]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - module/zfs/vdev_raidz_math.c
dsl_scan_scrub_cb: don't double-account non-embedded blocks
[FreeBSD/FreeBSD.git] / module / zfs / vdev_raidz_math.c
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (C) 2016 Gvozden Nešković. All rights reserved.
23  */
24
25 #include <sys/zfs_context.h>
26 #include <sys/types.h>
27 #include <sys/zio.h>
28 #include <sys/debug.h>
29 #include <sys/zfs_debug.h>
30
31 #include <sys/vdev_raidz.h>
32 #include <sys/vdev_raidz_impl.h>
33
34 extern boolean_t raidz_will_scalar_work(void);
35
36 /* Opaque implementation with NULL methods to represent original methods */
37 static const raidz_impl_ops_t vdev_raidz_original_impl = {
38         .name = "original",
39         .is_supported = raidz_will_scalar_work,
40 };
41
42 /* RAIDZ parity op that contain the fastest methods */
43 static raidz_impl_ops_t vdev_raidz_fastest_impl = {
44         .name = "fastest"
45 };
46
47 /* All compiled in implementations */
48 const raidz_impl_ops_t *raidz_all_maths[] = {
49         &vdev_raidz_original_impl,
50         &vdev_raidz_scalar_impl,
51 #if defined(__x86_64) && defined(HAVE_SSE2)     /* only x86_64 for now */
52         &vdev_raidz_sse2_impl,
53 #endif
54 #if defined(__x86_64) && defined(HAVE_SSSE3)    /* only x86_64 for now */
55         &vdev_raidz_ssse3_impl,
56 #endif
57 #if defined(__x86_64) && defined(HAVE_AVX2)     /* only x86_64 for now */
58         &vdev_raidz_avx2_impl,
59 #endif
60 #if defined(__x86_64) && defined(HAVE_AVX512F)  /* only x86_64 for now */
61         &vdev_raidz_avx512f_impl,
62 #endif
63 #if defined(__x86_64) && defined(HAVE_AVX512BW) /* only x86_64 for now */
64         &vdev_raidz_avx512bw_impl,
65 #endif
66 #if defined(__aarch64__)
67         &vdev_raidz_aarch64_neon_impl,
68         &vdev_raidz_aarch64_neonx2_impl,
69 #endif
70 };
71
72 /* Indicate that benchmark has been completed */
73 static boolean_t raidz_math_initialized = B_FALSE;
74
75 /* Select raidz implementation */
76 #define IMPL_FASTEST    (UINT32_MAX)
77 #define IMPL_CYCLE      (UINT32_MAX - 1)
78 #define IMPL_ORIGINAL   (0)
79 #define IMPL_SCALAR     (1)
80
81 #define RAIDZ_IMPL_READ(i)      (*(volatile uint32_t *) &(i))
82
83 static uint32_t zfs_vdev_raidz_impl = IMPL_SCALAR;
84 static uint32_t user_sel_impl = IMPL_FASTEST;
85
86 /* Hold all supported implementations */
87 static size_t raidz_supp_impl_cnt = 0;
88 static raidz_impl_ops_t *raidz_supp_impl[ARRAY_SIZE(raidz_all_maths)];
89
90 /*
91  * kstats values for supported implementations
92  * Values represent per disk throughput of 8 disk+parity raidz vdev [B/s]
93  */
94 static raidz_impl_kstat_t raidz_impl_kstats[ARRAY_SIZE(raidz_all_maths) + 1];
95
96 /* kstat for benchmarked implementations */
97 static kstat_t *raidz_math_kstat = NULL;
98
99 /*
100  * Selects the raidz operation for raidz_map
101  * If rm_ops is set to NULL original raidz implementation will be used
102  */
103 raidz_impl_ops_t *
104 vdev_raidz_math_get_ops()
105 {
106         raidz_impl_ops_t *ops = NULL;
107         const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
108
109         switch (impl) {
110         case IMPL_FASTEST:
111                 ASSERT(raidz_math_initialized);
112                 ops = &vdev_raidz_fastest_impl;
113                 break;
114 #if !defined(_KERNEL)
115         case IMPL_CYCLE:
116         {
117                 ASSERT(raidz_math_initialized);
118                 ASSERT3U(raidz_supp_impl_cnt, >, 0);
119                 /* Cycle through all supported implementations */
120                 static size_t cycle_impl_idx = 0;
121                 size_t idx = (++cycle_impl_idx) % raidz_supp_impl_cnt;
122                 ops = raidz_supp_impl[idx];
123         }
124         break;
125 #endif
126         case IMPL_ORIGINAL:
127                 ops = (raidz_impl_ops_t *)&vdev_raidz_original_impl;
128                 break;
129         case IMPL_SCALAR:
130                 ops = (raidz_impl_ops_t *)&vdev_raidz_scalar_impl;
