]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sbin/newfs/mkfs.c
add -n option to suppress clearing the build tree and add -DNO_CLEAN
[FreeBSD/FreeBSD.git] / sbin / newfs / mkfs.c
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *      The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c      8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46
47 #include <err.h>
48 #include <grp.h>
49 #include <limits.h>
50 #include <signal.h>
51 #include <stdlib.h>
52 #include <string.h>
53 #include <stdint.h>
54 #include <stdio.h>
55 #include <unistd.h>
56 #include <sys/param.h>
57 #include <sys/time.h>
58 #include <sys/types.h>
59 #include <sys/wait.h>
60 #include <sys/resource.h>
61 #include <sys/stat.h>
62 #include <ufs/ufs/dinode.h>
63 #include <ufs/ufs/dir.h>
64 #include <ufs/ffs/fs.h>
65 #include <sys/disklabel.h>
66 #include <sys/file.h>
67 #include <sys/mman.h>
68 #include <sys/ioctl.h>
69 #include "newfs.h"
70
71 /*
72  * make file system for cylinder-group style file systems
73  */
74 #define UMASK           0755
75 #define POWEROF2(num)   (((num) & ((num) - 1)) == 0)
76
77 static struct   csum *fscs;
78 #define sblock  disk.d_fs
79 #define acg     disk.d_cg
80
81 union dinode {
82         struct ufs1_dinode dp1;
83         struct ufs2_dinode dp2;
84 };
85 #define DIP(dp, field) \
86         ((sblock.fs_magic == FS_UFS1_MAGIC) ? \
87         (dp)->dp1.field : (dp)->dp2.field)
88
89 static caddr_t iobuf;
90 static long iobufsize;
91 static ufs2_daddr_t alloc(int size, int mode);
92 static int charsperline(void);
93 static void clrblock(struct fs *, unsigned char *, int);
94 static void fsinit(time_t);
95 static int ilog2(int);
96 static void initcg(int, time_t);
97 static int isblock(struct fs *, unsigned char *, int);
98 static void iput(union dinode *, ino_t);
99 static int makedir(struct direct *, int);
100 static void setblock(struct fs *, unsigned char *, int);
101 static void wtfs(ufs2_daddr_t, int, char *);
102 static u_int32_t newfs_random(void);
103
104 void
105 mkfs(struct partition *pp, char *fsys)
106 {
107         int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
108         long i, j, cylno, csfrags;
109         time_t utime;
110         quad_t sizepb;
111         int width;
112         char tmpbuf[100];       /* XXX this will break in about 2,500 years */
113         union {
114                 struct fs fdummy;
115                 char cdummy[SBLOCKSIZE];
116         } dummy;
117 #define fsdummy dummy.fdummy
118 #define chdummy dummy.cdummy
119
120         /*
121          * Our blocks == sector size, and the version of UFS we are using is
122          * specified by Oflag.
123          */
124         disk.d_bsize = sectorsize;
125         disk.d_ufs = Oflag;
126         if (Rflag) {
127                 utime = 1000000000;
128         } else {
129                 time(&utime);
130                 arc4random_stir();
131         }
132         sblock.fs_old_flags = FS_FLAGS_UPDATED;
133         sblock.fs_flags = 0;
134         if (Uflag)
135                 sblock.fs_flags |= FS_DOSOFTDEP;
136         if (Lflag)
137                 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
138         if (Jflag)
139                 sblock.fs_flags |= FS_GJOURNAL;
140         if (lflag)
141                 sblock.fs_flags |= FS_MULTILABEL;
142         /*
143          * Validate the given file system size.
144          * Verify that its last block can actually be accessed.
145          * Convert to file system fragment sized units.
