]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sbin/growfs/growfs.c
Merge ACPICA 20100702.
[FreeBSD/FreeBSD.git] / sbin / growfs / growfs.c
1 /*
2  * Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz
3  * Copyright (c) 1980, 1989, 1993 The Regents of the University of California.
4  * All rights reserved.
5  *
6  * This code is derived from software contributed to Berkeley by
7  * Christoph Herrmann and Thomas-Henning von Kamptz, Munich and Frankfurt.
8  *
9  * Redistribution and use in source and binary forms, with or without
10  * modification, are permitted provided that the following conditions
11  * are met:
12  * 1. Redistributions of source code must retain the above copyright
13  *    notice, this list of conditions and the following disclaimer.
14  * 2. Redistributions in binary form must reproduce the above copyright
15  *    notice, this list of conditions and the following disclaimer in the
16  *    documentation and/or other materials provided with the distribution.
17  * 3. All advertising materials mentioning features or use of this software
18  *    must display the following acknowledgment:
19  *      This product includes software developed by the University of
20  *      California, Berkeley and its contributors, as well as Christoph
21  *      Herrmann and Thomas-Henning von Kamptz.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  * $TSHeader: src/sbin/growfs/growfs.c,v 1.5 2000/12/12 19:31:00 tomsoft Exp $
39  *
40  */
41
42 #ifndef lint
43 static const char copyright[] =
44 "@(#) Copyright (c) 2000 Christoph Herrmann, Thomas-Henning von Kamptz\n\
45 Copyright (c) 1980, 1989, 1993 The Regents of the University of California.\n\
46 All rights reserved.\n";
47 #endif /* not lint */
48
49 #include <sys/cdefs.h>
50 __FBSDID("$FreeBSD$");
51
52 /* ********************************************************** INCLUDES ***** */
53 #include <sys/param.h>
54 #include <sys/disklabel.h>
55 #include <sys/ioctl.h>
56 #include <sys/stat.h>
57 #include <sys/disk.h>
58
59 #include <stdio.h>
60 #include <paths.h>
61 #include <ctype.h>
62 #include <err.h>
63 #include <fcntl.h>
64 #include <limits.h>
65 #include <stdlib.h>
66 #include <stdint.h>
67 #include <string.h>
68 #include <time.h>
69 #include <unistd.h>
70 #include <ufs/ufs/dinode.h>
71 #include <ufs/ffs/fs.h>
72
73 #include "debug.h"
74
75 /* *************************************************** GLOBALS & TYPES ***** */
76 #ifdef FS_DEBUG
77 int     _dbg_lvl_ = (DL_INFO);  /* DL_TRC */
78 #endif /* FS_DEBUG */
79
80 static union {
81         struct fs       fs;
82         char    pad[SBLOCKSIZE];
83 } fsun1, fsun2;
84 #define sblock  fsun1.fs        /* the new superblock */
85 #define osblock fsun2.fs        /* the old superblock */
86
87 /*
88  * Possible superblock locations ordered from most to least likely.
89  */
90 static int sblock_try[] = SBLOCKSEARCH;
91 static ufs2_daddr_t sblockloc;
92
93 static union {
94         struct cg       cg;
95         char    pad[MAXBSIZE];
96 } cgun1, cgun2;
97 #define acg     cgun1.cg        /* a cylinder cgroup (new) */
98 #define aocg    cgun2.cg        /* an old cylinder group */
99
100 static char     ablk[MAXBSIZE]; /* a block */
101
102 static struct csum      *fscs;  /* cylinder summary */
103
104 union dinode {
105         struct ufs1_dinode dp1;
106         struct ufs2_dinode dp2;
107 };
108 #define DIP(dp, field) \
109         ((sblock.fs_magic == FS_UFS1_MAGIC) ? \
110         (uint32_t)(dp)->dp1.field : (dp)->dp2.field)
111 #define DIP_SET(dp, field, val) do { \
112         if (sblock.fs_magic == FS_UFS1_MAGIC) \
113                 (dp)->dp1.field = (val); \
114         else \
115                 (dp)->dp2.field = (val); \
116         } while (0)
117 static ufs2_daddr_t     inoblk;                 /* inode block address */
118 static char             inobuf[MAXBSIZE];       /* inode block */
119 ino_t                   maxino;                 /* last valid inode */
120 static int              unlabeled;     /* unlabeled partition, e.g. vinum volume etc. */
121
122 /*
123  * An array of elements of type struct gfs_bpp describes all blocks to
124  * be relocated in order to free the space needed for the cylinder group
125  * summary for all cylinder groups located in the first cylinder group.
126  */
127 struct gfs_bpp {
128         ufs2_daddr_t    old;            /* old block number */
129         ufs2_daddr_t    new;            /* new block number */
130 #define GFS_FL_FIRST    1
131 #define GFS_FL_LAST     2
132         unsigned int    flags;  /* special handling required */
133         int     found;          /* how many references were updated */
134 };
135
136 /* ******************************************************** PROTOTYPES ***** */
137 static void     growfs(int, int, unsigned int);
138 static void     rdfs(ufs2_daddr_t, size_t, void *, int);
139 static void     wtfs(ufs2_daddr_t, size_t, void *, int, unsigned int);
140 static ufs2_daddr_t alloc(void);
141 static int      charsperline(void);
142 static void     usage(void);
143 static int      isblock(struct fs *, unsigned char *, int);
144 static void     clrblock(struct fs *, unsigned char *, int);
145 static void     setblock(struct fs *, unsigned char *, int);
146 static void     initcg(int, time_t, int, unsigned int);
147 static void     updjcg(int, time_t, int, int, unsigned int);
148 static void     updcsloc(time_t, int, int, unsigned int);
149 static struct disklabel *get_disklabel(int);
150 static void     return_disklabel(int, struct disklabel *, unsigned int);
151 static union dinode *ginode(ino_t, int, int);
152 static void     frag_adjust(ufs2_daddr_t, int);
153 static int      cond_bl_upd(ufs2_daddr_t *, struct gfs_bpp *, int, int,
154                     unsigned int);
155 static void     updclst(int);
156 static void     updrefs(int, ino_t, struct gfs_bpp *, int, int, unsigned int);
157 static void     indirchk(ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t, ufs_lbn_t,
158                     struct gfs_bpp *, int, int, unsigned int);
159 static void     get_dev_size(int, int *);
160
161 /* ************************************************************ growfs ***** */
162 /*
163  * Here we actually start growing the file system. We basically read the
164  * cylinder summary from the first cylinder group as we want to update
165  * this on the fly during our various operations. First we handle the
166  * changes in the former last cylinder group. Afterwards we create all new
167  * cylinder groups.  Now we handle the cylinder group containing the
168  * cylinder summary which might result in a relocation of the whole
169  * structure.  In the end we write back the updated cylinder summary, the
170  * new superblock, and slightly patched versions of the super block
171  * copies.
172  */
173 static void
174 growfs(int fsi, int fso, unsigned int Nflag)
175 {
176         DBG_FUNC("growfs")
177         time_t  utime;
178         uint    cylno;
179         int     i, j, width;
180         char    tmpbuf[100];
181 #ifdef FSIRAND
182         static int      randinit=0;
183
184         DBG_ENTER;
185
186         if (!randinit) {
187                 randinit = 1;
188                 srandomdev();
189         }
190 #else /* not FSIRAND */
191
192         DBG_ENTER;
193
194 #endif /* FSIRAND */
195         time(&utime);
196
197         /*
198          * Get the cylinder summary into the memory.
199          */
200         fscs = (struct csum *)calloc((size_t)1, (size_t)sblock.fs_cssize);
201         if(fscs == NULL) {
202                 errx(1, "calloc failed");
203         }
204         for (i = 0; i < osblock.fs_cssize; i += osblock.fs_bsize) {
205                 rdfs(fsbtodb(&osblock, osblock.fs_csaddr +
206                     numfrags(&osblock, i)), (size_t)MIN(osblock.fs_cssize - i,
207                     osblock.fs_bsize), (void *)(((char *)fscs)+i), fsi);
208         }
209
210 #ifdef FS_DEBUG
211 {
212         struct csum     *dbg_csp;
213         int     dbg_csc;
214         char    dbg_line[80];
215
216         dbg_csp=fscs;
217         for(dbg_csc=0; dbg_csc<osblock.fs_ncg; dbg_csc++) {
218                 snprintf(dbg_line, sizeof(dbg_line),
219                     "%d. old csum in old location", dbg_csc);
220                 DBG_DUMP_CSUM(&osblock,
221                     dbg_line,
222                     dbg_csp++);
223         }
224 }
225 #endif /* FS_DEBUG */
226         DBG_PRINT0("fscs read\n");
227
228         /*
229          * Do all needed changes in the former last cylinder group.
230          */
231         updjcg(osblock.fs_ncg-1, utime, fsi, fso, Nflag);
232
233         /*
234          * Dump out summary information about file system.
235          */
236 #       define B2MBFACTOR (1 / (1024.0 * 1024.0))
237         printf("growfs: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
238             (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
239             (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
240             sblock.fs_fsize);
241         printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
242             sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
243             sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
244         if (sblock.fs_flags & FS_DOSOFTDEP)
245                 printf("\twith soft updates\n");
246 #       undef B2MBFACTOR
247
248         /*
249          * Now build the cylinders group blocks and
250          * then print out indices of cylinder groups.
251          */
252         printf("super-block backups (for fsck -b #) at:\n");
253         i = 0;
254         width = charsperline();
255
256         /*
257          * Iterate for only the new cylinder groups.
258          */
259         for (cylno = osblock.fs_ncg; cylno < sblock.fs_ncg; cylno++) {
260                 initcg(cylno, utime, fso, Nflag);
261                 j = sprintf(tmpbuf, " %jd%s",
262                     (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
263                     cylno < (sblock.fs_ncg-1) ? "," : "" );
264                 if (i + j >= width) {
265                         printf("\n");
266                         i = 0;
267                 }
268                 i += j;
269                 printf("%s", tmpbuf);
270                 fflush(stdout);
271         }
272         printf("\n");
273
274         /*
275          * Do all needed changes in the first cylinder group.
276          * allocate blocks in new location
277          */
278         updcsloc(utime, fsi, fso, Nflag);
279
280         /*
281          * Now write the cylinder summary back to disk.
282          */
283         for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize) {
284                 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
285                     (size_t)MIN(sblock.fs_cssize - i, sblock.fs_bsize),
286                     (void *)(((char *)fscs) + i), fso, Nflag);
287         }
288         DBG_PRINT0("fscs written\n");
289
290 #ifdef FS_DEBUG
291 {
292         struct csum     *dbg_csp;
293         int     dbg_csc;
294         char    dbg_line[80];
295
296         dbg_csp=fscs;
297         for(dbg_csc=0; dbg_csc<sblock.fs_ncg; dbg_csc++) {
298                 snprintf(dbg_line, sizeof(dbg_line),
299                     "%d. new csum in new location", dbg_csc);
300                 DBG_DUMP_CSUM(&sblock,
301                     dbg_line,
302                     dbg_csp++);
303         }
304 }
305 #endif /* FS_DEBUG */
306
307         /*
308          * Now write the new superblock back to disk.
309          */
310         sblock.fs_time = utime;
311         wtfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
312         DBG_PRINT0("sblock written\n");
313         DBG_DUMP_FS(&sblock,
314             "new initial sblock");
315
316         /*
317          * Clean up the dynamic fields in our superblock copies.