131                 break;
132         default:
133                 ASSERT3U(impl, <, raidz_supp_impl_cnt);
134                 ASSERT3U(raidz_supp_impl_cnt, >, 0);
135                 if (impl < ARRAY_SIZE(raidz_all_maths))
136                         ops = raidz_supp_impl[impl];
137                 break;
138         }
139
140         ASSERT3P(ops, !=, NULL);
141
142         return (ops);
143 }
144
145 /*
146  * Select parity generation method for raidz_map
147  */
148 int
149 vdev_raidz_math_generate(raidz_map_t *rm)
150 {
151         raidz_gen_f gen_parity = NULL;
152
153         switch (raidz_parity(rm)) {
154                 case 1:
155                         gen_parity = rm->rm_ops->gen[RAIDZ_GEN_P];
156                         break;
157                 case 2:
158                         gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQ];
159                         break;
160                 case 3:
161                         gen_parity = rm->rm_ops->gen[RAIDZ_GEN_PQR];
162                         break;
163                 default:
164                         gen_parity = NULL;
165                         cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
166                             raidz_parity(rm));
167                         break;
168         }
169
170         /* if method is NULL execute the original implementation */
171         if (gen_parity == NULL)
172                 return (RAIDZ_ORIGINAL_IMPL);
173
174         gen_parity(rm);
175
176         return (0);
177 }
178
179 static raidz_rec_f
180 reconstruct_fun_p_sel(raidz_map_t *rm, const int *parity_valid,
181     const int nbaddata)
182 {
183         if (nbaddata == 1 && parity_valid[CODE_P]) {
184                 return (rm->rm_ops->rec[RAIDZ_REC_P]);
185         }
186         return ((raidz_rec_f) NULL);
187 }
188
189 static raidz_rec_f
190 reconstruct_fun_pq_sel(raidz_map_t *rm, const int *parity_valid,
191     const int nbaddata)
192 {
193         if (nbaddata == 1) {
194                 if (parity_valid[CODE_P]) {
195                         return (rm->rm_ops->rec[RAIDZ_REC_P]);
196                 } else if (parity_valid[CODE_Q]) {
197                         return (rm->rm_ops->rec[RAIDZ_REC_Q]);
198                 }
199         } else if (nbaddata == 2 &&
200             parity_valid[CODE_P] && parity_valid[CODE_Q]) {
201                 return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
202         }
203         return ((raidz_rec_f) NULL);
204 }
205
206 static raidz_rec_f
207 reconstruct_fun_pqr_sel(raidz_map_t *rm, const int *parity_valid,
208     const int nbaddata)
209 {
210         if (nbaddata == 1) {
211                 if (parity_valid[CODE_P]) {
212                         return (rm->rm_ops->rec[RAIDZ_REC_P]);
213                 } else if (parity_valid[CODE_Q]) {
214                         return (rm->rm_ops->rec[RAIDZ_REC_Q]);
215                 } else if (parity_valid[CODE_R]) {
216                         return (rm->rm_ops->rec[RAIDZ_REC_R]);
217                 }
218         } else if (nbaddata == 2) {
219                 if (parity_valid[CODE_P] && parity_valid[CODE_Q]) {
220                         return (rm->rm_ops->rec[RAIDZ_REC_PQ]);
221                 } else if (parity_valid[CODE_P] && parity_valid[CODE_R]) {
222                         return (rm->rm_ops->rec[RAIDZ_REC_PR]);
223                 } else if (parity_valid[CODE_Q] && parity_valid[CODE_R]) {
224                         return (rm->rm_ops->rec[RAIDZ_REC_QR]);
225                 }
226         } else if (nbaddata == 3 &&
227             parity_valid[CODE_P] && parity_valid[CODE_Q] &&
228             parity_valid[CODE_R]) {
229                 return (rm->rm_ops->rec[RAIDZ_REC_PQR]);
230         }
231         return ((raidz_rec_f) NULL);
232 }
233
234 /*
235  * Select data reconstruction method for raidz_map
236  * @parity_valid - Parity validity flag
237  * @dt           - Failed data index array
