1241 }
1242
1243 static void
1244 vdev_indirect_read_split_done(zio_t *zio)
1245 {
1246         indirect_child_t *ic = zio->io_private;
1247
1248         if (zio->io_error != 0) {
1249                 /*
1250                  * Clear ic_data to indicate that we do not have data for this
1251                  * child.
1252                  */
1253                 abd_free(ic->ic_data);
1254                 ic->ic_data = NULL;
1255         }
1256 }
1257
1258 /*
1259  * Issue reads for all copies (mirror children) of all splits.
1260  */
1261 static void
1262 vdev_indirect_read_all(zio_t *zio)
1263 {
1264         indirect_vsd_t *iv = zio->io_vsd;
1265
1266         ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1267
1268         for (indirect_split_t *is = list_head(&iv->iv_splits);
1269             is != NULL; is = list_next(&iv->iv_splits, is)) {
1270                 for (int i = 0; i < is->is_children; i++) {
1271                         indirect_child_t *ic = &is->is_child[i];
1272
1273                         if (!vdev_readable(ic->ic_vdev))
1274                                 continue;
1275
1276                         /*
1277                          * Note, we may read from a child whose DTL
1278                          * indicates that the data may not be present here.
1279                          * While this might result in a few i/os that will
1280                          * likely return incorrect data, it simplifies the
1281                          * code since we can treat scrub and resilver
1282                          * identically.  (The incorrect data will be
1283                          * detected and ignored when we verify the
1284                          * checksum.)
1285                          */
1286
1287                         ic->ic_data = abd_alloc_sametype(zio->io_abd,
1288                             is->is_size);
1289                         ic->ic_duplicate = NULL;
1290
1291                         zio_nowait(zio_vdev_child_io(zio, NULL,
1292                             ic->ic_vdev, is->is_target_offset, ic->ic_data,
1293                             is->is_size, zio->io_type, zio->io_priority, 0,
1294                             vdev_indirect_read_split_done, ic));
1295                 }
1296         }
1297         iv->iv_reconstruct = B_TRUE;
1298 }
1299
1300 static void
1301 vdev_indirect_io_start(zio_t *zio)
1302 {
1303         ASSERTV(spa_t *spa = zio->io_spa);
1304         indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1305         list_create(&iv->iv_splits,
1306             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1307
1308         zio->io_vsd = iv;
1309         zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1310
1311         ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1312         if (zio->io_type != ZIO_TYPE_READ) {
1313                 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1314                 /*
1315                  * Note: this code can handle other kinds of writes,
1316                  * but we don't expect them.
1317                  */
1318                 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1319                     ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1320         }
1321
1322         vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1323             vdev_indirect_gather_splits, zio);
1324
1325         indirect_split_t *first = list_head(&iv->iv_splits);
1326         if (first->is_size == zio->io_size) {
1327                 /*
1328                  * This is not a split block; we are pointing to the entire
1329                  * data, which will checksum the same as the original data.
1330                  * Pass the BP down so that the child i/o can verify the
1331                  * checksum, and try a different location if available
1332                  * (e.g. on a mirror).
1333                  *
1334                  * While this special case could be handled the same as the
1335                  * general (split block) case, doing it this way ensures
1336                  * that the vast majority of blocks on indirect vdevs
1337                  * (which are not split) are handled identically to blocks
1338                  * on non-indirect vdevs.  This allows us to be less strict
1339                  * about performance in the general (but rare) case.
1340                  */
1341                 ASSERT0(first->is_split_offset);
1342                 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1343                 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1344                     first->is_vdev, first->is_target_offset,
1345                     abd_get_offset(zio->io_abd, 0),
1346                     zio->io_size, zio->io_type, zio->io_priority, 0,
1347                     vdev_indirect_child_io_done, zio));
1348         } else {
1349                 iv->iv_split_block = B_TRUE;
1350                 if (zio->io_type == ZIO_TYPE_READ &&
1351                     zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1352                         /*
1353                          * Read all copies.  Note that for simplicity,
1354                          * we don't bother consulting the DTL in the
1355                          * resilver case.