318          */
319         sblock.fs_fmod = 0;
320         sblock.fs_clean = 1;
321         sblock.fs_ronly = 0;
322         sblock.fs_cgrotor = 0;
323         sblock.fs_state = 0;
324         memset((void *)&sblock.fs_fsmnt, 0, sizeof(sblock.fs_fsmnt));
325         sblock.fs_flags &= FS_DOSOFTDEP;
326
327         /*
328          * XXX
329          * The following fields are currently distributed from the superblock
330          * to the copies:
331          *     fs_minfree
332          *     fs_rotdelay
333          *     fs_maxcontig
334          *     fs_maxbpg
335          *     fs_minfree,
336          *     fs_optim
337          *     fs_flags regarding SOFTPDATES
338          *
339          * We probably should rather change the summary for the cylinder group
340          * statistics here to the value of what would be in there, if the file
341          * system were created initially with the new size. Therefor we still
342          * need to find an easy way of calculating that.
343          * Possibly we can try to read the first superblock copy and apply the
344          * "diffed" stats between the old and new superblock by still copying
345          * certain parameters onto that.
346          */
347
348         /*
349          * Write out the duplicate super blocks.
350          */
351         for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
352                 wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)),
353                     (size_t)SBLOCKSIZE, (void *)&sblock, fso, Nflag);
354         }
355         DBG_PRINT0("sblock copies written\n");
356         DBG_DUMP_FS(&sblock,
357             "new other sblocks");
358
359         DBG_LEAVE;
360         return;
361 }
362
363 /* ************************************************************ initcg ***** */
364 /*
365  * This creates a new cylinder group structure, for more details please see
366  * the source of newfs(8), as this function is taken over almost unchanged.
367  * As this is never called for the first cylinder group, the special
368  * provisions for that case are removed here.
369  */
370 static void
371 initcg(int cylno, time_t utime, int fso, unsigned int Nflag)
372 {
373         DBG_FUNC("initcg")
374         static void *iobuf;
375         long blkno, start;
376         ufs2_daddr_t i, cbase, dmax;
377         struct ufs1_dinode *dp1;
378         struct csum *cs;
379         uint d, dupper, dlower;
380
381         if (iobuf == NULL && (iobuf = malloc(sblock.fs_bsize)) == NULL) {
382                 errx(37, "panic: cannot allocate I/O buffer");
383         }
384         /*
385          * Determine block bounds for cylinder group.
386          * Allow space for super block summary information in first
387          * cylinder group.
388          */
389         cbase = cgbase(&sblock, cylno);
390         dmax = cbase + sblock.fs_fpg;
391         if (dmax > sblock.fs_size)
392                 dmax = sblock.fs_size;
393         dlower = cgsblock(&sblock, cylno) - cbase;
394         dupper = cgdmin(&sblock, cylno) - cbase;
395         if (cylno == 0) /* XXX fscs may be relocated */
396                 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
397         cs = &fscs[cylno];
398         memset(&acg, 0, sblock.fs_cgsize);
399         /*
400          * Note that we do not set cg_initediblk at all.
401          * In this extension of a previous filesystem
402          * we have no inodes initialized for the cylinder
403          * group at all. The first access to that cylinder
404          * group will do the correct initialization.
405          */
406         acg.cg_time = utime;
407         acg.cg_magic = CG_MAGIC;
408         acg.cg_cgx = cylno;
409         acg.cg_niblk = sblock.fs_ipg;
410         acg.cg_ndblk = dmax - cbase;
411         if (sblock.fs_contigsumsize > 0)
412                 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
413         start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
414         if (sblock.fs_magic == FS_UFS2_MAGIC) {
415                 acg.cg_iusedoff = start;
416         } else {
417                 acg.cg_old_ncyl = sblock.fs_old_cpg;
418                 acg.cg_old_time = acg.cg_time;
419                 acg.cg_time = 0;
420                 acg.cg_old_niblk = acg.cg_niblk;
421                 acg.cg_niblk = 0;
422                 acg.cg_old_btotoff = start;
423                 acg.cg_old_boff = acg.cg_old_btotoff +
424                     sblock.fs_old_cpg * sizeof(int32_t);
425                 acg.cg_iusedoff = acg.cg_old_boff +
426                     sblock.fs_old_cpg * sizeof(u_int16_t);
427         }
428         acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
429         acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
430         if (sblock.fs_contigsumsize > 0) {
431                 acg.cg_clustersumoff =
432                     roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
433                 acg.cg_clustersumoff -= sizeof(u_int32_t);
434                 acg.cg_clusteroff = acg.cg_clustersumoff +
435                     (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
436                 acg.cg_nextfreeoff = acg.cg_clusteroff +
437                     howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
438         }
439         if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
440                 /*
441                  * This should never happen as we would have had that panic
442                  * already on file system creation
443                  */
444                 errx(37, "panic: cylinder group too big");
445         }
446         acg.cg_cs.cs_nifree += sblock.fs_ipg;
447         if (cylno == 0)
448                 for (i = 0; i < ROOTINO; i++) {
449                         setbit(cg_inosused(&acg), i);
450                         acg.cg_cs.cs_nifree--;
451                 }
452         /*
453          * For the old file system, we have to initialize all the inodes.
454          */
455         if (sblock.fs_magic == FS_UFS1_MAGIC) {
456                 bzero(iobuf, sblock.fs_bsize);
457                 for (i = 0; i < sblock.fs_ipg / INOPF(&sblock);
458                      i += sblock.fs_frag) {
459                         dp1 = (struct ufs1_dinode *)iobuf;
460 #ifdef FSIRAND
461                         for (j = 0; j < INOPB(&sblock); j++) {
462                                 dp1->di_gen = random();
463                                 dp1++;
464                         }
465 #endif
466                         wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
467                             sblock.fs_bsize, iobuf, fso, Nflag);
468                 }
469         }
470         if (cylno > 0) {
471                 /*
472                  * In cylno 0, beginning space is reserved
473                  * for boot and super blocks.
474                  */
475                 for (d = 0; d < dlower; d += sblock.fs_frag) {
476                         blkno = d / sblock.fs_frag;
477                         setblock(&sblock, cg_blksfree(&acg), blkno);
478                         if (sblock.fs_contigsumsize > 0)
479                                 setbit(cg_clustersfree(&acg), blkno);
480                         acg.cg_cs.cs_nbfree++;
481                 }
482                 sblock.fs_dsize += dlower;
483         }
484         sblock.fs_dsize += acg.cg_ndblk - dupper;
485         if ((i = dupper % sblock.fs_frag)) {
486                 acg.cg_frsum[sblock.fs_frag - i]++;
487                 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
488                         setbit(cg_blksfree(&acg), dupper);
489                         acg.cg_cs.cs_nffree++;
490                 }
491         }
492         for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
493              d += sblock.fs_frag) {
494                 blkno = d / sblock.fs_frag;
495                 setblock(&sblock, cg_blksfree(&acg), blkno);
496                 if (sblock.fs_contigsumsize > 0)
497                         setbit(cg_clustersfree(&acg), blkno);
498                 acg.cg_cs.cs_nbfree++;
499         }
500         if (d < acg.cg_ndblk) {
501                 acg.cg_frsum[acg.cg_ndblk - d]++;
502                 for (; d < acg.cg_ndblk; d++) {
503                         setbit(cg_blksfree(&acg), d);
504                         acg.cg_cs.cs_nffree++;
505                 }
506         }
507         if (sblock.fs_contigsumsize > 0) {
508                 int32_t *sump = cg_clustersum(&acg);
509                 u_char *mapp = cg_clustersfree(&acg);
510                 int map = *mapp++;
511                 int bit = 1;
512                 int run = 0;
513
514                 for (i = 0; i < acg.cg_nclusterblks; i++) {
515                         if ((map & bit) != 0)
516                                 run++;
517                         else if (run != 0) {
518                                 if (run > sblock.fs_contigsumsize)
519                                         run = sblock.fs_contigsumsize;
520                                 sump[run]++;
521                                 run = 0;
522                         }
523                         if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
524                                 bit <<= 1;
525                         else {
526                                 map = *mapp++;
527                                 bit = 1;
528                         }
529                 }
530                 if (run != 0) {
531                         if (run > sblock.fs_contigsumsize)
532                                 run = sblock.fs_contigsumsize;
533                         sump[run]++;
534                 }
535         }
536         sblock.fs_cstotal.cs_ndir += acg.cg_cs.cs_ndir;
537         sblock.fs_cstotal.cs_nffree += acg.cg_cs.cs_nffree;
538         sblock.fs_cstotal.cs_nbfree += acg.cg_cs.cs_nbfree;
539         sblock.fs_cstotal.cs_nifree += acg.cg_cs.cs_nifree;
540         *cs = acg.cg_cs;
541         wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
542                 sblock.fs_bsize, (char *)&acg, fso, Nflag);
543         DBG_DUMP_CG(&sblock,
544             "new cg",
545             &acg);
546
547         DBG_LEAVE;
548         return;
549 }
550
551 /* ******************************************************* frag_adjust ***** */
552 /*
553  * Here we add or subtract (sign +1/-1) the available fragments in a given
554  * block to or from the fragment statistics. By subtracting before and adding
555  * after an operation on the free frag map we can easy update the fragment
556  * statistic, which seems to be otherwise a rather complex operation.
557  */
558 static void
559 frag_adjust(ufs2_daddr_t frag, int sign)
560 {
561         DBG_FUNC("frag_adjust")
562         int fragsize;
563         int f;
564
565         DBG_ENTER;
566
567         fragsize=0;
568         /*
569          * Here frag only needs to point to any fragment in the block we want
570          * to examine.
571          */
572         for(f=rounddown(frag, sblock.fs_frag);
573             f<roundup(frag+1, sblock.fs_frag);
574             f++) {
575                 /*
576                  * Count contiguous free fragments.
577                  */
578                 if(isset(cg_blksfree(&acg), f)) {
579                         fragsize++;
580                 } else {
581                         if(fragsize && fragsize<sblock.fs_frag) {
582                                 /*
583                                  * We found something in between.
584                                  */
585                                 acg.cg_frsum[fragsize]+=sign;
586                                 DBG_PRINT2("frag_adjust [%d]+=%d\n",
587                                     fragsize,
588                                     sign);
589                         }
590                         fragsize=0;
591                 }
592         }
593         if(fragsize && fragsize<sblock.fs_frag) {
594                 /*
595                  * We found something.
596                  */
597                 acg.cg_frsum[fragsize]+=sign;
598                 DBG_PRINT2("frag_adjust [%d]+=%d\n",
599                     fragsize,
600                     sign);
601         }
602         DBG_PRINT2("frag_adjust [[%d]]+=%d\n",
603             fragsize,
604             sign);
605
606         DBG_LEAVE;
607         return;
608 }
609
610 /* ******************************************************* cond_bl_upd ***** */
611 /*
612  * Here we conditionally update a pointer to a fragment. We check for all
613  * relocated blocks if any of its fragments is referenced by the current
614  * field, and update the pointer to the respective fragment in our new
615  * block.  If we find a reference we write back the block immediately,
616  * as there is no easy way for our general block reading engine to figure
617  * out if a write back operation is needed.
618  */
619 static int
620 cond_bl_upd(ufs2_daddr_t *block, struct gfs_bpp *field, int fsi, int fso,
621     unsigned int Nflag)
622 {
623         DBG_FUNC("cond_bl_upd")
624         struct gfs_bpp *f;
625         ufs2_daddr_t src, dst;
626         int fragnum;
627         void *ibuf;
628
629         DBG_ENTER;
630
631         for (f = field; f->old != 0; f++) {
632                 src = *block;
633                 if (fragstoblks(&sblock, src) != f->old)
634                         continue;
635                 /*
636                  * The fragment is part of the block, so update.