146          */
147         if (fssize <= 0) {
148                 printf("preposterous size %jd\n", (intmax_t)fssize);
149                 exit(13);
150         }
151         wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
152             (char *)&sblock);
153         /*
154          * collect and verify the file system density info
155          */
156         sblock.fs_avgfilesize = avgfilesize;
157         sblock.fs_avgfpdir = avgfilesperdir;
158         if (sblock.fs_avgfilesize <= 0)
159                 printf("illegal expected average file size %d\n",
160                     sblock.fs_avgfilesize), exit(14);
161         if (sblock.fs_avgfpdir <= 0)
162                 printf("illegal expected number of files per directory %d\n",
163                     sblock.fs_avgfpdir), exit(15);
164         /*
165          * collect and verify the block and fragment sizes
166          */
167         sblock.fs_bsize = bsize;
168         sblock.fs_fsize = fsize;
169         if (!POWEROF2(sblock.fs_bsize)) {
170                 printf("block size must be a power of 2, not %d\n",
171                     sblock.fs_bsize);
172                 exit(16);
173         }
174         if (!POWEROF2(sblock.fs_fsize)) {
175                 printf("fragment size must be a power of 2, not %d\n",
176                     sblock.fs_fsize);
177                 exit(17);
178         }
179         if (sblock.fs_fsize < sectorsize) {
180                 printf("increasing fragment size from %d to sector size (%d)\n",
181                     sblock.fs_fsize, sectorsize);
182                 sblock.fs_fsize = sectorsize;
183         }
184         if (sblock.fs_bsize > MAXBSIZE) {
185                 printf("decreasing block size from %d to maximum (%d)\n",
186                     sblock.fs_bsize, MAXBSIZE);
187                 sblock.fs_bsize = MAXBSIZE;
188         }
189         if (sblock.fs_bsize < MINBSIZE) {
190                 printf("increasing block size from %d to minimum (%d)\n",
191                     sblock.fs_bsize, MINBSIZE);
192                 sblock.fs_bsize = MINBSIZE;
193         }
194         if (sblock.fs_fsize > MAXBSIZE) {
195                 printf("decreasing fragment size from %d to maximum (%d)\n",
196                     sblock.fs_fsize, MAXBSIZE);
197                 sblock.fs_fsize = MAXBSIZE;
198         }
199         if (sblock.fs_bsize < sblock.fs_fsize) {
200                 printf("increasing block size from %d to fragment size (%d)\n",
201                     sblock.fs_bsize, sblock.fs_fsize);
202                 sblock.fs_bsize = sblock.fs_fsize;
203         }
204         if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
205                 printf(
206                 "increasing fragment size from %d to block size / %d (%d)\n",
207                     sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
208                 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
209         }
210         if (maxbsize < bsize || !POWEROF2(maxbsize)) {
211                 sblock.fs_maxbsize = sblock.fs_bsize;
212                 printf("Extent size set to %d\n", sblock.fs_maxbsize);
213         } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
214                 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
215                 printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
216         } else {
217                 sblock.fs_maxbsize = maxbsize;
218         }
219         sblock.fs_maxcontig = maxcontig;
220         if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
221                 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
222                 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
223         }
224         if (sblock.fs_maxcontig > 1)
225                 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
226         sblock.fs_bmask = ~(sblock.fs_bsize - 1);
227         sblock.fs_fmask = ~(sblock.fs_fsize - 1);
228         sblock.fs_qbmask = ~sblock.fs_bmask;
229         sblock.fs_qfmask = ~sblock.fs_fmask;
230         sblock.fs_bshift = ilog2(sblock.fs_bsize);
231         sblock.fs_fshift = ilog2(sblock.fs_fsize);
232         sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
233         sblock.fs_fragshift = ilog2(sblock.fs_frag);
234         if (sblock.fs_frag > MAXFRAG) {
235                 printf("fragment size %d is still too small (can't happen)\n",
236                     sblock.fs_bsize / MAXFRAG);
237                 exit(21);
238         }
239         sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
240         sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
241
242         /*
243          * Before the filesystem is finally initialized, mark it
244          * as incompletely initialized.