1356                          */
1357                         vdev_indirect_read_all(zio);
1358                 } else {
1359                         /*
1360                          * If this is a read zio, we read one copy of each
1361                          * split segment, from the top-level vdev.  Since
1362                          * we don't know the checksum of each split
1363                          * individually, the child zio can't ensure that
1364                          * we get the right data. E.g. if it's a mirror,
1365                          * it will just read from a random (healthy) leaf
1366                          * vdev. We have to verify the checksum in
1367                          * vdev_indirect_io_done().
1368                          *
1369                          * For write zios, the vdev code will ensure we write
1370                          * to all children.
1371                          */
1372                         for (indirect_split_t *is = list_head(&iv->iv_splits);
1373                             is != NULL; is = list_next(&iv->iv_splits, is)) {
1374                                 zio_nowait(zio_vdev_child_io(zio, NULL,
1375                                     is->is_vdev, is->is_target_offset,
1376                                     abd_get_offset(zio->io_abd,
1377                                     is->is_split_offset), is->is_size,
1378                                     zio->io_type, zio->io_priority, 0,
1379                                     vdev_indirect_child_io_done, zio));
1380                         }
1381
1382                 }
1383         }
1384
1385         zio_execute(zio);
1386 }
1387
1388 /*
1389  * Report a checksum error for a child.
1390  */
1391 static void
1392 vdev_indirect_checksum_error(zio_t *zio,
1393     indirect_split_t *is, indirect_child_t *ic)
1394 {
1395         vdev_t *vd = ic->ic_vdev;
1396
1397         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1398                 return;
1399
1400         mutex_enter(&vd->vdev_stat_lock);
1401         vd->vdev_stat.vs_checksum_errors++;
1402         mutex_exit(&vd->vdev_stat_lock);
1403
1404         zio_bad_cksum_t zbc = {{{ 0 }}};
1405         abd_t *bad_abd = ic->ic_data;
1406         abd_t *good_abd = is->is_good_child->ic_data;
1407         zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1408             is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1409 }
1410
1411 /*
1412  * Issue repair i/os for any incorrect copies.  We do this by comparing
1413  * each split segment's correct data (is_good_child's ic_data) with each
1414  * other copy of the data.  If they differ, then we overwrite the bad data
1415  * with the good copy.  Note that we do this without regard for the DTL's,
1416  * which simplifies this code and also issues the optimal number of writes
1417  * (based on which copies actually read bad data, as opposed to which we
1418  * think might be wrong).  For the same reason, we always use
1419  * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1420  */
1421 static void
1422 vdev_indirect_repair(zio_t *zio)
1423 {
1424         indirect_vsd_t *iv = zio->io_vsd;
1425
1426         enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1427
1428         if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1429                 flags |= ZIO_FLAG_SELF_HEAL;
1430
1431         if (!spa_writeable(zio->io_spa))
1432                 return;
1433
1434         for (indirect_split_t *is = list_head(&iv->iv_splits);
1435             is != NULL; is = list_next(&iv->iv_splits, is)) {
1436                 for (int c = 0; c < is->is_children; c++) {
1437                         indirect_child_t *ic = &is->is_child[c];
1438                         if (ic == is->is_good_child)
1439                                 continue;
1440                         if (ic->ic_data == NULL)
1441                                 continue;
1442                         if (ic->ic_duplicate == is->is_good_child)
1443                                 continue;
1444
1445                         zio_nowait(zio_vdev_child_io(zio, NULL,
1446                             ic->ic_vdev, is->is_target_offset,
1447                             is->is_good_child->ic_data, is->is_size,
1448                             ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1449                             ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1450                             NULL, NULL));
1451
1452                         vdev_indirect_checksum_error(zio, is, ic);
1453                 }
1454         }
1455 }
1456
1457 /*
1458  * Report checksum errors on all children that we read from.