637                  */
638                 dst = blkstofrags(&sblock, f->new);
639                 fragnum = fragnum(&sblock, src);
640                 *block = dst + fragnum;
641                 f->found++;
642                 DBG_PRINT3("scg (%jd->%jd)[%d] reference updated\n",
643                     (intmax_t)f->old,
644                     (intmax_t)f->new,
645                     fragnum);
646
647                 /*
648                  * Copy the block back immediately.
649                  *
650                  * XXX  If src is is from an indirect block we have
651                  *      to implement copy on write here in case of
652                  *      active snapshots.
653                  */
654                 ibuf = malloc(sblock.fs_bsize);
655                 if (!ibuf)
656                         errx(1, "malloc failed");
657                 src -= fragnum;
658                 rdfs(fsbtodb(&sblock, src), (size_t)sblock.fs_bsize, ibuf, fsi);
659                 wtfs(dst, (size_t)sblock.fs_bsize, ibuf, fso, Nflag);
660                 free(ibuf);
661                 /*
662                  * The same block can't be found again in this loop.
663                  */
664                 return (1);
665         }
666
667         DBG_LEAVE;
668         return (0);
669 }
670
671 /* ************************************************************ updjcg ***** */
672 /*
673  * Here we do all needed work for the former last cylinder group. It has to be
674  * changed in any case, even if the file system ended exactly on the end of
675  * this group, as there is some slightly inconsistent handling of the number
676  * of cylinders in the cylinder group. We start again by reading the cylinder
677  * group from disk. If the last block was not fully available, we first handle
678  * the missing fragments, then we handle all new full blocks in that file
679  * system and finally we handle the new last fragmented block in the file
680  * system.  We again have to handle the fragment statistics rotational layout
681  * tables and cluster summary during all those operations.
682  */
683 static void
684 updjcg(int cylno, time_t utime, int fsi, int fso, unsigned int Nflag)
685 {
686         DBG_FUNC("updjcg")
687         ufs2_daddr_t    cbase, dmax, dupper;
688         struct csum     *cs;
689         int     i,k;
690         int     j=0;
691
692         DBG_ENTER;
693
694         /*
695          * Read the former last (joining) cylinder group from disk, and make
696          * a copy.
697          */
698         rdfs(fsbtodb(&osblock, cgtod(&osblock, cylno)),
699             (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
700         DBG_PRINT0("jcg read\n");
701         DBG_DUMP_CG(&sblock,
702             "old joining cg",
703             &aocg);
704
705         memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
706
707         /*
708          * If the cylinder group had already its new final size almost
709          * nothing is to be done ... except:
710          * For some reason the value of cg_ncyl in the last cylinder group has
711          * to be zero instead of fs_cpg. As this is now no longer the last
712          * cylinder group we have to change that value now to fs_cpg.
713          */
714
715         if(cgbase(&osblock, cylno+1) == osblock.fs_size) {
716                 if (sblock.fs_magic == FS_UFS1_MAGIC)
717                         acg.cg_old_ncyl=sblock.fs_old_cpg;
718
719                 wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)),
720                     (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
721                 DBG_PRINT0("jcg written\n");
722                 DBG_DUMP_CG(&sblock,
723                     "new joining cg",
724                     &acg);
725
726                 DBG_LEAVE;
727                 return;
728         }
729
730         /*
731          * Set up some variables needed later.
732          */
733         cbase = cgbase(&sblock, cylno);
734         dmax = cbase + sblock.fs_fpg;
735         if (dmax > sblock.fs_size)
736                 dmax = sblock.fs_size;
737         dupper = cgdmin(&sblock, cylno) - cbase;
738         if (cylno == 0) { /* XXX fscs may be relocated */
739                 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
740         }
741
742         /*
743          * Set pointer to the cylinder summary for our cylinder group.
744          */
745         cs = fscs + cylno;
746
747         /*
748          * Touch the cylinder group, update all fields in the cylinder group as
749          * needed, update the free space in the superblock.
750          */
751         acg.cg_time = utime;
752         if ((unsigned)cylno == sblock.fs_ncg - 1) {
753                 /*
754                  * This is still the last cylinder group.
755                  */
756                 if (sblock.fs_magic == FS_UFS1_MAGIC)
757                         acg.cg_old_ncyl =
758                             sblock.fs_old_ncyl % sblock.fs_old_cpg;
759         } else {
760                 acg.cg_old_ncyl = sblock.fs_old_cpg;
761         }
762         DBG_PRINT2("jcg dbg: %d %u",
763             cylno,
764             sblock.fs_ncg);
765 #ifdef FS_DEBUG
766         if (sblock.fs_magic == FS_UFS1_MAGIC)
767                 DBG_PRINT2("%d %u",
768                     acg.cg_old_ncyl,
769                     sblock.fs_old_cpg);
770 #endif
771         DBG_PRINT0("\n");
772         acg.cg_ndblk = dmax - cbase;
773         sblock.fs_dsize += acg.cg_ndblk-aocg.cg_ndblk;
774         if (sblock.fs_contigsumsize > 0) {
775                 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
776         }
777
778         /*
779          * Now we have to update the free fragment bitmap for our new free
780          * space.  There again we have to handle the fragmentation and also
781          * the rotational layout tables and the cluster summary.  This is
782          * also done per fragment for the first new block if the old file
783          * system end was not on a block boundary, per fragment for the new
784          * last block if the new file system end is not on a block boundary,
785          * and per block for all space in between.
786          *
787          * Handle the first new block here if it was partially available
788          * before.
789          */
790         if(osblock.fs_size % sblock.fs_frag) {
791                 if(roundup(osblock.fs_size, sblock.fs_frag)<=sblock.fs_size) {
792                         /*
793                          * The new space is enough to fill at least this
794                          * block
795                          */
796                         j=0;
797                         for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag)-1;
798                             i>=osblock.fs_size-cbase;
799                             i--) {
800                                 setbit(cg_blksfree(&acg), i);
801                                 acg.cg_cs.cs_nffree++;
802                                 j++;
803                         }
804
805                         /*
806                          * Check if the fragment just created could join an
807                          * already existing fragment at the former end of the
808                          * file system.
809                          */
810                         if(isblock(&sblock, cg_blksfree(&acg),
811                             ((osblock.fs_size - cgbase(&sblock, cylno))/
812                             sblock.fs_frag))) {
813                                 /*
814                                  * The block is now completely available.
815                                  */
816                                 DBG_PRINT0("block was\n");
817                                 acg.cg_frsum[osblock.fs_size%sblock.fs_frag]--;
818                                 acg.cg_cs.cs_nbfree++;
819                                 acg.cg_cs.cs_nffree-=sblock.fs_frag;
820                                 k=rounddown(osblock.fs_size-cbase,
821                                     sblock.fs_frag);
822                                 updclst((osblock.fs_size-cbase)/sblock.fs_frag);
823                         } else {
824                                 /*
825                                  * Lets rejoin a possible partially growed
826                                  * fragment.
827                                  */
828                                 k=0;
829                                 while(isset(cg_blksfree(&acg), i) &&
830                                     (i>=rounddown(osblock.fs_size-cbase,
831                                     sblock.fs_frag))) {
832                                         i--;
833                                         k++;
834                                 }
835                                 if(k) {
836                                         acg.cg_frsum[k]--;
837                                 }
838                                 acg.cg_frsum[k+j]++;
839                         }
840                 } else {
841                         /*
842                          * We only grow by some fragments within this last
843                          * block.
844                          */
845                         for(i=sblock.fs_size-cbase-1;
846                                 i>=osblock.fs_size-cbase;
847                                 i--) {
848                                 setbit(cg_blksfree(&acg), i);
849                                 acg.cg_cs.cs_nffree++;
850                                 j++;
851                         }
852                         /*
853                          * Lets rejoin a possible partially growed fragment.
854                          */
855                         k=0;
856                         while(isset(cg_blksfree(&acg), i) &&
857                             (i>=rounddown(osblock.fs_size-cbase,
858                             sblock.fs_frag))) {
859                                 i--;
860                                 k++;
861                         }
862                         if(k) {
863                                 acg.cg_frsum[k]--;
864                         }
865                         acg.cg_frsum[k+j]++;
866                 }
867         }
868
869         /*
870          * Handle all new complete blocks here.
871          */
872         for(i=roundup(osblock.fs_size-cbase, sblock.fs_frag);
873             i+sblock.fs_frag<=dmax-cbase;       /* XXX <= or only < ? */
874             i+=sblock.fs_frag) {
875                 j = i / sblock.fs_frag;
876                 setblock(&sblock, cg_blksfree(&acg), j);
877                 updclst(j);
878                 acg.cg_cs.cs_nbfree++;
879         }
880
881         /*
882          * Handle the last new block if there are stll some new fragments left.
883          * Here we don't have to bother about the cluster summary or the even
884          * the rotational layout table.
885          */
886         if (i < (dmax - cbase)) {
887                 acg.cg_frsum[dmax - cbase - i]++;
888                 for (; i < dmax - cbase; i++) {
889                         setbit(cg_blksfree(&acg), i);
890                         acg.cg_cs.cs_nffree++;
891                 }
892         }
893
894         sblock.fs_cstotal.cs_nffree +=
895             (acg.cg_cs.cs_nffree - aocg.cg_cs.cs_nffree);
896         sblock.fs_cstotal.cs_nbfree +=
897             (acg.cg_cs.cs_nbfree - aocg.cg_cs.cs_nbfree);
898         /*
899          * The following statistics are not changed here:
900          *     sblock.fs_cstotal.cs_ndir
901          *     sblock.fs_cstotal.cs_nifree
902          * As the statistics for this cylinder group are ready, copy it to
903          * the summary information array.
904          */
905         *cs = acg.cg_cs;
906
907         /*
908          * Write the updated "joining" cylinder group back to disk.
909          */
910         wtfs(fsbtodb(&sblock, cgtod(&sblock, cylno)), (size_t)sblock.fs_cgsize,
911             (void *)&acg, fso, Nflag);
912         DBG_PRINT0("jcg written\n");
913         DBG_DUMP_CG(&sblock,
914             "new joining cg",
915             &acg);
916
917         DBG_LEAVE;
918         return;
919 }
920
921 /* ********************************************************** updcsloc ***** */
922 /*
923  * Here we update the location of the cylinder summary. We have two possible
924  * ways of growing the cylinder summary.
925  * (1)  We can try to grow the summary in the current location, and relocate
926  *      possibly used blocks within the current cylinder group.
927  * (2)  Alternatively we can relocate the whole cylinder summary to the first
928  *      new completely empty cylinder group. Once the cylinder summary is no
929  *      longer in the beginning of the first cylinder group you should never
930  *      use a version of fsck which is not aware of the possibility to have
931  *      this structure in a non standard place.
932  * Option (1) is considered to be less intrusive to the structure of the file-
933  * system. So we try to stick to that whenever possible. If there is not enough
934  * space in the cylinder group containing the cylinder summary we have to use
935  * method (2). In case of active snapshots in the file system we probably can
936  * completely avoid implementing copy on write if we stick to method (2) only.
937  */
938 static void
939 updcsloc(time_t utime, int fsi, int fso, unsigned int Nflag)
940 {
941         DBG_FUNC("updcsloc")
942         struct csum     *cs;
943         int     ocscg, ncscg;
944         int     blocks;
945         ufs2_daddr_t    cbase, dupper, odupper, d, f, g;
946         int     ind, inc;
947         uint    cylno;
948         struct gfs_bpp  *bp;
949         int     i, l;
950         int     lcs=0;
951         int     block;
952
953         DBG_ENTER;
954
955         if(howmany(sblock.fs_cssize, sblock.fs_fsize) ==
956             howmany(osblock.fs_cssize, osblock.fs_fsize)) {
957                 /*
958                  * No new fragment needed.
