]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sbin/ipfw/ipfw.8
MFC r338977:
[FreeBSD/FreeBSD.git] / sbin / ipfw / ipfw.8
1 .\"
2 .\" $FreeBSD$
3 .\"
4 .Dd September 27, 2018
5 .Dt IPFW 8
6 .Os
7 .Sh NAME
8 .Nm ipfw
9 .Nd User interface for firewall, traffic shaper, packet scheduler,
10 in-kernel NAT.
11 .Sh SYNOPSIS
12 .Ss FIREWALL CONFIGURATION
13 .Nm
14 .Op Fl cq
15 .Cm add
16 .Ar rule
17 .Nm
18 .Op Fl acdefnNStT
19 .Op Cm set Ar N
20 .Brq Cm list | show
21 .Op Ar rule | first-last ...
22 .Nm
23 .Op Fl f | q
24 .Op Cm set Ar N
25 .Cm flush
26 .Nm
27 .Op Fl q
28 .Op Cm set Ar N
29 .Brq Cm delete | zero | resetlog
30 .Op Ar number ...
31 .Pp
32 .Nm
33 .Cm set Oo Cm disable Ar number ... Oc Op Cm enable Ar number ...
34 .Nm
35 .Cm set move
36 .Op Cm rule
37 .Ar number Cm to Ar number
38 .Nm
39 .Cm set swap Ar number number
40 .Nm
41 .Cm set show
42 .Ss SYSCTL SHORTCUTS
43 .Nm
44 .Cm enable
45 .Brq Cm firewall | altq | one_pass | debug | verbose | dyn_keepalive
46 .Nm
47 .Cm disable
48 .Brq Cm firewall | altq | one_pass | debug | verbose | dyn_keepalive
49 .Ss LOOKUP TABLES
50 .Nm
51 .Oo Cm set Ar N Oc Cm table Ar name Cm create Ar create-options
52 .Nm
53 .Oo Cm set Ar N Oc Cm table
54 .Brq Ar name | all
55 .Cm destroy
56 .Nm
57 .Oo Cm set Ar N Oc Cm table Ar name Cm modify Ar modify-options
58 .Nm
59 .Oo Cm set Ar N Oc Cm table Ar name Cm swap Ar name
60 .Nm
61 .Oo Cm set Ar N Oc Cm table Ar name Cm add Ar table-key Op Ar value
62 .Nm
63 .Oo Cm set Ar N Oc Cm table Ar name Cm add Op Ar table-key Ar value ...
64 .Nm
65 .Oo Cm set Ar N Oc Cm table Ar name Cm atomic add Op Ar table-key Ar value ...
66 .Nm
67 .Oo Cm set Ar N Oc Cm table Ar name Cm delete Op Ar table-key ...
68 .Nm
69 .Oo Cm set Ar N Oc Cm table Ar name Cm lookup Ar addr
70 .Nm
71 .Oo Cm set Ar N Oc Cm table Ar name Cm lock
72 .Nm
73 .Oo Cm set Ar N Oc Cm table Ar name Cm unlock
74 .Nm
75 .Oo Cm set Ar N Oc Cm table
76 .Brq Ar name | all
77 .Cm list
78 .Nm
79 .Oo Cm set Ar N Oc Cm table
80 .Brq Ar name | all
81 .Cm info
82 .Nm
83 .Oo Cm set Ar N Oc Cm table
84 .Brq Ar name | all
85 .Cm detail
86 .Nm
87 .Oo Cm set Ar N Oc Cm table
88 .Brq Ar name | all
89 .Cm flush
90 .Ss DUMMYNET CONFIGURATION (TRAFFIC SHAPER AND PACKET SCHEDULER)
91 .Nm
92 .Brq Cm pipe | queue | sched
93 .Ar number
94 .Cm config
95 .Ar config-options
96 .Nm
97 .Op Fl s Op Ar field
98 .Brq Cm pipe | queue | sched
99 .Brq Cm delete | list | show
100 .Op Ar number ...
101 .Ss IN-KERNEL NAT
102 .Nm
103 .Op Fl q
104 .Cm nat
105 .Ar number
106 .Cm config
107 .Ar config-options
108 .Pp
109 .Nm
110 .Op Fl cfnNqS
111 .Oo
112 .Fl p Ar preproc
113 .Oo
114 .Ar preproc-flags
115 .Oc
116 .Oc
117 .Ar pathname
118 .Ss STATEFUL IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
119 .Nm
120 .Oo Cm set Ar N Oc Cm nat64lsn Ar name Cm create Ar create-options
121 .Nm
122 .Oo Cm set Ar N Oc Cm nat64lsn Ar name Cm config Ar config-options
123 .Nm
124 .Oo Cm set Ar N Oc Cm nat64lsn
125 .Brq Ar name | all
126 .Brq Cm list | show
127 .Op Cm states
128 .Nm
129 .Oo Cm set Ar N Oc Cm nat64lsn
130 .Brq Ar name | all
131 .Cm destroy
132 .Nm
133 .Oo Cm set Ar N Oc Cm nat64lsn Ar name Cm stats Op Cm reset
134 .Ss STATELESS IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
135 .Nm
136 .Oo Cm set Ar N Oc Cm nat64stl Ar name Cm create Ar create-options
137 .Nm
138 .Oo Cm set Ar N Oc Cm nat64stl Ar name Cm config Ar config-options
139 .Nm
140 .Oo Cm set Ar N Oc Cm nat64stl
141 .Brq Ar name | all
142 .Brq Cm list | show
143 .Nm
144 .Oo Cm set Ar N Oc Cm nat64stl
145 .Brq Ar name | all
146 .Cm destroy
147 .Nm
148 .Oo Cm set Ar N Oc Cm nat64stl Ar name Cm stats Op Cm reset
149 .Ss IPv6-to-IPv6 NETWORK PREFIX TRANSLATION
150 .Nm
151 .Oo Cm set Ar N Oc Cm nptv6 Ar name Cm create Ar create-options
152 .Nm
153 .Oo Cm set Ar N Oc Cm nptv6
154 .Brq Ar name | all
155 .Brq Cm list | show
156 .Nm
157 .Oo Cm set Ar N Oc Cm nptv6
158 .Brq Ar name | all
159 .Cm destroy
160 .Nm
161 .Oo Cm set Ar N Oc Cm nptv6 Ar name Cm stats Op Cm reset
162 .Ss INTERNAL DIAGNOSTICS
163 .Nm
164 .Cm internal iflist
165 .Nm
166 .Cm internal talist
167 .Nm
168 .Cm internal vlist
169 .Sh DESCRIPTION
170 The
171 .Nm
172 utility is the user interface for controlling the
173 .Xr ipfw 4
174 firewall, the
175 .Xr dummynet 4
176 traffic shaper/packet scheduler, and the
177 in-kernel NAT services.
178 .Pp
179 A firewall configuration, or
180 .Em ruleset ,
181 is made of a list of
182 .Em rules
183 numbered from 1 to 65535.
184 Packets are passed to the firewall
185 from a number of different places in the protocol stack
186 (depending on the source and destination of the packet,
187 it is possible for the firewall to be
188 invoked multiple times on the same packet).
189 The packet passed to the firewall is compared
190 against each of the rules in the
191 .Em ruleset ,
192 in rule-number order
193 (multiple rules with the same number are permitted, in which case
194 they are processed in order of insertion).
195 When a match is found, the action corresponding to the
196 matching rule is performed.
197 .Pp
198 Depending on the action and certain system settings, packets
199 can be reinjected into the firewall at some rule after the
200 matching one for further processing.
201 .Pp
202 A ruleset always includes a
203 .Em default
204 rule (numbered 65535) which cannot be modified or deleted,
205 and matches all packets.
206 The action associated with the
207 .Em default
208 rule can be either
209 .Cm deny
210 or
211 .Cm allow
212 depending on how the kernel is configured.
213 .Pp
214 If the ruleset includes one or more rules with the
215 .Cm keep-state ,
216 .Cm record-state ,
217 .Cm limit
218 or
219 .Cm set-limit
220 option,
221 the firewall will have a
222 .Em stateful
223 behaviour, i.e., upon a match it will create
224 .Em dynamic rules ,
225 i.e., rules that match packets with the same 5-tuple
226 (protocol, source and destination addresses and ports)
227 as the packet which caused their creation.
228 Dynamic rules, which have a limited lifetime, are checked
229 at the first occurrence of a
230 .Cm check-state ,
231 .Cm keep-state
232 or
233 .Cm limit
234 rule, and are typically used to open the firewall on-demand to
235 legitimate traffic only.
236 Please, note, that
237 .Cm keep-state
238 amd
239 .Cm limit
240 imply implicit
241 .Cm check-state
242 for all packets (not only these matched by the rule) but
243 .Cm record-state
244 and
245 .Cm set-limit
246 have no implicit
247 .Cm check-state .
248 See the
249 .Sx STATEFUL FIREWALL
250 and
251 .Sx EXAMPLES
252 Sections below for more information on the stateful behaviour of
253 .Nm .
254 .Pp
255 All rules (including dynamic ones) have a few associated counters:
256 a packet count, a byte count, a log count and a timestamp
257 indicating the time of the last match.
258 Counters can be displayed or reset with
259 .Nm
260 commands.
261 .Pp
262 Each rule belongs to one of 32 different
263 .Em sets
264 , and there are
265 .Nm
266 commands to atomically manipulate sets, such as enable,
267 disable, swap sets, move all rules in a set to another
268 one, delete all rules in a set.
269 These can be useful to
270 install temporary configurations, or to test them.
271 See Section
272 .Sx SETS OF RULES
273 for more information on
274 .Em sets .
275 .Pp
276 Rules can be added with the
277 .Cm add
278 command; deleted individually or in groups with the
279 .Cm delete
280 command, and globally (except those in set 31) with the
281 .Cm flush
282 command; displayed, optionally with the content of the
283 counters, using the
284 .Cm show
285 and
286 .Cm list
287 commands.
288 Finally, counters can be reset with the
289 .Cm zero
290 and
291 .Cm resetlog
292 commands.
293 .Pp
294 .Ss COMMAND OPTIONS
295 The following general options are available when invoking
296 .Nm :
297 .Bl -tag -width indent
298 .It Fl a
299 Show counter values when listing rules.
300 The
301 .Cm show
302 command implies this option.
303 .It Fl b
304 Only show the action and the comment, not the body of a rule.
305 Implies
306 .Fl c .
307 .It Fl c
308 When entering or showing rules, print them in compact form,
309 i.e., omitting the "ip from any to any" string
310 when this does not carry any additional information.
311 .It Fl d
312 When listing, show dynamic rules in addition to static ones.
313 .It Fl e
314 When listing and
315 .Fl d
316 is specified, also show expired dynamic rules.
317 .It Fl f
318 Run without prompting for confirmation for commands that can cause problems if misused,
319 i.e.,
320 .Cm flush .
321 If there is no tty associated with the process, this is implied.
322 The
323 .Cm delete
324 command with this flag ignores possible errors,
325 i.e., nonexistent rule number.
326 And for batched commands execution continues with the next command.
327 .It Fl i
328 When listing a table (see the
329 .Sx LOOKUP TABLES
330 section below for more information on lookup tables), format values
331 as IP addresses.
332 By default, values are shown as integers.
333 .It Fl n
334 Only check syntax of the command strings, without actually passing
335 them to the kernel.
336 .It Fl N
337 Try to resolve addresses and service names in output.
338 .It Fl q
339 Be quiet when executing the
340 .Cm add ,
341 .Cm nat ,
342 .Cm zero ,
343 .Cm resetlog
344 or
345 .Cm flush
346 commands;
347 (implies
348 .Fl f ) .
349 This is useful when updating rulesets by executing multiple
350 .Nm
351 commands in a script
352 (e.g.,
353 .Ql sh\ /etc/rc.firewall ) ,
354 or by processing a file with many
355 .Nm
356 rules across a remote login session.
357 It also stops a table add or delete
358 from failing if the entry already exists or is not present.
359 .Pp
360 The reason why this option may be important is that
361 for some of these actions,
362 .Nm
363 may print a message; if the action results in blocking the
364 traffic to the remote client,
365 the remote login session will be closed
366 and the rest of the ruleset will not be processed.
367 Access to the console would then be required to recover.
368 .It Fl S
369 When listing rules, show the
370 .Em set
371 each rule belongs to.
372 If this flag is not specified, disabled rules will not be
373 listed.
374 .It Fl s Op Ar field
375 When listing pipes, sort according to one of the four
376 counters (total or current packets or bytes).
377 .It Fl t
378 When listing, show last match timestamp converted with ctime().
379 .It Fl T
380 When listing, show last match timestamp as seconds from the epoch.
381 This form can be more convenient for postprocessing by scripts.
382 .El
383 .Ss LIST OF RULES AND PREPROCESSING
384 To ease configuration, rules can be put into a file which is
385 processed using
386 .Nm
387 as shown in the last synopsis line.
388 An absolute
389 .Ar pathname
390 must be used.
391 The file will be read line by line and applied as arguments to the
392 .Nm
393 utility.
394 .Pp
395 Optionally, a preprocessor can be specified using
396 .Fl p Ar preproc
397 where
398 .Ar pathname
399 is to be piped through.
400 Useful preprocessors include
401 .Xr cpp 1
402 and
403 .Xr m4 1 .
404 If
405 .Ar preproc
406 does not start with a slash
407 .Pq Ql /
408 as its first character, the usual
409 .Ev PATH
410 name search is performed.
411 Care should be taken with this in environments where not all
412 file systems are mounted (yet) by the time
413 .Nm
414 is being run (e.g.\& when they are mounted over NFS).
415 Once
416 .Fl p
417 has been specified, any additional arguments are passed on to the preprocessor
418 for interpretation.
419 This allows for flexible configuration files (like conditionalizing
420 them on the local hostname) and the use of macros to centralize
421 frequently required arguments like IP addresses.
422 .Ss TRAFFIC SHAPER CONFIGURATION
423 The
424 .Nm
425 .Cm pipe , queue
426 and
427 .Cm sched
428 commands are used to configure the traffic shaper and packet scheduler.
429 See the
430 .Sx TRAFFIC SHAPER (DUMMYNET) CONFIGURATION
431 Section below for details.
432 .Pp
433 If the world and the kernel get out of sync the
434 .Nm
435 ABI may break, preventing you from being able to add any rules.
436 This can adversely affect the booting process.
437 You can use
438 .Nm
439 .Cm disable
440 .Cm firewall
441 to temporarily disable the firewall to regain access to the network,
442 allowing you to fix the problem.
443 .Sh PACKET FLOW
444 A packet is checked against the active ruleset in multiple places
445 in the protocol stack, under control of several sysctl variables.
446 These places and variables are shown below, and it is important to
447 have this picture in mind in order to design a correct ruleset.
448 .Bd -literal -offset indent
449        ^    to upper layers    V
450        |                       |
451        +----------->-----------+
452        ^                       V
453  [ip(6)_input]           [ip(6)_output]     net.inet(6).ip(6).fw.enable=1
454        |                       |
455        ^                       V
456  [ether_demux]        [ether_output_frame]  net.link.ether.ipfw=1
457        |                       |
458        +-->--[bdg_forward]-->--+            net.link.bridge.ipfw=1
459        ^                       V
460        |      to devices       |
461 .Ed
462 .Pp
463 The number of
464 times the same packet goes through the firewall can
465 vary between 0 and 4 depending on packet source and
466 destination, and system configuration.
467 .Pp
468 Note that as packets flow through the stack, headers can be
469 stripped or added to it, and so they may or may not be available
470 for inspection.
471 E.g., incoming packets will include the MAC header when
472 .Nm
473 is invoked from
474 .Cm ether_demux() ,
475 but the same packets will have the MAC header stripped off when
476 .Nm
477 is invoked from
478 .Cm ip_input()
479 or
480 .Cm ip6_input() .
481 .Pp
482 Also note that each packet is always checked against the complete ruleset,
483 irrespective of the place where the check occurs, or the source of the packet.
484 If a rule contains some match patterns or actions which are not valid
485 for the place of invocation (e.g.\& trying to match a MAC header within
486 .Cm ip_input
487 or
488 .Cm ip6_input ),
489 the match pattern will not match, but a
490 .Cm not
491 operator in front of such patterns
492 .Em will
493 cause the pattern to
494 .Em always
495 match on those packets.
496 It is thus the responsibility of
497 the programmer, if necessary, to write a suitable ruleset to
498 differentiate among the possible places.
499 .Cm skipto
500 rules can be useful here, as an example:
501 .Bd -literal -offset indent
502 # packets from ether_demux or bdg_forward
503 ipfw add 10 skipto 1000 all from any to any layer2 in
504 # packets from ip_input
505 ipfw add 10 skipto 2000 all from any to any not layer2 in
506 # packets from ip_output
507 ipfw add 10 skipto 3000 all from any to any not layer2 out
508 # packets from ether_output_frame
509 ipfw add 10 skipto 4000 all from any to any layer2 out
510 .Ed
511 .Pp
512 (yes, at the moment there is no way to differentiate between
513 ether_demux and bdg_forward).
514 .Sh SYNTAX
515 In general, each keyword or argument must be provided as
516 a separate command line argument, with no leading or trailing
517 spaces.
518 Keywords are case-sensitive, whereas arguments may
519 or may not be case-sensitive depending on their nature
520 (e.g.\& uid's are, hostnames are not).
521 .Pp
522 Some arguments (e.g., port or address lists) are comma-separated
523 lists of values.
524 In this case, spaces after commas ',' are allowed to make
525 the line more readable.
526 You can also put the entire
527 command (including flags) into a single argument.
528 E.g., the following forms are equivalent:
529 .Bd -literal -offset indent
530 ipfw -q add deny src-ip 10.0.0.0/24,127.0.0.1/8
531 ipfw -q add deny src-ip 10.0.0.0/24, 127.0.0.1/8
532 ipfw "-q add deny src-ip 10.0.0.0/24, 127.0.0.1/8"
533 .Ed
534 .Sh RULE FORMAT
535 The format of firewall rules is the following:
536 .Bd -ragged -offset indent
537 .Bk -words
538 .Op Ar rule_number
539 .Op Cm set Ar set_number
540 .Op Cm prob Ar match_probability
541 .Ar action
542 .Op Cm log Op Cm logamount Ar number
543 .Op Cm altq Ar queue
544 .Oo
545 .Bro Cm tag | untag
546 .Brc Ar number
547 .Oc
548 .Ar body
549 .Ek
550 .Ed
551 .Pp
552 where the body of the rule specifies which information is used
553 for filtering packets, among the following:
554 .Pp
555 .Bl -tag -width "Source and dest. addresses and ports" -offset XXX -compact
556 .It Layer-2 header fields
557 When available
558 .It IPv4 and IPv6 Protocol
559 SCTP, TCP, UDP, ICMP, etc.
560 .It Source and dest. addresses and ports
561 .It Direction
562 See Section
563 .Sx PACKET FLOW
564 .It Transmit and receive interface
565 By name or address
566 .It Misc. IP header fields
567 Version, type of service, datagram length, identification,
568 fragment flag (non-zero IP offset),
569 Time To Live
570 .It IP options
571 .It IPv6 Extension headers
572 Fragmentation, Hop-by-Hop options,
573 Routing Headers, Source routing rthdr0, Mobile IPv6 rthdr2, IPSec options.
574 .It IPv6 Flow-ID
575 .It Misc. TCP header fields
576 TCP flags (SYN, FIN, ACK, RST, etc.),
577 sequence number, acknowledgment number,
578 window
579 .It TCP options
580 .It ICMP types
581 for ICMP packets
582 .It ICMP6 types
583 for ICMP6 packets
584 .It User/group ID
585 When the packet can be associated with a local socket.
586 .It Divert status
587 Whether a packet came from a divert socket (e.g.,
588 .Xr natd 8 ) .
589 .It Fib annotation state
590 Whether a packet has been tagged for using a specific FIB (routing table)
591 in future forwarding decisions.
592 .El
593 .Pp
594 Note that some of the above information, e.g.\& source MAC or IP addresses and
595 TCP/UDP ports, can be easily spoofed, so filtering on those fields
596 alone might not guarantee the desired results.
597 .Bl -tag -width indent
598 .It Ar rule_number
599 Each rule is associated with a
600 .Ar rule_number
601 in the range 1..65535, with the latter reserved for the
602 .Em default
603 rule.
604 Rules are checked sequentially by rule number.
605 Multiple rules can have the same number, in which case they are
606 checked (and listed) according to the order in which they have
607 been added.
608 If a rule is entered without specifying a number, the kernel will
609 assign one in such a way that the rule becomes the last one
610 before the
611 .Em default
612 rule.
613 Automatic rule numbers are assigned by incrementing the last
614 non-default rule number by the value of the sysctl variable
615 .Ar net.inet.ip.fw.autoinc_step
616 which defaults to 100.
617 If this is not possible (e.g.\& because we would go beyond the
618 maximum allowed rule number), the number of the last
619 non-default value is used instead.
620 .It Cm set Ar set_number
621 Each rule is associated with a
622 .Ar set_number
623 in the range 0..31.
624 Sets can be individually disabled and enabled, so this parameter
625 is of fundamental importance for atomic ruleset manipulation.
626 It can be also used to simplify deletion of groups of rules.
627 If a rule is entered without specifying a set number,
628 set 0 will be used.
629 .br
630 Set 31 is special in that it cannot be disabled,
631 and rules in set 31 are not deleted by the
632 .Nm ipfw flush
633 command (but you can delete them with the
634 .Nm ipfw delete set 31
635 command).
636 Set 31 is also used for the
637 .Em default
638 rule.
639 .It Cm prob Ar match_probability
640 A match is only declared with the specified probability
641 (floating point number between 0 and 1).
642 This can be useful for a number of applications such as
643 random packet drop or
644 (in conjunction with
645 .Nm dummynet )
646 to simulate the effect of multiple paths leading to out-of-order
647 packet delivery.