238  * @nbaddata     - Number of failed data columns
239  */
240 int
241 vdev_raidz_math_reconstruct(raidz_map_t *rm, const int *parity_valid,
242     const int *dt, const int nbaddata)
243 {
244         raidz_rec_f rec_fn = NULL;
245
246         switch (raidz_parity(rm)) {
247         case PARITY_P:
248                 rec_fn = reconstruct_fun_p_sel(rm, parity_valid, nbaddata);
249                 break;
250         case PARITY_PQ:
251                 rec_fn = reconstruct_fun_pq_sel(rm, parity_valid, nbaddata);
252                 break;
253         case PARITY_PQR:
254                 rec_fn = reconstruct_fun_pqr_sel(rm, parity_valid, nbaddata);
255                 break;
256         default:
257                 cmn_err(CE_PANIC, "invalid RAID-Z configuration %d",
258                     raidz_parity(rm));
259                 break;
260         }
261
262         if (rec_fn == NULL)
263                 return (RAIDZ_ORIGINAL_IMPL);
264         else
265                 return (rec_fn(rm, dt));
266 }
267
268 const char *raidz_gen_name[] = {
269         "gen_p", "gen_pq", "gen_pqr"
270 };
271 const char *raidz_rec_name[] = {
272         "rec_p", "rec_q", "rec_r",
273         "rec_pq", "rec_pr", "rec_qr", "rec_pqr"
274 };
275
276 #define RAIDZ_KSTAT_LINE_LEN    (17 + 10*12 + 1)
277
278 static int
279 raidz_math_kstat_headers(char *buf, size_t size)
280 {
281         int i;
282         ssize_t off;
283
284         ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
285
286         off = snprintf(buf, size, "%-17s", "implementation");
287
288         for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
289                 off += snprintf(buf + off, size - off, "%-16s",
290                     raidz_gen_name[i]);
291
292         for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
293                 off += snprintf(buf + off, size - off, "%-16s",
294                     raidz_rec_name[i]);
295
296         (void) snprintf(buf + off, size - off, "\n");
297
298         return (0);
299 }
300
301 static int
302 raidz_math_kstat_data(char *buf, size_t size, void *data)
303 {
304         raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
305         raidz_impl_kstat_t *cstat = (raidz_impl_kstat_t *)data;
306         ssize_t off = 0;
307         int i;
308
309         ASSERT3U(size, >=, RAIDZ_KSTAT_LINE_LEN);
310
311         if (cstat == fstat) {
312                 off += snprintf(buf + off, size - off, "%-17s", "fastest");
313
314                 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++) {
315                         int id = fstat->gen[i];
316                         off += snprintf(buf + off, size - off, "%-16s",
317                             raidz_supp_impl[id]->name);
318                 }
319                 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++) {
320                         int id = fstat->rec[i];
321                         off += snprintf(buf + off, size - off, "%-16s",
322                             raidz_supp_impl[id]->name);
323                 }
324         } else {
325                 ptrdiff_t id = cstat - raidz_impl_kstats;
326
327                 off += snprintf(buf + off, size - off, "%-17s",
328                     raidz_supp_impl[id]->name);
329
330                 for (i = 0; i < ARRAY_SIZE(raidz_gen_name); i++)
331                         off += snprintf(buf + off, size - off, "%-16llu",
332                             (u_longlong_t)cstat->gen[i]);
333
334                 for (i = 0; i < ARRAY_SIZE(raidz_rec_name); i++)
335                         off += snprintf(buf + off, size - off, "%-16llu",
336                             (u_longlong_t)cstat->rec[i]);
337         }
338
339         (void) snprintf(buf + off, size - off, "\n");
340
341         return (0);
342 }
343
344 static void *
345 raidz_math_kstat_addr(kstat_t *ksp, loff_t n)
346 {
347         if (n <= raidz_supp_impl_cnt)
348                 ksp->ks_private = (void *) (raidz_impl_kstats + n);
349         else