959                  */
960                 DBG_LEAVE;
961                 return;
962         }
963         ocscg=dtog(&osblock, osblock.fs_csaddr);
964         cs=fscs+ocscg;
965         blocks = 1+howmany(sblock.fs_cssize, sblock.fs_bsize)-
966             howmany(osblock.fs_cssize, osblock.fs_bsize);
967
968         /*
969          * Read original cylinder group from disk, and make a copy.
970          * XXX  If Nflag is set in some very rare cases we now miss
971          *      some changes done in updjcg by reading the unmodified
972          *      block from disk.
973          */
974         rdfs(fsbtodb(&osblock, cgtod(&osblock, ocscg)),
975             (size_t)osblock.fs_cgsize, (void *)&aocg, fsi);
976         DBG_PRINT0("oscg read\n");
977         DBG_DUMP_CG(&sblock,
978             "old summary cg",
979             &aocg);
980
981         memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
982
983         /*
984          * Touch the cylinder group, set up local variables needed later
985          * and update the superblock.
986          */
987         acg.cg_time = utime;
988
989         /*
990          * XXX  In the case of having active snapshots we may need much more
991          *      blocks for the copy on write. We need each block twice, and
992          *      also up to 8*3 blocks for indirect blocks for all possible
993          *      references.
994          */
995         if(/*((int)sblock.fs_time&0x3)>0||*/ cs->cs_nbfree < blocks) {
996                 /*
997                  * There is not enough space in the old cylinder group to
998                  * relocate all blocks as needed, so we relocate the whole
999                  * cylinder group summary to a new group. We try to use the
1000                  * first complete new cylinder group just created. Within the
1001                  * cylinder group we align the area immediately after the
1002                  * cylinder group information location in order to be as
1003                  * close as possible to the original implementation of ffs.
1004                  *
1005                  * First we have to make sure we'll find enough space in the
1006                  * new cylinder group. If not, then we currently give up.
1007                  * We start with freeing everything which was used by the
1008                  * fragments of the old cylinder summary in the current group.
1009                  * Now we write back the group meta data, read in the needed
1010                  * meta data from the new cylinder group, and start allocating
1011                  * within that group. Here we can assume, the group to be
1012                  * completely empty. Which makes the handling of fragments and
1013                  * clusters a lot easier.
1014                  */
1015                 DBG_TRC;
1016                 if(sblock.fs_ncg-osblock.fs_ncg < 2) {
1017                         errx(2, "panic: not enough space");
1018                 }
1019
1020                 /*
1021                  * Point "d" to the first fragment not used by the cylinder
1022                  * summary.
1023                  */
1024                 d=osblock.fs_csaddr+(osblock.fs_cssize/osblock.fs_fsize);
1025
1026                 /*
1027                  * Set up last cluster size ("lcs") already here. Calculate
1028                  * the size for the trailing cluster just behind where "d"
1029                  * points to.
1030                  */
1031                 if(sblock.fs_contigsumsize > 0) {
1032                         for(block=howmany(d%sblock.fs_fpg, sblock.fs_frag),
1033                             lcs=0; lcs<sblock.fs_contigsumsize;
1034                             block++, lcs++) {
1035                                 if(isclr(cg_clustersfree(&acg), block)){
1036                                         break;
1037                                 }
1038                         }
1039                 }
1040
1041                 /*
1042                  * Point "d" to the last frag used by the cylinder summary.
1043                  */
1044                 d--;
1045
1046                 DBG_PRINT1("d=%jd\n",
1047                     (intmax_t)d);
1048                 if((d+1)%sblock.fs_frag) {
1049                         /*
1050                          * The end of the cylinder summary is not a complete
1051                          * block.
1052                          */
1053                         DBG_TRC;
1054                         frag_adjust(d%sblock.fs_fpg, -1);
1055                         for(; (d+1)%sblock.fs_frag; d--) {
1056                                 DBG_PRINT1("d=%jd\n",
1057                                     (intmax_t)d);
1058                                 setbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1059                                 acg.cg_cs.cs_nffree++;
1060                                 sblock.fs_cstotal.cs_nffree++;
1061                         }
1062                         /*
1063                          * Point "d" to the last fragment of the last
1064                          * (incomplete) block of the cylinder summary.
1065                          */
1066                         d++;
1067                         frag_adjust(d%sblock.fs_fpg, 1);
1068
1069                         if(isblock(&sblock, cg_blksfree(&acg),
1070                             (d%sblock.fs_fpg)/sblock.fs_frag)) {
1071                                 DBG_PRINT1("d=%jd\n", (intmax_t)d);
1072                                 acg.cg_cs.cs_nffree-=sblock.fs_frag;
1073                                 acg.cg_cs.cs_nbfree++;
1074                                 sblock.fs_cstotal.cs_nffree-=sblock.fs_frag;
1075                                 sblock.fs_cstotal.cs_nbfree++;
1076                                 if(sblock.fs_contigsumsize > 0) {
1077                                         setbit(cg_clustersfree(&acg),
1078                                             (d%sblock.fs_fpg)/sblock.fs_frag);
1079                                         if(lcs < sblock.fs_contigsumsize) {
1080                                                 if(lcs) {
1081                                                         cg_clustersum(&acg)
1082                                                             [lcs]--;
1083                                                 }
1084                                                 lcs++;
1085                                                 cg_clustersum(&acg)[lcs]++;
1086                                         }
1087                                 }
1088                         }
1089                         /*
1090                          * Point "d" to the first fragment of the block before
1091                          * the last incomplete block.
1092                          */
1093                         d--;
1094                 }
1095
1096                 DBG_PRINT1("d=%jd\n", (intmax_t)d);
1097                 for(d=rounddown(d, sblock.fs_frag); d >= osblock.fs_csaddr;
1098                     d-=sblock.fs_frag) {
1099                         DBG_TRC;
1100                         DBG_PRINT1("d=%jd\n", (intmax_t)d);
1101                         setblock(&sblock, cg_blksfree(&acg),
1102                             (d%sblock.fs_fpg)/sblock.fs_frag);
1103                         acg.cg_cs.cs_nbfree++;
1104                         sblock.fs_cstotal.cs_nbfree++;
1105                         if(sblock.fs_contigsumsize > 0) {
1106                                 setbit(cg_clustersfree(&acg),
1107                                     (d%sblock.fs_fpg)/sblock.fs_frag);
1108                                 /*
1109                                  * The last cluster size is already set up.
1110                                  */
1111                                 if(lcs < sblock.fs_contigsumsize) {
1112                                         if(lcs) {
1113                                                 cg_clustersum(&acg)[lcs]--;
1114                                         }
1115                                         lcs++;
1116                                         cg_clustersum(&acg)[lcs]++;
1117                                 }
1118                         }
1119                 }
1120                 *cs = acg.cg_cs;
1121
1122                 /*
1123                  * Now write the former cylinder group containing the cylinder
1124                  * summary back to disk.
1125                  */
1126                 wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)),
1127                     (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1128                 DBG_PRINT0("oscg written\n");
1129                 DBG_DUMP_CG(&sblock,
1130                     "old summary cg",
1131                     &acg);
1132
1133                 /*
1134                  * Find the beginning of the new cylinder group containing the
1135                  * cylinder summary.
1136                  */
1137                 sblock.fs_csaddr=cgdmin(&sblock, osblock.fs_ncg);
1138                 ncscg=dtog(&sblock, sblock.fs_csaddr);
1139                 cs=fscs+ncscg;
1140
1141
1142                 /*
1143                  * If Nflag is specified, we would now read random data instead
1144                  * of an empty cg structure from disk. So we can't simulate that
1145                  * part for now.
1146                  */
1147                 if(Nflag) {
1148                         DBG_PRINT0("nscg update skipped\n");
1149                         DBG_LEAVE;
1150                         return;
1151                 }
1152
1153                 /*
1154                  * Read the future cylinder group containing the cylinder
1155                  * summary from disk, and make a copy.
1156                  */
1157                 rdfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1158                     (size_t)sblock.fs_cgsize, (void *)&aocg, fsi);
1159                 DBG_PRINT0("nscg read\n");
1160                 DBG_DUMP_CG(&sblock,
1161                     "new summary cg",
1162                     &aocg);
1163
1164                 memcpy((void *)&cgun1, (void *)&cgun2, sizeof(cgun2));
1165
1166                 /*
1167                  * Allocate all complete blocks used by the new cylinder
1168                  * summary.
1169                  */
1170                 for(d=sblock.fs_csaddr; d+sblock.fs_frag <=
1171                     sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize);
1172                     d+=sblock.fs_frag) {
1173                         clrblock(&sblock, cg_blksfree(&acg),
1174                             (d%sblock.fs_fpg)/sblock.fs_frag);
1175                         acg.cg_cs.cs_nbfree--;
1176                         sblock.fs_cstotal.cs_nbfree--;
1177                         if(sblock.fs_contigsumsize > 0) {
1178                                 clrbit(cg_clustersfree(&acg),
1179                                     (d%sblock.fs_fpg)/sblock.fs_frag);
1180                         }
1181                 }
1182
1183                 /*
1184                  * Allocate all fragments used by the cylinder summary in the
1185                  * last block.
1186                  */
1187                 if(d<sblock.fs_csaddr+(sblock.fs_cssize/sblock.fs_fsize)) {
1188                         for(; d-sblock.fs_csaddr<
1189                             sblock.fs_cssize/sblock.fs_fsize;
1190                             d++) {
1191                                 clrbit(cg_blksfree(&acg), d%sblock.fs_fpg);
1192                                 acg.cg_cs.cs_nffree--;
1193                                 sblock.fs_cstotal.cs_nffree--;
1194                         }
1195                         acg.cg_cs.cs_nbfree--;
1196                         acg.cg_cs.cs_nffree+=sblock.fs_frag;
1197                         sblock.fs_cstotal.cs_nbfree--;
1198                         sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1199                         if(sblock.fs_contigsumsize > 0) {
1200                                 clrbit(cg_clustersfree(&acg),
1201                                     (d%sblock.fs_fpg)/sblock.fs_frag);
1202                         }
1203
1204                         frag_adjust(d%sblock.fs_fpg, +1);
1205                 }
1206                 /*
1207                  * XXX  Handle the cluster statistics here in the case this
1208                  *      cylinder group is now almost full, and the remaining
1209                  *      space is less then the maximum cluster size. This is
1210                  *      probably not needed, as you would hardly find a file
1211                  *      system which has only MAXCSBUFS+FS_MAXCONTIG of free
1212                  *      space right behind the cylinder group information in
1213                  *      any new cylinder group.
1214                  */
1215
1216                 /*
1217                  * Update our statistics in the cylinder summary.
1218                  */
1219                 *cs = acg.cg_cs;
1220
1221                 /*
1222                  * Write the new cylinder group containing the cylinder summary
1223                  * back to disk.
1224                  */
1225                 wtfs(fsbtodb(&sblock, cgtod(&sblock, ncscg)),
1226                     (size_t)sblock.fs_cgsize, (void *)&acg, fso, Nflag);
1227                 DBG_PRINT0("nscg written\n");
1228                 DBG_DUMP_CG(&sblock,
1229                     "new summary cg",
1230                     &acg);
1231
1232                 DBG_LEAVE;
1233                 return;
1234         }
1235         /*
1236          * We have got enough of space in the current cylinder group, so we
1237          * can relocate just a few blocks, and let the summary information
1238          * grow in place where it is right now.
1239          */
1240         DBG_TRC;
1241
1242         cbase = cgbase(&osblock, ocscg);        /* old and new are equal */
1243         dupper = sblock.fs_csaddr - cbase +
1244             howmany(sblock.fs_cssize, sblock.fs_fsize);
1245         odupper = osblock.fs_csaddr - cbase +
1246             howmany(osblock.fs_cssize, osblock.fs_fsize);
1247
1248         sblock.fs_dsize -= dupper-odupper;
1249
1250         /*
1251          * Allocate the space for the array of blocks to be relocated.