648 .Pp
649 Note: this condition is checked before any other condition, including
650 ones such as 
651 .Cm keep-state
652 or
653 .Cm check-state
654 which might have
655 side effects.
656 .It Cm log Op Cm logamount Ar number
657 Packets matching a rule with the
658 .Cm log
659 keyword will be made available for logging in two ways:
660 if the sysctl variable
661 .Va net.inet.ip.fw.verbose
662 is set to 0 (default), one can use
663 .Xr bpf 4
664 attached to the
665 .Li ipfw0
666 pseudo interface.
667 This pseudo interface can be created after a boot
668 manually by using the following command:
669 .Bd -literal -offset indent
670 # ifconfig ipfw0 create
671 .Ed
672 .Pp
673 Or, automatically at boot time by adding the following
674 line to the
675 .Xr rc.conf 5
676 file:
677 .Bd -literal -offset indent
678 firewall_logif="YES"
679 .Ed
680 .Pp
681 There is no overhead if no
682 .Xr bpf 4
683 is attached to the pseudo interface.
684 .Pp
685 If
686 .Va net.inet.ip.fw.verbose
687 is set to 1, packets will be logged to
688 .Xr syslogd 8
689 with a
690 .Dv LOG_SECURITY
691 facility up to a maximum of
692 .Cm logamount
693 packets.
694 If no
695 .Cm logamount
696 is specified, the limit is taken from the sysctl variable
697 .Va net.inet.ip.fw.verbose_limit .
698 In both cases, a value of 0 means unlimited logging.
699 .Pp
700 Once the limit is reached, logging can be re-enabled by
701 clearing the logging counter or the packet counter for that entry, see the
702 .Cm resetlog
703 command.
704 .Pp
705 Note: logging is done after all other packet matching conditions
706 have been successfully verified, and before performing the final
707 action (accept, deny, etc.) on the packet.
708 .It Cm tag Ar number
709 When a packet matches a rule with the
710 .Cm tag
711 keyword, the numeric tag for the given
712 .Ar number
713 in the range 1..65534 will be attached to the packet.
714 The tag acts as an internal marker (it is not sent out over
715 the wire) that can be used to identify these packets later on.
716 This can be used, for example, to provide trust between interfaces
717 and to start doing policy-based filtering.
718 A packet can have multiple tags at the same time.
719 Tags are "sticky", meaning once a tag is applied to a packet by a
720 matching rule it exists until explicit removal.
721 Tags are kept with the packet everywhere within the kernel, but are
722 lost when packet leaves the kernel, for example, on transmitting
723 packet out to the network or sending packet to a
724 .Xr divert 4
725 socket.
726 .Pp
727 To check for previously applied tags, use the
728 .Cm tagged
729 rule option.
730 To delete previously applied tag, use the
731 .Cm untag
732 keyword.
733 .Pp
734 Note: since tags are kept with the packet everywhere in kernelspace,
735 they can be set and unset anywhere in the kernel network subsystem
736 (using the
737 .Xr mbuf_tags 9
738 facility), not only by means of the
739 .Xr ipfw 4
740 .Cm tag
741 and
742 .Cm untag
743 keywords.
744 For example, there can be a specialized
745 .Xr netgraph 4
746 node doing traffic analyzing and tagging for later inspecting
747 in firewall.
748 .It Cm untag Ar number
749 When a packet matches a rule with the
750 .Cm untag
751 keyword, the tag with the number
752 .Ar number
753 is searched among the tags attached to this packet and,
754 if found, removed from it.
755 Other tags bound to packet, if present, are left untouched.
756 .It Cm altq Ar queue
757 When a packet matches a rule with the
758 .Cm altq
759 keyword, the ALTQ identifier for the given
760 .Ar queue
761 (see
762 .Xr altq 4 )
763 will be attached.
764 Note that this ALTQ tag is only meaningful for packets going "out" of IPFW,
765 and not being rejected or going to divert sockets.
766 Note that if there is insufficient memory at the time the packet is
767 processed, it will not be tagged, so it is wise to make your ALTQ
768 "default" queue policy account for this.
769 If multiple
770 .Cm altq
771 rules match a single packet, only the first one adds the ALTQ classification
772 tag.
773 In doing so, traffic may be shaped by using
774 .Cm count Cm altq Ar queue
775 rules for classification early in the ruleset, then later applying
776 the filtering decision.
777 For example,
778 .Cm check-state
779 and
780 .Cm keep-state
781 rules may come later and provide the actual filtering decisions in
782 addition to the fallback ALTQ tag.
783 .Pp
784 You must run
785 .Xr pfctl 8
786 to set up the queues before IPFW will be able to look them up by name,
787 and if the ALTQ disciplines are rearranged, the rules in containing the
788 queue identifiers in the kernel will likely have gone stale and need
789 to be reloaded.
790 Stale queue identifiers will probably result in misclassification.
791 .Pp
792 All system ALTQ processing can be turned on or off via
793 .Nm
794 .Cm enable Ar altq
795 and
796 .Nm
797 .Cm disable Ar altq .
798 The usage of
799 .Va net.inet.ip.fw.one_pass
800 is irrelevant to ALTQ traffic shaping, as the actual rule action is followed
801 always after adding an ALTQ tag.
802 .El
803 .Ss RULE ACTIONS
804 A rule can be associated with one of the following actions, which
805 will be executed when the packet matches the body of the rule.
806 .Bl -tag -width indent
807 .It Cm allow | accept | pass | permit
808 Allow packets that match rule.
809 The search terminates.
810 .It Cm check-state Op Ar :flowname | Cm :any
811 Checks the packet against the dynamic ruleset.
812 If a match is found, execute the action associated with
813 the rule which generated this dynamic rule, otherwise
814 move to the next rule.
815 .br
816 .Cm Check-state
817 rules do not have a body.
818 If no
819 .Cm check-state
820 rule is found, the dynamic ruleset is checked at the first
821 .Cm keep-state
822 or
823 .Cm limit
824 rule.
825 The
826 .Ar :flowname
827 is symbolic name assigned to dynamic rule by
828 .Cm keep-state
829 opcode.
830 The special flowname
831 .Cm :any
832 can be used to ignore states flowname when matching.
833 The
834 .Cm :default
835 keyword is special name used for compatibility with old rulesets.
836 .It Cm count
837 Update counters for all packets that match rule.
838 The search continues with the next rule.
839 .It Cm deny | drop
840 Discard packets that match this rule.
841 The search terminates.
842 .It Cm divert Ar port
843 Divert packets that match this rule to the
844 .Xr divert 4
845 socket bound to port
846 .Ar port .
847 The search terminates.
848 .It Cm fwd | forward Ar ipaddr | tablearg Ns Op , Ns Ar port
849 Change the next-hop on matching packets to
850 .Ar ipaddr ,
851 which can be an IP address or a host name.
852 The next hop can also be supplied by the last table
853 looked up for the packet by using the
854 .Cm tablearg
855 keyword instead of an explicit address.
856 The search terminates if this rule matches.
857 .Pp
858 If
859 .Ar ipaddr
860 is a local address, then matching packets will be forwarded to
861 .Ar port
862 (or the port number in the packet if one is not specified in the rule)
863 on the local machine.
864 .br
865 If
866 .Ar ipaddr
867 is not a local address, then the port number
868 (if specified) is ignored, and the packet will be
869 forwarded to the remote address, using the route as found in
870 the local routing table for that IP.
871 .br
872 A
873 .Ar fwd
874 rule will not match layer-2 packets (those received
875 on ether_input, ether_output, or bridged).
876 .br
877 The
878 .Cm fwd
879 action does not change the contents of the packet at all.
880 In particular, the destination address remains unmodified, so
881 packets forwarded to another system will usually be rejected by that system
882 unless there is a matching rule on that system to capture them.
883 For packets forwarded locally,
884 the local address of the socket will be
885 set to the original destination address of the packet.
886 This makes the
887 .Xr netstat 1
888 entry look rather weird but is intended for
889 use with transparent proxy servers.
890 .It Cm nat Ar nat_nr | tablearg
891 Pass packet to a
892 nat instance
893 (for network address translation, address redirect, etc.):
894 see the
895 .Sx NETWORK ADDRESS TRANSLATION (NAT)
896 Section for further information.
897 .It Cm nat64lsn Ar name
898 Pass packet to a stateful NAT64 instance (for IPv6/IPv4 network address and
899 protocol translation): see the
900 .Sx IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
901 Section for further information.
902 .It Cm nat64stl Ar name
903 Pass packet to a stateless NAT64 instance (for IPv6/IPv4 network address and
904 protocol translation): see the
905 .Sx IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
906 Section for further information.
907 .It Cm nptv6 Ar name
908 Pass packet to a NPTv6 instance (for IPv6-to-IPv6 network prefix translation):
909 see the
910 .Sx IPv6-to-IPv6 NETWORK PREFIX TRANSLATION (NPTv6)
911 Section for further information.
912 .It Cm pipe Ar pipe_nr
913 Pass packet to a
914 .Nm dummynet
915 .Dq pipe
916 (for bandwidth limitation, delay, etc.).
917 See the
918 .Sx TRAFFIC SHAPER (DUMMYNET) CONFIGURATION
919 Section for further information.
920 The search terminates; however, on exit from the pipe and if
921 the
922 .Xr sysctl 8
923 variable
924 .Va net.inet.ip.fw.one_pass
925 is not set, the packet is passed again to the firewall code
926 starting from the next rule.
927 .It Cm queue Ar queue_nr
928 Pass packet to a
929 .Nm dummynet
930 .Dq queue
931 (for bandwidth limitation using WF2Q+).
932 .It Cm reject
933 (Deprecated).
934 Synonym for
935 .Cm unreach host .
936 .It Cm reset
937 Discard packets that match this rule, and if the
938 packet is a TCP packet, try to send a TCP reset (RST) notice.
939 The search terminates.
940 .It Cm reset6
941 Discard packets that match this rule, and if the
942 packet is a TCP packet, try to send a TCP reset (RST) notice.
943 The search terminates.
944 .It Cm skipto Ar number | tablearg
945 Skip all subsequent rules numbered less than
946 .Ar number .
947 The search continues with the first rule numbered
948 .Ar number
949 or higher.
950 It is possible to use the
951 .Cm tablearg
952 keyword with a skipto for a
953 .Em computed
954 skipto. Skipto may work either in O(log(N)) or in O(1) depending
955 on amount of memory and/or sysctl variables.
956 See the
957 .Sx SYSCTL VARIABLES
958 section for more details.
959 .It Cm call Ar number | tablearg
960 The current rule number is saved in the internal stack and
961 ruleset processing continues with the first rule numbered
962 .Ar number
963 or higher.
964 If later a rule with the
965 .Cm return
966 action is encountered, the processing returns to the first rule
967 with number of this
968 .Cm call
969 rule plus one or higher
970 (the same behaviour as with packets returning from
971 .Xr divert 4
972 socket after a
973 .Cm divert
974 action).
975 This could be used to make somewhat like an assembly language
976 .Dq subroutine
977 calls to rules with common checks for different interfaces, etc.
978 .Pp
979 Rule with any number could be called, not just forward jumps as with
980 .Cm skipto .
981 So, to prevent endless loops in case of mistakes, both
982 .Cm call
983 and
984 .Cm return
985 actions don't do any jumps and simply go to the next rule if memory
986 cannot be allocated or stack overflowed/underflowed.
987 .Pp
988 Internally stack for rule numbers is implemented using
989 .Xr mbuf_tags 9
990 facility and currently has size of 16 entries.
991 As mbuf tags are lost when packet leaves the kernel,
992 .Cm divert
993 should not be used in subroutines to avoid endless loops
994 and other undesired effects.
995 .It Cm return
996 Takes rule number saved to internal stack by the last
997 .Cm call
998 action and returns ruleset processing to the first rule
999 with number greater than number of corresponding
1000 .Cm call
1001 rule.
1002 See description of the
1003 .Cm call
1004 action for more details.
1005 .Pp
1006 Note that
1007 .Cm return
1008 rules usually end a
1009 .Dq subroutine
1010 and thus are unconditional, but
1011 .Nm
1012 command-line utility currently requires every action except
1013 .Cm check-state
1014 to have body.
1015 While it is sometimes useful to return only on some packets,
1016 usually you want to print just
1017 .Dq return
1018 for readability.
1019 A workaround for this is to use new syntax and
1020 .Fl c
1021 switch:
1022 .Bd -literal -offset indent
1023 # Add a rule without actual body
1024 ipfw add 2999 return via any
1025
1026 # List rules without "from any to any" part
1027 ipfw -c list
1028 .Ed
1029 .Pp
1030 This cosmetic annoyance may be fixed in future releases.
1031 .It Cm tee Ar port
1032 Send a copy of packets matching this rule to the
1033 .Xr divert 4
1034 socket bound to port
1035 .Ar port .
1036 The search continues with the next rule.
1037 .It Cm unreach Ar code
1038 Discard packets that match this rule, and try to send an ICMP
1039 unreachable notice with code
1040 .Ar code ,
1041 where
1042 .Ar code
1043 is a number from 0 to 255, or one of these aliases:
1044 .Cm net , host , protocol , port ,
1045 .Cm needfrag , srcfail , net-unknown , host-unknown ,
1046 .Cm isolated , net-prohib , host-prohib , tosnet ,
1047 .Cm toshost , filter-prohib , host-precedence
1048 or
1049 .Cm precedence-cutoff .
1050 The search terminates.
1051 .It Cm unreach6 Ar code
1052 Discard packets that match this rule, and try to send an ICMPv6
1053 unreachable notice with code
1054 .Ar code ,
1055 where
1056 .Ar code
1057 is a number from 0, 1, 3 or 4, or one of these aliases:
1058 .Cm no-route, admin-prohib, address
1059 or
1060 .Cm port .
1061 The search terminates.
1062 .It Cm netgraph Ar cookie
1063 Divert packet into netgraph with given
1064 .Ar cookie .
1065 The search terminates.
1066 If packet is later returned from netgraph it is either
1067 accepted or continues with the next rule, depending on
1068 .Va net.inet.ip.fw.one_pass
1069 sysctl variable.
1070 .It Cm ngtee Ar cookie
1071 A copy of packet is diverted into netgraph, original
1072 packet continues with the next rule.
1073 See
1074 .Xr ng_ipfw 4
1075 for more information on
1076 .Cm netgraph
1077 and
1078 .Cm ngtee
1079 actions.
1080 .It Cm setfib Ar fibnum | tablearg
1081 The packet is tagged so as to use the FIB (routing table)
1082 .Ar fibnum
1083 in any subsequent forwarding decisions.
1084 In the current implementation, this is limited to the values 0 through 15, see
1085 .Xr setfib 2 .
1086 Processing continues at the next rule.
1087 It is possible to use the
1088 .Cm tablearg
1089 keyword with setfib.
1090 If the tablearg value is not within the compiled range of fibs,
1091 the packet's fib is set to 0.
1092 .It Cm setdscp Ar DSCP | number | tablearg
1093 Set specified DiffServ codepoint for an IPv4/IPv6 packet.
1094 Processing continues at the next rule.
1095 Supported values are:
1096 .Pp
1097 .Cm cs0
1098 .Pq Dv 000000 ,
1099 .Cm cs1
1100 .Pq Dv 001000 ,
1101 .Cm cs2
1102 .Pq Dv 010000 ,
1103 .Cm cs3
1104 .Pq Dv 011000 ,
1105 .Cm cs4
1106 .Pq Dv 100000 ,
1107 .Cm cs5
1108 .Pq Dv 101000 ,
1109 .Cm cs6
1110 .Pq Dv 110000 ,
1111 .Cm cs7
1112 .Pq Dv 111000 ,
1113 .Cm af11
1114 .Pq Dv 001010 ,
1115 .Cm af12
1116 .Pq Dv 001100 ,
1117 .Cm af13
1118 .Pq Dv 001110 ,
1119 .Cm af21
1120 .Pq Dv 010010 ,
1121 .Cm af22
1122 .Pq Dv 010100 ,
1123 .Cm af23
1124 .Pq Dv 010110 ,
1125 .Cm af31
1126 .Pq Dv 011010 ,
1127 .Cm af32
1128 .Pq Dv 011100 ,
1129 .Cm af33
1130 .Pq Dv 011110 ,
1131 .Cm af41
1132 .Pq Dv 100010 ,
1133 .Cm af42
1134 .Pq Dv 100100 ,
1135 .Cm af43
1136 .Pq Dv 100110 ,
1137 .Cm ef
1138 .Pq Dv 101110 ,
1139 .Cm be
1140 .Pq Dv 000000 .
1141 Additionally, DSCP value can be specified by number (0..64).
1142 It is also possible to use the
1143 .Cm tablearg
1144 keyword with setdscp.
1145 If the tablearg value is not within the 0..64 range, lower 6 bits of supplied
1146 value are used.
1147 .It Cm tcp-setmss Ar mss
1148 Set the Maximum Segment Size (MSS) in the TCP segment to value
1149 .Ar mss .
1150 The kernel module
1151 .Cm ipfw_pmod
1152 should be loaded or kernel should have
1153 .Cm options IPFIREWALL_PMOD
1154 to be able use this action.
1155 This command does not change a packet if original MSS value is lower than
1156 specified value.
1157 Both TCP over IPv4 and over IPv6 are supported.
1158 Regardless of matched a packet or not by the
1159 .Cm tcp-setmss
1160 rule, the search continues with the next rule.
1161 .It Cm reass
1162 Queue and reassemble IPv4 fragments.
1163 If the packet is not fragmented, counters are updated and
1164 processing continues with the next rule.
1165 If the packet is the last logical fragment, the packet is reassembled and, if
1166 .Va net.inet.ip.fw.one_pass
1167 is set to 0, processing continues with the next rule.
1168 Otherwise, the packet is allowed to pass and the search terminates.
1169 If the packet is a fragment in the middle of a logical group of fragments,
1170 it is consumed and
1171 processing stops immediately.
1172 .Pp
1173 Fragment handling can be tuned via
1174 .Va net.inet.ip.maxfragpackets
1175 and
1176 .Va net.inet.ip.maxfragsperpacket
1177 which limit, respectively, the maximum number of processable
1178 fragments (default: 800) and
1179 the maximum number of fragments per packet (default: 16).
1180 .Pp
1181 NOTA BENE: since fragments do not contain port numbers,
1182 they should be avoided with the
1183 .Nm reass
1184 rule.
1185 Alternatively, direction-based (like
1186 .Nm in
1187 /
1188 .Nm out
1189 ) and source-based (like
1190 .Nm via
1191 ) match patterns can be used to select fragments.
1192 .Pp
1193 Usually a simple rule like:
1194 .Bd -literal -offset indent
1195 # reassemble incoming fragments
1196 ipfw add reass all from any to any in
1197 .Ed
1198 .Pp
1199 is all you need at the beginning of your ruleset.
1200 .It Cm abort
1201 Discard packets that match this rule, and if the packet is an SCTP packet,
1202 try to send an SCTP packet containing an ABORT chunk.
1203 The search terminates.
1204 .It Cm abort6
1205 Discard packets that match this rule, and if the packet is an SCTP packet,
1206 try to send an SCTP packet containing an ABORT chunk.
1207 The search terminates.
1208 .El
1209 .Ss RULE BODY
1210 The body of a rule contains zero or more patterns (such as
1211 specific source and destination addresses or ports,
1212 protocol options, incoming or outgoing interfaces, etc.)
1213 that the packet must match in order to be recognised.
1214 In general, the patterns are connected by (implicit)
1215 .Cm and
1216 operators -- i.e., all must match in order for the
1217 rule to match.
1218 Individual patterns can be prefixed by the
1219 .Cm not
1220 operator to reverse the result of the match, as in
1221 .Pp
1222 .Dl "ipfw add 100 allow ip from not 1.2.3.4 to any"
1223 .Pp
1224 Additionally, sets of alternative match patterns
1225 .Pq Em or-blocks
1226 can be constructed by putting the patterns in
1227 lists enclosed between parentheses ( ) or braces { }, and
1228 using the
1229 .Cm or
1230 operator as follows:
1231 .Pp
1232 .Dl "ipfw add 100 allow ip from { x or not y or z } to any"
1233 .Pp
1234 Only one level of parentheses is allowed.
1235 Beware that most shells have special meanings for parentheses
1236 or braces, so it is advisable to put a backslash \\ in front of them
1237 to prevent such interpretations.
1238 .Pp
1239 The body of a rule must in general include a source and destination
1240 address specifier.
1241 The keyword
1242 .Ar any
1243 can be used in various places to specify that the content of
1244 a required field is irrelevant.
1245 .Pp
1246 The rule body has the following format:
1247 .Bd -ragged -offset indent
1248 .Op Ar proto Cm from Ar src Cm to Ar dst
1249 .Op Ar options
1250 .Ed
1251 .Pp
1252 The first part (proto from src to dst) is for backward
1253 compatibility with earlier versions of
1254 .Fx .
1255 In modern
1256 .Fx
1257 any match pattern (including MAC headers, IP protocols,
1258 addresses and ports) can be specified in the
1259 .Ar options
1260 section.
1261 .Pp
1262 Rule fields have the following meaning:
1263 .Bl -tag -width indent
1264 .It Ar proto : protocol | Cm { Ar protocol Cm or ... }
1265 .It Ar protocol : Oo Cm not Oc Ar protocol-name | protocol-number
1266 An IP protocol specified by number or name
1267 (for a complete list see
1268 .Pa /etc/protocols ) ,
1269 or one of the following keywords:
1270 .Bl -tag -width indent
1271 .It Cm ip4 | ipv4
1272 Matches IPv4 packets.
1273 .It Cm ip6 | ipv6
1274 Matches IPv6 packets.
1275 .It Cm ip | all
1276 Matches any packet.
1277 .El
1278 .Pp
1279 The
1280 .Cm ipv6
1281 in
1282 .Cm proto
1283 option will be treated as inner protocol.