1459  */
1460 static void
1461 vdev_indirect_all_checksum_errors(zio_t *zio)
1462 {
1463         indirect_vsd_t *iv = zio->io_vsd;
1464
1465         if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1466                 return;
1467
1468         for (indirect_split_t *is = list_head(&iv->iv_splits);
1469             is != NULL; is = list_next(&iv->iv_splits, is)) {
1470                 for (int c = 0; c < is->is_children; c++) {
1471                         indirect_child_t *ic = &is->is_child[c];
1472
1473                         if (ic->ic_data == NULL)
1474                                 continue;
1475
1476                         vdev_t *vd = ic->ic_vdev;
1477
1478                         mutex_enter(&vd->vdev_stat_lock);
1479                         vd->vdev_stat.vs_checksum_errors++;
1480                         mutex_exit(&vd->vdev_stat_lock);
1481
1482                         zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1483                             is->is_target_offset, is->is_size,
1484                             NULL, NULL, NULL);
1485                 }
1486         }
1487 }
1488
1489 /*
1490  * Copy data from all the splits to a main zio then validate the checksum.
1491  * If then checksum is successfully validated return success.
1492  */
1493 static int
1494 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1495 {
1496         zio_bad_cksum_t zbc;
1497
1498         for (indirect_split_t *is = list_head(&iv->iv_splits);
1499             is != NULL; is = list_next(&iv->iv_splits, is)) {
1500
1501                 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1502                 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1503
1504                 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1505                     is->is_split_offset, 0, is->is_size);
1506         }
1507
1508         return (zio_checksum_error(zio, &zbc));
1509 }
1510
1511 /*
1512  * There are relatively few possible combinations making it feasible to
1513  * deterministically check them all.  We do this by setting the good_child
1514  * to the next unique split version.  If we reach the end of the list then
1515  * "carry over" to the next unique split version (like counting in base
1516  * is_unique_children, but each digit can have a different base).
1517  */
1518 static int
1519 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1520 {
1521         boolean_t more = B_TRUE;
1522
1523         iv->iv_attempts = 0;
1524
1525         for (indirect_split_t *is = list_head(&iv->iv_splits);
1526             is != NULL; is = list_next(&iv->iv_splits, is))
1527                 is->is_good_child = list_head(&is->is_unique_child);
1528
1529         while (more == B_TRUE) {
1530                 iv->iv_attempts++;
1531                 more = B_FALSE;
1532
1533                 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1534                         return (0);
1535
1536                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1537                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1538                         is->is_good_child = list_next(&is->is_unique_child,
1539                             is->is_good_child);
1540                         if (is->is_good_child != NULL) {
1541                                 more = B_TRUE;
1542                                 break;
1543                         }
1544
1545                         is->is_good_child = list_head(&is->is_unique_child);
1546                 }
1547         }
1548
1549         ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1550
1551         return (SET_ERROR(ECKSUM));
1552 }
1553
1554 /*
1555  * There are too many combinations to try all of them in a reasonable amount
1556  * of time.  So try a fixed number of random combinations from the unique
1557  * split versions, after which we'll consider the block unrecoverable.
1558  */
1559 static int
1560 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1561 {
1562         iv->iv_attempts = 0;
1563
1564         while (iv->iv_attempts < iv->iv_attempts_max) {
1565                 iv->iv_attempts++;
1566
1567                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1568                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1569                         indirect_child_t *ic = list_head(&is->is_unique_child);
1570                         int children = is->is_unique_children;
1571
1572                         for (int i = spa_get_random(children); i > 0; i--)
1573                                 ic = list_next(&is->is_unique_child, ic);
1574
1575                         ASSERT3P(ic, !=, NULL);
1576                         is->is_good_child = ic;
1577                 }
1578
1579                 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1580                         return (0);
1581         }
1582
1583         return (SET_ERROR(ECKSUM));
1584 }
1585
1586 /*
1587  * This is a validation function for reconstruction.  It randomly selects
1588  * a good combination, if one can be found, and then it intentionally
1589  * damages all other segment copes by zeroing them.  This forces the
1590  * reconstruction algorithm to locate the one remaining known good copy.