350                 ksp->ks_private = NULL;
351
352         return (ksp->ks_private);
353 }
354
355 #define BENCH_D_COLS    (8ULL)
356 #define BENCH_COLS      (BENCH_D_COLS + PARITY_PQR)
357 #define BENCH_ZIO_SIZE  (1ULL << SPA_OLD_MAXBLOCKSHIFT) /* 128 kiB */
358 #define BENCH_NS        MSEC2NSEC(25)                   /* 25ms */
359
360 typedef void (*benchmark_fn)(raidz_map_t *rm, const int fn);
361
362 static void
363 benchmark_gen_impl(raidz_map_t *rm, const int fn)
364 {
365         (void) fn;
366         vdev_raidz_generate_parity(rm);
367 }
368
369 static void
370 benchmark_rec_impl(raidz_map_t *rm, const int fn)
371 {
372         static const int rec_tgt[7][3] = {
373                 {1, 2, 3},      /* rec_p:   bad QR & D[0]       */
374                 {0, 2, 3},      /* rec_q:   bad PR & D[0]       */
375                 {0, 1, 3},      /* rec_r:   bad PQ & D[0]       */
376                 {2, 3, 4},      /* rec_pq:  bad R  & D[0][1]    */
377                 {1, 3, 4},      /* rec_pr:  bad Q  & D[0][1]    */
378                 {0, 3, 4},      /* rec_qr:  bad P  & D[0][1]    */
379                 {3, 4, 5}       /* rec_pqr: bad    & D[0][1][2] */
380         };
381
382         vdev_raidz_reconstruct(rm, rec_tgt[fn], 3);
383 }
384
385 /*
386  * Benchmarking of all supported implementations (raidz_supp_impl_cnt)
387  * is performed by setting the rm_ops pointer and calling the top level
388  * generate/reconstruct methods of bench_rm.
389  */
390 static void
391 benchmark_raidz_impl(raidz_map_t *bench_rm, const int fn, benchmark_fn bench_fn)
392 {
393         uint64_t run_cnt, speed, best_speed = 0;
394         hrtime_t t_start, t_diff;
395         raidz_impl_ops_t *curr_impl;
396         raidz_impl_kstat_t *fstat = &raidz_impl_kstats[raidz_supp_impl_cnt];
397         int impl, i;
398
399         for (impl = 0; impl < raidz_supp_impl_cnt; impl++) {
400                 /* set an implementation to benchmark */
401                 curr_impl = raidz_supp_impl[impl];
402                 bench_rm->rm_ops = curr_impl;
403
404                 run_cnt = 0;
405                 t_start = gethrtime();
406
407                 do {
408                         for (i = 0; i < 25; i++, run_cnt++)
409                                 bench_fn(bench_rm, fn);
410
411                         t_diff = gethrtime() - t_start;
412                 } while (t_diff < BENCH_NS);
413
414                 speed = run_cnt * BENCH_ZIO_SIZE * NANOSEC;
415                 speed /= (t_diff * BENCH_COLS);
416
417                 if (bench_fn == benchmark_gen_impl)
418                         raidz_impl_kstats[impl].gen[fn] = speed;
419                 else
420                         raidz_impl_kstats[impl].rec[fn] = speed;
421
422                 /* Update fastest implementation method */
423                 if (speed > best_speed) {
424                         best_speed = speed;
425
426                         if (bench_fn == benchmark_gen_impl) {
427                                 fstat->gen[fn] = impl;
428                                 vdev_raidz_fastest_impl.gen[fn] =
429                                     curr_impl->gen[fn];
430                         } else {
431                                 fstat->rec[fn] = impl;
432                                 vdev_raidz_fastest_impl.rec[fn] =
433                                     curr_impl->rec[fn];
434                         }
435                 }
436         }
437 }
438
439 void
440 vdev_raidz_math_init(void)
441 {
442         raidz_impl_ops_t *curr_impl;
443         zio_t *bench_zio = NULL;
444         raidz_map_t *bench_rm = NULL;
445         uint64_t bench_parity;
446         int i, c, fn;
447
448         /* move supported impl into raidz_supp_impl */
449         for (i = 0, c = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
450                 curr_impl = (raidz_impl_ops_t *)raidz_all_maths[i];
451
452                 /* initialize impl */
453                 if (curr_impl->init)