1252          */
1253         bp=(struct gfs_bpp *)malloc(((dupper-odupper)/sblock.fs_frag+2)*
1254             sizeof(struct gfs_bpp));
1255         if(bp == NULL) {
1256                 errx(1, "malloc failed");
1257         }
1258         memset((char *)bp, 0, ((dupper-odupper)/sblock.fs_frag+2)*
1259             sizeof(struct gfs_bpp));
1260
1261         /*
1262          * Lock all new frags needed for the cylinder group summary. This is
1263          * done per fragment in the first and last block of the new required
1264          * area, and per block for all other blocks.
1265          *
1266          * Handle the first new block here (but only if some fragments where
1267          * already used for the cylinder summary).
1268          */
1269         ind=0;
1270         frag_adjust(odupper, -1);
1271         for(d=odupper; ((d<dupper)&&(d%sblock.fs_frag)); d++) {
1272                 DBG_PRINT1("scg first frag check loop d=%jd\n",
1273                     (intmax_t)d);
1274                 if(isclr(cg_blksfree(&acg), d)) {
1275                         if (!ind) {
1276                                 bp[ind].old=d/sblock.fs_frag;
1277                                 bp[ind].flags|=GFS_FL_FIRST;
1278                                 if(roundup(d, sblock.fs_frag) >= dupper) {
1279                                         bp[ind].flags|=GFS_FL_LAST;
1280                                 }
1281                                 ind++;
1282                         }
1283                 } else {
1284                         clrbit(cg_blksfree(&acg), d);
1285                         acg.cg_cs.cs_nffree--;
1286                         sblock.fs_cstotal.cs_nffree--;
1287                 }
1288                 /*
1289                  * No cluster handling is needed here, as there was at least
1290                  * one fragment in use by the cylinder summary in the old
1291                  * file system.
1292                  * No block-free counter handling here as this block was not
1293                  * a free block.
1294                  */
1295         }
1296         frag_adjust(odupper, 1);
1297
1298         /*
1299          * Handle all needed complete blocks here.
1300          */
1301         for(; d+sblock.fs_frag<=dupper; d+=sblock.fs_frag) {
1302                 DBG_PRINT1("scg block check loop d=%jd\n",
1303                     (intmax_t)d);
1304                 if(!isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1305                         for(f=d; f<d+sblock.fs_frag; f++) {
1306                                 if(isset(cg_blksfree(&aocg), f)) {
1307                                         acg.cg_cs.cs_nffree--;
1308                                         sblock.fs_cstotal.cs_nffree--;
1309                                 }
1310                         }
1311                         clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1312                         bp[ind].old=d/sblock.fs_frag;
1313                         ind++;
1314                 } else {
1315                         clrblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag);
1316                         acg.cg_cs.cs_nbfree--;
1317                         sblock.fs_cstotal.cs_nbfree--;
1318                         if(sblock.fs_contigsumsize > 0) {
1319                                 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1320                                 for(lcs=0, l=(d/sblock.fs_frag)+1;
1321                                     lcs<sblock.fs_contigsumsize;
1322                                     l++, lcs++ ) {
1323                                         if(isclr(cg_clustersfree(&acg),l)){
1324                                                 break;
1325                                         }
1326                                 }
1327                                 if(lcs < sblock.fs_contigsumsize) {
1328                                         cg_clustersum(&acg)[lcs+1]--;
1329                                         if(lcs) {
1330                                                 cg_clustersum(&acg)[lcs]++;
1331                                         }
1332                                 }
1333                         }
1334                 }
1335                 /*
1336                  * No fragment counter handling is needed here, as this finally
1337                  * doesn't change after the relocation.
1338                  */
1339         }
1340
1341         /*
1342          * Handle all fragments needed in the last new affected block.
1343          */
1344         if(d<dupper) {
1345                 frag_adjust(dupper-1, -1);
1346
1347                 if(isblock(&sblock, cg_blksfree(&acg), d/sblock.fs_frag)) {
1348                         acg.cg_cs.cs_nbfree--;
1349                         sblock.fs_cstotal.cs_nbfree--;
1350                         acg.cg_cs.cs_nffree+=sblock.fs_frag;
1351                         sblock.fs_cstotal.cs_nffree+=sblock.fs_frag;
1352                         if(sblock.fs_contigsumsize > 0) {
1353                                 clrbit(cg_clustersfree(&acg), d/sblock.fs_frag);
1354                                 for(lcs=0, l=(d/sblock.fs_frag)+1;
1355                                     lcs<sblock.fs_contigsumsize;
1356                                     l++, lcs++ ) {
1357                                         if(isclr(cg_clustersfree(&acg),l)){
1358                                                 break;
1359                                         }
1360                                 }
1361                                 if(lcs < sblock.fs_contigsumsize) {
1362                                         cg_clustersum(&acg)[lcs+1]--;
1363                                         if(lcs) {
1364                                                 cg_clustersum(&acg)[lcs]++;
1365                                         }
1366                                 }
1367                         }
1368                 }
1369
1370                 for(; d<dupper; d++) {
1371                         DBG_PRINT1("scg second frag check loop d=%jd\n",
1372                             (intmax_t)d);
1373                         if(isclr(cg_blksfree(&acg), d)) {
1374                                 bp[ind].old=d/sblock.fs_frag;
1375                                 bp[ind].flags|=GFS_FL_LAST;
1376                         } else {
1377                                 clrbit(cg_blksfree(&acg), d);
1378                                 acg.cg_cs.cs_nffree--;
1379                                 sblock.fs_cstotal.cs_nffree--;
1380                         }
1381                 }
1382                 if(bp[ind].flags & GFS_FL_LAST) { /* we have to advance here */
1383                         ind++;
1384                 }
1385                 frag_adjust(dupper-1, 1);
1386         }
1387
1388         /*
1389          * If we found a block to relocate just do so.
1390          */
1391         if(ind) {
1392                 for(i=0; i<ind; i++) {
1393                         if(!bp[i].old) { /* no more blocks listed */
1394                                 /*
1395                                  * XXX  A relative blocknumber should not be
1396                                  *      zero, which is not explicitly
1397                                  *      guaranteed by our code.
1398                                  */
1399                                 break;
1400                         }
1401                         /*
1402                          * Allocate a complete block in the same (current)
1403                          * cylinder group.
1404                          */
1405                         bp[i].new=alloc()/sblock.fs_frag;
1406
1407                         /*
1408                          * There is no frag_adjust() needed for the new block
1409                          * as it will have no fragments yet :-).
1410                          */
1411                         for(f=bp[i].old*sblock.fs_frag,
1412                             g=bp[i].new*sblock.fs_frag;
1413                             f<(bp[i].old+1)*sblock.fs_frag;
1414                             f++, g++) {
1415                                 if(isset(cg_blksfree(&aocg), f)) {
1416                                         setbit(cg_blksfree(&acg), g);
1417                                         acg.cg_cs.cs_nffree++;
1418                                         sblock.fs_cstotal.cs_nffree++;
1419                                 }
1420                         }
1421
1422                         /*
1423                          * Special handling is required if this was the first
1424                          * block. We have to consider the fragments which were
1425                          * used by the cylinder summary in the original block
1426                          * which re to be free in the copy of our block.  We
1427                          * have to be careful if this first block happens to
1428                          * be also the last block to be relocated.
1429                          */
1430                         if(bp[i].flags & GFS_FL_FIRST) {
1431                                 for(f=bp[i].old*sblock.fs_frag,
1432                                     g=bp[i].new*sblock.fs_frag;
1433                                     f<odupper;
1434                                     f++, g++) {
1435                                         setbit(cg_blksfree(&acg), g);
1436                                         acg.cg_cs.cs_nffree++;
1437                                         sblock.fs_cstotal.cs_nffree++;
1438                                 }
1439                                 if(!(bp[i].flags & GFS_FL_LAST)) {
1440                                         frag_adjust(bp[i].new*sblock.fs_frag,1);
1441                                 }
1442                         }
1443
1444                         /*
1445                          * Special handling is required if this is the last
1446                          * block to be relocated.
1447                          */
1448                         if(bp[i].flags & GFS_FL_LAST) {
1449                                 frag_adjust(bp[i].new*sblock.fs_frag, 1);
1450                                 frag_adjust(bp[i].old*sblock.fs_frag, -1);
1451                                 for(f=dupper;
1452                                     f<roundup(dupper, sblock.fs_frag);
1453                                     f++) {
1454                                         if(isclr(cg_blksfree(&acg), f)) {
1455                                                 setbit(cg_blksfree(&acg), f);
1456                                                 acg.cg_cs.cs_nffree++;
1457                                                 sblock.fs_cstotal.cs_nffree++;
1458                                         }
1459                                 }
1460                                 frag_adjust(bp[i].old*sblock.fs_frag, 1);
1461                         }
1462
1463                         /*
1464                          * !!! Attach the cylindergroup offset here.
1465                          */
1466                         bp[i].old+=cbase/sblock.fs_frag;
1467                         bp[i].new+=cbase/sblock.fs_frag;
1468
1469                         /*
1470                          * Copy the content of the block.
1471                          */
1472                         /*
1473                          * XXX  Here we will have to implement a copy on write
1474                          *      in the case we have any active snapshots.
1475                          */
1476                         rdfs(fsbtodb(&sblock, bp[i].old*sblock.fs_frag),
1477                             (size_t)sblock.fs_bsize, (void *)&ablk, fsi);
1478                         wtfs(fsbtodb(&sblock, bp[i].new*sblock.fs_frag),
1479                             (size_t)sblock.fs_bsize, (void *)&ablk, fso, Nflag);
1480                         DBG_DUMP_HEX(&sblock,
1481                             "copied full block",
1482                             (unsigned char *)&ablk);
1483
1484                         DBG_PRINT2("scg (%jd->%jd) block relocated\n",
1485                             (intmax_t)bp[i].old,
1486                             (intmax_t)bp[i].new);
1487                 }
1488
1489                 /*
1490                  * Now we have to update all references to any fragment which
1491                  * belongs to any block relocated. We iterate now over all
1492                  * cylinder groups, within those over all non zero length
1493                  * inodes.
1494                  */
1495                 for(cylno=0; cylno<osblock.fs_ncg; cylno++) {
1496                         DBG_PRINT1("scg doing cg (%d)\n",
1497                             cylno);
1498                         for(inc=osblock.fs_ipg-1 ; inc>0 ; inc--) {
1499                                 updrefs(cylno, (ino_t)inc, bp, fsi, fso, Nflag);
1500                         }
1501                 }
1502
1503                 /*
1504                  * All inodes are checked, now make sure the number of
1505                  * references found make sense.
1506                  */
1507                 for(i=0; i<ind; i++) {
1508                         if(!bp[i].found || (bp[i].found>sblock.fs_frag)) {
1509                                 warnx("error: %jd refs found for block %jd.",
1510                                     (intmax_t)bp[i].found, (intmax_t)bp[i].old);
1511                         }
1512
1513                 }
1514         }
1515         /*
1516          * The following statistics are not changed here:
1517          *     sblock.fs_cstotal.cs_ndir
1518          *     sblock.fs_cstotal.cs_nifree
1519          * The following statistics were already updated on the fly:
1520          *     sblock.fs_cstotal.cs_nffree
1521          *     sblock.fs_cstotal.cs_nbfree
1522          * As the statistics for this cylinder group are ready, copy it to
1523          * the summary information array.
1524          */
1525
1526         *cs = acg.cg_cs;
1527
1528         /*
1529          * Write summary cylinder group back to disk.