1591  */
1592 static int
1593 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1594 {
1595         int error;
1596
1597         /* Presume all the copies are unique for initial selection. */
1598         for (indirect_split_t *is = list_head(&iv->iv_splits);
1599             is != NULL; is = list_next(&iv->iv_splits, is)) {
1600                 is->is_unique_children = 0;
1601
1602                 for (int i = 0; i < is->is_children; i++) {
1603                         indirect_child_t *ic = &is->is_child[i];
1604                         if (ic->ic_data != NULL) {
1605                                 is->is_unique_children++;
1606                                 list_insert_tail(&is->is_unique_child, ic);
1607                         }
1608                 }
1609
1610                 if (list_is_empty(&is->is_unique_child)) {
1611                         error = SET_ERROR(EIO);
1612                         goto out;
1613                 }
1614         }
1615
1616         /*
1617          * Set each is_good_child to a randomly-selected child which
1618          * is known to contain validated data.
1619          */
1620         error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1621         if (error)
1622                 goto out;
1623
1624         /*
1625          * Damage all but the known good copy by zeroing it.  This will
1626          * result in two or less unique copies per indirect_child_t.
1627          * Both may need to be checked in order to reconstruct the block.
1628          * Set iv->iv_attempts_max such that all unique combinations will
1629          * enumerated, but limit the damage to at most 12 indirect splits.
1630          */
1631         iv->iv_attempts_max = 1;
1632
1633         for (indirect_split_t *is = list_head(&iv->iv_splits);
1634             is != NULL; is = list_next(&iv->iv_splits, is)) {
1635                 for (int c = 0; c < is->is_children; c++) {
1636                         indirect_child_t *ic = &is->is_child[c];
1637
1638                         if (ic == is->is_good_child)
1639                                 continue;
1640                         if (ic->ic_data == NULL)
1641                                 continue;
1642
1643                         abd_zero(ic->ic_data, ic->ic_data->abd_size);
1644                 }
1645
1646                 iv->iv_attempts_max *= 2;
1647                 if (iv->iv_attempts_max >= (1ULL << 12)) {
1648                         iv->iv_attempts_max = UINT64_MAX;
1649                         break;
1650                 }
1651         }
1652
1653 out:
1654         /* Empty the unique children lists so they can be reconstructed. */
1655         for (indirect_split_t *is = list_head(&iv->iv_splits);
1656             is != NULL; is = list_next(&iv->iv_splits, is)) {
1657                 indirect_child_t *ic;
1658                 while ((ic = list_head(&is->is_unique_child)) != NULL)
1659                         list_remove(&is->is_unique_child, ic);
1660
1661                 is->is_unique_children = 0;
1662         }
1663
1664         return (error);
1665 }
1666
1667 /*
1668  * This function is called when we have read all copies of the data and need
1669  * to try to find a combination of copies that gives us the right checksum.
1670  *
1671  * If we pointed to any mirror vdevs, this effectively does the job of the
1672  * mirror.  The mirror vdev code can't do its own job because we don't know
1673  * the checksum of each split segment individually.
1674  *
1675  * We have to try every unique combination of copies of split segments, until
1676  * we find one that checksums correctly.  Duplicate segment copies are first
1677  * identified and latter skipped during reconstruction.  This optimization
1678  * reduces the search space and ensures that of the remaining combinations
1679  * at most one is correct.
1680  *
1681  * When the total number of combinations is small they can all be checked.