245          */
246         sblock.fs_magic = FS_BAD_MAGIC;
247
248         if (Oflag == 1) {
249                 sblock.fs_sblockloc = SBLOCK_UFS1;
250                 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
251                 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
252                 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
253                     sizeof(ufs1_daddr_t));
254                 sblock.fs_old_inodefmt = FS_44INODEFMT;
255                 sblock.fs_old_cgoffset = 0;
256                 sblock.fs_old_cgmask = 0xffffffff;
257                 sblock.fs_old_size = sblock.fs_size;
258                 sblock.fs_old_rotdelay = 0;
259                 sblock.fs_old_rps = 60;
260                 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
261                 sblock.fs_old_cpg = 1;
262                 sblock.fs_old_interleave = 1;
263                 sblock.fs_old_trackskew = 0;
264                 sblock.fs_old_cpc = 0;
265                 sblock.fs_old_postblformat = 1;
266                 sblock.fs_old_nrpos = 1;
267         } else {
268                 sblock.fs_sblockloc = SBLOCK_UFS2;
269                 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
270                 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
271                 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
272                     sizeof(ufs2_daddr_t));
273         }
274         sblock.fs_sblkno =
275             roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
276                 sblock.fs_frag);
277         sblock.fs_cblkno = sblock.fs_sblkno +
278             roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
279         sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
280         sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
281         for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
282                 sizepb *= NINDIR(&sblock);
283                 sblock.fs_maxfilesize += sizepb;
284         }
285
286         /*
287          * It's impossible to create a snapshot in case that fs_maxfilesize
288          * is smaller than the fssize.
289          */
290         if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
291                 warnx("WARNING: You will be unable to create snapshots on this "
292                       "file system.  Correct by using a larger blocksize.");
293         }
294
295         /*
296          * Calculate the number of blocks to put into each cylinder group.
297          *
298          * This algorithm selects the number of blocks per cylinder
299          * group. The first goal is to have at least enough data blocks
300          * in each cylinder group to meet the density requirement. Once
301          * this goal is achieved we try to expand to have at least
302          * MINCYLGRPS cylinder groups. Once this goal is achieved, we
303          * pack as many blocks into each cylinder group map as will fit.
304          *
305          * We start by calculating the smallest number of blocks that we
306          * can put into each cylinder group. If this is too big, we reduce
307          * the density until it fits.
308          */
309         origdensity = density;
310         for (;;) {
311                 fragsperinode = MAX(numfrags(&sblock, density), 1);
312                 minfpg = fragsperinode * INOPB(&sblock);
313                 if (minfpg > sblock.fs_size)
314                         minfpg = sblock.fs_size;
315                 sblock.fs_ipg = INOPB(&sblock);
316                 sblock.fs_fpg = roundup(sblock.fs_iblkno +
317                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
318                 if (sblock.fs_fpg < minfpg)
319                         sblock.fs_fpg = minfpg;
320                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
321                     INOPB(&sblock));
322                 sblock.fs_fpg = roundup(sblock.fs_iblkno +
323                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
324                 if (sblock.fs_fpg < minfpg)
325                         sblock.fs_fpg = minfpg;
326                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
327                     INOPB(&sblock));
328                 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
329                         break;
330                 density -= sblock.fs_fsize;
331         }
332         if (density != origdensity)
333                 printf("density reduced from %d to %d\n", origdensity, density);
334         /*
335          * Start packing more blocks into the cylinder group until
336          * it cannot grow any larger, the number of cylinder groups
337          * drops below MINCYLGRPS, or we reach the size requested.
338          */
339         for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
340                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
341                     INOPB(&sblock));
342                 if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
343                         break;
344                 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
345                         continue;
346                 if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
347                         break;
348                 sblock.fs_fpg -= sblock.fs_frag;
349                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
350                     INOPB(&sblock));
351                 break;
352         }
353         /*
354          * Check to be sure that the last cylinder group has enough blocks
355          * to be viable. If it is too small, reduce the number of blocks
356          * per cylinder group which will have the effect of moving more
357          * blocks into the last cylinder group.