1284 And, the
1285 .Cm ipv4
1286 is not available in
1287 .Cm proto
1288 option.
1289 .Pp
1290 The
1291 .Cm { Ar protocol Cm or ... }
1292 format (an
1293 .Em or-block )
1294 is provided for convenience only but its use is deprecated.
1295 .It Ar src No and Ar dst : Bro Cm addr | Cm { Ar addr Cm or ... } Brc Op Oo Cm not Oc Ar ports
1296 An address (or a list, see below)
1297 optionally followed by
1298 .Ar ports
1299 specifiers.
1300 .Pp
1301 The second format
1302 .Em ( or-block
1303 with multiple addresses) is provided for convenience only and
1304 its use is discouraged.
1305 .It Ar addr : Oo Cm not Oc Bro
1306 .Cm any | me | me6 |
1307 .Cm table Ns Pq Ar name Ns Op , Ns Ar value
1308 .Ar | addr-list | addr-set
1309 .Brc
1310 .Bl -tag -width indent
1311 .It Cm any
1312 matches any IP address.
1313 .It Cm me
1314 matches any IP address configured on an interface in the system.
1315 .It Cm me6
1316 matches any IPv6 address configured on an interface in the system.
1317 The address list is evaluated at the time the packet is
1318 analysed.
1319 .It Cm table Ns Pq Ar name Ns Op , Ns Ar value
1320 Matches any IPv4 or IPv6 address for which an entry exists in the lookup table
1321 .Ar number .
1322 If an optional 32-bit unsigned
1323 .Ar value
1324 is also specified, an entry will match only if it has this value.
1325 See the
1326 .Sx LOOKUP TABLES
1327 section below for more information on lookup tables.
1328 .El
1329 .It Ar addr-list : ip-addr Ns Op Ns , Ns Ar addr-list
1330 .It Ar ip-addr :
1331 A host or subnet address specified in one of the following ways:
1332 .Bl -tag -width indent
1333 .It Ar numeric-ip | hostname
1334 Matches a single IPv4 address, specified as dotted-quad or a hostname.
1335 Hostnames are resolved at the time the rule is added to the firewall list.
1336 .It Ar addr Ns / Ns Ar masklen
1337 Matches all addresses with base
1338 .Ar addr
1339 (specified as an IP address, a network number, or a hostname)
1340 and mask width of
1341 .Cm masklen
1342 bits.
1343 As an example, 1.2.3.4/25 or 1.2.3.0/25 will match
1344 all IP numbers from 1.2.3.0 to 1.2.3.127 .
1345 .It Ar addr Ns : Ns Ar mask
1346 Matches all addresses with base
1347 .Ar addr
1348 (specified as an IP address, a network number, or a hostname)
1349 and the mask of
1350 .Ar mask ,
1351 specified as a dotted quad.
1352 As an example, 1.2.3.4:255.0.255.0 or 1.0.3.0:255.0.255.0 will match
1353 1.*.3.*.
1354 This form is advised only for non-contiguous
1355 masks.
1356 It is better to resort to the
1357 .Ar addr Ns / Ns Ar masklen
1358 format for contiguous masks, which is more compact and less
1359 error-prone.
1360 .El
1361 .It Ar addr-set : addr Ns Oo Ns / Ns Ar masklen Oc Ns Cm { Ns Ar list Ns Cm }
1362 .It Ar list : Bro Ar num | num-num Brc Ns Op Ns , Ns Ar list
1363 Matches all addresses with base address
1364 .Ar addr
1365 (specified as an IP address, a network number, or a hostname)
1366 and whose last byte is in the list between braces { } .
1367 Note that there must be no spaces between braces and
1368 numbers (spaces after commas are allowed).
1369 Elements of the list can be specified as single entries
1370 or ranges.
1371 The
1372 .Ar masklen
1373 field is used to limit the size of the set of addresses,
1374 and can have any value between 24 and 32.
1375 If not specified,
1376 it will be assumed as 24.
1377 .br
1378 This format is particularly useful to handle sparse address sets
1379 within a single rule.
1380 Because the matching occurs using a
1381 bitmask, it takes constant time and dramatically reduces
1382 the complexity of rulesets.
1383 .br
1384 As an example, an address specified as 1.2.3.4/24{128,35-55,89}
1385 or 1.2.3.0/24{128,35-55,89}
1386 will match the following IP addresses:
1387 .br
1388 1.2.3.128, 1.2.3.35 to 1.2.3.55, 1.2.3.89 .
1389 .It Ar addr6-list : ip6-addr Ns Op Ns , Ns Ar addr6-list
1390 .It Ar ip6-addr :
1391 A host or subnet specified one of the following ways:
1392 .Bl -tag -width indent
1393 .It Ar numeric-ip | hostname
1394 Matches a single IPv6 address as allowed by
1395 .Xr inet_pton 3
1396 or a hostname.
1397 Hostnames are resolved at the time the rule is added to the firewall
1398 list.
1399 .It Ar addr Ns / Ns Ar masklen
1400 Matches all IPv6 addresses with base
1401 .Ar addr
1402 (specified as allowed by
1403 .Xr inet_pton
1404 or a hostname)
1405 and mask width of
1406 .Cm masklen
1407 bits.
1408 .It Ar addr Ns / Ns Ar mask
1409 Matches all IPv6 addresses with base
1410 .Ar addr
1411 (specified as allowed by
1412 .Xr inet_pton
1413 or a hostname)
1414 and the mask of
1415 .Ar mask ,
1416 specified as allowed by
1417 .Xr inet_pton.
1418 As an example, fe::640:0:0/ffff::ffff:ffff:0:0 will match
1419 fe:*:*:*:0:640:*:*.
1420 This form is advised only for non-contiguous
1421 masks.
1422 It is better to resort to the
1423 .Ar addr Ns / Ns Ar masklen
1424 format for contiguous masks, which is more compact and less
1425 error-prone.
1426 .El
1427 .Pp
1428 No support for sets of IPv6 addresses is provided because IPv6 addresses
1429 are typically random past the initial prefix.
1430 .It Ar ports : Bro Ar port | port Ns \&- Ns Ar port Ns Brc Ns Op , Ns Ar ports
1431 For protocols which support port numbers (such as SCTP, TCP and UDP), optional
1432 .Cm ports
1433 may be specified as one or more ports or port ranges, separated
1434 by commas but no spaces, and an optional
1435 .Cm not
1436 operator.
1437 The
1438 .Ql \&-
1439 notation specifies a range of ports (including boundaries).
1440 .Pp
1441 Service names (from
1442 .Pa /etc/services )
1443 may be used instead of numeric port values.
1444 The length of the port list is limited to 30 ports or ranges,
1445 though one can specify larger ranges by using an
1446 .Em or-block
1447 in the
1448 .Cm options
1449 section of the rule.
1450 .Pp
1451 A backslash
1452 .Pq Ql \e
1453 can be used to escape the dash
1454 .Pq Ql -
1455 character in a service name (from a shell, the backslash must be
1456 typed twice to avoid the shell itself interpreting it as an escape
1457 character).
1458 .Pp
1459 .Dl "ipfw add count tcp from any ftp\e\e-data-ftp to any"
1460 .Pp
1461 Fragmented packets which have a non-zero offset (i.e., not the first
1462 fragment) will never match a rule which has one or more port
1463 specifications.
1464 See the
1465 .Cm frag
1466 option for details on matching fragmented packets.
1467 .El
1468 .Ss RULE OPTIONS (MATCH PATTERNS)
1469 Additional match patterns can be used within
1470 rules.
1471 Zero or more of these so-called
1472 .Em options
1473 can be present in a rule, optionally prefixed by the
1474 .Cm not
1475 operand, and possibly grouped into
1476 .Em or-blocks .
1477 .Pp
1478 The following match patterns can be used (listed in alphabetical order):
1479 .Bl -tag -width indent
1480 .It Cm // this is a comment.
1481 Inserts the specified text as a comment in the rule.
1482 Everything following // is considered as a comment and stored in the rule.
1483 You can have comment-only rules, which are listed as having a
1484 .Cm count
1485 action followed by the comment.
1486 .It Cm bridged
1487 Alias for
1488 .Cm layer2 .
1489 .It Cm defer-immediate-action | defer-action
1490 A rule with this option will not perform normal action
1491 upon a match. This option is intended to be used with
1492 .Cm record-state
1493 or
1494 .Cm keep-state
1495 as the dynamic rule, created but ignored on match, will work
1496 as intended.
1497 Rules with both
1498 .Cm record-state
1499 and
1500 .Cm defer-immediate-action
1501 create a dynamic rule and continue with the next rule without actually
1502 performing the action part of this rule. When the rule is later activated
1503 via the state table, the action is performed as usual.
1504 .It Cm diverted
1505 Matches only packets generated by a divert socket.
1506 .It Cm diverted-loopback
1507 Matches only packets coming from a divert socket back into the IP stack
1508 input for delivery.
1509 .It Cm diverted-output
1510 Matches only packets going from a divert socket back outward to the IP
1511 stack output for delivery.
1512 .It Cm dst-ip Ar ip-address
1513 Matches IPv4 packets whose destination IP is one of the address(es)
1514 specified as argument.
1515 .It Bro Cm dst-ip6 | dst-ipv6 Brc Ar ip6-address
1516 Matches IPv6 packets whose destination IP is one of the address(es)
1517 specified as argument.
1518 .It Cm dst-port Ar ports
1519 Matches IP packets whose destination port is one of the port(s)
1520 specified as argument.
1521 .It Cm established
1522 Matches TCP packets that have the RST or ACK bits set.
1523 .It Cm ext6hdr Ar header
1524 Matches IPv6 packets containing the extended header given by
1525 .Ar header .
1526 Supported headers are:
1527 .Pp
1528 Fragment,
1529 .Pq Cm frag ,
1530 Hop-to-hop options
1531 .Pq Cm hopopt ,
1532 any type of Routing Header
1533 .Pq Cm route ,
1534 Source routing Routing Header Type 0
1535 .Pq Cm rthdr0 ,
1536 Mobile IPv6 Routing Header Type 2
1537 .Pq Cm rthdr2 ,
1538 Destination options
1539 .Pq Cm dstopt ,
1540 IPSec authentication headers
1541 .Pq Cm ah ,
1542 and IPsec encapsulated security payload headers
1543 .Pq Cm esp .
1544 .It Cm fib Ar fibnum
1545 Matches a packet that has been tagged to use
1546 the given FIB (routing table) number.
1547 .It Cm flow Ar table Ns Pq Ar name Ns Op , Ns Ar value
1548 Search for the flow entry in lookup table
1549 .Ar name .
1550 If not found, the match fails.
1551 Otherwise, the match succeeds and
1552 .Cm tablearg
1553 is set to the value extracted from the table.
1554 .Pp
1555 This option can be useful to quickly dispatch traffic based on
1556 certain packet fields.
1557 See the
1558 .Sx LOOKUP TABLES
1559 section below for more information on lookup tables.
1560 .It Cm flow-id Ar labels
1561 Matches IPv6 packets containing any of the flow labels given in
1562 .Ar labels .
1563 .Ar labels
1564 is a comma separated list of numeric flow labels.
1565 .It Cm frag
1566 Matches packets that are fragments and not the first
1567 fragment of an IP datagram.
1568 Note that these packets will not have
1569 the next protocol header (e.g.\& TCP, UDP) so options that look into
1570 these headers cannot match.
1571 .It Cm gid Ar group
1572 Matches all TCP or UDP packets sent by or received for a
1573 .Ar group .
1574 A
1575 .Ar group
1576 may be specified by name or number.
1577 .It Cm jail Ar jail
1578 Matches all TCP or UDP packets sent by or received for the
1579 jail whose ID or name is
1580 .Ar jail .
1581 .It Cm icmptypes Ar types
1582 Matches ICMP packets whose ICMP type is in the list
1583 .Ar types .
1584 The list may be specified as any combination of
1585 individual types (numeric) separated by commas.
1586 .Em Ranges are not allowed .
1587 The supported ICMP types are:
1588 .Pp
1589 echo reply
1590 .Pq Cm 0 ,
1591 destination unreachable
1592 .Pq Cm 3 ,
1593 source quench
1594 .Pq Cm 4 ,
1595 redirect
1596 .Pq Cm 5 ,
1597 echo request
1598 .Pq Cm 8 ,
1599 router advertisement
1600 .Pq Cm 9 ,
1601 router solicitation
1602 .Pq Cm 10 ,
1603 time-to-live exceeded
1604 .Pq Cm 11 ,
1605 IP header bad
1606 .Pq Cm 12 ,
1607 timestamp request
1608 .Pq Cm 13 ,
1609 timestamp reply
1610 .Pq Cm 14 ,
1611 information request
1612 .Pq Cm 15 ,
1613 information reply
1614 .Pq Cm 16 ,
1615 address mask request
1616 .Pq Cm 17
1617 and address mask reply
1618 .Pq Cm 18 .
1619 .It Cm icmp6types Ar types
1620 Matches ICMP6 packets whose ICMP6 type is in the list of
1621 .Ar types .
1622 The list may be specified as any combination of
1623 individual types (numeric) separated by commas.
1624 .Em Ranges are not allowed .
1625 .It Cm in | out
1626 Matches incoming or outgoing packets, respectively.
1627 .Cm in
1628 and
1629 .Cm out
1630 are mutually exclusive (in fact,
1631 .Cm out
1632 is implemented as
1633 .Cm not in Ns No ).
1634 .It Cm ipid Ar id-list
1635 Matches IPv4 packets whose
1636 .Cm ip_id
1637 field has value included in
1638 .Ar id-list ,
1639 which is either a single value or a list of values or ranges
1640 specified in the same way as
1641 .Ar ports .
1642 .It Cm iplen Ar len-list
1643 Matches IP packets whose total length, including header and data, is
1644 in the set
1645 .Ar len-list ,
1646 which is either a single value or a list of values or ranges
1647 specified in the same way as
1648 .Ar ports .
1649 .It Cm ipoptions Ar spec
1650 Matches packets whose IPv4 header contains the comma separated list of
1651 options specified in
1652 .Ar spec .
1653 The supported IP options are:
1654 .Pp
1655 .Cm ssrr
1656 (strict source route),
1657 .Cm lsrr
1658 (loose source route),
1659 .Cm rr
1660 (record packet route) and
1661 .Cm ts
1662 (timestamp).
1663 The absence of a particular option may be denoted
1664 with a
1665 .Ql \&! .
1666 .It Cm ipprecedence Ar precedence
1667 Matches IPv4 packets whose precedence field is equal to
1668 .Ar precedence .
1669 .It Cm ipsec
1670 Matches packets that have IPSEC history associated with them
1671 (i.e., the packet comes encapsulated in IPSEC, the kernel
1672 has IPSEC support, and can correctly decapsulate it).
1673 .Pp
1674 Note that specifying
1675 .Cm ipsec
1676 is different from specifying
1677 .Cm proto Ar ipsec
1678 as the latter will only look at the specific IP protocol field,
1679 irrespective of IPSEC kernel support and the validity of the IPSEC data.
1680 .Pp
1681 Further note that this flag is silently ignored in kernels without
1682 IPSEC support.
1683 It does not affect rule processing when given and the
1684 rules are handled as if with no
1685 .Cm ipsec
1686 flag.
1687 .It Cm iptos Ar spec
1688 Matches IPv4 packets whose
1689 .Cm tos
1690 field contains the comma separated list of
1691 service types specified in
1692 .Ar spec .
1693 The supported IP types of service are:
1694 .Pp
1695 .Cm lowdelay
1696 .Pq Dv IPTOS_LOWDELAY ,
1697 .Cm throughput
1698 .Pq Dv IPTOS_THROUGHPUT ,
1699 .Cm reliability
1700 .Pq Dv IPTOS_RELIABILITY ,
1701 .Cm mincost
1702 .Pq Dv IPTOS_MINCOST ,
1703 .Cm congestion
1704 .Pq Dv IPTOS_ECN_CE .
1705 The absence of a particular type may be denoted
1706 with a
1707 .Ql \&! .
1708 .It Cm dscp spec Ns Op , Ns Ar spec
1709 Matches IPv4/IPv6 packets whose
1710 .Cm DS
1711 field value is contained in
1712 .Ar spec
1713 mask.
1714 Multiple values can be specified via
1715 the comma separated list.
1716 Value can be one of keywords used in
1717 .Cm setdscp
1718 action or exact number.
1719 .It Cm ipttl Ar ttl-list
1720 Matches IPv4 packets whose time to live is included in
1721 .Ar ttl-list ,
1722 which is either a single value or a list of values or ranges
1723 specified in the same way as
1724 .Ar ports .
1725 .It Cm ipversion Ar ver
1726 Matches IP packets whose IP version field is
1727 .Ar ver .
1728 .It Cm keep-state Op Ar :flowname
1729 Upon a match, the firewall will create a dynamic rule, whose
1730 default behaviour is to match bidirectional traffic between
1731 source and destination IP/port using the same protocol.
1732 The rule has a limited lifetime (controlled by a set of
1733 .Xr sysctl 8
1734 variables), and the lifetime is refreshed every time a matching
1735 packet is found.
1736 The
1737 .Ar :flowname
1738 is used to assign additional to addresses, ports and protocol parameter
1739 to dynamic rule. It can be used for more accurate matching by
1740 .Cm check-state
1741 rule.
1742 The
1743 .Cm :default
1744 keyword is special name used for compatibility with old rulesets.
1745 .It Cm layer2
1746 Matches only layer2 packets, i.e., those passed to
1747 .Nm
1748 from ether_demux() and ether_output_frame().
1749 .It Cm limit Bro Cm src-addr | src-port | dst-addr | dst-port Brc Ar N Op Ar :flowname
1750 The firewall will only allow
1751 .Ar N
1752 connections with the same
1753 set of parameters as specified in the rule.
1754 One or more
1755 of source and destination addresses and ports can be
1756 specified.
1757 .It Cm lookup Bro Cm dst-ip | dst-port | src-ip | src-port | uid | jail Brc Ar name
1758 Search an entry in lookup table
1759 .Ar name
1760 that matches the field specified as argument.
1761 If not found, the match fails.
1762 Otherwise, the match succeeds and
1763 .Cm tablearg
1764 is set to the value extracted from the table.
1765 .Pp
1766 This option can be useful to quickly dispatch traffic based on
1767 certain packet fields.
1768 See the
1769 .Sx LOOKUP TABLES
1770 section below for more information on lookup tables.
1771 .It Cm { MAC | mac } Ar dst-mac src-mac
1772 Match packets with a given
1773 .Ar dst-mac
1774 and
1775 .Ar src-mac
1776 addresses, specified as the
1777 .Cm any
1778 keyword (matching any MAC address), or six groups of hex digits
1779 separated by colons,
1780 and optionally followed by a mask indicating the significant bits.
1781 The mask may be specified using either of the following methods:
1782 .Bl -enum -width indent
1783 .It
1784 A slash
1785 .Pq /
1786 followed by the number of significant bits.
1787 For example, an address with 33 significant bits could be specified as:
1788 .Pp
1789 .Dl "MAC 10:20:30:40:50:60/33 any"
1790 .It
1791 An ampersand
1792 .Pq &
1793 followed by a bitmask specified as six groups of hex digits separated
1794 by colons.
1795 For example, an address in which the last 16 bits are significant could
1796 be specified as:
1797 .Pp
1798 .Dl "MAC 10:20:30:40:50:60&00:00:00:00:ff:ff any"
1799 .Pp
1800 Note that the ampersand character has a special meaning in many shells
1801 and should generally be escaped.
1802 .El
1803 Note that the order of MAC addresses (destination first,
1804 source second) is
1805 the same as on the wire, but the opposite of the one used for
1806 IP addresses.
1807 .It Cm mac-type Ar mac-type
1808 Matches packets whose Ethernet Type field
1809 corresponds to one of those specified as argument.
1810 .Ar mac-type
1811 is specified in the same way as
1812 .Cm port numbers
1813 (i.e., one or more comma-separated single values or ranges).
1814 You can use symbolic names for known values such as
1815 .Em vlan , ipv4, ipv6 .
1816 Values can be entered as decimal or hexadecimal (if prefixed by 0x),
1817 and they are always printed as hexadecimal (unless the
1818 .Cm -N
1819 option is used, in which case symbolic resolution will be attempted).
1820 .It Cm proto Ar protocol
1821 Matches packets with the corresponding IP protocol.
1822 .It Cm record-state
1823 Upon a match, the firewall will create a dynamic rule as if
1824 .Cm keep-state
1825 was specified.
1826 However, this option doesn't imply an implicit
1827 .Cm check-state
1828 in contrast to
1829 .Cm keep-state .
1830 .It Cm recv | xmit | via Brq Ar ifX | Ar if Ns Cm * | Ar table Ns Po Ar name Ns Oo , Ns Ar value Oc Pc | Ar ipno | Ar any
1831 Matches packets received, transmitted or going through,
1832 respectively, the interface specified by exact name
1833 .Po Ar ifX Pc ,
1834 by device name
1835 .Po Ar if* Pc ,
1836 by IP address, or through some interface.
1837 Table
1838 .Ar name
1839 may be used to match interface by its kernel ifindex.
1840 See the
1841 .Sx LOOKUP TABLES
1842 section below for more information on lookup tables.
1843 .Pp
1844 The
1845 .Cm via
1846 keyword causes the interface to always be checked.
1847 If
1848 .Cm recv
1849 or
1850 .Cm xmit
1851 is used instead of
1852 .Cm via ,
1853 then only the receive or transmit interface (respectively)
1854 is checked.