1682  * For example, if we have 3 segments in the split, and each points to a
1683  * 2-way mirror with unique copies, we will have the following pieces of data:
1684  *
1685  *       |     mirror child
1686  * split |     [0]        [1]
1687  * ======|=====================
1688  *   A   |  data_A_0   data_A_1
1689  *   B   |  data_B_0   data_B_1
1690  *   C   |  data_C_0   data_C_1
1691  *
1692  * We will try the following (mirror children)^(number of splits) (2^3=8)
1693  * combinations, which is similar to bitwise-little-endian counting in
1694  * binary.  In general each "digit" corresponds to a split segment, and the
1695  * base of each digit is is_children, which can be different for each
1696  * digit.
1697  *
1698  * "low bit"        "high bit"
1699  *        v                 v
1700  * data_A_0 data_B_0 data_C_0
1701  * data_A_1 data_B_0 data_C_0
1702  * data_A_0 data_B_1 data_C_0
1703  * data_A_1 data_B_1 data_C_0
1704  * data_A_0 data_B_0 data_C_1
1705  * data_A_1 data_B_0 data_C_1
1706  * data_A_0 data_B_1 data_C_1
1707  * data_A_1 data_B_1 data_C_1
1708  *
1709  * Note that the split segments may be on the same or different top-level
1710  * vdevs. In either case, we may need to try lots of combinations (see
1711  * zfs_reconstruct_indirect_combinations_max).  This ensures that if a mirror
1712  * has small silent errors on all of its children, we can still reconstruct
1713  * the correct data, as long as those errors are at sufficiently-separated
1714  * offsets (specifically, separated by the largest block size - default of
1715  * 128KB, but up to 16MB).
1716  */
1717 static void
1718 vdev_indirect_reconstruct_io_done(zio_t *zio)
1719 {
1720         indirect_vsd_t *iv = zio->io_vsd;
1721         boolean_t known_good = B_FALSE;
1722         int error;
1723
1724         iv->iv_unique_combinations = 1;
1725         iv->iv_attempts_max = UINT64_MAX;
1726
1727         if (zfs_reconstruct_indirect_combinations_max > 0)
1728                 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1729
1730         /*
1731          * If nonzero, every 1/x blocks will be damaged, in order to validate
1732          * reconstruction when there are split segments with damaged copies.
1733          * Known_good will be TRUE when reconstruction is known to be possible.
1734          */
1735         if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1736             spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1737                 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1738
1739         /*
1740          * Determine the unique children for a split segment and add them
1741          * to the is_unique_child list.  By restricting reconstruction
1742          * to these children, only unique combinations will be considered.
1743          * This can vastly reduce the search space when there are a large
1744          * number of indirect splits.
1745          */
1746         for (indirect_split_t *is = list_head(&iv->iv_splits);
1747             is != NULL; is = list_next(&iv->iv_splits, is)) {
1748                 is->is_unique_children = 0;
1749
1750                 for (int i = 0; i < is->is_children; i++) {
1751                         indirect_child_t *ic_i = &is->is_child[i];
1752
1753                         if (ic_i->ic_data == NULL ||
1754                             ic_i->ic_duplicate != NULL)
1755                                 continue;
1756
1757                         for (int j = i + 1; j < is->is_children; j++) {
1758                                 indirect_child_t *ic_j = &is->is_child[j];
1759
1760                                 if (ic_j->ic_data == NULL ||
1761                                     ic_j->ic_duplicate != NULL)
1762                                         continue;
1763
1764                                 if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
1765                                         ic_j->ic_duplicate = ic_i;
1766                         }
1767
1768                         is->is_unique_children++;
1769                         list_insert_tail(&is->is_unique_child, ic_i);
1770                 }
1771
1772                 /* Reconstruction is impossible, no valid children */
1773                 EQUIV(list_is_empty(&is->is_unique_child),
1774                     is->is_unique_children == 0);
1775                 if (list_is_empty(&is->is_unique_child)) {
1776                         zio->io_error = EIO;
1777                         vdev_indirect_all_checksum_errors(zio);
1778                         zio_checksum_verified(zio);
1779                         return;
1780                 }
1781
1782                 iv->iv_unique_combinations *= is->is_unique_children;
1783         }
1784
1785         if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1786                 error = vdev_indirect_splits_enumerate_all(iv, zio);
1787         else
1788                 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1789
1790         if (error != 0) {
1791                 /* All attempted combinations failed. */
1792                 ASSERT3B(known_good, ==, B_FALSE);
1793                 zio->io_error = error;
1794                 vdev_indirect_all_checksum_errors(zio);
1795         } else {
1796                 /*
1797                  * The checksum has been successfully validated.  Issue
1798                  * repair I/Os to any copies of splits which don't match
1799                  * the validated version.