1530          */
1531         wtfs(fsbtodb(&sblock, cgtod(&sblock, ocscg)), (size_t)sblock.fs_cgsize,
1532             (void *)&acg, fso, Nflag);
1533         DBG_PRINT0("scg written\n");
1534         DBG_DUMP_CG(&sblock,
1535             "new summary cg",
1536             &acg);
1537
1538         DBG_LEAVE;
1539         return;
1540 }
1541
1542 /* ************************************************************** rdfs ***** */
1543 /*
1544  * Here we read some block(s) from disk.
1545  */
1546 static void
1547 rdfs(ufs2_daddr_t bno, size_t size, void *bf, int fsi)
1548 {
1549         DBG_FUNC("rdfs")
1550         ssize_t n;
1551
1552         DBG_ENTER;
1553
1554         if (bno < 0) {
1555                 err(32, "rdfs: attempting to read negative block number");
1556         }
1557         if (lseek(fsi, (off_t)bno * DEV_BSIZE, 0) < 0) {
1558                 err(33, "rdfs: seek error: %jd", (intmax_t)bno);
1559         }
1560         n = read(fsi, bf, size);
1561         if (n != (ssize_t)size) {
1562                 err(34, "rdfs: read error: %jd", (intmax_t)bno);
1563         }
1564
1565         DBG_LEAVE;
1566         return;
1567 }
1568
1569 /* ************************************************************** wtfs ***** */
1570 /*
1571  * Here we write some block(s) to disk.
1572  */
1573 static void
1574 wtfs(ufs2_daddr_t bno, size_t size, void *bf, int fso, unsigned int Nflag)
1575 {
1576         DBG_FUNC("wtfs")
1577         ssize_t n;
1578
1579         DBG_ENTER;
1580
1581         if (Nflag) {
1582                 DBG_LEAVE;
1583                 return;
1584         }
1585         if (lseek(fso, (off_t)bno * DEV_BSIZE, SEEK_SET) < 0) {
1586                 err(35, "wtfs: seek error: %ld", (long)bno);
1587         }
1588         n = write(fso, bf, size);
1589         if (n != (ssize_t)size) {
1590                 err(36, "wtfs: write error: %ld", (long)bno);
1591         }
1592
1593         DBG_LEAVE;
1594         return;
1595 }
1596
1597 /* ************************************************************* alloc ***** */
1598 /*
1599  * Here we allocate a free block in the current cylinder group. It is assumed,
1600  * that acg contains the current cylinder group. As we may take a block from
1601  * somewhere in the file system we have to handle cluster summary here.
1602  */
1603 static ufs2_daddr_t
1604 alloc(void)
1605 {
1606         DBG_FUNC("alloc")
1607         ufs2_daddr_t    d, blkno;
1608         int     lcs1, lcs2;
1609         int     l;
1610         int     csmin, csmax;
1611         int     dlower, dupper, dmax;
1612
1613         DBG_ENTER;
1614
1615         if (acg.cg_magic != CG_MAGIC) {
1616                 warnx("acg: bad magic number");
1617                 DBG_LEAVE;
1618                 return (0);
1619         }
1620         if (acg.cg_cs.cs_nbfree == 0) {
1621                 warnx("error: cylinder group ran out of space");
1622                 DBG_LEAVE;
1623                 return (0);
1624         }
1625         /*
1626          * We start seeking for free blocks only from the space available after
1627          * the end of the new grown cylinder summary. Otherwise we allocate a
1628          * block here which we have to relocate a couple of seconds later again
1629          * again, and we are not prepared to to this anyway.
1630          */
1631         blkno=-1;
1632         dlower=cgsblock(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1633         dupper=cgdmin(&sblock, acg.cg_cgx)-cgbase(&sblock, acg.cg_cgx);
1634         dmax=cgbase(&sblock, acg.cg_cgx)+sblock.fs_fpg;
1635         if (dmax > sblock.fs_size) {
1636                 dmax = sblock.fs_size;
1637         }
1638         dmax-=cgbase(&sblock, acg.cg_cgx); /* retransform into cg */
1639         csmin=sblock.fs_csaddr-cgbase(&sblock, acg.cg_cgx);
1640         csmax=csmin+howmany(sblock.fs_cssize, sblock.fs_fsize);
1641         DBG_PRINT3("seek range: dl=%d, du=%d, dm=%d\n",
1642             dlower,
1643             dupper,
1644             dmax);
1645         DBG_PRINT2("range cont: csmin=%d, csmax=%d\n",
1646             csmin,
1647             csmax);
1648
1649         for(d=0; (d<dlower && blkno==-1); d+=sblock.fs_frag) {
1650                 if(d>=csmin && d<=csmax) {
1651                         continue;
1652                 }
1653                 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1654                     d))) {
1655                         blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1656                         break;
1657                 }
1658         }
1659         for(d=dupper; (d<dmax && blkno==-1); d+=sblock.fs_frag) {
1660                 if(d>=csmin && d<=csmax) {
1661                         continue;
1662                 }
1663                 if(isblock(&sblock, cg_blksfree(&acg), fragstoblks(&sblock,
1664                     d))) {
1665                         blkno = fragstoblks(&sblock, d);/* Yeah found a block */
1666                         break;
1667                 }
1668         }
1669         if(blkno==-1) {
1670                 warnx("internal error: couldn't find promised block in cg");
1671                 DBG_LEAVE;
1672                 return (0);
1673         }
1674
1675         /*
1676          * This is needed if the block was found already in the first loop.
1677          */
1678         d=blkstofrags(&sblock, blkno);
1679
1680         clrblock(&sblock, cg_blksfree(&acg), blkno);
1681         if (sblock.fs_contigsumsize > 0) {
1682                 /*
1683                  * Handle the cluster allocation bitmap.
1684                  */
1685                 clrbit(cg_clustersfree(&acg), blkno);
1686                 /*
1687                  * We possibly have split a cluster here, so we have to do
1688                  * recalculate the sizes of the remaining cluster halves now,
1689                  * and use them for updating the cluster summary information.
1690                  *
1691                  * Lets start with the blocks before our allocated block ...
1692                  */
1693                 for(lcs1=0, l=blkno-1; lcs1<sblock.fs_contigsumsize;
1694                     l--, lcs1++ ) {
1695                         if(isclr(cg_clustersfree(&acg),l)){
1696                                 break;
1697                         }
1698                 }
1699                 /*
1700                  * ... and continue with the blocks right after our allocated
1701                  * block.
1702                  */
1703                 for(lcs2=0, l=blkno+1; lcs2<sblock.fs_contigsumsize;
1704                     l++, lcs2++ ) {
1705                         if(isclr(cg_clustersfree(&acg),l)){
1706                                 break;
1707                         }
1708                 }
1709
1710                 /*
1711                  * Now update all counters.
1712                  */
1713                 cg_clustersum(&acg)[MIN(lcs1+lcs2+1,sblock.fs_contigsumsize)]--;
1714                 if(lcs1) {
1715                         cg_clustersum(&acg)[lcs1]++;
1716                 }
1717                 if(lcs2) {
1718                         cg_clustersum(&acg)[lcs2]++;
1719                 }
1720         }
1721         /*
1722          * Update all statistics based on blocks.
1723          */
1724         acg.cg_cs.cs_nbfree--;
1725         sblock.fs_cstotal.cs_nbfree--;
1726
1727         DBG_LEAVE;
1728         return (d);
1729 }
1730
1731 /* *********************************************************** isblock ***** */
1732 /*
1733  * Here we check if all frags of a block are free. For more details again
1734  * please see the source of newfs(8), as this function is taken over almost
1735  * unchanged.
1736  */
1737 static int
1738 isblock(struct fs *fs, unsigned char *cp, int h)
1739 {
1740         DBG_FUNC("isblock")
1741         unsigned char   mask;
1742
1743         DBG_ENTER;
1744
1745         switch (fs->fs_frag) {
1746         case 8:
1747                 DBG_LEAVE;
1748                 return (cp[h] == 0xff);
1749         case 4:
1750                 mask = 0x0f << ((h & 0x1) << 2);
1751                 DBG_LEAVE;
1752                 return ((cp[h >> 1] & mask) == mask);
1753         case 2:
1754                 mask = 0x03 << ((h & 0x3) << 1);
1755                 DBG_LEAVE;
1756                 return ((cp[h >> 2] & mask) == mask);
1757         case 1:
1758                 mask = 0x01 << (h & 0x7);
1759                 DBG_LEAVE;
1760                 return ((cp[h >> 3] & mask) == mask);
1761         default:
1762                 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1763                 DBG_LEAVE;
1764                 return (0);
1765         }
1766 }
1767
1768 /* ********************************************************** clrblock ***** */
1769 /*
1770  * Here we allocate a complete block in the block map. For more details again
1771  * please see the source of newfs(8), as this function is taken over almost
1772  * unchanged.
1773  */
1774 static void
1775 clrblock(struct fs *fs, unsigned char *cp, int h)
1776 {
1777         DBG_FUNC("clrblock")
1778
1779         DBG_ENTER;
1780
1781         switch ((fs)->fs_frag) {
1782         case 8:
1783                 cp[h] = 0;
1784                 break;
1785         case 4:
1786                 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1787                 break;
1788         case 2:
1789                 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1790                 break;
1791         case 1:
1792                 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1793                 break;
1794         default:
1795                 warnx("clrblock bad fs_frag %d", fs->fs_frag);
1796                 break;
1797         }
1798
1799         DBG_LEAVE;
1800         return;
1801 }
1802
1803 /* ********************************************************** setblock ***** */
1804 /*
1805  * Here we free a complete block in the free block map. For more details again
1806  * please see the source of newfs(8), as this function is taken over almost
1807  * unchanged.
1808  */
1809 static void
1810 setblock(struct fs *fs, unsigned char *cp, int h)
1811 {
1812         DBG_FUNC("setblock")
1813
1814         DBG_ENTER;
1815
1816         switch (fs->fs_frag) {
1817         case 8:
1818                 cp[h] = 0xff;
1819                 break;
1820         case 4:
1821                 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1822                 break;
1823         case 2:
1824                 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1825                 break;
1826         case 1:
1827                 cp[h >> 3] |= (0x01 << (h & 0x7));
1828                 break;
1829         default:
1830                 warnx("setblock bad fs_frag %d", fs->fs_frag);
1831                 break;
1832         }
1833
1834         DBG_LEAVE;
1835         return;
1836 }
1837
1838 /* ************************************************************ ginode ***** */
1839 /*
1840  * This function provides access to an individual inode. We find out in which
1841  * block the requested inode is located, read it from disk if needed, and
1842  * return the pointer into that block. We maintain a cache of one block to
1843  * not read the same block again and again if we iterate linearly over all
1844  * inodes.
1845  */
1846 static union dinode *
1847 ginode(ino_t inumber, int fsi, int cg)
1848 {
1849         DBG_FUNC("ginode")
1850         static ino_t    startinum = 0;  /* first inode in cached block */
1851
1852         DBG_ENTER;
1853
1854         /*
1855          * The inumber passed in is relative to the cg, so use it here to see
1856          * if the inode has been allocated yet.
1857          */
1858         if (isclr(cg_inosused(&aocg), inumber)) {
1859                 DBG_LEAVE;
1860                 return NULL;
1861         }
1862         /*
1863          * Now make the inumber relative to the entire inode space so it can
1864          * be sanity checked.