1855 By specifying both, it is possible to match packets based on
1856 both receive and transmit interface, e.g.:
1857 .Pp
1858 .Dl "ipfw add deny ip from any to any out recv ed0 xmit ed1"
1859 .Pp
1860 The
1861 .Cm recv
1862 interface can be tested on either incoming or outgoing packets,
1863 while the
1864 .Cm xmit
1865 interface can only be tested on outgoing packets.
1866 So
1867 .Cm out
1868 is required (and
1869 .Cm in
1870 is invalid) whenever
1871 .Cm xmit
1872 is used.
1873 .Pp
1874 A packet might not have a receive or transmit interface: packets
1875 originating from the local host have no receive interface,
1876 while packets destined for the local host have no transmit
1877 interface.
1878 .It Cm set-limit Bro Cm src-addr | src-port | dst-addr | dst-port Brc Ar N
1879 Works like
1880 .Cm limit
1881 but does not have an implicit
1882 .Cm check-state
1883 attached to it.
1884 .It Cm setup
1885 Matches TCP packets that have the SYN bit set but no ACK bit.
1886 This is the short form of
1887 .Dq Li tcpflags\ syn,!ack .
1888 .It Cm sockarg
1889 Matches packets that are associated to a local socket and
1890 for which the SO_USER_COOKIE socket option has been set
1891 to a non-zero value.
1892 As a side effect, the value of the
1893 option is made available as
1894 .Cm tablearg
1895 value, which in turn can be used as
1896 .Cm skipto
1897 or
1898 .Cm pipe
1899 number.
1900 .It Cm src-ip Ar ip-address
1901 Matches IPv4 packets whose source IP is one of the address(es)
1902 specified as an argument.
1903 .It Cm src-ip6 Ar ip6-address
1904 Matches IPv6 packets whose source IP is one of the address(es)
1905 specified as an argument.
1906 .It Cm src-port Ar ports
1907 Matches IP packets whose source port is one of the port(s)
1908 specified as argument.
1909 .It Cm tagged Ar tag-list
1910 Matches packets whose tags are included in
1911 .Ar tag-list ,
1912 which is either a single value or a list of values or ranges
1913 specified in the same way as
1914 .Ar ports .
1915 Tags can be applied to the packet using
1916 .Cm tag
1917 rule action parameter (see it's description for details on tags).
1918 .It Cm tcpack Ar ack
1919 TCP packets only.
1920 Match if the TCP header acknowledgment number field is set to
1921 .Ar ack .
1922 .It Cm tcpdatalen Ar tcpdatalen-list
1923 Matches TCP packets whose length of TCP data is
1924 .Ar tcpdatalen-list ,
1925 which is either a single value or a list of values or ranges
1926 specified in the same way as
1927 .Ar ports .
1928 .It Cm tcpflags Ar spec
1929 TCP packets only.
1930 Match if the TCP header contains the comma separated list of
1931 flags specified in
1932 .Ar spec .
1933 The supported TCP flags are:
1934 .Pp
1935 .Cm fin ,
1936 .Cm syn ,
1937 .Cm rst ,
1938 .Cm psh ,
1939 .Cm ack
1940 and
1941 .Cm urg .
1942 The absence of a particular flag may be denoted
1943 with a
1944 .Ql \&! .
1945 A rule which contains a
1946 .Cm tcpflags
1947 specification can never match a fragmented packet which has
1948 a non-zero offset.
1949 See the
1950 .Cm frag
1951 option for details on matching fragmented packets.
1952 .It Cm tcpseq Ar seq
1953 TCP packets only.
1954 Match if the TCP header sequence number field is set to
1955 .Ar seq .
1956 .It Cm tcpwin Ar tcpwin-list
1957 Matches TCP packets whose  header window field is set to
1958 .Ar tcpwin-list ,
1959 which is either a single value or a list of values or ranges
1960 specified in the same way as
1961 .Ar ports .
1962 .It Cm tcpoptions Ar spec
1963 TCP packets only.
1964 Match if the TCP header contains the comma separated list of
1965 options specified in
1966 .Ar spec .
1967 The supported TCP options are:
1968 .Pp
1969 .Cm mss
1970 (maximum segment size),
1971 .Cm window
1972 (tcp window advertisement),
1973 .Cm sack
1974 (selective ack),
1975 .Cm ts
1976 (rfc1323 timestamp) and
1977 .Cm cc
1978 (rfc1644 t/tcp connection count).
1979 The absence of a particular option may be denoted
1980 with a
1981 .Ql \&! .
1982 .It Cm uid Ar user
1983 Match all TCP or UDP packets sent by or received for a
1984 .Ar user .
1985 A
1986 .Ar user
1987 may be matched by name or identification number.
1988 .It Cm verrevpath
1989 For incoming packets,
1990 a routing table lookup is done on the packet's source address.
1991 If the interface on which the packet entered the system matches the
1992 outgoing interface for the route,
1993 the packet matches.
1994 If the interfaces do not match up,
1995 the packet does not match.
1996 All outgoing packets or packets with no incoming interface match.
1997 .Pp
1998 The name and functionality of the option is intentionally similar to
1999 the Cisco IOS command:
2000 .Pp
2001 .Dl ip verify unicast reverse-path
2002 .Pp
2003 This option can be used to make anti-spoofing rules to reject all
2004 packets with source addresses not from this interface.
2005 See also the option
2006 .Cm antispoof .
2007 .It Cm versrcreach
2008 For incoming packets,
2009 a routing table lookup is done on the packet's source address.
2010 If a route to the source address exists, but not the default route
2011 or a blackhole/reject route, the packet matches.
2012 Otherwise, the packet does not match.
2013 All outgoing packets match.
2014 .Pp
2015 The name and functionality of the option is intentionally similar to
2016 the Cisco IOS command:
2017 .Pp
2018 .Dl ip verify unicast source reachable-via any
2019 .Pp
2020 This option can be used to make anti-spoofing rules to reject all
2021 packets whose source address is unreachable.
2022 .It Cm antispoof
2023 For incoming packets, the packet's source address is checked if it
2024 belongs to a directly connected network.
2025 If the network is directly connected, then the interface the packet
2026 came on in is compared to the interface the network is connected to.
2027 When incoming interface and directly connected interface are not the
2028 same, the packet does not match.
2029 Otherwise, the packet does match.
2030 All outgoing packets match.
2031 .Pp
2032 This option can be used to make anti-spoofing rules to reject all
2033 packets that pretend to be from a directly connected network but do
2034 not come in through that interface.
2035 This option is similar to but more restricted than
2036 .Cm verrevpath
2037 because it engages only on packets with source addresses of directly
2038 connected networks instead of all source addresses.
2039 .El
2040 .Sh LOOKUP TABLES
2041 Lookup tables are useful to handle large sparse sets of
2042 addresses or other search keys (e.g., ports, jail IDs, interface names).
2043 In the rest of this section we will use the term ``key''.
2044 Table name needs to match the following spec:
2045 .Ar table-name .
2046 Tables with the same name can be created in different
2047 .Ar sets .
2048 However, rule links to the tables in
2049 .Ar set 0
2050 by default.
2051 This behavior can be controlled by
2052 .Va net.inet.ip.fw.tables_sets
2053 variable.
2054 See the
2055 .Sx SETS OF RULES
2056 section for more information.
2057 There may be up to 65535 different lookup tables.
2058 .Pp
2059 The following table types are supported:
2060 .Bl -tag -width indent
2061 .It Ar table-type : Ar addr | iface | number | flow
2062 .It Ar table-key : Ar addr Ns Oo / Ns Ar masklen Oc | iface-name | number | flow-spec
2063 .It Ar flow-spec : Ar flow-field Ns Op , Ns Ar flow-spec
2064 .It Ar flow-field : src-ip | proto | src-port | dst-ip | dst-port
2065 .It Cm addr
2066 matches IPv4 or IPv6 address.
2067 Each entry is represented by an
2068 .Ar addr Ns Op / Ns Ar masklen
2069 and will match all addresses with base
2070 .Ar addr
2071 (specified as an IPv4/IPv6 address, or a hostname) and mask width of
2072 .Ar masklen
2073 bits.
2074 If
2075 .Ar masklen
2076 is not specified, it defaults to 32 for IPv4 and 128 for IPv6.
2077 When looking up an IP address in a table, the most specific
2078 entry will match.
2079 .It Cm iface
2080 matches interface names.
2081 Each entry is represented by string treated as interface name.
2082 Wildcards are not supported.
2083 .It Cm number
2084 maches protocol ports, uids/gids or jail IDs.
2085 Each entry is represented by 32-bit unsigned integer.
2086 Ranges are not supported.
2087 .It Cm flow
2088 Matches packet fields specified by
2089 .Ar flow
2090 type suboptions with table entries.
2091 .El
2092 .Pp
2093 Tables require explicit creation via
2094 .Cm create
2095 before use.
2096 .Pp
2097 The following creation options are supported:
2098 .Bl -tag -width indent
2099 .It Ar create-options : Ar create-option | create-options
2100 .It Ar create-option : Cm type Ar table-type | Cm valtype Ar value-mask | Cm algo Ar algo-desc |
2101 .Cm limit Ar number | Cm locked
2102 .It Cm type
2103 Table key type.
2104 .It Cm valtype
2105 Table value mask.
2106 .It Cm algo
2107 Table algorithm to use (see below).
2108 .It Cm limit
2109 Maximum number of items that may be inserted into table.
2110 .It Cm locked
2111 Restrict any table modifications.
2112 .El
2113 .Pp
2114 Some of these options may be modified later via
2115 .Cm modify
2116 keyword.
2117 The following options can be changed:
2118 .Bl -tag -width indent
2119 .It Ar modify-options : Ar modify-option | modify-options
2120 .It Ar modify-option : Cm limit Ar number
2121 .It Cm limit
2122 Alter maximum number of items that may be inserted into table.
2123 .El
2124 .Pp
2125 Additionally, table can be locked or unlocked using
2126 .Cm lock
2127 or
2128 .Cm unlock
2129 commands.
2130 .Pp
2131 Tables of the same
2132 .Ar type
2133 can be swapped with each other using
2134 .Cm swap Ar name
2135 command.
2136 Swap may fail if tables limits are set and data exchange
2137 would result in limits hit.
2138 Operation is performed atomically.
2139 .Pp
2140 One or more entries can be added to a table at once using
2141 .Cm add
2142 command.
2143 Addition of all items are performed atomically.
2144 By default, error in addition of one entry does not influence
2145 addition of other entries. However, non-zero error code is returned
2146 in that case.
2147 Special
2148 .Cm atomic
2149 keyword may be specified before
2150 .Cm add
2151 to indicate all-or-none add request.
2152 .Pp
2153 One or more entries can be removed from a table at once using
2154 .Cm delete
2155 command.
2156 By default, error in removal of one entry does not influence
2157 removing of other entries. However, non-zero error code is returned
2158 in that case.
2159 .Pp
2160 It may be possible to check what entry will be found on particular
2161 .Ar table-key
2162 using
2163 .Cm lookup
2164 .Ar table-key
2165 command.
2166 This functionality is optional and may be unsupported in some algorithms.
2167 .Pp
2168 The following operations can be performed on
2169 .Ar one
2170 or
2171 .Cm all
2172 tables:
2173 .Bl -tag -width indent
2174 .It Cm list
2175 List all entries.
2176 .It Cm flush
2177 Removes all entries.
2178 .It Cm info
2179 Shows generic table information.
2180 .It Cm detail
2181 Shows generic table information and algo-specific data.
2182 .El
2183 .Pp
2184 The following lookup algorithms are supported:
2185 .Bl -tag -width indent
2186 .It Ar algo-desc : algo-name | "algo-name algo-data"
2187 .It Ar algo-name: Ar addr:radix | addr:hash | iface:array | number:array | flow:hash
2188 .It Cm addr:radix
2189 Separate Radix trees for IPv4 and IPv6, the same way as the routing table (see
2190 .Xr route 4 ) .
2191 Default choice for
2192 .Ar addr
2193 type.
2194 .It Cm addr:hash
2195 Separate auto-growing hashes for IPv4 and IPv6.
2196 Accepts entries with the same mask length specified initially via
2197 .Cm "addr:hash masks=/v4,/v6"
2198 algorithm creation options.
2199 Assume /32 and /128 masks by default.
2200 Search removes host bits (according to mask) from supplied address and checks
2201 resulting key in appropriate hash.
2202 Mostly optimized for /64 and byte-ranged IPv6 masks.
2203 .It Cm iface:array
2204 Array storing sorted indexes for entries which are presented in the system.
2205 Optimized for very fast lookup.
2206 .It Cm number:array
2207 Array storing sorted u32 numbers.
2208 .It Cm flow:hash
2209 Auto-growing hash storing flow entries.
2210 Search calculates hash on required packet fields and searches for matching
2211 entries in selected bucket.
2212 .El
2213 .Pp
2214 The
2215 .Cm tablearg
2216 feature provides the ability to use a value, looked up in the table, as
2217 the argument for a rule action, action parameter or rule option.
2218 This can significantly reduce number of rules in some configurations.
2219 If two tables are used in a rule, the result of the second (destination)
2220 is used.
2221 .Pp
2222 Each record may hold one or more values according to
2223 .Ar value-mask .
2224 This mask is set on table creation via
2225 .Cm valtype
2226 option.
2227 The following value types are supported:
2228 .Bl -tag -width indent
2229 .It Ar value-mask : Ar value-type Ns Op , Ns Ar value-mask
2230 .It Ar value-type : Ar skipto | pipe | fib | nat | dscp | tag | divert |
2231 .Ar netgraph | limit | ipv4
2232 .It Cm skipto
2233 rule number to jump to.
2234 .It Cm pipe
2235 Pipe number to use.
2236 .It Cm fib
2237 fib number to match/set.
2238 .It Cm nat
2239 nat number to jump to.
2240 .It Cm dscp
2241 dscp value to match/set.
2242 .It Cm tag
2243 tag number to match/set.
2244 .It Cm divert
2245 port number to divert traffic to.
2246 .It Cm netgraph
2247 hook number to move packet to.
2248 .It Cm limit
2249 maximum number of connections.
2250 .It Cm ipv4
2251 IPv4 nexthop to fwd packets to.
2252 .It Cm ipv6
2253 IPv6 nexthop to fwd packets to.
2254 .El
2255 .Pp
2256 The
2257 .Cm tablearg
2258 argument can be used with the following actions:
2259 .Cm nat, pipe , queue, divert, tee, netgraph, ngtee, fwd, skipto, setfib,
2260 action parameters:
2261 .Cm tag, untag,
2262 rule options:
2263 .Cm limit, tagged.
2264 .Pp
2265 When used with the
2266 .Cm skipto
2267 action, the user should be aware that the code will walk the ruleset
2268 up to a rule equal to, or past, the given number.
2269 .Pp
2270 See the
2271 .Sx EXAMPLES
2272 Section for example usage of tables and the tablearg keyword.
2273 .Sh SETS OF RULES
2274 Each rule or table belongs to one of 32 different
2275 .Em sets
2276 , numbered 0 to 31.
2277 Set 31 is reserved for the default rule.
2278 .Pp
2279 By default, rules or tables are put in set 0, unless you use the
2280 .Cm set N
2281 attribute when adding a new rule or table.
2282 Sets can be individually and atomically enabled or disabled,
2283 so this mechanism permits an easy way to store multiple configurations
2284 of the firewall and quickly (and atomically) switch between them.
2285 .Pp
2286 By default, tables from set 0 are referenced when adding rule with
2287 table opcodes regardless of rule set.
2288 This behavior can be changed by setting
2289 .Va net.inet.ip.fw.tables_sets
2290 variable to 1.
2291 Rule's set will then be used for table references.
2292 .Pp
2293 The command to enable/disable sets is
2294 .Bd -ragged -offset indent
2295 .Nm
2296 .Cm set Oo Cm disable Ar number ... Oc Op Cm enable Ar number ...
2297 .Ed
2298 .Pp
2299 where multiple
2300 .Cm enable
2301 or
2302 .Cm disable
2303 sections can be specified.
2304 Command execution is atomic on all the sets specified in the command.
2305 By default, all sets are enabled.
2306 .Pp
2307 When you disable a set, its rules behave as if they do not exist
2308 in the firewall configuration, with only one exception:
2309 .Bd -ragged -offset indent
2310 dynamic rules created from a rule before it had been disabled
2311 will still be active until they expire.
2312 In order to delete
2313 dynamic rules you have to explicitly delete the parent rule
2314 which generated them.
2315 .Ed
2316 .Pp
2317 The set number of rules can be changed with the command
2318 .Bd -ragged -offset indent
2319 .Nm
2320 .Cm set move
2321 .Brq Cm rule Ar rule-number | old-set
2322 .Cm to Ar new-set
2323 .Ed
2324 .Pp
2325 Also, you can atomically swap two rulesets with the command
2326 .Bd -ragged -offset indent
2327 .Nm
2328 .Cm set swap Ar first-set second-set
2329 .Ed
2330 .Pp
2331 See the
2332 .Sx EXAMPLES
2333 Section on some possible uses of sets of rules.
2334 .Sh STATEFUL FIREWALL
2335 Stateful operation is a way for the firewall to dynamically
2336 create rules for specific flows when packets that
2337 match a given pattern are detected.
2338 Support for stateful
2339 operation comes through the
2340 .Cm check-state , keep-state , record-state , limit
2341 and
2342 .Cm set-limit
2343 options of
2344 .Nm rules .
2345 .Pp
2346 Dynamic rules are created when a packet matches a
2347 .Cm keep-state ,
2348 .Cm record-state ,
2349 .Cm limit
2350 or
2351 .Cm set-limit
2352 rule, causing the creation of a
2353 .Em dynamic
2354 rule which will match all and only packets with
2355 a given
2356 .Em protocol
2357 between a
2358 .Em src-ip/src-port dst-ip/dst-port
2359 pair of addresses
2360 .Em ( src
2361 and
2362 .Em dst
2363 are used here only to denote the initial match addresses, but they
2364 are completely equivalent afterwards).
2365 Rules created by
2366 .Cm keep-state
2367 option also have a
2368 .Ar :flowname
2369 taken from it.
2370 This name is used in matching together with addresses, ports and protocol.
2371 Dynamic rules will be checked at the first
2372 .Cm check-state, keep-state
2373 or
2374 .Cm limit
2375 occurrence, and the action performed upon a match will be the same
2376 as in the parent rule.
2377 .Pp
2378 Note that no additional attributes other than protocol and IP addresses
2379 and ports and :flowname are checked on dynamic rules.
2380 .Pp
2381 The typical use of dynamic rules is to keep a closed firewall configuration,
2382 but let the first TCP SYN packet from the inside network install a
2383 dynamic rule for the flow so that packets belonging to that session
2384 will be allowed through the firewall:
2385 .Pp
2386 .Dl "ipfw add check-state :OUTBOUND"
2387 .Dl "ipfw add allow tcp from my-subnet to any setup keep-state :OUTBOUND"
2388 .Dl "ipfw add deny tcp from any to any"
2389 .Pp
2390 A similar approach can be used for UDP, where an UDP packet coming
2391 from the inside will install a dynamic rule to let the response through
2392 the firewall:
2393 .Pp
2394 .Dl "ipfw add check-state :OUTBOUND"
2395 .Dl "ipfw add allow udp from my-subnet to any keep-state :OUTBOUND"
2396 .Dl "ipfw add deny udp from any to any"
2397 .Pp
2398 Dynamic rules expire after some time, which depends on the status
2399 of the flow and the setting of some
2400 .Cm sysctl
2401 variables.
2402 See Section
2403 .Sx SYSCTL VARIABLES
2404 for more details.
2405 For TCP sessions, dynamic rules can be instructed to periodically
2406 send keepalive packets to refresh the state of the rule when it is
2407 about to expire.
2408 .Pp
2409 See Section
2410 .Sx EXAMPLES
2411 for more examples on how to use dynamic rules.
2412 .Sh TRAFFIC SHAPER (DUMMYNET) CONFIGURATION
2413 .Nm
2414 is also the user interface for the
2415 .Nm dummynet
2416 traffic shaper, packet scheduler and network emulator, a subsystem that
2417 can artificially queue, delay or drop packets
2418 emulating the behaviour of certain network links
2419 or queueing systems.
2420 .Pp
2421 .Nm dummynet
2422 operates by first using the firewall to select packets
2423 using any match pattern that can be used in
2424 .Nm
2425 rules.
2426 Matching packets are then passed to either of two
2427 different objects, which implement the traffic regulation:
2428 .Bl -hang -offset XXXX
2429 .It Em pipe
2430 A
2431 .Em pipe
2432 emulates a
2433 .Em link
2434 with given bandwidth and propagation delay,
2435 driven by a FIFO scheduler and a single queue with programmable
2436 queue size and packet loss rate.
2437 Packets are appended to the queue as they come out from
2438 .Nm ipfw ,
2439 and then transferred in FIFO order to the link at the desired rate.
2440 .It Em queue
2441 A
2442 .Em queue
2443 is an abstraction used to implement packet scheduling
2444 using one of several packet scheduling algorithms.
2445 Packets sent to a
2446 .Em queue
2447 are first grouped into flows according to a mask on the 5-tuple.
2448 Flows are then passed to the scheduler associated to the
2449 .Em queue ,
2450 and each flow uses scheduling parameters (weight and others)
2451 as configured in the
2452 .Em queue
2453 itself.
2454 A scheduler in turn is connected to an emulated link,
2455 and arbitrates the link's bandwidth among backlogged flows according to
2456 weights and to the features of the scheduling algorithm in use.
2457 .El
2458 .Pp
2459 In practice,
2460 .Em pipes
2461 can be used to set hard limits to the bandwidth that a flow can use, whereas
2462 .Em queues
2463 can be used to determine how different flows share the available bandwidth.
2464 .Pp
2465 A graphical representation of the binding of queues,
2466 flows, schedulers and links is below.
