]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/vdev_initialize.c
Vendor import of openzfs master @ 184df27eef0abdc7ab2105b21257f753834b936b
[FreeBSD/FreeBSD.git] / module / zfs / vdev_initialize.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21
22 /*
23  * Copyright (c) 2016, 2019 by Delphix. All rights reserved.
24  */
25
26 #include <sys/spa.h>
27 #include <sys/spa_impl.h>
28 #include <sys/txg.h>
29 #include <sys/vdev_impl.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/zap.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_initialize.h>
35
36 /*
37  * Value that is written to disk during initialization.
38  */
39 #ifdef _ILP32
40 unsigned long zfs_initialize_value = 0xdeadbeefUL;
41 #else
42 unsigned long zfs_initialize_value = 0xdeadbeefdeadbeeeULL;
43 #endif
44
45 /* maximum number of I/Os outstanding per leaf vdev */
46 int zfs_initialize_limit = 1;
47
48 /* size of initializing writes; default 1MiB, see zfs_remove_max_segment */
49 unsigned long zfs_initialize_chunk_size = 1024 * 1024;
50
51 static boolean_t
52 vdev_initialize_should_stop(vdev_t *vd)
53 {
54         return (vd->vdev_initialize_exit_wanted || !vdev_writeable(vd) ||
55             vd->vdev_detached || vd->vdev_top->vdev_removing);
56 }
57
58 static void
59 vdev_initialize_zap_update_sync(void *arg, dmu_tx_t *tx)
60 {
61         /*
62          * We pass in the guid instead of the vdev_t since the vdev may
63          * have been freed prior to the sync task being processed. This
64          * happens when a vdev is detached as we call spa_config_vdev_exit(),
65          * stop the initializing thread, schedule the sync task, and free
66          * the vdev. Later when the scheduled sync task is invoked, it would
67          * find that the vdev has been freed.
68          */
69         uint64_t guid = *(uint64_t *)arg;
70         uint64_t txg = dmu_tx_get_txg(tx);
71         kmem_free(arg, sizeof (uint64_t));
72
73         vdev_t *vd = spa_lookup_by_guid(tx->tx_pool->dp_spa, guid, B_FALSE);
74         if (vd == NULL || vd->vdev_top->vdev_removing || !vdev_is_concrete(vd))
75                 return;
76
77         uint64_t last_offset = vd->vdev_initialize_offset[txg & TXG_MASK];
78         vd->vdev_initialize_offset[txg & TXG_MASK] = 0;
79
80         VERIFY(vd->vdev_leaf_zap != 0);
81
82         objset_t *mos = vd->vdev_spa->spa_meta_objset;
83
84         if (last_offset > 0) {
85                 vd->vdev_initialize_last_offset = last_offset;
86                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
87                     VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
88                     sizeof (last_offset), 1, &last_offset, tx));
89         }
90         if (vd->vdev_initialize_action_time > 0) {
91                 uint64_t val = (uint64_t)vd->vdev_initialize_action_time;
92                 VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
93                     VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME, sizeof (val),
94                     1, &val, tx));
95         }
96
97         uint64_t initialize_state = vd->vdev_initialize_state;
98         VERIFY0(zap_update(mos, vd->vdev_leaf_zap,
99             VDEV_LEAF_ZAP_INITIALIZE_STATE, sizeof (initialize_state), 1,
100             &initialize_state, tx));
101 }
102
103 static void
104 vdev_initialize_change_state(vdev_t *vd, vdev_initializing_state_t new_state)
105 {
106         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
107         spa_t *spa = vd->vdev_spa;
108
109         if (new_state == vd->vdev_initialize_state)
110                 return;
111
112         /*
113          * Copy the vd's guid, this will be freed by the sync task.
114          */
115         uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
116         *guid = vd->vdev_guid;
117
118         /*
119          * If we're suspending, then preserving the original start time.