454                         curr_impl->init();
455
456                 if (curr_impl->is_supported())
457                         raidz_supp_impl[c++] = (raidz_impl_ops_t *)curr_impl;
458         }
459         membar_producer();              /* complete raidz_supp_impl[] init */
460         raidz_supp_impl_cnt = c;        /* number of supported impl */
461
462 #if !defined(_KERNEL)
463         /* Skip benchmarking and use last implementation as fastest */
464         memcpy(&vdev_raidz_fastest_impl, raidz_supp_impl[raidz_supp_impl_cnt-1],
465             sizeof (vdev_raidz_fastest_impl));
466         strcpy(vdev_raidz_fastest_impl.name, "fastest");
467
468         raidz_math_initialized = B_TRUE;
469
470         /* Use 'cycle' math selection method for userspace */
471         VERIFY0(vdev_raidz_impl_set("cycle"));
472         return;
473 #endif
474
475         /* Fake an zio and run the benchmark on a warmed up buffer */
476         bench_zio = kmem_zalloc(sizeof (zio_t), KM_SLEEP);
477         bench_zio->io_offset = 0;
478         bench_zio->io_size = BENCH_ZIO_SIZE; /* only data columns */
479         bench_zio->io_abd = abd_alloc_linear(BENCH_ZIO_SIZE, B_TRUE);
480         memset(abd_to_buf(bench_zio->io_abd), 0xAA, BENCH_ZIO_SIZE);
481
482         /* Benchmark parity generation methods */
483         for (fn = 0; fn < RAIDZ_GEN_NUM; fn++) {
484                 bench_parity = fn + 1;
485                 /* New raidz_map is needed for each generate_p/q/r */
486                 bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
487                     BENCH_D_COLS + bench_parity, bench_parity);
488
489                 benchmark_raidz_impl(bench_rm, fn, benchmark_gen_impl);
490
491                 vdev_raidz_map_free(bench_rm);
492         }
493
494         /* Benchmark data reconstruction methods */
495         bench_rm = vdev_raidz_map_alloc(bench_zio, SPA_MINBLOCKSHIFT,
496             BENCH_COLS, PARITY_PQR);
497
498         for (fn = 0; fn < RAIDZ_REC_NUM; fn++)
499                 benchmark_raidz_impl(bench_rm, fn, benchmark_rec_impl);
500
501         vdev_raidz_map_free(bench_rm);
502
503         /* cleanup the bench zio */
504         abd_free(bench_zio->io_abd);
505         kmem_free(bench_zio, sizeof (zio_t));
506
507         /* install kstats for all impl */
508         raidz_math_kstat = kstat_create("zfs", 0, "vdev_raidz_bench", "misc",
509             KSTAT_TYPE_RAW, 0, KSTAT_FLAG_VIRTUAL);
510
511         if (raidz_math_kstat != NULL) {
512                 raidz_math_kstat->ks_data = NULL;
513                 raidz_math_kstat->ks_ndata = UINT32_MAX;
514                 kstat_set_raw_ops(raidz_math_kstat,
515                     raidz_math_kstat_headers,
516                     raidz_math_kstat_data,
517                     raidz_math_kstat_addr);
518                 kstat_install(raidz_math_kstat);
519         }
520
521         /* Finish initialization */
522         atomic_swap_32(&zfs_vdev_raidz_impl, user_sel_impl);
523         raidz_math_initialized = B_TRUE;
524 }
525
526 void
527 vdev_raidz_math_fini(void)
528 {
529         raidz_impl_ops_t const *curr_impl;
530         int i;
531
532         if (raidz_math_kstat != NULL) {
533                 kstat_delete(raidz_math_kstat);
534                 raidz_math_kstat = NULL;
535         }
536
537         /* fini impl */
538         for (i = 0; i < ARRAY_SIZE(raidz_all_maths); i++) {
539                 curr_impl = raidz_all_maths[i];
540                 if (curr_impl->fini)
541                         curr_impl->fini();
542         }
543 }
544
545 static const struct {
546         char *name;
547         uint32_t sel;
548 } math_impl_opts[] = {
549 #if !defined(_KERNEL)
550                 { "cycle",      IMPL_CYCLE },
551 #endif
552                 { "fastest",    IMPL_FASTEST },
553                 { "original",   IMPL_ORIGINAL },
554                 { "scalar",     IMPL_SCALAR }
555 };
556
557 /*
558  * Function sets desired raidz implementation.