2467 .Bd -literal -offset indent
2468                  (flow_mask|sched_mask)  sched_mask
2469          +---------+   weight Wx  +-------------+
2470          |         |->-[flow]-->--|             |-+
2471     -->--| QUEUE x |   ...        |             | |
2472          |         |->-[flow]-->--| SCHEDuler N | |
2473          +---------+              |             | |
2474              ...                  |             +--[LINK N]-->--
2475          +---------+   weight Wy  |             | +--[LINK N]-->--
2476          |         |->-[flow]-->--|             | |
2477     -->--| QUEUE y |   ...        |             | |
2478          |         |->-[flow]-->--|             | |
2479          +---------+              +-------------+ |
2480                                     +-------------+
2481 .Ed
2482 It is important to understand the role of the SCHED_MASK
2483 and FLOW_MASK, which are configured through the commands
2484 .Dl "ipfw sched N config mask SCHED_MASK ..."
2485 and
2486 .Dl "ipfw queue X config mask FLOW_MASK ..." .
2487 .Pp
2488 The SCHED_MASK is used to assign flows to one or more
2489 scheduler instances, one for each
2490 value of the packet's 5-tuple after applying SCHED_MASK.
2491 As an example, using ``src-ip 0xffffff00'' creates one instance
2492 for each /24 destination subnet.
2493 .Pp
2494 The FLOW_MASK, together with the SCHED_MASK, is used to split
2495 packets into flows.
2496 As an example, using
2497 ``src-ip 0x000000ff''
2498 together with the previous SCHED_MASK makes a flow for
2499 each individual source address.
2500 In turn, flows for each /24
2501 subnet will be sent to the same scheduler instance.
2502 .Pp
2503 The above diagram holds even for the
2504 .Em pipe
2505 case, with the only restriction that a
2506 .Em pipe
2507 only supports a SCHED_MASK, and forces the use of a FIFO
2508 scheduler (these are for backward compatibility reasons;
2509 in fact, internally, a
2510 .Nm dummynet's
2511 pipe is implemented exactly as above).
2512 .Pp
2513 There are two modes of
2514 .Nm dummynet
2515 operation:
2516 .Dq normal
2517 and
2518 .Dq fast .
2519 The
2520 .Dq normal
2521 mode tries to emulate a real link: the
2522 .Nm dummynet
2523 scheduler ensures that the packet will not leave the pipe faster than it
2524 would on the real link with a given bandwidth.
2525 The
2526 .Dq fast
2527 mode allows certain packets to bypass the
2528 .Nm dummynet
2529 scheduler (if packet flow does not exceed pipe's bandwidth).
2530 This is the reason why the
2531 .Dq fast
2532 mode requires less CPU cycles per packet (on average) and packet latency
2533 can be significantly lower in comparison to a real link with the same
2534 bandwidth.
2535 The default mode is
2536 .Dq normal .
2537 The
2538 .Dq fast
2539 mode can be enabled by setting the
2540 .Va net.inet.ip.dummynet.io_fast
2541 .Xr sysctl 8
2542 variable to a non-zero value.
2543 .Pp
2544 .Ss PIPE, QUEUE AND SCHEDULER CONFIGURATION
2545 The
2546 .Em pipe ,
2547 .Em queue
2548 and
2549 .Em scheduler
2550 configuration commands are the following:
2551 .Bd -ragged -offset indent
2552 .Cm pipe Ar number Cm config Ar pipe-configuration
2553 .Pp
2554 .Cm queue Ar number Cm config Ar queue-configuration
2555 .Pp
2556 .Cm sched Ar number Cm config Ar sched-configuration
2557 .Ed
2558 .Pp
2559 The following parameters can be configured for a pipe:
2560 .Pp
2561 .Bl -tag -width indent -compact
2562 .It Cm bw Ar bandwidth | device
2563 Bandwidth, measured in
2564 .Sm off
2565 .Op Cm K | M | G
2566 .Brq Cm bit/s | Byte/s .
2567 .Sm on
2568 .Pp
2569 A value of 0 (default) means unlimited bandwidth.
2570 The unit must immediately follow the number, as in
2571 .Pp
2572 .Dl "ipfw pipe 1 config bw 300Kbit/s"
2573 .Pp
2574 If a device name is specified instead of a numeric value, as in
2575 .Pp
2576 .Dl "ipfw pipe 1 config bw tun0"
2577 .Pp
2578 then the transmit clock is supplied by the specified device.
2579 At the moment only the
2580 .Xr tun 4
2581 device supports this
2582 functionality, for use in conjunction with
2583 .Xr ppp 8 .
2584 .Pp
2585 .It Cm delay Ar ms-delay
2586 Propagation delay, measured in milliseconds.
2587 The value is rounded to the next multiple of the clock tick
2588 (typically 10ms, but it is a good practice to run kernels
2589 with
2590 .Dq "options HZ=1000"
2591 to reduce
2592 the granularity to 1ms or less).
2593 The default value is 0, meaning no delay.
2594 .Pp
2595 .It Cm burst Ar size
2596 If the data to be sent exceeds the pipe's bandwidth limit
2597 (and the pipe was previously idle), up to
2598 .Ar size
2599 bytes of data are allowed to bypass the
2600 .Nm dummynet
2601 scheduler, and will be sent as fast as the physical link allows.
2602 Any additional data will be transmitted at the rate specified
2603 by the
2604 .Nm pipe
2605 bandwidth.
2606 The burst size depends on how long the pipe has been idle;
2607 the effective burst size is calculated as follows:
2608 MAX(
2609 .Ar size
2610 ,
2611 .Nm bw
2612 * pipe_idle_time).
2613 .Pp
2614 .It Cm profile Ar filename
2615 A file specifying the additional overhead incurred in the transmission
2616 of a packet on the link.
2617 .Pp
2618 Some link types introduce extra delays in the transmission
2619 of a packet, e.g., because of MAC level framing, contention on
2620 the use of the channel, MAC level retransmissions and so on.
2621 From our point of view, the channel is effectively unavailable
2622 for this extra time, which is constant or variable depending
2623 on the link type.
2624 Additionally, packets may be dropped after this
2625 time (e.g., on a wireless link after too many retransmissions).
2626 We can model the additional delay with an empirical curve
2627 that represents its distribution.
2628 .Bd -literal -offset indent
2629       cumulative probability
2630       1.0 ^
2631           |
2632       L   +-- loss-level          x
2633           |                 ******
2634           |                *
2635           |           *****
2636           |          *
2637           |        **
2638           |       *
2639           +-------*------------------->
2640                       delay
2641 .Ed
2642 The empirical curve may have both vertical and horizontal lines.
2643 Vertical lines represent constant delay for a range of
2644 probabilities.
2645 Horizontal lines correspond to a discontinuity in the delay
2646 distribution: the pipe will use the largest delay for a
2647 given probability.
2648 .Pp
2649 The file format is the following, with whitespace acting as
2650 a separator and '#' indicating the beginning a comment:
2651 .Bl -tag -width indent
2652 .It Cm name Ar identifier
2653 optional name (listed by "ipfw pipe show")
2654 to identify the delay distribution;
2655 .It Cm bw Ar value
2656 the bandwidth used for the pipe.
2657 If not specified here, it must be present
2658 explicitly as a configuration parameter for the pipe;
2659 .It Cm loss-level Ar L
2660 the probability above which packets are lost.
2661 (0.0 <= L <= 1.0, default 1.0 i.e., no loss);
2662 .It Cm samples Ar N
2663 the number of samples used in the internal
2664 representation of the curve (2..1024; default 100);
2665 .It Cm "delay prob" | "prob delay"
2666 One of these two lines is mandatory and defines
2667 the format of the following lines with data points.
2668 .It Ar XXX Ar YYY
2669 2 or more lines representing points in the curve,
2670 with either delay or probability first, according
2671 to the chosen format.
2672 The unit for delay is milliseconds.
2673 Data points do not need to be sorted.
2674 Also, the number of actual lines can be different
2675 from the value of the "samples" parameter:
2676 .Nm
2677 utility will sort and interpolate
2678 the curve as needed.
2679 .El
2680 .Pp
2681 Example of a profile file:
2682 .Bd -literal -offset indent
2683 name    bla_bla_bla
2684 samples 100
2685 loss-level    0.86
2686 prob    delay
2687 0       200     # minimum overhead is 200ms
2688 0.5     200
2689 0.5     300
2690 0.8     1000
2691 0.9     1300
2692 1       1300
2693 #configuration file end
2694 .Ed
2695 .El
2696 .Pp
2697 The following parameters can be configured for a queue:
2698 .Pp
2699 .Bl -tag -width indent -compact
2700 .It Cm pipe Ar pipe_nr
2701 Connects a queue to the specified pipe.
2702 Multiple queues (with the same or different weights) can be connected to
2703 the same pipe, which specifies the aggregate rate for the set of queues.
2704 .Pp
2705 .It Cm weight Ar weight
2706 Specifies the weight to be used for flows matching this queue.
2707 The weight must be in the range 1..100, and defaults to 1.
2708 .El
2709 .Pp
2710 The following case-insensitive parameters can be configured for a
2711 scheduler:
2712 .Pp
2713 .Bl -tag -width indent -compact
2714 .It Cm type Ar {fifo | wf2q+ | rr | qfq | fq_codel | fq_pie}
2715 specifies the scheduling algorithm to use.
2716 .Bl -tag -width indent -compact
2717 .It Cm fifo
2718 is just a FIFO scheduler (which means that all packets
2719 are stored in the same queue as they arrive to the scheduler).
2720 FIFO has O(1) per-packet time complexity, with very low
2721 constants (estimate 60-80ns on a 2GHz desktop machine)
2722 but gives no service guarantees.
2723 .It Cm wf2q+
2724 implements the WF2Q+ algorithm, which is a Weighted Fair Queueing
2725 algorithm which permits flows to share bandwidth according to
2726 their weights.
2727 Note that weights are not priorities; even a flow
2728 with a minuscule weight will never starve.
2729 WF2Q+ has O(log N) per-packet processing cost, where N is the number
2730 of flows, and is the default algorithm used by previous versions
2731 dummynet's queues.
2732 .It Cm rr
2733 implements the Deficit Round Robin algorithm, which has O(1) processing
2734 costs (roughly, 100-150ns per packet)
2735 and permits bandwidth allocation according to weights, but
2736 with poor service guarantees.
2737 .It Cm qfq
2738 implements the QFQ algorithm, which is a very fast variant of
2739 WF2Q+, with similar service guarantees and O(1) processing
2740 costs (roughly, 200-250ns per packet).
2741 .It Cm fq_codel
2742 implements the FQ-CoDel (FlowQueue-CoDel) scheduler/AQM algorithm, which
2743 uses a modified Deficit Round Robin scheduler to manage two lists of sub-queues
2744 (old sub-queues and new sub-queues) for providing brief periods of priority to
2745 lightweight or short burst flows.
2746 By default, the total number of sub-queues is 1024.
2747 FQ-CoDel's internal, dynamically
2748 created sub-queues are controlled by separate instances of CoDel AQM.
2749 .It Cm fq_pie
2750 implements the FQ-PIE (FlowQueue-PIE) scheduler/AQM algorithm, which similar to
2751 .Cm fq_codel
2752 but uses per sub-queue PIE AQM instance to control the queue delay.
2753 .El
2754 .Pp
2755 .Cm fq_codel
2756 inherits AQM parameters and options from
2757 .Cm codel
2758 (see below), and
2759 .Cm fq_pie
2760 inherits AQM parameters and options from
2761 .Cm pie
2762 (see below).
2763 Additionally, both of
2764 .Cm fq_codel
2765 and
2766 .Cm fq_pie
2767 have shared scheduler parameters which are:
2768 .Bl -tag -width indent
2769 .It Cm quantum
2770 .Ar m
2771 specifies the quantum (credit) of the scheduler.
2772 .Ar m
2773 is the number of bytes a queue can serve before being moved to the tail
2774 of old queues list.
2775 The default is 1514 bytes, and the maximum accepable value
2776 is 9000 bytes.
2777 .It Cm limit
2778 .Ar m
2779 specifies the hard size limit (in unit of packets) of all queues managed by an
2780 instance of the scheduler.
2781 The default value of
2782 .Ar m
2783 is 10240 packets, and the maximum accepable value is 20480 packets.
2784 .It Cm flows
2785 .Ar m
2786 specifies the total number of flow queues (sub-queues) that fq_*
2787 creates and manages.
2788 By default, 1024 sub-queues are created when an instance
2789 of the fq_{codel/pie} scheduler is created.
2790 The maximum accepable value is
2791 65536.
2792 .El
2793 .Pp
2794 Note that any token after
2795 .Cm fq_codel
2796 or
2797 .Cm fq_pie
2798 is considered a parameter for fq_{codel/pie}.
2799 So, ensure all scheduler
2800 configuration options not related to fq_{codel/pie} are written before
2801 .Cm fq_codel/fq_pie
2802 tokens.
2803 .El
2804 .Pp
2805 In addition to the type, all parameters allowed for a pipe can also
2806 be specified for a scheduler.
2807 .Pp
2808 Finally, the following parameters can be configured for both
2809 pipes and queues:
2810 .Pp
2811 .Bl -tag -width XXXX -compact
2812 .It Cm buckets Ar hash-table-size
2813 Specifies the size of the hash table used for storing the
2814 various queues.
2815 Default value is 64 controlled by the
2816 .Xr sysctl 8
2817 variable
2818 .Va net.inet.ip.dummynet.hash_size ,
2819 allowed range is 16 to 65536.
2820 .Pp
2821 .It Cm mask Ar mask-specifier
2822 Packets sent to a given pipe or queue by an
2823 .Nm
2824 rule can be further classified into multiple flows, each of which is then
2825 sent to a different
2826 .Em dynamic
2827 pipe or queue.
2828 A flow identifier is constructed by masking the IP addresses,
2829 ports and protocol types as specified with the
2830 .Cm mask
2831 options in the configuration of the pipe or queue.
2832 For each different flow identifier, a new pipe or queue is created
2833 with the same parameters as the original object, and matching packets
2834 are sent to it.
2835 .Pp
2836 Thus, when
2837 .Em dynamic pipes
2838 are used, each flow will get the same bandwidth as defined by the pipe,
2839 whereas when
2840 .Em dynamic queues
2841 are used, each flow will share the parent's pipe bandwidth evenly
2842 with other flows generated by the same queue (note that other queues
2843 with different weights might be connected to the same pipe).
2844 .br
2845 Available mask specifiers are a combination of one or more of the following:
2846 .Pp
2847 .Cm dst-ip Ar mask ,
2848 .Cm dst-ip6 Ar mask ,
2849 .Cm src-ip Ar mask ,
2850 .Cm src-ip6 Ar mask ,
2851 .Cm dst-port Ar mask ,
2852 .Cm src-port Ar mask ,
2853 .Cm flow-id Ar mask ,
2854 .Cm proto Ar mask
2855 or
2856 .Cm all ,
2857 .Pp
2858 where the latter means all bits in all fields are significant.
2859 .Pp
2860 .It Cm noerror
2861 When a packet is dropped by a
2862 .Nm dummynet
2863 queue or pipe, the error
2864 is normally reported to the caller routine in the kernel, in the
2865 same way as it happens when a device queue fills up.
2866 Setting this
2867 option reports the packet as successfully delivered, which can be
2868 needed for some experimental setups where you want to simulate
2869 loss or congestion at a remote router.
2870 .Pp
2871 .It Cm plr Ar packet-loss-rate
2872 Packet loss rate.
2873 Argument
2874 .Ar packet-loss-rate
2875 is a floating-point number between 0 and 1, with 0 meaning no
2876 loss, 1 meaning 100% loss.
2877 The loss rate is internally represented on 31 bits.
2878 .Pp
2879 .It Cm queue Brq Ar slots | size Ns Cm Kbytes
2880 Queue size, in
2881 .Ar slots
2882 or
2883 .Cm KBytes .
2884 Default value is 50 slots, which
2885 is the typical queue size for Ethernet devices.
2886 Note that for slow speed links you should keep the queue
2887 size short or your traffic might be affected by a significant
2888 queueing delay.
2889 E.g., 50 max-sized ethernet packets (1500 bytes) mean 600Kbit
2890 or 20s of queue on a 30Kbit/s pipe.
2891 Even worse effects can result if you get packets from an
2892 interface with a much larger MTU, e.g.\& the loopback interface
2893 with its 16KB packets.
2894 The
2895 .Xr sysctl 8
2896 variables
2897 .Em net.inet.ip.dummynet.pipe_byte_limit
2898 and
2899 .Em net.inet.ip.dummynet.pipe_slot_limit
2900 control the maximum lengths that can be specified.
2901 .Pp
2902 .It Cm red | gred Ar w_q Ns / Ns Ar min_th Ns / Ns Ar max_th Ns / Ns Ar max_p
2903 [ecn]
2904 Make use of the RED (Random Early Detection) queue management algorithm.
2905 .Ar w_q
2906 and
2907 .Ar max_p
2908 are floating
2909 point numbers between 0 and 1 (inclusive), while
2910 .Ar min_th
2911 and
2912 .Ar max_th
2913 are integer numbers specifying thresholds for queue management
2914 (thresholds are computed in bytes if the queue has been defined
2915 in bytes, in slots otherwise).
2916 The two parameters can also be of the same value if needed. The
2917 .Nm dummynet
2918 also supports the gentle RED variant (gred) and ECN (Explicit Congestion
2919 Notification) as optional. Three
2920 .Xr sysctl 8
2921 variables can be used to control the RED behaviour:
2922 .Bl -tag -width indent
2923 .It Va net.inet.ip.dummynet.red_lookup_depth
2924 specifies the accuracy in computing the average queue
2925 when the link is idle (defaults to 256, must be greater than zero)
2926 .It Va net.inet.ip.dummynet.red_avg_pkt_size
2927 specifies the expected average packet size (defaults to 512, must be
2928 greater than zero)
2929 .It Va net.inet.ip.dummynet.red_max_pkt_size
2930 specifies the expected maximum packet size, only used when queue
2931 thresholds are in bytes (defaults to 1500, must be greater than zero).
2932 .El
2933 .Pp
2934 .It Cm codel Oo Cm target Ar time Oc Oo Cm interval Ar time Oc Oo Cm ecn |
2935 .Cm noecn Oc
2936 Make use of the CoDel (Controlled-Delay) queue management algorithm.
2937 .Ar time
2938 is interpreted as milliseconds by default but seconds (s), milliseconds (ms) or
2939 microseconds (us) can be specified instead.
2940 CoDel drops or marks (ECN) packets
2941 depending on packet sojourn time in the queue.
2942 .Cm target
2943 .Ar time
2944 (5ms by default) is the minimum acceptable persistent queue delay that CoDel
2945 allows.
2946 CoDel does not drop packets directly after packets sojourn time becomes
2947 higher than
2948 .Cm target
2949 .Ar time
2950 but waits for
2951 .Cm interval
2952 .Ar time
2953 (100ms default) before dropping.
2954 .Cm interval
2955 .Ar time
2956 should be set to maximum RTT for all expected connections.
2957 .Cm ecn
2958 enables (disabled by default) packet marking (instead of dropping) for
2959 ECN-enabled TCP flows when queue delay becomes high.
2960 .Pp
2961 Note that any token after
2962 .Cm codel
2963 is considered a parameter for CoDel.
2964 So, ensure all pipe/queue
2965 configuration options are written before
2966 .Cm codel
2967 token.
2968 .Pp
2969 The
2970 .Xr sysctl 8
2971 variables
2972 .Va net.inet.ip.dummynet.codel.target
2973 and
2974 .Va net.inet.ip.dummynet.codel.interval
2975 can be used to set CoDel default parameters.
2976 .Pp
2977 .It Cm pie Oo Cm target Ar time Oc Oo Cm tupdate Ar time Oc Oo
2978 .Cm alpha Ar n Oc Oo Cm beta Ar n Oc Oo Cm max_burst Ar time Oc Oo
2979 .Cm max_ecnth Ar n Oc Oo Cm ecn | Cm noecn Oc Oo Cm capdrop |
2980 .Cm nocapdrop Oc Oo Cm drand | Cm nodrand Oc Oo Cm onoff
2981 .Oc Oo Cm dre | Cm ts Oc
2982 Make use of the PIE (Proportional Integral controller Enhanced) queue management
2983 algorithm.
2984 PIE drops or marks packets depending on a calculated drop probability during
2985 en-queue process, with the aim of achieving high throughput while keeping queue
2986 delay low.
2987 At regular time intervals of
2988 .Cm tupdate
2989 .Ar time
2990 (15ms by default) a background process (re)calculates the probability based on queue delay
2991 deviations from
2992 .Cm target
2993 .Ar time
2994 (15ms by default) and queue delay trends.
2995 PIE approximates current queue
2996 delay by using a departure rate estimation method, or (optionally) by using a
2997 packet timestamp method similar to CoDel.
2998 .Ar time
2999 is interpreted as milliseconds by default but seconds (s), milliseconds (ms) or
3000 microseconds (us) can be specified instead.
3001 The other PIE parameters and options are as follows:
3002 .Bl -tag -width indent
3003 .It Cm alpha Ar n
3004 .Ar n
3005 is a floating point number between 0 and 7 which specifies the weight of queue
3006 delay deviations that is used in drop probability calculation.
3007 0.125 is the default.
3008 .It Cm beta Ar n
3009 .Ar n
3010 is a floating point number between 0 and 7 which specifies is the weight of queue
3011 delay trend that is used in drop probability calculation.
3012 1.25 is the default.
3013 .It Cm max_burst Ar time
3014 The maximum period of time that PIE does not drop/mark packets.
3015 150ms is the
3016 default and 10s is the maximum value.
3017 .It Cm max_ecnth Ar n
3018 Even when ECN is enabled, PIE drops packets instead of marking them when drop
3019 probability becomes higher than ECN probability threshold
3020 .Cm max_ecnth Ar n
3021 , the default is 0.1 (i.e 10%) and 1 is the maximum value.