120          */
121         if (vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED) {
122                 vd->vdev_initialize_action_time = gethrestime_sec();
123         }
124         vd->vdev_initialize_state = new_state;
125
126         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
127         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
128         dsl_sync_task_nowait(spa_get_dsl(spa), vdev_initialize_zap_update_sync,
129             guid, 2, ZFS_SPACE_CHECK_NONE, tx);
130
131         switch (new_state) {
132         case VDEV_INITIALIZE_ACTIVE:
133                 spa_history_log_internal(spa, "initialize", tx,
134                     "vdev=%s activated", vd->vdev_path);
135                 break;
136         case VDEV_INITIALIZE_SUSPENDED:
137                 spa_history_log_internal(spa, "initialize", tx,
138                     "vdev=%s suspended", vd->vdev_path);
139                 break;
140         case VDEV_INITIALIZE_CANCELED:
141                 spa_history_log_internal(spa, "initialize", tx,
142                     "vdev=%s canceled", vd->vdev_path);
143                 break;
144         case VDEV_INITIALIZE_COMPLETE:
145                 spa_history_log_internal(spa, "initialize", tx,
146                     "vdev=%s complete", vd->vdev_path);
147                 break;
148         default:
149                 panic("invalid state %llu", (unsigned long long)new_state);
150         }
151
152         dmu_tx_commit(tx);
153
154         if (new_state != VDEV_INITIALIZE_ACTIVE)
155                 spa_notify_waiters(spa);
156 }
157
158 static void
159 vdev_initialize_cb(zio_t *zio)
160 {
161         vdev_t *vd = zio->io_vd;
162         mutex_enter(&vd->vdev_initialize_io_lock);
163         if (zio->io_error == ENXIO && !vdev_writeable(vd)) {
164                 /*
165                  * The I/O failed because the vdev was unavailable; roll the
166                  * last offset back. (This works because spa_sync waits on
167                  * spa_txg_zio before it runs sync tasks.)
168                  */
169                 uint64_t *off =
170                     &vd->vdev_initialize_offset[zio->io_txg & TXG_MASK];
171                 *off = MIN(*off, zio->io_offset);
172         } else {
173                 /*
174                  * Since initializing is best-effort, we ignore I/O errors and
175                  * rely on vdev_probe to determine if the errors are more
176                  * critical.
177                  */
178                 if (zio->io_error != 0)
179                         vd->vdev_stat.vs_initialize_errors++;
180
181                 vd->vdev_initialize_bytes_done += zio->io_orig_size;
182         }
183         ASSERT3U(vd->vdev_initialize_inflight, >, 0);
184         vd->vdev_initialize_inflight--;
185         cv_broadcast(&vd->vdev_initialize_io_cv);
186         mutex_exit(&vd->vdev_initialize_io_lock);
187
188         spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
189 }
190
191 /* Takes care of physical writing and limiting # of concurrent ZIOs. */
192 static int
193 vdev_initialize_write(vdev_t *vd, uint64_t start, uint64_t size, abd_t *data)
194 {
195         spa_t *spa = vd->vdev_spa;
196
197         /* Limit inflight initializing I/Os */
198         mutex_enter(&vd->vdev_initialize_io_lock);
199         while (vd->vdev_initialize_inflight >= zfs_initialize_limit) {
200                 cv_wait(&vd->vdev_initialize_io_cv,
201                     &vd->vdev_initialize_io_lock);
202         }
203         vd->vdev_initialize_inflight++;
204         mutex_exit(&vd->vdev_initialize_io_lock);
205
206         dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
207         VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
208         uint64_t txg = dmu_tx_get_txg(tx);
209
210         spa_config_enter(spa, SCL_STATE_ALL, vd, RW_READER);
211         mutex_enter(&vd->vdev_initialize_lock);
212
213         if (vd->vdev_initialize_offset[txg & TXG_MASK] == 0) {
214                 uint64_t *guid = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
215                 *guid = vd->vdev_guid;
216
217                 /* This is the first write of this txg. */
218                 dsl_sync_task_nowait(spa_get_dsl(spa),
219                     vdev_initialize_zap_update_sync, guid, 2,
220                     ZFS_SPACE_CHECK_RESERVED, tx);
221         }
222
223         /*
224          * We know the vdev struct will still be around since all
225          * consumers of vdev_free must stop the initialization first.