1865          */
1866         inumber += (cg * sblock.fs_ipg);
1867         if (inumber < ROOTINO) {
1868                 DBG_LEAVE;
1869                 return NULL;
1870         }
1871         if (inumber > maxino)
1872                 errx(8, "bad inode number %d to ginode", inumber);
1873         if (startinum == 0 ||
1874             inumber < startinum || inumber >= startinum + INOPB(&sblock)) {
1875                 inoblk = fsbtodb(&sblock, ino_to_fsba(&sblock, inumber));
1876                 rdfs(inoblk, (size_t)sblock.fs_bsize, inobuf, fsi);
1877                 startinum = (inumber / INOPB(&sblock)) * INOPB(&sblock);
1878         }
1879         DBG_LEAVE;
1880         if (sblock.fs_magic == FS_UFS1_MAGIC)
1881                 return (union dinode *)((uintptr_t)inobuf +
1882                     (inumber % INOPB(&sblock)) * sizeof(struct ufs1_dinode));
1883         return (union dinode *)((uintptr_t)inobuf +
1884             (inumber % INOPB(&sblock)) * sizeof(struct ufs2_dinode));
1885 }
1886
1887 /* ****************************************************** charsperline ***** */
1888 /*
1889  * Figure out how many lines our current terminal has. For more details again
1890  * please see the source of newfs(8), as this function is taken over almost
1891  * unchanged.
1892  */
1893 static int
1894 charsperline(void)
1895 {
1896         DBG_FUNC("charsperline")
1897         int     columns;
1898         char    *cp;
1899         struct winsize  ws;
1900
1901         DBG_ENTER;
1902
1903         columns = 0;
1904         if (ioctl(0, TIOCGWINSZ, &ws) != -1) {
1905                 columns = ws.ws_col;
1906         }
1907         if (columns == 0 && (cp = getenv("COLUMNS"))) {
1908                 columns = atoi(cp);
1909         }
1910         if (columns == 0) {
1911                 columns = 80;   /* last resort */
1912         }
1913
1914         DBG_LEAVE;
1915         return columns;
1916 }
1917
1918 /* ****************************************************** get_dev_size ***** */
1919 /*
1920  * Get the size of the partition if we can't figure it out from the disklabel,
1921  * e.g. from vinum volumes.
1922  */
1923 static void
1924 get_dev_size(int fd, int *size)
1925 {
1926    int sectorsize;
1927    off_t mediasize;
1928
1929    if (ioctl(fd, DIOCGSECTORSIZE, &sectorsize) == -1)
1930         err(1,"DIOCGSECTORSIZE");
1931    if (ioctl(fd, DIOCGMEDIASIZE, &mediasize) == -1)
1932         err(1,"DIOCGMEDIASIZE");
1933
1934    if (sectorsize <= 0)
1935        errx(1, "bogus sectorsize: %d", sectorsize);
1936
1937    *size = mediasize / sectorsize;
1938 }
1939
1940 /* ************************************************************** main ***** */
1941 /*
1942  * growfs(8)  is a utility which allows to increase the size of an existing
1943  * ufs file system. Currently this can only be done on unmounted file system.
1944  * It recognizes some command line options to specify the new desired size,
1945  * and it does some basic checkings. The old file system size is determined
1946  * and after some more checks like we can really access the new last block
1947  * on the disk etc. we calculate the new parameters for the superblock. After
1948  * having done this we just call growfs() which will do the work.  Before
1949  * we finish the only thing left is to update the disklabel.
1950  * We still have to provide support for snapshots. Therefore we first have to
1951  * understand what data structures are always replicated in the snapshot on
1952  * creation, for all other blocks we touch during our procedure, we have to
1953  * keep the old blocks unchanged somewhere available for the snapshots. If we
1954  * are lucky, then we only have to handle our blocks to be relocated in that
1955  * way.
1956  * Also we have to consider in what order we actually update the critical
1957  * data structures of the file system to make sure, that in case of a disaster
1958  * fsck(8) is still able to restore any lost data.
1959  * The foreseen last step then will be to provide for growing even mounted
1960  * file systems. There we have to extend the mount() system call to provide
1961  * userland access to the file system locking facility.
1962  */
1963 int
1964 main(int argc, char **argv)
1965 {
1966         DBG_FUNC("main")
1967         char    *device, *special, *cp;
1968         int     ch;
1969         unsigned int    size=0;
1970         size_t  len;
1971         unsigned int    Nflag=0;
1972         int     ExpertFlag=0;
1973         struct stat     st;
1974         struct disklabel        *lp;
1975         struct partition        *pp;
1976         int     i,fsi,fso;
1977     u_int32_t p_size;
1978         char    reply[5];
1979 #ifdef FSMAXSNAP
1980         int     j;
1981 #endif /* FSMAXSNAP */
1982
1983         DBG_ENTER;
1984
1985         while((ch=getopt(argc, argv, "Ns:vy")) != -1) {
1986                 switch(ch) {
1987                 case 'N':
1988                         Nflag=1;
1989                         break;
1990                 case 's':
1991                         size=(size_t)atol(optarg);
1992                         if(size<1) {
1993                                 usage();
1994                         }
1995                         break;
1996                 case 'v': /* for compatibility to newfs */
1997                         break;
1998                 case 'y':
1999                         ExpertFlag=1;
2000                         break;
2001                 case '?':
2002                         /* FALLTHROUGH */
2003                 default:
2004                         usage();
2005                 }
2006         }
2007         argc -= optind;
2008         argv += optind;
2009
2010         if(argc != 1) {
2011                 usage();
2012         }
2013         device=*argv;
2014
2015         /*
2016          * Now try to guess the (raw)device name.
2017          */
2018         if (0 == strrchr(device, '/')) {
2019                 /*
2020                  * No path prefix was given, so try in that order:
2021                  *     /dev/r%s
2022                  *     /dev/%s
2023                  *     /dev/vinum/r%s
2024                  *     /dev/vinum/%s.
2025                  *
2026                  * FreeBSD now doesn't distinguish between raw and block
2027                  * devices any longer, but it should still work this way.
2028                  */
2029                 len=strlen(device)+strlen(_PATH_DEV)+2+strlen("vinum/");
2030                 special=(char *)malloc(len);
2031                 if(special == NULL) {
2032                         errx(1, "malloc failed");
2033                 }
2034                 snprintf(special, len, "%sr%s", _PATH_DEV, device);
2035                 if (stat(special, &st) == -1) {
2036                         snprintf(special, len, "%s%s", _PATH_DEV, device);
2037                         if (stat(special, &st) == -1) {
2038                                 snprintf(special, len, "%svinum/r%s",
2039                                     _PATH_DEV, device);
2040                                 if (stat(special, &st) == -1) {
2041                                         /* For now this is the 'last resort' */
2042                                         snprintf(special, len, "%svinum/%s",
2043                                             _PATH_DEV, device);
2044                                 }
2045                         }
2046                 }
2047                 device = special;
2048         }
2049
2050         /*
2051          * Try to access our devices for writing ...
2052          */
2053         if (Nflag) {
2054                 fso = -1;
2055         } else {
2056                 fso = open(device, O_WRONLY);
2057                 if (fso < 0) {
2058                         err(1, "%s", device);
2059                 }
2060         }
2061
2062         /*
2063          * ... and reading.
2064          */
2065         fsi = open(device, O_RDONLY);
2066         if (fsi < 0) {
2067                 err(1, "%s", device);
2068         }
2069
2070         /*
2071          * Try to read a label and guess the slice if not specified. This
2072          * code should guess the right thing and avoid to bother the user
2073          * with the task of specifying the option -v on vinum volumes.
2074          */
2075         cp=device+strlen(device)-1;
2076         lp = get_disklabel(fsi);
2077         pp = NULL;
2078     if (lp != NULL) {
2079         if (isdigit(*cp)) {
2080             pp = &lp->d_partitions[2];
2081         } else if (*cp>='a' && *cp<='h') {
2082             pp = &lp->d_partitions[*cp - 'a'];
2083         } else {
2084             errx(1, "unknown device");
2085         }
2086         p_size = pp->p_size;
2087     } else {
2088         get_dev_size(fsi, &p_size);
2089     }
2090
2091         /*
2092          * Check if that partition is suitable for growing a file system.
2093          */
2094         if (p_size < 1) {
2095                 errx(1, "partition is unavailable");
2096         }
2097
2098         /*
2099          * Read the current superblock, and take a backup.
2100          */
2101         for (i = 0; sblock_try[i] != -1; i++) {
2102                 sblockloc = sblock_try[i] / DEV_BSIZE;
2103                 rdfs(sblockloc, (size_t)SBLOCKSIZE, (void *)&(osblock), fsi);
2104                 if ((osblock.fs_magic == FS_UFS1_MAGIC ||
2105                      (osblock.fs_magic == FS_UFS2_MAGIC &&
2106                       osblock.fs_sblockloc == sblock_try[i])) &&
2107                     osblock.fs_bsize <= MAXBSIZE &&
2108                     osblock.fs_bsize >= (int32_t) sizeof(struct fs))
2109                         break;
2110         }
2111         if (sblock_try[i] == -1) {
2112                 errx(1, "superblock not recognized");
2113         }
2114         memcpy((void *)&fsun1, (void *)&fsun2, sizeof(fsun2));
2115         maxino = sblock.fs_ncg * sblock.fs_ipg;
2116
2117         DBG_OPEN("/tmp/growfs.debug"); /* already here we need a superblock */
2118         DBG_DUMP_FS(&sblock,
2119             "old sblock");
2120
2121         /*
2122          * Determine size to grow to. Default to the full size specified in
2123          * the disk label.
2124          */
2125         sblock.fs_size = dbtofsb(&osblock, p_size);
2126         if (size != 0) {
2127                 if (size > p_size){
2128                         errx(1, "there is not enough space (%d < %d)",
2129                             p_size, size);
2130                 }
2131                 sblock.fs_size = dbtofsb(&osblock, size);
2132         }
2133
2134         /*
2135          * Are we really growing ?
2136          */
2137         if(osblock.fs_size >= sblock.fs_size) {
2138                 errx(1, "we are not growing (%jd->%jd)",
2139                     (intmax_t)osblock.fs_size, (intmax_t)sblock.fs_size);
2140         }
2141
2142
2143 #ifdef FSMAXSNAP
2144         /*
2145          * Check if we find an active snapshot.
2146          */
2147         if(ExpertFlag == 0) {
2148                 for(j=0; j<FSMAXSNAP; j++) {
2149                         if(sblock.fs_snapinum[j]) {
2150                                 errx(1, "active snapshot found in file system\n"
2151                                     "   please remove all snapshots before "
2152                                     "using growfs");
2153                         }
2154                         if(!sblock.fs_snapinum[j]) { /* list is dense */
2155                                 break;
2156                         }
2157                 }
2158         }
2159 #endif
2160
2161         if (ExpertFlag == 0 && Nflag == 0) {
2162                 printf("We strongly recommend you to make a backup "
2163                     "before growing the Filesystem\n\n"
2164                     " Did you backup your data (Yes/No) ? ");
2165                 fgets(reply, (int)sizeof(reply), stdin);
2166                 if (strcmp(reply, "Yes\n")){
2167                         printf("\n Nothing done \n");
2168                         exit (0);
2169                 }
2170         }
2171
2172         printf("new file systemsize is: %jd frags\n", (intmax_t)sblock.fs_size);
2173
2174         /*
2175          * Try to access our new last block in the file system. Even if we
2176          * later on realize we have to abort our operation, on that block
2177          * there should be no data, so we can't destroy something yet.
2178          */
2179         wtfs((ufs2_daddr_t)p_size-1, (size_t)DEV_BSIZE, (void *)&sblock,
2180             fso, Nflag);
2181
2182         /*
2183          * Now calculate new superblock values and check for reasonable
2184          * bound for new file system size:
2185          *     fs_size:    is derived from label or user input
2186          *     fs_dsize:   should get updated in the routines creating or
2187          *                 updating the cylinder groups on the fly
2188          *     fs_cstotal: should get updated in the routines creating or
2189          *                 updating the cylinder groups
2190          */
2191
2192         /*
2193          * Update the number of cylinders and cylinder groups in the file system.