559  *
560  * If we are called before init(), user preference will be saved in
561  * user_sel_impl, and applied in later init() call. This occurs when module
562  * parameter is specified on module load. Otherwise, directly update
563  * zfs_vdev_raidz_impl.
564  *
565  * @val         Name of raidz implementation to use
566  * @param       Unused.
567  */
568 int
569 vdev_raidz_impl_set(const char *val)
570 {
571         int err = -EINVAL;
572         char req_name[RAIDZ_IMPL_NAME_MAX];
573         uint32_t impl = RAIDZ_IMPL_READ(user_sel_impl);
574         size_t i;
575
576         /* sanitize input */
577         i = strnlen(val, RAIDZ_IMPL_NAME_MAX);
578         if (i == 0 || i == RAIDZ_IMPL_NAME_MAX)
579                 return (err);
580
581         strlcpy(req_name, val, RAIDZ_IMPL_NAME_MAX);
582         while (i > 0 && !!isspace(req_name[i-1]))
583                 i--;
584         req_name[i] = '\0';
585
586         /* Check mandatory options */
587         for (i = 0; i < ARRAY_SIZE(math_impl_opts); i++) {
588                 if (strcmp(req_name, math_impl_opts[i].name) == 0) {
589                         impl = math_impl_opts[i].sel;
590                         err = 0;
591                         break;
592                 }
593         }
594
595         /* check all supported impl if init() was already called */
596         if (err != 0 && raidz_math_initialized) {
597                 /* check all supported implementations */
598                 for (i = 0; i < raidz_supp_impl_cnt; i++) {
599                         if (strcmp(req_name, raidz_supp_impl[i]->name) == 0) {
600                                 impl = i;
601                                 err = 0;
602                                 break;
603                         }
604                 }
605         }
606
607         if (err == 0) {
608                 if (raidz_math_initialized)
609                         atomic_swap_32(&zfs_vdev_raidz_impl, impl);
610                 else
611                         atomic_swap_32(&user_sel_impl, impl);
612         }
613
614         return (err);
615 }
616
617 #if defined(_KERNEL)
618 #include <linux/mod_compat.h>
619
620 static int
621 zfs_vdev_raidz_impl_set(const char *val, zfs_kernel_param_t *kp)
622 {
623         return (vdev_raidz_impl_set(val));
624 }
625
626 static int
627 zfs_vdev_raidz_impl_get(char *buffer, zfs_kernel_param_t *kp)
628 {
629         int i, cnt = 0;
630         char *fmt;
631         const uint32_t impl = RAIDZ_IMPL_READ(zfs_vdev_raidz_impl);
632
633         ASSERT(raidz_math_initialized);
634
635         /* list mandatory options */
636         for (i = 0; i < ARRAY_SIZE(math_impl_opts) - 2; i++) {
637                 fmt = (impl == math_impl_opts[i].sel) ? "[%s] " : "%s ";
638                 cnt += sprintf(buffer + cnt, fmt, math_impl_opts[i].name);
639         }
640
641         /* list all supported implementations */
642         for (i = 0; i < raidz_supp_impl_cnt; i++) {
643                 fmt = (i == impl) ? "[%s] " : "%s ";
644                 cnt += sprintf(buffer + cnt, fmt, raidz_supp_impl[i]->name);
645         }
646
647         return (cnt);
648 }
649
650 module_param_call(zfs_vdev_raidz_impl, zfs_vdev_raidz_impl_set,
651     zfs_vdev_raidz_impl_get, NULL, 0644);
652 MODULE_PARM_DESC(zfs_vdev_raidz_impl, "Select raidz implementation.");
653 #endif