226          */
227         if (vdev_initialize_should_stop(vd)) {
228                 mutex_enter(&vd->vdev_initialize_io_lock);
229                 ASSERT3U(vd->vdev_initialize_inflight, >, 0);
230                 vd->vdev_initialize_inflight--;
231                 mutex_exit(&vd->vdev_initialize_io_lock);
232                 spa_config_exit(vd->vdev_spa, SCL_STATE_ALL, vd);
233                 mutex_exit(&vd->vdev_initialize_lock);
234                 dmu_tx_commit(tx);
235                 return (SET_ERROR(EINTR));
236         }
237         mutex_exit(&vd->vdev_initialize_lock);
238
239         vd->vdev_initialize_offset[txg & TXG_MASK] = start + size;
240         zio_nowait(zio_write_phys(spa->spa_txg_zio[txg & TXG_MASK], vd, start,
241             size, data, ZIO_CHECKSUM_OFF, vdev_initialize_cb, NULL,
242             ZIO_PRIORITY_INITIALIZING, ZIO_FLAG_CANFAIL, B_FALSE));
243         /* vdev_initialize_cb releases SCL_STATE_ALL */
244
245         dmu_tx_commit(tx);
246
247         return (0);
248 }
249
250 /*
251  * Callback to fill each ABD chunk with zfs_initialize_value. len must be
252  * divisible by sizeof (uint64_t), and buf must be 8-byte aligned. The ABD
253  * allocation will guarantee these for us.
254  */
255 /* ARGSUSED */
256 static int
257 vdev_initialize_block_fill(void *buf, size_t len, void *unused)
258 {
259         ASSERT0(len % sizeof (uint64_t));
260 #ifdef _ILP32
261         for (uint64_t i = 0; i < len; i += sizeof (uint32_t)) {
262                 *(uint32_t *)((char *)(buf) + i) = zfs_initialize_value;
263         }
264 #else
265         for (uint64_t i = 0; i < len; i += sizeof (uint64_t)) {
266                 *(uint64_t *)((char *)(buf) + i) = zfs_initialize_value;
267         }
268 #endif
269         return (0);
270 }
271
272 static abd_t *
273 vdev_initialize_block_alloc(void)
274 {
275         /* Allocate ABD for filler data */
276         abd_t *data = abd_alloc_for_io(zfs_initialize_chunk_size, B_FALSE);
277
278         ASSERT0(zfs_initialize_chunk_size % sizeof (uint64_t));
279         (void) abd_iterate_func(data, 0, zfs_initialize_chunk_size,
280             vdev_initialize_block_fill, NULL);
281
282         return (data);
283 }
284
285 static void
286 vdev_initialize_block_free(abd_t *data)
287 {
288         abd_free(data);
289 }
290
291 static int
292 vdev_initialize_ranges(vdev_t *vd, abd_t *data)
293 {
294         range_tree_t *rt = vd->vdev_initialize_tree;
295         zfs_btree_t *bt = &rt->rt_root;
296         zfs_btree_index_t where;
297
298         for (range_seg_t *rs = zfs_btree_first(bt, &where); rs != NULL;
299             rs = zfs_btree_next(bt, &where, &where)) {
300                 uint64_t size = rs_get_end(rs, rt) - rs_get_start(rs, rt);
301
302                 /* Split range into legally-sized physical chunks */
303                 uint64_t writes_required =
304                     ((size - 1) / zfs_initialize_chunk_size) + 1;
305
306                 for (uint64_t w = 0; w < writes_required; w++) {
307                         int error;
308
309                         error = vdev_initialize_write(vd,
310                             VDEV_LABEL_START_SIZE + rs_get_start(rs, rt) +
311                             (w * zfs_initialize_chunk_size),
312                             MIN(size - (w * zfs_initialize_chunk_size),
313                             zfs_initialize_chunk_size), data);
314                         if (error != 0)
315                                 return (error);
316                 }
317         }
318         return (0);
319 }
320
321 static void
322 vdev_initialize_calculate_progress(vdev_t *vd)
323 {
324         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
325             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
326         ASSERT(vd->vdev_leaf_zap != 0);
327
328         vd->vdev_initialize_bytes_est = 0;
329         vd->vdev_initialize_bytes_done = 0;
330
331         for (uint64_t i = 0; i < vd->vdev_top->vdev_ms_count; i++) {
332                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
333                 mutex_enter(&msp->ms_lock);
334
335                 uint64_t ms_free = msp->ms_size -
336                     metaslab_allocated_space(msp);
337
338                 if (vd->vdev_top->vdev_ops == &vdev_raidz_ops)
339                         ms_free /= vd->vdev_top->vdev_children;
340
341                 /*
342                  * Convert the metaslab range to a physical range
343                  * on our vdev. We use this to determine if we are
344                  * in the middle of this metaslab range.