3022 .It Cm ecn | noecn
3023 enable or disable ECN marking for ECN-enabled TCP flows.
3024 Disabled by default.
3025 .It Cm capdrop | nocapdrop
3026 enable or disable cap drop adjustment.
3027 Cap drop adjustment is enabled by default.
3028 .It Cm drand | nodrand
3029 enable or disable drop probability de-randomisation.
3030 De-randomisation eliminates
3031 the problem of dropping packets too close or too far.
3032 De-randomisation is enabled by default.
3033 .It Cm onoff
3034 enable turning PIE on and off depending on queue load.
3035 If this option is enabled,
3036 PIE turnes on when over 1/3 of queue becomes full.
3037 This option is disabled by
3038 default.
3039 .It Cm dre | ts
3040 Calculate queue delay using departure rate estimation
3041 .Cm dre
3042 or timestamps
3043 .Cm ts .
3044 .Cm dre
3045 is used by default.
3046 .El
3047 .Pp
3048 Note that any token after
3049 .Cm pie
3050 is considered a parameter for PIE.
3051 So ensure all pipe/queue
3052 the configuration options are written before
3053 .Cm pie
3054 token.
3055 .Xr sysctl 8
3056 variables can be used to control the
3057 .Cm pie
3058 default parameters.
3059 See the
3060 .Sx SYSCTL VARIABLES
3061 section for more details.
3062 .El
3063 .Pp
3064 When used with IPv6 data,
3065 .Nm dummynet
3066 currently has several limitations.
3067 Information necessary to route link-local packets to an
3068 interface is not available after processing by
3069 .Nm dummynet
3070 so those packets are dropped in the output path.
3071 Care should be taken to ensure that link-local packets are not passed to
3072 .Nm dummynet .
3073 .Sh CHECKLIST
3074 Here are some important points to consider when designing your
3075 rules:
3076 .Bl -bullet
3077 .It
3078 Remember that you filter both packets going
3079 .Cm in
3080 and
3081 .Cm out .
3082 Most connections need packets going in both directions.
3083 .It
3084 Remember to test very carefully.
3085 It is a good idea to be near the console when doing this.
3086 If you cannot be near the console,
3087 use an auto-recovery script such as the one in
3088 .Pa /usr/share/examples/ipfw/change_rules.sh .
3089 .It
3090 Do not forget the loopback interface.
3091 .El
3092 .Sh FINE POINTS
3093 .Bl -bullet
3094 .It
3095 There are circumstances where fragmented datagrams are unconditionally
3096 dropped.
3097 TCP packets are dropped if they do not contain at least 20 bytes of
3098 TCP header, UDP packets are dropped if they do not contain a full 8
3099 byte UDP header, and ICMP packets are dropped if they do not contain
3100 4 bytes of ICMP header, enough to specify the ICMP type, code, and
3101 checksum.
3102 These packets are simply logged as
3103 .Dq pullup failed
3104 since there may not be enough good data in the packet to produce a
3105 meaningful log entry.
3106 .It
3107 Another type of packet is unconditionally dropped, a TCP packet with a
3108 fragment offset of one.
3109 This is a valid packet, but it only has one use, to try
3110 to circumvent firewalls.
3111 When logging is enabled, these packets are
3112 reported as being dropped by rule -1.
3113 .It
3114 If you are logged in over a network, loading the
3115 .Xr kld 4
3116 version of
3117 .Nm
3118 is probably not as straightforward as you would think.
3119 The following command line is recommended:
3120 .Bd -literal -offset indent
3121 kldload ipfw && \e
3122 ipfw add 32000 allow ip from any to any
3123 .Ed
3124 .Pp
3125 Along the same lines, doing an
3126 .Bd -literal -offset indent
3127 ipfw flush
3128 .Ed
3129 .Pp
3130 in similar surroundings is also a bad idea.
3131 .It
3132 The
3133 .Nm
3134 filter list may not be modified if the system security level
3135 is set to 3 or higher
3136 (see
3137 .Xr init 8
3138 for information on system security levels).
3139 .El
3140 .Sh PACKET DIVERSION
3141 A
3142 .Xr divert 4
3143 socket bound to the specified port will receive all packets
3144 diverted to that port.
3145 If no socket is bound to the destination port, or if the divert module is
3146 not loaded, or if the kernel was not compiled with divert socket support,
3147 the packets are dropped.
3148 .Sh NETWORK ADDRESS TRANSLATION (NAT)
3149 .Nm
3150 support in-kernel NAT using the kernel version of
3151 .Xr libalias 3 .
3152 .Pp
3153 The nat configuration command is the following:
3154 .Bd -ragged -offset indent
3155 .Bk -words
3156 .Cm nat
3157 .Ar nat_number
3158 .Cm config
3159 .Ar nat-configuration
3160 .Ek
3161 .Ed
3162 .Pp
3163 The following parameters can be configured:
3164 .Bl -tag -width indent
3165 .It Cm ip Ar ip_address
3166 Define an ip address to use for aliasing.
3167 .It Cm if Ar nic
3168 Use ip address of NIC for aliasing, dynamically changing
3169 it if NIC's ip address changes.
3170 .It Cm log
3171 Enable logging on this nat instance.
3172 .It Cm deny_in
3173 Deny any incoming connection from outside world.
3174 .It Cm same_ports
3175 Try to leave the alias port numbers unchanged from
3176 the actual local port numbers.
3177 .It Cm unreg_only
3178 Traffic on the local network not originating from an
3179 unregistered address spaces will be ignored.
3180 .It Cm reset
3181 Reset table of the packet aliasing engine on address change.
3182 .It Cm reverse
3183 Reverse the way libalias handles aliasing.
3184 .It Cm proxy_only
3185 Obey transparent proxy rules only, packet aliasing is not performed.
3186 .It Cm skip_global
3187 Skip instance in case of global state lookup (see below).
3188 .El
3189 .Pp
3190 Some specials value can be supplied instead of
3191 .Va nat_number:
3192 .Bl -tag -width indent
3193 .It Cm global
3194 Looks up translation state in all configured nat instances.
3195 If an entry is found, packet is aliased according to that entry.
3196 If no entry was found in any of the instances, packet is passed unchanged,
3197 and no new entry will be created.
3198 See section
3199 .Sx MULTIPLE INSTANCES
3200 in
3201 .Xr natd 8
3202 for more information.
3203 .It Cm tablearg
3204 Uses argument supplied in lookup table.
3205 See
3206 .Sx LOOKUP TABLES
3207 section below for more information on lookup tables.
3208 .El
3209 .Pp
3210 To let the packet continue after being (de)aliased, set the sysctl variable
3211 .Va net.inet.ip.fw.one_pass
3212 to 0.
3213 For more information about aliasing modes, refer to
3214 .Xr libalias 3 .
3215 See Section
3216 .Sx EXAMPLES
3217 for some examples about nat usage.
3218 .Ss REDIRECT AND LSNAT SUPPORT IN IPFW
3219 Redirect and LSNAT support follow closely the syntax used in
3220 .Xr natd 8 .
3221 See Section
3222 .Sx EXAMPLES
3223 for some examples on how to do redirect and lsnat.
3224 .Ss SCTP NAT SUPPORT
3225 SCTP nat can be configured in a similar manner to TCP through the
3226 .Nm
3227 command line tool.
3228 The main difference is that
3229 .Nm sctp nat
3230 does not do port translation.
3231 Since the local and global side ports will be the same,
3232 there is no need to specify both.
3233 Ports are redirected as follows:
3234 .Bd -ragged -offset indent
3235 .Bk -words
3236 .Cm nat
3237 .Ar nat_number
3238 .Cm config if
3239 .Ar nic
3240 .Cm redirect_port sctp
3241 .Ar ip_address [,addr_list] {[port | port-port] [,ports]}
3242 .Ek
3243 .Ed
3244 .Pp
3245 Most
3246 .Nm sctp nat
3247 configuration can be done in real-time through the
3248 .Xr sysctl 8
3249 interface.
3250 All may be changed dynamically, though the hash_table size will only
3251 change for new
3252 .Nm nat
3253 instances.
3254 See
3255 .Sx SYSCTL VARIABLES
3256 for more info.
3257 .Sh IPv6/IPv4 NETWORK ADDRESS AND PROTOCOL TRANSLATION
3258 .Nm
3259 supports in-kernel IPv6/IPv4 network address and protocol translation.
3260 Stateful NAT64 translation allows IPv6-only clients to contact IPv4 servers
3261 using unicast TCP, UDP or ICMP protocols.
3262 One or more IPv4 addresses assigned to a stateful NAT64 translator are shared
3263 among serveral IPv6-only clients.
3264 When stateful NAT64 is used in conjunction with DNS64, no changes are usually
3265 required in the IPv6 client or the IPv4 server.
3266 The kernel module
3267 .Cm ipfw_nat64
3268 should be loaded or kernel should have
3269 .Cm options IPFIREWALL_NAT64
3270 to be able use stateful NAT64 translator.
3271 .Pp
3272 Stateful NAT64 uses a bunch of memory for several types of objects.
3273 When IPv6 client initiates connection, NAT64 translator creates a host entry
3274 in the states table.
3275 Each host entry has a number of ports group entries allocated on demand.
3276 Ports group entries contains connection state entries.
3277 There are several options to control limits and lifetime for these objects.
3278 .Pp
3279 NAT64 translator follows RFC7915 when does ICMPv6/ICMP translation,
3280 unsupported message types will be silently dropped.
3281 IPv6 needs several ICMPv6 message types to be explicitly allowed for correct
3282 operation.
3283 Make sure that ND6 neighbor solicitation (ICMPv6 type 135) and neighbor
3284 advertisement (ICMPv6 type 136) messages will not be handled by translation
3285 rules.
3286 .Pp
3287 After translation NAT64 translator sends packets through corresponding netisr
3288 queue.
3289 Thus translator host should be configured as IPv4 and IPv6 router.
3290 .Pp
3291 The stateful NAT64 configuration command is the following:
3292 .Bd -ragged -offset indent
3293 .Bk -words
3294 .Cm nat64lsn
3295 .Ar name
3296 .Cm create
3297 .Ar create-options
3298 .Ek
3299 .Ed
3300 .Pp
3301 The following parameters can be configured:
3302 .Bl -tag -width indent
3303 .It Cm prefix4 Ar ipv4_prefix/plen
3304 The IPv4 prefix with mask defines the pool of IPv4 addresses used as
3305 source address after translation.
3306 Stateful NAT64 module translates IPv6 source address of client to one
3307 IPv4 address from this pool.
3308 Note that incoming IPv4 packets that don't have corresponding state entry
3309 in the states table will be dropped by translator.
3310 Make sure that translation rules handle packets, destined to configured prefix.
3311 .It Cm prefix6 Ar ipv6_prefix/length
3312 The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator
3313 to represent IPv4 addresses. This IPv6 prefix should be configured in DNS64.
3314 The translator implementation follows RFC6052, that restricts the length of
3315 prefixes to one of following: 32, 40, 48, 56, 64, or 96.
3316 The Well-Known IPv6 Prefix 64:ff9b:: must be 96 bits long.
3317 .It Cm max_ports Ar number
3318 Maximum number of ports reserved for upper level protocols to one IPv6 client.
3319 All reserved ports are divided into chunks between supported protocols.
3320 The number of connections from one IPv6 client is limited by this option.
3321 Note that closed TCP connections still remain in the list of connections until
3322 .Cm tcp_close_age
3323 interval will not expire.
3324 Default value is
3325 .Ar 2048 .
3326 .It Cm host_del_age Ar seconds
3327 The number of seconds until the host entry for a IPv6 client will be deleted
3328 and all its resources will be released due to inactivity.
3329 Default value is
3330 .Ar 3600 .
3331 .It Cm pg_del_age Ar seconds
3332 The number of seconds until a ports group with unused state entries will
3333 be released.
3334 Default value is
3335 .Ar 900 .
3336 .It Cm tcp_syn_age Ar seconds
3337 The number of seconds while a state entry for TCP connection with only SYN
3338 sent will be kept.
3339 If TCP connection establishing will not be finished,
3340 state entry will be deleted.
3341 Default value is
3342 .Ar 10 .
3343 .It Cm tcp_est_age Ar seconds
3344 The number of seconds while a state entry for established TCP connection
3345 will be kept.
3346 Default value is
3347 .Ar 7200 .
3348 .It Cm tcp_close_age Ar seconds
3349 The number of seconds while a state entry for closed TCP connection
3350 will be kept.
3351 Keeping state entries for closed connections is needed, because IPv4 servers
3352 typically keep closed connections in a TIME_WAIT state for a several minutes.
3353 Since translator's IPv4 addresses are shared among all IPv6 clients,
3354 new connections from the same addresses and ports may be rejected by server,
3355 because these connections are still in a TIME_WAIT state.
3356 Keeping them in translator's state table protects from such rejects.
3357 Default value is
3358 .Ar 180 .
3359 .It Cm udp_age Ar seconds
3360 The number of seconds while translator keeps state entry in a waiting for
3361 reply to the sent UDP datagram.
3362 Default value is
3363 .Ar 120 .
3364 .It Cm icmp_age Ar seconds
3365 The number of seconds while translator keeps state entry in a waiting for
3366 reply to the sent ICMP message.
3367 Default value is
3368 .Ar 60 .
3369 .It Cm log
3370 Turn on logging of all handled packets via BPF through
3371 .Ar ipfwlog0
3372 interface.
3373 .Ar ipfwlog0
3374 is a pseudo interface and can be created after a boot manually with
3375 .Cm ifconfig
3376 command.
3377 Note that it has different purpose than
3378 .Ar ipfw0
3379 interface.
3380 Translators sends to BPF an additional information with each packet.
3381 With
3382 .Cm tcpdump
3383 you are able to see each handled packet before and after translation.
3384 .It Cm -log
3385 Turn off logging of all handled packets via BPF.
3386 .El
3387 .Pp
3388 To inspect a states table of stateful NAT64 the following command can be used:
3389 .Bd -ragged -offset indent
3390 .Bk -words
3391 .Cm nat64lsn
3392 .Ar name
3393 .Cm show Cm states
3394 .Ek
3395 .Ed
3396 .Pp
3397 .Pp
3398 Stateless NAT64 translator doesn't use a states table for translation
3399 and converts IPv4 addresses to IPv6 and vice versa solely based on the
3400 mappings taken from configured lookup tables.
3401 Since a states table doesn't used by stateless translator,
3402 it can be configured to pass IPv4 clients to IPv6-only servers.
3403 .Pp
3404 The stateless NAT64 configuration command is the following:
3405 .Bd -ragged -offset indent
3406 .Bk -words
3407 .Cm nat64stl
3408 .Ar name
3409 .Cm create
3410 .Ar create-options
3411 .Ek
3412 .Ed
3413 .Pp
3414 The following parameters can be configured:
3415 .Bl -tag -width indent
3416 .It Cm prefix6 Ar ipv6_prefix/length
3417 The IPv6 prefix defines IPv4-embedded IPv6 addresses used by translator
3418 to represent IPv4 addresses. This IPv6 prefix should be configured in DNS64.
3419 .It Cm table4 Ar table46
3420 The lookup table
3421 .Ar table46
3422 contains mapping how IPv4 addresses should be translated to IPv6 addresses.
3423 .It Cm table6 Ar table64
3424 The lookup table
3425 .Ar table64
3426 contains mapping how IPv6 addresses should be translated to IPv4 addresses.
3427 .It Cm log
3428 Turn on logging of all handled packets via BPF through
3429 .Ar ipfwlog0
3430 interface.
3431 .It Cm -log
3432 Turn off logging of all handled packets via BPF.
3433 .El
3434 .Pp
3435 Note that the behavior of stateless translator with respect to not matched
3436 packets differs from stateful translator.
3437 If corresponding addresses was not found in the lookup tables, the packet
3438 will not be dropped and the search continues.
3439 .Sh IPv6-to-IPv6 NETWORK PREFIX TRANSLATION (NPTv6)
3440 .Nm
3441 supports in-kernel IPv6-to-IPv6 network prefix translation as described
3442 in RFC6296.
3443 The kernel module
3444 .Cm ipfw_nptv6
3445 should be loaded or kernel should has
3446 .Cm options IPFIREWALL_NPTV6
3447 to be able use NPTv6 translator.
3448 .Pp
3449 The NPTv6 configuration command is the following:
3450 .Bd -ragged -offset indent
3451 .Bk -words
3452 .Cm nptv6
3453 .Ar name
3454 .Cm create
3455 .Ar create-options
3456 .Ek
3457 .Ed
3458 .Pp
3459 The following parameters can be configured:
3460 .Bl -tag -width indent
3461 .It Cm int_prefix Ar ipv6_prefix
3462 IPv6 prefix used in internal network.
3463 NPTv6 module translates source address when it matches this prefix.
3464 .It Cm ext_prefix Ar ipv6_prefix
3465 IPv6 prefix used in external network.
3466 NPTv6 module translates destination address when it matches this prefix.
3467 .It Cm prefixlen Ar length
3468 The length of specified IPv6 prefixes. It must be in range from 8 to 64.
3469 .El
3470 .Pp
3471 Note that the prefix translation rules are silently ignored when IPv6 packet
3472 forwarding is disabled.
3473 To enable the packet forwarding, set the sysctl variable
3474 .Va net.inet6.ip6.forwarding
3475 to 1.
3476 .Pp
3477 To let the packet continue after being translated, set the sysctl variable
3478 .Va net.inet.ip.fw.one_pass
3479 to 0.
3480 .Sh LOADER TUNABLES
3481 Tunables can be set in
3482 .Xr loader 8
3483 prompt,
3484 .Xr loader.conf 5
3485 or
3486 .Xr kenv 1
3487 before ipfw module gets loaded.
3488 .Bl -tag -width indent
3489 .It Va net.inet.ip.fw.default_to_accept: No 0
3490 Defines ipfw last rule behavior.
3491 This value overrides
3492 .Cd "options IPFW_DEFAULT_TO_(ACCEPT|DENY)"
3493 from kernel configuration file.
3494 .It Va net.inet.ip.fw.tables_max: No 128
3495 Defines number of tables available in ipfw.
3496 Number cannot exceed 65534.
3497 .El
3498 .Sh SYSCTL VARIABLES
3499 A set of
3500 .Xr sysctl 8
3501 variables controls the behaviour of the firewall and
3502 associated modules
3503 .Pq Nm dummynet , bridge , sctp nat .
3504 These are shown below together with their default value
3505 (but always check with the
3506 .Xr sysctl 8
3507 command what value is actually in use) and meaning:
3508 .Bl -tag -width indent
3509 .It Va net.inet.ip.alias.sctp.accept_global_ootb_addip: No 0
3510 Defines how the
3511 .Nm nat
3512 responds to receipt of global OOTB ASCONF-AddIP:
3513 .Bl -tag -width indent
3514 .It Cm 0
3515 No response (unless a partially matching association exists -
3516 ports and vtags match but global address does not)
3517 .It Cm 1
3518 .Nm nat
3519 will accept and process all OOTB global AddIP messages.
3520 .El
3521 .Pp
3522 Option 1 should never be selected as this forms a security risk.
3523 An attacker can
3524 establish multiple fake associations by sending AddIP messages.
3525 .It Va net.inet.ip.alias.sctp.chunk_proc_limit: No 5
3526 Defines the maximum number of chunks in an SCTP packet that will be
3527 parsed for a
3528 packet that matches an existing association.
3529 This value is enforced to be greater or equal than
3530 .Cm net.inet.ip.alias.sctp.initialising_chunk_proc_limit .
3531 A high value is
3532 a DoS risk yet setting too low a value may result in
3533 important control chunks in
3534 the packet not being located and parsed.
3535 .It Va net.inet.ip.alias.sctp.error_on_ootb: No 1
3536 Defines when the
3537 .Nm nat
3538 responds to any Out-of-the-Blue (OOTB) packets with ErrorM packets.
3539 An OOTB packet is a packet that arrives with no existing association
3540 registered in the
3541 .Nm nat
3542 and is not an INIT or ASCONF-AddIP packet:
3543 .Bl -tag -width indent
3544 .It Cm 0
3545 ErrorM is never sent in response to OOTB packets.
3546 .It Cm 1
3547 ErrorM is only sent to OOTB packets received on the local side.
3548 .It Cm 2
3549 ErrorM is sent to the local side and on the global side ONLY if there is a
3550 partial match (ports and vtags match but the source global IP does not).
3551 This value is only useful if the
3552 .Nm nat
3553 is tracking global IP addresses.
3554 .It Cm 3
3555 ErrorM is sent in response to all OOTB packets on both
3556 the local and global side
3557 (DoS risk).
3558 .El
3559 .Pp
3560 At the moment the default is 0, since the ErrorM packet is not yet
3561 supported by most SCTP stacks.
3562 When it is supported, and if not tracking
3563 global addresses, we recommend setting this value to 1 to allow
3564 multi-homed local hosts to function with the
3565 .Nm nat .
3566 To track global addresses, we recommend setting this value to 2 to
3567 allow global hosts to be informed when they need to (re)send an
3568 ASCONF-AddIP.
3569 Value 3 should never be chosen (except for debugging) as the
3570 .Nm nat
3571 will respond to all OOTB global packets (a DoS risk).
3572 .It Va net.inet.ip.alias.sctp.hashtable_size: No 2003
3573 Size of hash tables used for
3574 .Nm nat
3575 lookups (100 < prime_number > 1000001).
3576 This value sets the
3577 .Nm hash table
3578 size for any future created
3579 .Nm nat
3580 instance and therefore must be set prior to creating a
3581 .Nm nat
3582 instance.
3583 The table sizes may be changed to suit specific needs.
3584 If there will be few
3585 concurrent associations, and memory is scarce, you may make these smaller.