2194          */
2195         if (sblock.fs_magic == FS_UFS1_MAGIC) {
2196                 sblock.fs_old_ncyl =
2197                     sblock.fs_size * sblock.fs_old_nspf / sblock.fs_old_spc;
2198                 if (sblock.fs_size * sblock.fs_old_nspf >
2199                     sblock.fs_old_ncyl * sblock.fs_old_spc)
2200                         sblock.fs_old_ncyl++;
2201         }
2202         sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
2203         maxino = sblock.fs_ncg * sblock.fs_ipg;
2204
2205         if (sblock.fs_size % sblock.fs_fpg != 0 &&
2206             sblock.fs_size % sblock.fs_fpg < cgdmin(&sblock, sblock.fs_ncg)) {
2207                 /*
2208                  * The space in the new last cylinder group is too small,
2209                  * so revert back.
2210                  */
2211                 sblock.fs_ncg--;
2212                 if (sblock.fs_magic == FS_UFS1_MAGIC)
2213                         sblock.fs_old_ncyl = sblock.fs_ncg * sblock.fs_old_cpg;
2214                 printf("Warning: %jd sector(s) cannot be allocated.\n",
2215                     (intmax_t)fsbtodb(&sblock, sblock.fs_size % sblock.fs_fpg));
2216                 sblock.fs_size = sblock.fs_ncg * sblock.fs_fpg;
2217                 maxino -= sblock.fs_ipg;
2218         }
2219
2220         /*
2221          * Update the space for the cylinder group summary information in the
2222          * respective cylinder group data area.
2223          */
2224         sblock.fs_cssize =
2225             fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
2226
2227         if(osblock.fs_size >= sblock.fs_size) {
2228                 errx(1, "not enough new space");
2229         }
2230
2231         DBG_PRINT0("sblock calculated\n");
2232
2233         /*
2234          * Ok, everything prepared, so now let's do the tricks.
2235          */
2236         growfs(fsi, fso, Nflag);
2237
2238         /*
2239          * Update the disk label.
2240          */
2241     if (!unlabeled) {
2242         pp->p_fsize = sblock.fs_fsize;
2243         pp->p_frag = sblock.fs_frag;
2244         pp->p_cpg = sblock.fs_fpg;
2245
2246         return_disklabel(fso, lp, Nflag);
2247         DBG_PRINT0("label rewritten\n");
2248     }
2249
2250         close(fsi);
2251         if(fso>-1) close(fso);
2252
2253         DBG_CLOSE;
2254
2255         DBG_LEAVE;
2256         return 0;
2257 }
2258
2259 /* ************************************************** return_disklabel ***** */
2260 /*
2261  * Write the updated disklabel back to disk.
2262  */
2263 static void
2264 return_disklabel(int fd, struct disklabel *lp, unsigned int Nflag)
2265 {
2266         DBG_FUNC("return_disklabel")
2267         u_short sum;
2268         u_short *ptr;
2269
2270         DBG_ENTER;
2271
2272         if(!lp) {
2273                 DBG_LEAVE;
2274                 return;
2275         }
2276         if(!Nflag) {
2277                 lp->d_checksum=0;
2278                 sum = 0;
2279                 ptr=(u_short *)lp;
2280
2281                 /*
2282                  * recalculate checksum
2283                  */
2284                 while(ptr < (u_short *)&lp->d_partitions[lp->d_npartitions]) {
2285                         sum ^= *ptr++;
2286                 }
2287                 lp->d_checksum=sum;
2288
2289                 if (ioctl(fd, DIOCWDINFO, (char *)lp) < 0) {
2290                         errx(1, "DIOCWDINFO failed");
2291                 }
2292         }
2293         free(lp);
2294
2295         DBG_LEAVE;
2296         return ;
2297 }
2298
2299 /* ***************************************************** get_disklabel ***** */
2300 /*
2301  * Read the disklabel from disk.
2302  */
2303 static struct disklabel *
2304 get_disklabel(int fd)
2305 {
2306         DBG_FUNC("get_disklabel")
2307         static struct   disklabel *lab;
2308
2309         DBG_ENTER;
2310
2311         lab=(struct disklabel *)malloc(sizeof(struct disklabel));
2312         if (!lab)
2313                 errx(1, "malloc failed");
2314
2315     if (!ioctl(fd, DIOCGDINFO, (char *)lab))
2316         return (lab);
2317
2318     unlabeled++;
2319
2320         DBG_LEAVE;
2321         return (NULL);
2322 }
2323
2324
2325 /* ************************************************************* usage ***** */
2326 /*
2327  * Dump a line of usage.
2328  */
2329 static void
2330 usage(void)
2331 {
2332         DBG_FUNC("usage")
2333
2334         DBG_ENTER;
2335
2336         fprintf(stderr, "usage: growfs [-Ny] [-s size] special\n");
2337
2338         DBG_LEAVE;
2339         exit(1);
2340 }
2341
2342 /* *********************************************************** updclst ***** */
2343 /*
2344  * This updates most parameters and the bitmap related to cluster. We have to
2345  * assume that sblock, osblock, acg are set up.
2346  */
2347 static void
2348 updclst(int block)
2349 {
2350         DBG_FUNC("updclst")
2351         static int      lcs=0;
2352
2353         DBG_ENTER;
2354
2355         if(sblock.fs_contigsumsize < 1) { /* no clustering */
2356                 return;
2357         }
2358         /*
2359          * update cluster allocation map
2360          */
2361         setbit(cg_clustersfree(&acg), block);
2362
2363         /*
2364          * update cluster summary table
2365          */
2366         if(!lcs) {
2367                 /*
2368                  * calculate size for the trailing cluster
2369                  */
2370                 for(block--; lcs<sblock.fs_contigsumsize; block--, lcs++ ) {
2371                         if(isclr(cg_clustersfree(&acg), block)){
2372                                 break;
2373                         }
2374                 }
2375         }
2376         if(lcs < sblock.fs_contigsumsize) {
2377                 if(lcs) {
2378                         cg_clustersum(&acg)[lcs]--;
2379                 }
2380                 lcs++;
2381                 cg_clustersum(&acg)[lcs]++;
2382         }
2383
2384         DBG_LEAVE;
2385         return;
2386 }
2387
2388 /* *********************************************************** updrefs ***** */
2389 /*
2390  * This updates all references to relocated blocks for the given inode.  The
2391  * inode is given as number within the cylinder group, and the number of the
2392  * cylinder group.
2393  */
2394 static void
2395 updrefs(int cg, ino_t in, struct gfs_bpp *bp, int fsi, int fso, unsigned int
2396     Nflag)
2397 {
2398         DBG_FUNC("updrefs")
2399         ufs_lbn_t       len, lbn, numblks;
2400         ufs2_daddr_t    iptr, blksperindir;
2401         union dinode    *ino;
2402         int             i, mode, inodeupdated;
2403
2404         DBG_ENTER;
2405
2406         ino = ginode(in, fsi, cg);
2407         if (ino == NULL) {
2408                 DBG_LEAVE;
2409                 return;
2410         }
2411         mode = DIP(ino, di_mode) & IFMT;
2412         if (mode != IFDIR && mode != IFREG && mode != IFLNK) {
2413                 DBG_LEAVE;
2414                 return; /* only check DIR, FILE, LINK */
2415         }
2416         if (mode == IFLNK && 
2417             DIP(ino, di_size) < (u_int64_t) sblock.fs_maxsymlinklen) {
2418                 DBG_LEAVE;
2419                 return; /* skip short symlinks */
2420         }
2421         numblks = howmany(DIP(ino, di_size), sblock.fs_bsize);
2422         if (numblks == 0) {
2423                 DBG_LEAVE;
2424                 return; /* skip empty file */
2425         }
2426         if (DIP(ino, di_blocks) == 0) {
2427                 DBG_LEAVE;
2428                 return; /* skip empty swiss cheesy file or old fastlink */
2429         }
2430         DBG_PRINT2("scg checking inode (%d in %d)\n",
2431             in,
2432             cg);
2433
2434         /*
2435          * Check all the blocks.
2436          */
2437         inodeupdated = 0;
2438         len = numblks < NDADDR ? numblks : NDADDR;
2439         for (i = 0; i < len; i++) {
2440                 iptr = DIP(ino, di_db[i]);
2441                 if (iptr == 0)
2442                         continue;
2443                 if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2444                         DIP_SET(ino, di_db[i], iptr);
2445                         inodeupdated++;
2446                 }
2447         }
2448         DBG_PRINT0("~~scg direct blocks checked\n");
2449
2450         blksperindir = 1;
2451         len = numblks - NDADDR;
2452         lbn = NDADDR;
2453         for (i = 0; len > 0 && i < NIADDR; i++) {
2454                 iptr = DIP(ino, di_ib[i]);
2455                 if (iptr == 0)
2456                         continue;
2457                 if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2458                         DIP_SET(ino, di_ib[i], iptr);
2459                         inodeupdated++;
2460                 }
2461                 indirchk(blksperindir, lbn, iptr, numblks, bp, fsi, fso, Nflag);
2462                 blksperindir *= NINDIR(&sblock);
2463                 lbn += blksperindir;
2464                 len -= blksperindir;
2465                 DBG_PRINT1("scg indirect_%d blocks checked\n", i + 1);
2466         }
2467         if (inodeupdated)
2468                 wtfs(inoblk, sblock.fs_bsize, inobuf, fso, Nflag);
2469
2470         DBG_LEAVE;
2471         return;
2472 }
2473
2474 /*
2475  * Recursively check all the indirect blocks.
2476  */
2477 static void
2478 indirchk(ufs_lbn_t blksperindir, ufs_lbn_t lbn, ufs2_daddr_t blkno,
2479     ufs_lbn_t lastlbn, struct gfs_bpp *bp, int fsi, int fso, unsigned int Nflag)
2480 {
2481         DBG_FUNC("indirchk")
2482         void *ibuf;
2483         int i, last;
2484         ufs2_daddr_t iptr;
2485
2486         DBG_ENTER;
2487
2488         /* read in the indirect block. */
2489         ibuf = malloc(sblock.fs_bsize);
2490         if (!ibuf)
2491                 errx(1, "malloc failed");
2492         rdfs(fsbtodb(&sblock, blkno), (size_t)sblock.fs_bsize, ibuf, fsi);
2493         last = howmany(lastlbn - lbn, blksperindir) < NINDIR(&sblock) ?
2494             howmany(lastlbn - lbn, blksperindir) : NINDIR(&sblock);
2495         for (i = 0; i < last; i++) {
2496                 if (sblock.fs_magic == FS_UFS1_MAGIC)
2497                         iptr = ((ufs1_daddr_t *)ibuf)[i];
2498                 else
2499                         iptr = ((ufs2_daddr_t *)ibuf)[i];
2500                 if (iptr == 0)
2501                         continue;
2502                 if (cond_bl_upd(&iptr, bp, fsi, fso, Nflag)) {
2503                         if (sblock.fs_magic == FS_UFS1_MAGIC)
2504                                 ((ufs1_daddr_t *)ibuf)[i] = iptr;
2505                         else
2506                                 ((ufs2_daddr_t *)ibuf)[i] = iptr;
2507                 }
2508                 if (blksperindir == 1)
2509                         continue;
2510                 indirchk(blksperindir / NINDIR(&sblock), lbn + blksperindir * i,
2511                     iptr, lastlbn, bp, fsi, fso, Nflag);
2512         }
2513         free(ibuf);
2514
2515         DBG_LEAVE;
2516         return;
2517 }