345                  */
346                 range_seg64_t logical_rs, physical_rs;
347                 logical_rs.rs_start = msp->ms_start;
348                 logical_rs.rs_end = msp->ms_start + msp->ms_size;
349                 vdev_xlate(vd, &logical_rs, &physical_rs);
350
351                 if (vd->vdev_initialize_last_offset <= physical_rs.rs_start) {
352                         vd->vdev_initialize_bytes_est += ms_free;
353                         mutex_exit(&msp->ms_lock);
354                         continue;
355                 } else if (vd->vdev_initialize_last_offset >
356                     physical_rs.rs_end) {
357                         vd->vdev_initialize_bytes_done += ms_free;
358                         vd->vdev_initialize_bytes_est += ms_free;
359                         mutex_exit(&msp->ms_lock);
360                         continue;
361                 }
362
363                 /*
364                  * If we get here, we're in the middle of initializing this
365                  * metaslab. Load it and walk the free tree for more accurate
366                  * progress estimation.
367                  */
368                 VERIFY0(metaslab_load(msp));
369
370                 zfs_btree_index_t where;
371                 range_tree_t *rt = msp->ms_allocatable;
372                 for (range_seg_t *rs =
373                     zfs_btree_first(&rt->rt_root, &where); rs;
374                     rs = zfs_btree_next(&rt->rt_root, &where,
375                     &where)) {
376                         logical_rs.rs_start = rs_get_start(rs, rt);
377                         logical_rs.rs_end = rs_get_end(rs, rt);
378                         vdev_xlate(vd, &logical_rs, &physical_rs);
379
380                         uint64_t size = physical_rs.rs_end -
381                             physical_rs.rs_start;
382                         vd->vdev_initialize_bytes_est += size;
383                         if (vd->vdev_initialize_last_offset >
384                             physical_rs.rs_end) {
385                                 vd->vdev_initialize_bytes_done += size;
386                         } else if (vd->vdev_initialize_last_offset >
387                             physical_rs.rs_start &&
388                             vd->vdev_initialize_last_offset <
389                             physical_rs.rs_end) {
390                                 vd->vdev_initialize_bytes_done +=
391                                     vd->vdev_initialize_last_offset -
392                                     physical_rs.rs_start;
393                         }
394                 }
395                 mutex_exit(&msp->ms_lock);
396         }
397 }
398
399 static int
400 vdev_initialize_load(vdev_t *vd)
401 {
402         int err = 0;
403         ASSERT(spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_READER) ||
404             spa_config_held(vd->vdev_spa, SCL_CONFIG, RW_WRITER));
405         ASSERT(vd->vdev_leaf_zap != 0);
406
407         if (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE ||
408             vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED) {
409                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
410                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_LAST_OFFSET,
411                     sizeof (vd->vdev_initialize_last_offset), 1,
412                     &vd->vdev_initialize_last_offset);
413                 if (err == ENOENT) {
414                         vd->vdev_initialize_last_offset = 0;
415                         err = 0;
416                 }
417         }
418
419         vdev_initialize_calculate_progress(vd);
420         return (err);
421 }
422
423 /*
424  * Convert the logical range into a physical range and add it to our
425  * avl tree.
426  */
427 static void
428 vdev_initialize_range_add(void *arg, uint64_t start, uint64_t size)
429 {
430         vdev_t *vd = arg;
431         range_seg64_t logical_rs, physical_rs;
432         logical_rs.rs_start = start;
433         logical_rs.rs_end = start + size;
434
435         ASSERT(vd->vdev_ops->vdev_op_leaf);
436         vdev_xlate(vd, &logical_rs, &physical_rs);
437
438         IMPLY(vd->vdev_top == vd,
439             logical_rs.rs_start == physical_rs.rs_start);
440         IMPLY(vd->vdev_top == vd,
441             logical_rs.rs_end == physical_rs.rs_end);
442
443         /* Only add segments that we have not visited yet */
444         if (physical_rs.rs_end <= vd->vdev_initialize_last_offset)
445                 return;
446
447         /* Pick up where we left off mid-range. */
448         if (vd->vdev_initialize_last_offset > physical_rs.rs_start) {
449                 zfs_dbgmsg("range write: vd %s changed (%llu, %llu) to "
450                     "(%llu, %llu)", vd->vdev_path,
451                     (u_longlong_t)physical_rs.rs_start,
452                     (u_longlong_t)physical_rs.rs_end,
453                     (u_longlong_t)vd->vdev_initialize_last_offset,
454                     (u_longlong_t)physical_rs.rs_end);
455                 ASSERT3U(physical_rs.rs_end, >,
456                     vd->vdev_initialize_last_offset);
457                 physical_rs.rs_start = vd->vdev_initialize_last_offset;
458         }
459         ASSERT3U(physical_rs.rs_end, >=, physical_rs.rs_start);
460
461         /*
462          * With raidz, it's possible that the logical range does not live on
463          * this leaf vdev. We only add the physical range to this vdev's if it
464          * has a length greater than 0.