3586 If there will be many thousands (or millions) of concurrent associations, you
3587 should make these larger.
3588 A prime number is best for the table size.
3589 The sysctl
3590 update function will adjust your input value to the next highest prime number.
3591 .It Va net.inet.ip.alias.sctp.holddown_time:  No 0
3592 Hold association in table for this many seconds after receiving a
3593 SHUTDOWN-COMPLETE.
3594 This allows endpoints to correct shutdown gracefully if a
3595 shutdown_complete is lost and retransmissions are required.
3596 .It Va net.inet.ip.alias.sctp.init_timer: No 15
3597 Timeout value while waiting for (INIT-ACK|AddIP-ACK).
3598 This value cannot be 0.
3599 .It Va net.inet.ip.alias.sctp.initialising_chunk_proc_limit: No 2
3600 Defines the maximum number of chunks in an SCTP packet that will be parsed when
3601 no existing association exists that matches that packet.
3602 Ideally this packet
3603 will only be an INIT or ASCONF-AddIP packet.
3604 A higher value may become a DoS
3605 risk as malformed packets can consume processing resources.
3606 .It Va net.inet.ip.alias.sctp.param_proc_limit: No 25
3607 Defines the maximum number of parameters within a chunk that will be
3608 parsed in a
3609 packet.
3610 As for other similar sysctl variables, larger values pose a DoS risk.
3611 .It Va net.inet.ip.alias.sctp.log_level: No 0
3612 Level of detail in the system log messages (0 \- minimal, 1 \- event,
3613 2 \- info, 3 \- detail, 4 \- debug, 5 \- max debug).
3614 May be a good
3615 option in high loss environments.
3616 .It Va net.inet.ip.alias.sctp.shutdown_time: No 15
3617 Timeout value while waiting for SHUTDOWN-COMPLETE.
3618 This value cannot be 0.
3619 .It Va net.inet.ip.alias.sctp.track_global_addresses: No 0
3620 Enables/disables global IP address tracking within the
3621 .Nm nat
3622 and places an
3623 upper limit on the number of addresses tracked for each association:
3624 .Bl -tag -width indent
3625 .It Cm 0
3626 Global tracking is disabled
3627 .It Cm >1
3628 Enables tracking, the maximum number of addresses tracked for each
3629 association is limited to this value
3630 .El
3631 .Pp
3632 This variable is fully dynamic, the new value will be adopted for all newly
3633 arriving associations, existing associations are treated
3634 as they were previously.
3635 Global tracking will decrease the number of collisions within the
3636 .Nm nat
3637 at a cost
3638 of increased processing load, memory usage, complexity, and possible
3639 .Nm nat
3640 state
3641 problems in complex networks with multiple
3642 .Nm nats .
3643 We recommend not tracking
3644 global IP addresses, this will still result in a fully functional
3645 .Nm nat .
3646 .It Va net.inet.ip.alias.sctp.up_timer: No 300
3647 Timeout value to keep an association up with no traffic.
3648 This value cannot be 0.
3649 .It Va net.inet.ip.dummynet.codel.interval : No 100000
3650 Default
3651 .Cm codel
3652 AQM interval in microseconds.
3653 The value must be in the range 1..5000000.
3654 .It Va net.inet.ip.dummynet.codel.target : No 5000
3655 Default
3656 .Cm codel
3657 AQM target delay time in microseconds (the minimum acceptable persistent queue
3658 delay).
3659 The value must be in the range 1..5000000.
3660 .It Va net.inet.ip.dummynet.expire : No 1
3661 Lazily delete dynamic pipes/queue once they have no pending traffic.
3662 You can disable this by setting the variable to 0, in which case
3663 the pipes/queues will only be deleted when the threshold is reached.
3664 .It Va net.inet.ip.dummynet.fqcodel.flows : No 1024
3665 Defines the default total number of flow queues (sub-queues) that
3666 .Cm fq_codel
3667 creates and manages.
3668 The value must be in the range 1..65536.
3669 .It Va net.inet.ip.dummynet.fqcodel.interval : No 100000
3670 Default
3671 .Cm fq_codel
3672 scheduler/AQM interval in microseconds.
3673 The value must be in the range 1..5000000.
3674 .It Va net.inet.ip.dummynet.fqcodel.limit : No 10240
3675 The default hard size limit (in unit of packet) of all queues managed by an
3676 instance of the
3677 .Cm fq_codel
3678 scheduler.
3679 The value must be in the range 1..20480.
3680 .It Va net.inet.ip.dummynet.fqcodel.quantum : No 1514
3681 The default quantum (credit) of the
3682 .Cm fq_codel
3683 in unit of byte.
3684 The value must be in the range 1..9000.
3685 .It Va net.inet.ip.dummynet.fqcodel.target : No 5000
3686 Default
3687 .Cm fq_codel
3688 scheduler/AQM target delay time in microseconds (the minimum acceptable
3689 persistent queue delay).
3690 The value must be in the range 1..5000000.
3691 .It Va net.inet.ip.dummynet.fqpie.alpha : No 125
3692 The default
3693 .Ar alpha
3694 parameter (scaled by 1000) for
3695 .Cm fq_pie
3696 scheduler/AQM.
3697 The value must be in the range 1..7000.
3698 .It Va net.inet.ip.dummynet.fqpie.beta : No 1250
3699 The default
3700 .Ar beta
3701 parameter (scaled by 1000) for
3702 .Cm fq_pie
3703 scheduler/AQM.
3704 The value must be in the range 1..7000.
3705 .It Va net.inet.ip.dummynet.fqpie.flows : No 1024
3706 Defines the default total number of flow queues (sub-queues) that
3707 .Cm fq_pie
3708 creates and manages.
3709 The value must be in the range 1..65536.
3710 .It Va net.inet.ip.dummynet.fqpie.limit : No 10240
3711 The default hard size limit (in unit of packet) of all queues managed by an
3712 instance of the
3713 .Cm fq_pie
3714 scheduler.
3715 The value must be in the range 1..20480.
3716 .It Va net.inet.ip.dummynet.fqpie.max_burst : No 150000
3717 The default maximum period of microseconds that
3718 .Cm fq_pie
3719 scheduler/AQM does not drop/mark packets.
3720 The value must be in the range 1..10000000.
3721 .It Va net.inet.ip.dummynet.fqpie.max_ecnth : No 99
3722 The default maximum ECN probability threshold (scaled by 1000) for
3723 .Cm fq_pie
3724 scheduler/AQM.
3725 The value must be in the range 1..7000.
3726 .It Va net.inet.ip.dummynet.fqpie.quantum : No 1514
3727 The default quantum (credit) of the
3728 .Cm fq_pie
3729 in unit of byte.
3730 The value must be in the range 1..9000.
3731 .It Va net.inet.ip.dummynet.fqpie.target : No 15000
3732 The default
3733 .Cm target
3734 delay of the
3735 .Cm fq_pie
3736 in unit of microsecond.
3737 The value must be in the range 1..5000000.
3738 .It Va net.inet.ip.dummynet.fqpie.tupdate : No 15000
3739 The default
3740 .Cm tupdate
3741 of the
3742 .Cm fq_pie
3743 in unit of microsecond.
3744 The value must be in the range 1..5000000.
3745 .It Va net.inet.ip.dummynet.hash_size : No 64
3746 Default size of the hash table used for dynamic pipes/queues.
3747 This value is used when no
3748 .Cm buckets
3749 option is specified when configuring a pipe/queue.
3750 .It Va net.inet.ip.dummynet.io_fast : No 0
3751 If set to a non-zero value,
3752 the
3753 .Dq fast
3754 mode of
3755 .Nm dummynet
3756 operation (see above) is enabled.
3757 .It Va net.inet.ip.dummynet.io_pkt
3758 Number of packets passed to
3759 .Nm dummynet .
3760 .It Va net.inet.ip.dummynet.io_pkt_drop
3761 Number of packets dropped by
3762 .Nm dummynet .
3763 .It Va net.inet.ip.dummynet.io_pkt_fast
3764 Number of packets bypassed by the
3765 .Nm dummynet
3766 scheduler.
3767 .It Va net.inet.ip.dummynet.max_chain_len : No 16
3768 Target value for the maximum number of pipes/queues in a hash bucket.
3769 The product
3770 .Cm max_chain_len*hash_size
3771 is used to determine the threshold over which empty pipes/queues
3772 will be expired even when
3773 .Cm net.inet.ip.dummynet.expire=0 .
3774 .It Va net.inet.ip.dummynet.red_lookup_depth : No 256
3775 .It Va net.inet.ip.dummynet.red_avg_pkt_size : No 512
3776 .It Va net.inet.ip.dummynet.red_max_pkt_size : No 1500
3777 Parameters used in the computations of the drop probability
3778 for the RED algorithm.
3779 .It Va net.inet.ip.dummynet.pie.alpha : No 125
3780 The default
3781 .Ar alpha
3782 parameter (scaled by 1000) for
3783 .Cm pie
3784 AQM.
3785 The value must be in the range 1..7000.
3786 .It Va net.inet.ip.dummynet.pie.beta : No 1250
3787 The default
3788 .Ar beta
3789 parameter (scaled by 1000) for
3790 .Cm pie
3791 AQM.
3792 The value must be in the range 1..7000.
3793 .It Va net.inet.ip.dummynet.pie.max_burst : No 150000
3794 The default maximum period of microseconds that
3795 .Cm pie
3796 AQM does not drop/mark packets.
3797 The value must be in the range 1..10000000.
3798 .It Va net.inet.ip.dummynet.pie.max_ecnth : No 99
3799 The default maximum ECN probability threshold (scaled by 1000) for
3800 .Cm pie
3801 AQM.
3802 The value must be in the range 1..7000.
3803 .It Va net.inet.ip.dummynet.pie.target : No 15000
3804 The default
3805 .Cm target
3806 delay of
3807 .Cm pie
3808 AQM in unit of microsecond.
3809 The value must be in the range 1..5000000.
3810 .It Va net.inet.ip.dummynet.pie.tupdate : No 15000
3811 The default
3812 .Cm tupdate
3813 of
3814 .Cm pie
3815 AQM in unit of microsecond.
3816 The value must be in the range 1..5000000.
3817 .It Va net.inet.ip.dummynet.pipe_byte_limit : No 1048576
3818 .It Va net.inet.ip.dummynet.pipe_slot_limit : No 100
3819 The maximum queue size that can be specified in bytes or packets.
3820 These limits prevent accidental exhaustion of resources such as mbufs.
3821 If you raise these limits,
3822 you should make sure the system is configured so that sufficient resources
3823 are available.
3824 .It Va net.inet.ip.fw.autoinc_step : No 100
3825 Delta between rule numbers when auto-generating them.
3826 The value must be in the range 1..1000.
3827 .It Va net.inet.ip.fw.curr_dyn_buckets : Va net.inet.ip.fw.dyn_buckets
3828 The current number of buckets in the hash table for dynamic rules
3829 (readonly).
3830 .It Va net.inet.ip.fw.debug : No 1
3831 Controls debugging messages produced by
3832 .Nm .
3833 .It Va net.inet.ip.fw.default_rule : No 65535
3834 The default rule number (read-only).
3835 By the design of
3836 .Nm , the default rule is the last one, so its number
3837 can also serve as the highest number allowed for a rule.
3838 .It Va net.inet.ip.fw.dyn_buckets : No 256
3839 The number of buckets in the hash table for dynamic rules.
3840 Must be a power of 2, up to 65536.
3841 It only takes effect when all dynamic rules have expired, so you
3842 are advised to use a
3843 .Cm flush
3844 command to make sure that the hash table is resized.
3845 .It Va net.inet.ip.fw.dyn_count : No 3
3846 Current number of dynamic rules
3847 (read-only).
3848 .It Va net.inet.ip.fw.dyn_keepalive : No 1
3849 Enables generation of keepalive packets for
3850 .Cm keep-state
3851 rules on TCP sessions.
3852 A keepalive is generated to both
3853 sides of the connection every 5 seconds for the last 20
3854 seconds of the lifetime of the rule.
3855 .It Va net.inet.ip.fw.dyn_max : No 8192
3856 Maximum number of dynamic rules.
3857 When you hit this limit, no more dynamic rules can be
3858 installed until old ones expire.
3859 .It Va net.inet.ip.fw.dyn_ack_lifetime : No 300
3860 .It Va net.inet.ip.fw.dyn_syn_lifetime : No 20
3861 .It Va net.inet.ip.fw.dyn_fin_lifetime : No 1
3862 .It Va net.inet.ip.fw.dyn_rst_lifetime : No 1
3863 .It Va net.inet.ip.fw.dyn_udp_lifetime : No 5
3864 .It Va net.inet.ip.fw.dyn_short_lifetime : No 30
3865 These variables control the lifetime, in seconds, of dynamic
3866 rules.
3867 Upon the initial SYN exchange the lifetime is kept short,
3868 then increased after both SYN have been seen, then decreased
3869 again during the final FIN exchange or when a RST is received.
3870 Both
3871 .Em dyn_fin_lifetime
3872 and
3873 .Em dyn_rst_lifetime
3874 must be strictly lower than 5 seconds, the period of
3875 repetition of keepalives.
3876 The firewall enforces that.
3877 .It Va net.inet.ip.fw.dyn_keep_states: No 0
3878 Keep dynamic states on rule/set deletion.
3879 States are relinked to default rule (65535).
3880 This can be handly for ruleset reload.
3881 Turned off by default.
3882 .It Va net.inet.ip.fw.enable : No 1
3883 Enables the firewall.
3884 Setting this variable to 0 lets you run your machine without
3885 firewall even if compiled in.
3886 .It Va net.inet6.ip6.fw.enable : No 1
3887 provides the same functionality as above for the IPv6 case.
3888 .It Va net.inet.ip.fw.one_pass : No 1
3889 When set, the packet exiting from the
3890 .Nm dummynet
3891 pipe or from
3892 .Xr ng_ipfw 4
3893 node is not passed though the firewall again.
3894 Otherwise, after an action, the packet is
3895 reinjected into the firewall at the next rule.
3896 .It Va net.inet.ip.fw.tables_max : No 128
3897 Maximum number of tables.
3898 .It Va net.inet.ip.fw.verbose : No 1
3899 Enables verbose messages.
3900 .It Va net.inet.ip.fw.verbose_limit : No 0
3901 Limits the number of messages produced by a verbose firewall.
3902 .It Va net.inet6.ip6.fw.deny_unknown_exthdrs : No 1
3903 If enabled packets with unknown IPv6 Extension Headers will be denied.
3904 .It Va net.link.ether.ipfw : No 0
3905 Controls whether layer-2 packets are passed to
3906 .Nm .
3907 Default is no.
3908 .It Va net.link.bridge.ipfw : No 0
3909 Controls whether bridged packets are passed to
3910 .Nm .
3911 Default is no.
3912 .El
3913 .Sh INTERNAL DIAGNOSTICS
3914 There are some commands that may be useful to understand current state
3915 of certain subsystems inside kernel module.
3916 These commands provide debugging output which may change without notice.
3917 .Pp
3918 Currently the following commands are available as
3919 .Cm internal
3920 sub-options:
3921 .Bl -tag -width indent
3922 .It Cm iflist
3923 Lists all interface which are currently tracked by
3924 .Nm
3925 with their in-kernel status.
3926 .It Cm talist
3927 List all table lookup algorithms currently available.
3928 .El
3929 .Sh EXAMPLES
3930 There are far too many possible uses of
3931 .Nm
3932 so this Section will only give a small set of examples.
3933 .Pp
3934 .Ss BASIC PACKET FILTERING
3935 This command adds an entry which denies all tcp packets from
3936 .Em cracker.evil.org
3937 to the telnet port of
3938 .Em wolf.tambov.su
3939 from being forwarded by the host:
3940 .Pp
3941 .Dl "ipfw add deny tcp from cracker.evil.org to wolf.tambov.su telnet"
3942 .Pp
3943 This one disallows any connection from the entire cracker's
3944 network to my host:
3945 .Pp
3946 .Dl "ipfw add deny ip from 123.45.67.0/24 to my.host.org"
3947 .Pp
3948 A first and efficient way to limit access (not using dynamic rules)
3949 is the use of the following rules:
3950 .Pp
3951 .Dl "ipfw add allow tcp from any to any established"
3952 .Dl "ipfw add allow tcp from net1 portlist1 to net2 portlist2 setup"
3953 .Dl "ipfw add allow tcp from net3 portlist3 to net3 portlist3 setup"
3954 .Dl "..."
3955 .Dl "ipfw add deny tcp from any to any"
3956 .Pp
3957 The first rule will be a quick match for normal TCP packets,
3958 but it will not match the initial SYN packet, which will be
3959 matched by the
3960 .Cm setup
3961 rules only for selected source/destination pairs.
3962 All other SYN packets will be rejected by the final
3963 .Cm deny
3964 rule.
3965 .Pp
3966 If you administer one or more subnets, you can take advantage
3967 of the address sets and or-blocks and write extremely
3968 compact rulesets which selectively enable services to blocks
3969 of clients, as below:
3970 .Pp
3971 .Dl "goodguys=\*q{ 10.1.2.0/24{20,35,66,18} or 10.2.3.0/28{6,3,11} }\*q"
3972 .Dl "badguys=\*q10.1.2.0/24{8,38,60}\*q"
3973 .Dl ""
3974 .Dl "ipfw add allow ip from ${goodguys} to any"
3975 .Dl "ipfw add deny ip from ${badguys} to any"
3976 .Dl "... normal policies ..."
3977 .Pp
3978 The
3979 .Cm verrevpath
3980 option could be used to do automated anti-spoofing by adding the
3981 following to the top of a ruleset:
3982 .Pp
3983 .Dl "ipfw add deny ip from any to any not verrevpath in"
3984 .Pp
3985 This rule drops all incoming packets that appear to be coming to the
3986 system on the wrong interface.
3987 For example, a packet with a source
3988 address belonging to a host on a protected internal network would be
3989 dropped if it tried to enter the system from an external interface.
3990 .Pp
3991 The
3992 .Cm antispoof
3993 option could be used to do similar but more restricted anti-spoofing
3994 by adding the following to the top of a ruleset:
3995 .Pp
3996 .Dl "ipfw add deny ip from any to any not antispoof in"
3997 .Pp
3998 This rule drops all incoming packets that appear to be coming from another
3999 directly connected system but on the wrong interface.
4000 For example, a packet with a source address of
4001 .Li 192.168.0.0/24 ,
4002 configured on
4003 .Li fxp0 ,
4004 but coming in on
4005 .Li fxp1
4006 would be dropped.
4007 .Pp
4008 The
4009 .Cm setdscp
4010 option could be used to (re)mark user traffic,
4011 by adding the following to the appropriate place in ruleset:
4012 .Pp
4013 .Dl "ipfw add setdscp be ip from any to any dscp af11,af21"
4014 .Ss DYNAMIC RULES
4015 In order to protect a site from flood attacks involving fake
4016 TCP packets, it is safer to use dynamic rules:
4017 .Pp
4018 .Dl "ipfw add check-state"
4019 .Dl "ipfw add deny tcp from any to any established"
4020 .Dl "ipfw add allow tcp from my-net to any setup keep-state"
4021 .Pp
4022 This will let the firewall install dynamic rules only for
4023 those connection which start with a regular SYN packet coming
4024 from the inside of our network.
4025 Dynamic rules are checked when encountering the first
4026 occurrence of a
4027 .Cm check-state ,
4028 .Cm keep-state
4029 or
4030 .Cm limit
4031 rule.
4032 A
4033 .Cm check-state
4034 rule should usually be placed near the beginning of the
4035 ruleset to minimize the amount of work scanning the ruleset.
4036 Your mileage may vary.
4037 .Pp
4038 For more complex scenarios with dynamic rules
4039 .Cm record-state 
4040 and
4041 .Cm defer-action
4042 can be used to precisely control creation and checking of dynamic rules.
4043 Example of usage of these options are provided in 
4044 .Sx NETWORK ADDRESS TRANSLATION (NAT)
4045 Section.
4046 .Pp
4047 To limit the number of connections a user can open
4048 you can use the following type of rules:
4049 .Pp
4050 .Dl "ipfw add allow tcp from my-net/24 to any setup limit src-addr 10"
4051 .Dl "ipfw add allow tcp from any to me setup limit src-addr 4"
4052 .Pp
4053 The former (assuming it runs on a gateway) will allow each host
4054 on a /24 network to open at most 10 TCP connections.
4055 The latter can be placed on a server to make sure that a single
4056 client does not use more than 4 simultaneous connections.
4057 .Pp
4058 .Em BEWARE :
4059 stateful rules can be subject to denial-of-service attacks
4060 by a SYN-flood which opens a huge number of dynamic rules.
4061 The effects of such attacks can be partially limited by
4062 acting on a set of
4063 .Xr sysctl 8
4064 variables which control the operation of the firewall.
4065 .Pp
4066 Here is a good usage of the
4067 .Cm list
4068 command to see accounting records and timestamp information:
4069 .Pp
4070 .Dl ipfw -at list
4071 .Pp
4072 or in short form without timestamps:
4073 .Pp
4074 .Dl ipfw -a list
4075 .Pp
4076 which is equivalent to:
4077 .Pp
4078 .Dl ipfw show
4079 .Pp
4080 Next rule diverts all incoming packets from 192.168.2.0/24
4081 to divert port 5000:
4082 .Pp
4083 .Dl ipfw divert 5000 ip from 192.168.2.0/24 to any in
4084 .Ss TRAFFIC SHAPING
4085 The following rules show some of the applications of
4086 .Nm
4087 and
4088 .Nm dummynet
4089 for simulations and the like.