1800                  */
1801                 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1802                 vdev_indirect_repair(zio);
1803                 zio_checksum_verified(zio);
1804         }
1805 }
1806
1807 static void
1808 vdev_indirect_io_done(zio_t *zio)
1809 {
1810         indirect_vsd_t *iv = zio->io_vsd;
1811
1812         if (iv->iv_reconstruct) {
1813                 /*
1814                  * We have read all copies of the data (e.g. from mirrors),
1815                  * either because this was a scrub/resilver, or because the
1816                  * one-copy read didn't checksum correctly.
1817                  */
1818                 vdev_indirect_reconstruct_io_done(zio);
1819                 return;
1820         }
1821
1822         if (!iv->iv_split_block) {
1823                 /*
1824                  * This was not a split block, so we passed the BP down,
1825                  * and the checksum was handled by the (one) child zio.
1826                  */
1827                 return;
1828         }
1829
1830         zio_bad_cksum_t zbc;
1831         int ret = zio_checksum_error(zio, &zbc);
1832         if (ret == 0) {
1833                 zio_checksum_verified(zio);
1834                 return;
1835         }
1836
1837         /*
1838          * The checksum didn't match.  Read all copies of all splits, and
1839          * then we will try to reconstruct.  The next time
1840          * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1841          */
1842         vdev_indirect_read_all(zio);
1843
1844         zio_vdev_io_redone(zio);
1845 }
1846
1847 vdev_ops_t vdev_indirect_ops = {
1848         vdev_indirect_open,
1849         vdev_indirect_close,
1850         vdev_default_asize,
1851         vdev_indirect_io_start,
1852         vdev_indirect_io_done,
1853         NULL,
1854         NULL,
1855         NULL,
1856         NULL,
1857         vdev_indirect_remap,
1858         NULL,
1859         VDEV_TYPE_INDIRECT,     /* name of this vdev type */
1860         B_FALSE                 /* leaf vdev */
1861 };
1862
1863 #if defined(_KERNEL)
1864 EXPORT_SYMBOL(rs_alloc);
1865 EXPORT_SYMBOL(spa_condense_fini);
1866 EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
1867 EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1868 EXPORT_SYMBOL(spa_condense_init);
1869 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1870 EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1871 EXPORT_SYMBOL(vdev_indirect_should_condense);
1872 EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1873 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1874 EXPORT_SYMBOL(vdev_obsolete_sm_object);
1875
1876 module_param(zfs_condense_indirect_vdevs_enable, int, 0644);
1877 MODULE_PARM_DESC(zfs_condense_indirect_vdevs_enable,
1878         "Whether to attempt condensing indirect vdev mappings");
1879
1880 /* CSTYLED */
1881 module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
1882 MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
1883         "Minimum size of vdev mapping to condense");
1884
1885 /* CSTYLED */
1886 module_param(zfs_condense_max_obsolete_bytes, ulong, 0644);
1887 MODULE_PARM_DESC(zfs_condense_max_obsolete_bytes,
1888         "Minimum size obsolete spacemap to attempt condensing");
1889
1890 module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
1891 MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
1892         "Delay while condensing vdev mapping");
1893
1894 module_param(zfs_reconstruct_indirect_combinations_max, int, 0644);
1895 MODULE_PARM_DESC(zfs_reconstruct_indirect_combinations_max,
1896         "Maximum number of combinations when reconstructing split segments");
1897 #endif