465          */
466         if (physical_rs.rs_end > physical_rs.rs_start) {
467                 range_tree_add(vd->vdev_initialize_tree, physical_rs.rs_start,
468                     physical_rs.rs_end - physical_rs.rs_start);
469         } else {
470                 ASSERT3U(physical_rs.rs_end, ==, physical_rs.rs_start);
471         }
472 }
473
474 static void
475 vdev_initialize_thread(void *arg)
476 {
477         vdev_t *vd = arg;
478         spa_t *spa = vd->vdev_spa;
479         int error = 0;
480         uint64_t ms_count = 0;
481
482         ASSERT(vdev_is_concrete(vd));
483         spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
484
485         vd->vdev_initialize_last_offset = 0;
486         VERIFY0(vdev_initialize_load(vd));
487
488         abd_t *deadbeef = vdev_initialize_block_alloc();
489
490         vd->vdev_initialize_tree = range_tree_create(NULL, RANGE_SEG64, NULL,
491             0, 0);
492
493         for (uint64_t i = 0; !vd->vdev_detached &&
494             i < vd->vdev_top->vdev_ms_count; i++) {
495                 metaslab_t *msp = vd->vdev_top->vdev_ms[i];
496                 boolean_t unload_when_done = B_FALSE;
497
498                 /*
499                  * If we've expanded the top-level vdev or it's our
500                  * first pass, calculate our progress.
501                  */
502                 if (vd->vdev_top->vdev_ms_count != ms_count) {
503                         vdev_initialize_calculate_progress(vd);
504                         ms_count = vd->vdev_top->vdev_ms_count;
505                 }
506
507                 spa_config_exit(spa, SCL_CONFIG, FTAG);
508                 metaslab_disable(msp);
509                 mutex_enter(&msp->ms_lock);
510                 if (!msp->ms_loaded && !msp->ms_loading)
511                         unload_when_done = B_TRUE;
512                 VERIFY0(metaslab_load(msp));
513
514                 range_tree_walk(msp->ms_allocatable, vdev_initialize_range_add,
515                     vd);
516                 mutex_exit(&msp->ms_lock);
517
518                 error = vdev_initialize_ranges(vd, deadbeef);
519                 metaslab_enable(msp, B_TRUE, unload_when_done);
520                 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
521
522                 range_tree_vacate(vd->vdev_initialize_tree, NULL, NULL);
523                 if (error != 0)
524                         break;
525         }
526
527         spa_config_exit(spa, SCL_CONFIG, FTAG);
528         mutex_enter(&vd->vdev_initialize_io_lock);
529         while (vd->vdev_initialize_inflight > 0) {
530                 cv_wait(&vd->vdev_initialize_io_cv,
531                     &vd->vdev_initialize_io_lock);
532         }
533         mutex_exit(&vd->vdev_initialize_io_lock);
534
535         range_tree_destroy(vd->vdev_initialize_tree);
536         vdev_initialize_block_free(deadbeef);
537         vd->vdev_initialize_tree = NULL;
538
539         mutex_enter(&vd->vdev_initialize_lock);
540         if (!vd->vdev_initialize_exit_wanted && vdev_writeable(vd)) {
541                 vdev_initialize_change_state(vd, VDEV_INITIALIZE_COMPLETE);
542         }
543         ASSERT(vd->vdev_initialize_thread != NULL ||
544             vd->vdev_initialize_inflight == 0);
545
546         /*
547          * Drop the vdev_initialize_lock while we sync out the
548          * txg since it's possible that a device might be trying to
549          * come online and must check to see if it needs to restart an
550          * initialization. That thread will be holding the spa_config_lock
551          * which would prevent the txg_wait_synced from completing.