4090 .Pp
4091 This rule drops random incoming packets with a probability
4092 of 5%:
4093 .Pp
4094 .Dl "ipfw add prob 0.05 deny ip from any to any in"
4095 .Pp
4096 A similar effect can be achieved making use of
4097 .Nm dummynet
4098 pipes:
4099 .Pp
4100 .Dl "ipfw add pipe 10 ip from any to any"
4101 .Dl "ipfw pipe 10 config plr 0.05"
4102 .Pp
4103 We can use pipes to artificially limit bandwidth, e.g.\& on a
4104 machine acting as a router, if we want to limit traffic from
4105 local clients on 192.168.2.0/24 we do:
4106 .Pp
4107 .Dl "ipfw add pipe 1 ip from 192.168.2.0/24 to any out"
4108 .Dl "ipfw pipe 1 config bw 300Kbit/s queue 50KBytes"
4109 .Pp
4110 note that we use the
4111 .Cm out
4112 modifier so that the rule is not used twice.
4113 Remember in fact that
4114 .Nm
4115 rules are checked both on incoming and outgoing packets.
4116 .Pp
4117 Should we want to simulate a bidirectional link with bandwidth
4118 limitations, the correct way is the following:
4119 .Pp
4120 .Dl "ipfw add pipe 1 ip from any to any out"
4121 .Dl "ipfw add pipe 2 ip from any to any in"
4122 .Dl "ipfw pipe 1 config bw 64Kbit/s queue 10Kbytes"
4123 .Dl "ipfw pipe 2 config bw 64Kbit/s queue 10Kbytes"
4124 .Pp
4125 The above can be very useful, e.g.\& if you want to see how
4126 your fancy Web page will look for a residential user who
4127 is connected only through a slow link.
4128 You should not use only one pipe for both directions, unless
4129 you want to simulate a half-duplex medium (e.g.\& AppleTalk,
4130 Ethernet, IRDA).
4131 It is not necessary that both pipes have the same configuration,
4132 so we can also simulate asymmetric links.
4133 .Pp
4134 Should we want to verify network performance with the RED queue
4135 management algorithm:
4136 .Pp
4137 .Dl "ipfw add pipe 1 ip from any to any"
4138 .Dl "ipfw pipe 1 config bw 500Kbit/s queue 100 red 0.002/30/80/0.1"
4139 .Pp
4140 Another typical application of the traffic shaper is to
4141 introduce some delay in the communication.
4142 This can significantly affect applications which do a lot of Remote
4143 Procedure Calls, and where the round-trip-time of the
4144 connection often becomes a limiting factor much more than
4145 bandwidth:
4146 .Pp
4147 .Dl "ipfw add pipe 1 ip from any to any out"
4148 .Dl "ipfw add pipe 2 ip from any to any in"
4149 .Dl "ipfw pipe 1 config delay 250ms bw 1Mbit/s"
4150 .Dl "ipfw pipe 2 config delay 250ms bw 1Mbit/s"
4151 .Pp
4152 Per-flow queueing can be useful for a variety of purposes.
4153 A very simple one is counting traffic:
4154 .Pp
4155 .Dl "ipfw add pipe 1 tcp from any to any"
4156 .Dl "ipfw add pipe 1 udp from any to any"
4157 .Dl "ipfw add pipe 1 ip from any to any"
4158 .Dl "ipfw pipe 1 config mask all"
4159 .Pp
4160 The above set of rules will create queues (and collect
4161 statistics) for all traffic.
4162 Because the pipes have no limitations, the only effect is
4163 collecting statistics.
4164 Note that we need 3 rules, not just the last one, because
4165 when
4166 .Nm
4167 tries to match IP packets it will not consider ports, so we
4168 would not see connections on separate ports as different
4169 ones.
4170 .Pp
4171 A more sophisticated example is limiting the outbound traffic
4172 on a net with per-host limits, rather than per-network limits:
4173 .Pp
4174 .Dl "ipfw add pipe 1 ip from 192.168.2.0/24 to any out"
4175 .Dl "ipfw add pipe 2 ip from any to 192.168.2.0/24 in"
4176 .Dl "ipfw pipe 1 config mask src-ip 0x000000ff bw 200Kbit/s queue 20Kbytes"
4177 .Dl "ipfw pipe 2 config mask dst-ip 0x000000ff bw 200Kbit/s queue 20Kbytes"
4178 .Ss LOOKUP TABLES
4179 In the following example, we need to create several traffic bandwidth
4180 classes and we need different hosts/networks to fall into different classes.
4181 We create one pipe for each class and configure them accordingly.
4182 Then we create a single table and fill it with IP subnets and addresses.
4183 For each subnet/host we set the argument equal to the number of the pipe
4184 that it should use.
4185 Then we classify traffic using a single rule:
4186 .Pp
4187 .Dl "ipfw pipe 1 config bw 1000Kbyte/s"
4188 .Dl "ipfw pipe 4 config bw 4000Kbyte/s"
4189 .Dl "..."
4190 .Dl "ipfw table T1 create type addr"
4191 .Dl "ipfw table T1 add 192.168.2.0/24 1"
4192 .Dl "ipfw table T1 add 192.168.0.0/27 4"
4193 .Dl "ipfw table T1 add 192.168.0.2 1"
4194 .Dl "..."
4195 .Dl "ipfw add pipe tablearg ip from 'table(T1)' to any"
4196 .Pp
4197 Using the
4198 .Cm fwd
4199 action, the table entries may include hostnames and IP addresses.
4200 .Pp
4201 .Dl "ipfw table T2 create type addr ftype ip"
4202 .Dl "ipfw table T2 add 192.168.2.0/24 10.23.2.1"
4203 .Dl "ipfw table T21 add 192.168.0.0/27 router1.dmz"
4204 .Dl "..."
4205 .Dl "ipfw add 100 fwd tablearg ip from any to table(1)"
4206 .Pp
4207 In the following example per-interface firewall is created:
4208 .Pp
4209 .Dl "ipfw table IN create type iface valtype skipto,fib"
4210 .Dl "ipfw table IN add vlan20 12000,12"
4211 .Dl "ipfw table IN add vlan30 13000,13"
4212 .Dl "ipfw table OUT create type iface valtype skipto"
4213 .Dl "ipfw table OUT add vlan20 22000"
4214 .Dl "ipfw table OUT add vlan30 23000"
4215 .Dl ".."
4216 .Dl "ipfw add 100 setfib tablearg ip from any to any recv 'table(IN)' in"
4217 .Dl "ipfw add 200 skipto tablearg ip from any to any recv 'table(IN)' in"
4218 .Dl "ipfw add 300 skipto tablearg ip from any to any xmit 'table(OUT)' out"
4219 .Pp
4220 The following example illustrate usage of flow tables:
4221 .Pp
4222 .Dl "ipfw table fl create type flow:src-ip,proto,dst-ip,dst-port"
4223 .Dl "ipfw table fl add 2a02:6b8:77::88,tcp,2a02:6b8:77::99,80 11"
4224 .Dl "ipfw table fl add 10.0.0.1,udp,10.0.0.2,53 12"
4225 .Dl ".."
4226 .Dl "ipfw add 100 allow ip from any to any flow 'table(fl,11)' recv ix0"
4227 .Ss SETS OF RULES
4228 To add a set of rules atomically, e.g.\& set 18:
4229 .Pp
4230 .Dl "ipfw set disable 18"
4231 .Dl "ipfw add NN set 18 ...         # repeat as needed"
4232 .Dl "ipfw set enable 18"
4233 .Pp
4234 To delete a set of rules atomically the command is simply:
4235 .Pp
4236 .Dl "ipfw delete set 18"
4237 .Pp
4238 To test a ruleset and disable it and regain control if something goes wrong:
4239 .Pp
4240 .Dl "ipfw set disable 18"
4241 .Dl "ipfw add NN set 18 ...         # repeat as needed"
4242 .Dl "ipfw set enable 18; echo done; sleep 30 && ipfw set disable 18"
4243 .Pp
4244 Here if everything goes well, you press control-C before the "sleep"
4245 terminates, and your ruleset will be left active.
4246 Otherwise, e.g.\& if
4247 you cannot access your box, the ruleset will be disabled after
4248 the sleep terminates thus restoring the previous situation.
4249 .Pp
4250 To show rules of the specific set:
4251 .Pp
4252 .Dl "ipfw set 18 show"
4253 .Pp
4254 To show rules of the disabled set:
4255 .Pp
4256 .Dl "ipfw -S set 18 show"
4257 .Pp
4258 To clear a specific rule counters of the specific set:
4259 .Pp
4260 .Dl "ipfw set 18 zero NN"
4261 .Pp
4262 To delete a specific rule of the specific set:
4263 .Pp
4264 .Dl "ipfw set 18 delete NN"
4265 .Ss NAT, REDIRECT AND LSNAT
4266 First redirect all the traffic to nat instance 123:
4267 .Pp
4268 .Dl "ipfw add nat 123 all from any to any"
4269 .Pp
4270 Then to configure nat instance 123 to alias all the outgoing traffic with ip
4271 192.168.0.123, blocking all incoming connections, trying to keep
4272 same ports on both sides, clearing aliasing table on address change
4273 and keeping a log of traffic/link statistics:
4274 .Pp
4275 .Dl "ipfw nat 123 config ip 192.168.0.123 log deny_in reset same_ports"
4276 .Pp
4277 Or to change address of instance 123, aliasing table will be cleared (see
4278 reset option):
4279 .Pp
4280 .Dl "ipfw nat 123 config ip 10.0.0.1"
4281 .Pp
4282 To see configuration of nat instance 123:
4283 .Pp
4284 .Dl "ipfw nat 123 show config"
4285 .Pp
4286 To show logs of all the instances in range 111-999:
4287 .Pp
4288 .Dl "ipfw nat 111-999 show"
4289 .Pp
4290 To see configurations of all instances:
4291 .Pp
4292 .Dl "ipfw nat show config"
4293 .Pp
4294 Or a redirect rule with mixed modes could looks like:
4295 .Pp
4296 .Dl "ipfw nat 123 config redirect_addr 10.0.0.1 10.0.0.66"
4297 .Dl "                    redirect_port tcp 192.168.0.1:80 500"
4298 .Dl "                    redirect_proto udp 192.168.1.43 192.168.1.1"
4299 .Dl "                    redirect_addr 192.168.0.10,192.168.0.11"
4300 .Dl "                               10.0.0.100  # LSNAT"
4301 .Dl "                    redirect_port tcp 192.168.0.1:80,192.168.0.10:22"
4302 .Dl "                               500         # LSNAT"
4303 .Pp
4304 or it could be split in:
4305 .Pp
4306 .Dl "ipfw nat 1 config redirect_addr 10.0.0.1 10.0.0.66"
4307 .Dl "ipfw nat 2 config redirect_port tcp 192.168.0.1:80 500"
4308 .Dl "ipfw nat 3 config redirect_proto udp 192.168.1.43 192.168.1.1"
4309 .Dl "ipfw nat 4 config redirect_addr 192.168.0.10,192.168.0.11,192.168.0.12"
4310 .Dl "                                    10.0.0.100"
4311 .Dl "ipfw nat 5 config redirect_port tcp"
4312 .Dl "                   192.168.0.1:80,192.168.0.10:22,192.168.0.20:25 500"
4313 .Pp
4314 Sometimes you may want to mix NAT and dynamic rules. It could be achived with
4315 .Cm record-state
4316 and
4317 .Cm defer-action
4318 options. Problem is, you need to create dynamic rule before NAT and check it
4319 after NAT actions (or vice versa) to have consistent addresses and ports.
4320 Rule with
4321 .Cm keep-state
4322 option will trigger activation of existing dynamic state, and action of such
4323 rule will be performed as soon as rule is matched. In case of NAT and
4324 .Cm allow
4325 rule packet need to be passed to NAT, not allowed as soon is possible.
4326 .Pp
4327 There is example of set of rules to achive this. Bear in mind that this
4328 is exmaple only and it is not very usefult by itself.
4329 .Pp
4330 On way out, after all checks place this rules:
4331 .Pp
4332 .Dl "ipfw add allow record-state skip-action"
4333 .Dl "ipfw add nat 1"
4334 .Pp
4335 And on way in there should be something like this:
4336 .Pp
4337 .Dl "ipfw add nat 1"
4338 .Dl "ipfw add check-state"
4339 .Pp
4340 Please note, that first rule on way out doesn't allow packet and doesn't
4341 execute existing dynamic rules. All it does, create new dynamic rule with
4342 .Cm allow
4343 action, if it is not created yet. Later, this dynamic rule is used on way
4344 in by
4345 .Cm check-state
4346 rule.
4347 .Ss CONFIGURING CODEL, PIE, FQ-CODEL and FQ-PIE AQM
4348 .Cm codel
4349 and
4350 .Cm pie
4351 AQM can be configured for
4352 .Nm dummynet
4353 .Cm pipe
4354 or
4355 .Cm queue.
4356 .Pp
4357 To configure a
4358 .Cm pipe
4359 with
4360 .Cm codel
4361 AQM using default configuration for traffic from 192.168.0.0/24 and 1Mbits/s
4362 rate limit, we do:
4363 .Pp
4364 .Dl "ipfw pipe 1 config bw 1mbits/s codel"
4365 .Dl "ipfw add 100 pipe 1 ip from 192.168.0.0/24 to any"
4366 .Pp
4367 To configure a
4368 .Cm queue
4369 with
4370 .Cm codel
4371 AQM using different configurations parameters for traffic from
4372 192.168.0.0/24 and 1Mbits/s rate limit, we do:
4373 .Pp
4374 .Dl "ipfw pipe 1 config bw 1mbits/s"
4375 .Dl "ipfw queue 1 config pipe 1 codel target 8ms interval 160ms ecn"
4376 .Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any"
4377 .Pp
4378 To configure a
4379 .Cm pipe
4380 with
4381 .Cm pie
4382 AQM using default configuration for traffic from 192.168.0.0/24 and 1Mbits/s
4383 rate limit, we do:
4384 .Pp
4385 .Dl "ipfw pipe 1 config bw 1mbits/s pie"
4386 .Dl "ipfw add 100 pipe 1 ip from 192.168.0.0/24 to any"
4387 .Pp
4388 To configure a
4389 .Cm queue
4390 with
4391 .Cm pie
4392 AQM using different configuration parameters for traffic from
4393 192.168.0.0/24 and 1Mbits/s rate limit, we do:
4394 .Pp
4395 .Dl "ipfw pipe 1 config bw 1mbits/s"
4396 .Dl "ipfw queue 1 config pipe 1 pie target 20ms tupdate 30ms ecn"
4397 .Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any"
4398 .Pp
4399 .Cm fq_codel
4400 and
4401 .Cm fq_pie
4402 AQM can be configured for
4403 .Nm dummynet
4404 schedulers.
4405 .Pp
4406 To configure
4407 .Cm fq_codel
4408 scheduler using different configurations parameters for traffic from
4409 192.168.0.0/24 and 1Mbits/s rate limit, we do:
4410 .Pp
4411 .Dl "ipfw pipe 1 config bw 1mbits/s"
4412 .Dl "ipfw sched 1 config pipe 1 type fq_codel"
4413 .Dl "ipfw queue 1 config sched 1"
4414 .Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any"
4415 .Pp
4416 To change
4417 .Cm fq_codel
4418 default configuration for a
4419 .Cm sched
4420 such as disable ECN and change the
4421 .Ar target
4422 to 10ms, we do:
4423 .Pp
4424 .Dl "ipfw sched 1 config pipe 1 type fq_codel target 10ms noecn"
4425 .Pp
4426 Similar to
4427 .Cm fq_codel,
4428 to configure
4429 .Cm fq_pie
4430 scheduler using different configurations parameters for traffic from
4431 192.168.0.0/24 and 1Mbits/s rate limit, we do:
4432 .Pp
4433 .Dl "ipfw pipe 1 config bw 1mbits/s"
4434 .Dl "ipfw sched 1 config pipe 1 type fq_pie"
4435 .Dl "ipfw queue 1 config sched 1"
4436 .Dl "ipfw add 100 queue 1 ip from 192.168.0.0/24 to any"
4437 .Pp
4438 The configurations of
4439 .Cm fq_pie
4440 .Cm sched
4441 can be changed in a similar way as for
4442 .Cm fq_codel
4443 .Sh SEE ALSO
4444 .Xr cpp 1 ,
4445 .Xr m4 1 ,
4446 .Xr altq 4 ,
4447 .Xr divert 4 ,
4448 .Xr dummynet 4 ,
4449 .Xr if_bridge 4 ,
4450 .Xr ip 4 ,
4451 .Xr ipfirewall 4 ,
4452 .Xr ng_ipfw 4 ,
4453 .Xr protocols 5 ,
4454 .Xr services 5 ,
4455 .Xr init 8 ,
4456 .Xr kldload 8 ,
4457 .Xr reboot 8 ,
4458 .Xr sysctl 8 ,
4459 .Xr syslogd 8
4460 .Sh HISTORY
4461 The
4462 .Nm
4463 utility first appeared in
4464 .Fx 2.0 .
4465 .Nm dummynet
4466 was introduced in
4467 .Fx 2.2.8 .
4468 Stateful extensions were introduced in
4469 .Fx 4.0 .
4470 .Nm ipfw2
4471 was introduced in Summer 2002.
4472 .Sh AUTHORS
4473 .An Ugen J. S. Antsilevich ,
4474 .An Poul-Henning Kamp ,
4475 .An Alex Nash ,
4476 .An Archie Cobbs ,
4477 .An Luigi Rizzo ,
4478 .An Rasool Al-Saadi .
4479 .Pp
4480 .An -nosplit
4481 API based upon code written by
4482 .An Daniel Boulet
4483 for BSDI.
4484 .Pp
4485 Dummynet has been introduced by Luigi Rizzo in 1997-1998.
4486 .Pp
4487 Some early work (1999-2000) on the
4488 .Nm dummynet
4489 traffic shaper supported by Akamba Corp.
4490 .Pp
4491 The ipfw core (ipfw2) has been completely redesigned and
4492 reimplemented by Luigi Rizzo in summer 2002.
4493 Further
4494 actions and
4495 options have been added by various developer over the years.
4496 .Pp
4497 .An -nosplit
4498 In-kernel NAT support written by
4499 .An Paolo Pisati Aq Mt piso@FreeBSD.org
4500 as part of a Summer of Code 2005 project.
4501 .Pp
4502 SCTP
4503 .Nm nat
4504 support has been developed by
4505 .An The Centre for Advanced Internet Architectures (CAIA) Aq http://www.caia.swin.edu.au .
4506 The primary developers and maintainers are David Hayes and Jason But.
4507 For further information visit:
4508 .Aq http://www.caia.swin.edu.au/urp/SONATA
4509 .Pp
4510 Delay profiles have been developed by Alessandro Cerri and
4511 Luigi Rizzo, supported by the
4512 European Commission within Projects Onelab and Onelab2.
4513 .Pp
4514 CoDel, PIE, FQ-CoDel and FQ-PIE AQM for Dummynet have been implemented by
4515 .An The Centre for Advanced Internet Architectures (CAIA)
4516 in 2016, supported by The Comcast Innovation Fund.
4517 The primary developer is
4518 Rasool Al-Saadi.
4519 .Sh BUGS
4520 The syntax has grown over the years and sometimes it might be confusing.
4521 Unfortunately, backward compatibility prevents cleaning up mistakes
4522 made in the definition of the syntax.
4523 .Pp
4524 .Em !!! WARNING !!!
4525 .Pp
4526 Misconfiguring the firewall can put your computer in an unusable state,
4527 possibly shutting down network services and requiring console access to
4528 regain control of it.
4529 .Pp
4530 Incoming packet fragments diverted by
4531 .Cm divert
4532 are reassembled before delivery to the socket.
4533 The action used on those packet is the one from the
4534 rule which matches the first fragment of the packet.
4535 .Pp
4536 Packets diverted to userland, and then reinserted by a userland process
4537 may lose various packet attributes.
4538 The packet source interface name
4539 will be preserved if it is shorter than 8 bytes and the userland process
4540 saves and reuses the sockaddr_in
4541 (as does
4542 .Xr natd 8 ) ;
4543 otherwise, it may be lost.
4544 If a packet is reinserted in this manner, later rules may be incorrectly
4545 applied, making the order of
4546 .Cm divert
4547 rules in the rule sequence very important.
4548 .Pp
4549 Dummynet drops all packets with IPv6 link-local addresses.
4550 .Pp
4551 Rules using
4552 .Cm uid
4553 or
4554 .Cm gid
4555 may not behave as expected.
4556 In particular, incoming SYN packets may
4557 have no uid or gid associated with them since they do not yet belong
4558 to a TCP connection, and the uid/gid associated with a packet may not
4559 be as expected if the associated process calls
4560 .Xr setuid 2
4561 or similar system calls.
4562 .Pp
4563 Rule syntax is subject to the command line environment and some patterns
4564 may need to be escaped with the backslash character
4565 or quoted appropriately.
4566 .Pp
4567 Due to the architecture of
4568 .Xr libalias 3 ,
4569 ipfw nat is not compatible with the TCP segmentation offloading (TSO).
4570 Thus, to reliably nat your network traffic, please disable TSO
4571 on your NICs using
4572 .Xr ifconfig 8 .
4573 .Pp
4574 ICMP error messages are not implicitly matched by dynamic rules
4575 for the respective conversations.
4576 To avoid failures of network error detection and path MTU discovery,
4577 ICMP error messages may need to be allowed explicitly through static
4578 rules.
4579 .Pp
4580 Rules using
4581 .Cm call
4582 and
4583 .Cm return
4584 actions may lead to confusing behaviour if ruleset has mistakes,
4585 and/or interaction with other subsystems (netgraph, dummynet, etc.) is used.
4586 One possible case for this is packet leaving
4587 .Nm
4588 in subroutine on the input pass, while later on output encountering unpaired
4589 .Cm return
4590 first.
4591 As the call stack is kept intact after input pass, packet will suddenly
4592 return to the rule number used on input pass, not on output one.
4593 Order of processing should be checked carefully to avoid such mistakes.