552          */
553         mutex_exit(&vd->vdev_initialize_lock);
554         txg_wait_synced(spa_get_dsl(spa), 0);
555         mutex_enter(&vd->vdev_initialize_lock);
556
557         vd->vdev_initialize_thread = NULL;
558         cv_broadcast(&vd->vdev_initialize_cv);
559         mutex_exit(&vd->vdev_initialize_lock);
560
561         thread_exit();
562 }
563
564 /*
565  * Initiates a device. Caller must hold vdev_initialize_lock.
566  * Device must be a leaf and not already be initializing.
567  */
568 void
569 vdev_initialize(vdev_t *vd)
570 {
571         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
572         ASSERT(vd->vdev_ops->vdev_op_leaf);
573         ASSERT(vdev_is_concrete(vd));
574         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
575         ASSERT(!vd->vdev_detached);
576         ASSERT(!vd->vdev_initialize_exit_wanted);
577         ASSERT(!vd->vdev_top->vdev_removing);
578
579         vdev_initialize_change_state(vd, VDEV_INITIALIZE_ACTIVE);
580         vd->vdev_initialize_thread = thread_create(NULL, 0,
581             vdev_initialize_thread, vd, 0, &p0, TS_RUN, maxclsyspri);
582 }
583
584 /*
585  * Wait for the initialize thread to be terminated (cancelled or stopped).
586  */
587 static void
588 vdev_initialize_stop_wait_impl(vdev_t *vd)
589 {
590         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
591
592         while (vd->vdev_initialize_thread != NULL)
593                 cv_wait(&vd->vdev_initialize_cv, &vd->vdev_initialize_lock);
594
595         ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
596         vd->vdev_initialize_exit_wanted = B_FALSE;
597 }
598
599 /*
600  * Wait for vdev initialize threads which were either to cleanly exit.
601  */
602 void
603 vdev_initialize_stop_wait(spa_t *spa, list_t *vd_list)
604 {
605         vdev_t *vd;
606
607         ASSERT(MUTEX_HELD(&spa_namespace_lock));
608
609         while ((vd = list_remove_head(vd_list)) != NULL) {
610                 mutex_enter(&vd->vdev_initialize_lock);
611                 vdev_initialize_stop_wait_impl(vd);
612                 mutex_exit(&vd->vdev_initialize_lock);
613         }
614 }
615
616 /*
617  * Stop initializing a device, with the resultant initializing state being
618  * tgt_state.  For blocking behavior pass NULL for vd_list.  Otherwise, when
619  * a list_t is provided the stopping vdev is inserted in to the list.  Callers
620  * are then required to call vdev_initialize_stop_wait() to block for all the
621  * initialization threads to exit.  The caller must hold vdev_initialize_lock
622  * and must not be writing to the spa config, as the initializing thread may
623  * try to enter the config as a reader before exiting.
624  */
625 void
626 vdev_initialize_stop(vdev_t *vd, vdev_initializing_state_t tgt_state,
627     list_t *vd_list)
628 {
629         ASSERT(!spa_config_held(vd->vdev_spa, SCL_CONFIG|SCL_STATE, RW_WRITER));
630         ASSERT(MUTEX_HELD(&vd->vdev_initialize_lock));
631         ASSERT(vd->vdev_ops->vdev_op_leaf);
632         ASSERT(vdev_is_concrete(vd));
633
634         /*
635          * Allow cancel requests to proceed even if the initialize thread
636          * has stopped.
637          */
638         if (vd->vdev_initialize_thread == NULL &&
639             tgt_state != VDEV_INITIALIZE_CANCELED) {
640                 return;
641         }
642
643         vdev_initialize_change_state(vd, tgt_state);
644         vd->vdev_initialize_exit_wanted = B_TRUE;
645
646         if (vd_list == NULL) {
647                 vdev_initialize_stop_wait_impl(vd);
648         } else {
649                 ASSERT(MUTEX_HELD(&spa_namespace_lock));
650                 list_insert_tail(vd_list, vd);
651         }
652 }
653
654 static void
655 vdev_initialize_stop_all_impl(vdev_t *vd, vdev_initializing_state_t tgt_state,
656     list_t *vd_list)
657 {
658         if (vd->vdev_ops->vdev_op_leaf && vdev_is_concrete(vd)) {
659                 mutex_enter(&vd->vdev_initialize_lock);
660                 vdev_initialize_stop(vd, tgt_state, vd_list);
661                 mutex_exit(&vd->vdev_initialize_lock);
662                 return;
663         }
664
665         for (uint64_t i = 0; i < vd->vdev_children; i++) {
666                 vdev_initialize_stop_all_impl(vd->vdev_child[i], tgt_state,
667                     vd_list);
668         }
669 }
670
671 /*
672  * Convenience function to stop initializing of a vdev tree and set all
673  * initialize thread pointers to NULL.
674  */
675 void
676 vdev_initialize_stop_all(vdev_t *vd, vdev_initializing_state_t tgt_state)
677 {
678         spa_t *spa = vd->vdev_spa;
679         list_t vd_list;
680
681         ASSERT(MUTEX_HELD(&spa_namespace_lock));
682
683         list_create(&vd_list, sizeof (vdev_t),
684             offsetof(vdev_t, vdev_initialize_node));
685
686         vdev_initialize_stop_all_impl(vd, tgt_state, &vd_list);
687         vdev_initialize_stop_wait(spa, &vd_list);
688
689         if (vd->vdev_spa->spa_sync_on) {
690                 /* Make sure that our state has been synced to disk */
691                 txg_wait_synced(spa_get_dsl(vd->vdev_spa), 0);
692         }
693
694         list_destroy(&vd_list);
695 }
696
697 void
698 vdev_initialize_restart(vdev_t *vd)
699 {
700         ASSERT(MUTEX_HELD(&spa_namespace_lock));
701         ASSERT(!spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
702
703         if (vd->vdev_leaf_zap != 0) {
704                 mutex_enter(&vd->vdev_initialize_lock);
705                 uint64_t initialize_state = VDEV_INITIALIZE_NONE;
706                 int err = zap_lookup(vd->vdev_spa->spa_meta_objset,
707                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_STATE,
708                     sizeof (initialize_state), 1, &initialize_state);
709                 ASSERT(err == 0 || err == ENOENT);
710                 vd->vdev_initialize_state = initialize_state;
711
712                 uint64_t timestamp = 0;
713                 err = zap_lookup(vd->vdev_spa->spa_meta_objset,
714                     vd->vdev_leaf_zap, VDEV_LEAF_ZAP_INITIALIZE_ACTION_TIME,
715                     sizeof (timestamp), 1, &timestamp);
716                 ASSERT(err == 0 || err == ENOENT);
717                 vd->vdev_initialize_action_time = timestamp;
718
719                 if (vd->vdev_initialize_state == VDEV_INITIALIZE_SUSPENDED ||
720                     vd->vdev_offline) {
721                         /* load progress for reporting, but don't resume */
722                         VERIFY0(vdev_initialize_load(vd));
723                 } else if (vd->vdev_initialize_state ==
724                     VDEV_INITIALIZE_ACTIVE && vdev_writeable(vd) &&
725                     !vd->vdev_top->vdev_removing &&
726                     vd->vdev_initialize_thread == NULL) {
727                         vdev_initialize(vd);
728                 }
729
730                 mutex_exit(&vd->vdev_initialize_lock);
731         }
732
733         for (uint64_t i = 0; i < vd->vdev_children; i++) {
734                 vdev_initialize_restart(vd->vdev_child[i]);
735         }
736 }
737
738 EXPORT_SYMBOL(vdev_initialize);
739 EXPORT_SYMBOL(vdev_initialize_stop);
740 EXPORT_SYMBOL(vdev_initialize_stop_all);
741 EXPORT_SYMBOL(vdev_initialize_stop_wait);
742 EXPORT_SYMBOL(vdev_initialize_restart);
743
744 /* BEGIN CSTYLED */
745 ZFS_MODULE_PARAM(zfs, zfs_, initialize_value, ULONG, ZMOD_RW,
746         "Value written during zpool initialize");
747
748 ZFS_MODULE_PARAM(zfs, zfs_, initialize_chunk_size, ULONG, ZMOD_RW,
749         "Size in bytes of writes by zpool initialize");
750 /* END CSTYLED */