358          */
359         optimalfpg = sblock.fs_fpg;
360         for (;;) {
361                 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
362                 lastminfpg = roundup(sblock.fs_iblkno +
363                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
364                 if (sblock.fs_size < lastminfpg) {
365                         printf("Filesystem size %jd < minimum size of %d\n",
366                             (intmax_t)sblock.fs_size, lastminfpg);
367                         exit(28);
368                 }
369                 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
370                     sblock.fs_size % sblock.fs_fpg == 0)
371                         break;
372                 sblock.fs_fpg -= sblock.fs_frag;
373                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
374                     INOPB(&sblock));
375         }
376         if (optimalfpg != sblock.fs_fpg)
377                 printf("Reduced frags per cylinder group from %d to %d %s\n",
378                    optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
379         sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
380         sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
381         if (Oflag == 1) {
382                 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
383                 sblock.fs_old_nsect = sblock.fs_old_spc;
384                 sblock.fs_old_npsect = sblock.fs_old_spc;
385                 sblock.fs_old_ncyl = sblock.fs_ncg;
386         }
387         /*
388          * fill in remaining fields of the super block
389          */
390         sblock.fs_csaddr = cgdmin(&sblock, 0);
391         sblock.fs_cssize =
392             fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
393         fscs = (struct csum *)calloc(1, sblock.fs_cssize);
394         if (fscs == NULL)
395                 errx(31, "calloc failed");
396         sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
397         if (sblock.fs_sbsize > SBLOCKSIZE)
398                 sblock.fs_sbsize = SBLOCKSIZE;
399         sblock.fs_minfree = minfree;
400         sblock.fs_maxbpg = maxbpg;
401         sblock.fs_optim = opt;
402         sblock.fs_cgrotor = 0;
403         sblock.fs_pendingblocks = 0;
404         sblock.fs_pendinginodes = 0;
405         sblock.fs_fmod = 0;
406         sblock.fs_ronly = 0;
407         sblock.fs_state = 0;
408         sblock.fs_clean = 1;
409         sblock.fs_id[0] = (long)utime;
410         sblock.fs_id[1] = newfs_random();
411         sblock.fs_fsmnt[0] = '\0';
412         csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
413         sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
414             sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
415         sblock.fs_cstotal.cs_nbfree =
416             fragstoblks(&sblock, sblock.fs_dsize) -
417             howmany(csfrags, sblock.fs_frag);
418         sblock.fs_cstotal.cs_nffree =
419             fragnum(&sblock, sblock.fs_size) +
420             (fragnum(&sblock, csfrags) > 0 ?
421              sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
422         sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
423         sblock.fs_cstotal.cs_ndir = 0;
424         sblock.fs_dsize -= csfrags;
425         sblock.fs_time = utime;
426         if (Oflag == 1) {
427                 sblock.fs_old_time = utime;
428                 sblock.fs_old_dsize = sblock.fs_dsize;
429                 sblock.fs_old_csaddr = sblock.fs_csaddr;
430                 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
431                 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
432                 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
433                 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
434         }
435
436         /*
437          * Dump out summary information about file system.
438          */
439 #       define B2MBFACTOR (1 / (1024.0 * 1024.0))
440         printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
441             fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
442             (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
443             sblock.fs_fsize);
444         printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
445             sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
446             sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
447         if (sblock.fs_flags & FS_DOSOFTDEP)
448                 printf("\twith soft updates\n");
449 #       undef B2MBFACTOR
450
451         if (Eflag && !Nflag) {
452                 printf("Erasing sectors [%jd...%jd]\n", 
453                     sblock.fs_sblockloc / disk.d_bsize,
454                     fsbtodb(&sblock, sblock.fs_size) - 1);
455                 berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
456                     sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
457         }
458         /*
459          * Wipe out old UFS1 superblock(s) if necessary.
460          */
461         if (!Nflag && Oflag != 1) {
462                 i = bread(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
463                 if (i == -1)
464                         err(1, "can't read old UFS1 superblock: %s", disk.d_error);
465
466                 if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
467                         fsdummy.fs_magic = 0;
468                         bwrite(&disk, SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
469                         for (i = 0; i < fsdummy.fs_ncg; i++)
470                                 bwrite(&disk, fsbtodb(&fsdummy, cgsblock(&fsdummy, i)),
471                             chdummy, SBLOCKSIZE);
472                 }
473         }
474         if (!Nflag)
475                 sbwrite(&disk, 0);
476         if (Xflag == 1) {
477                 printf("** Exiting on Xflag 1\n");
478                 exit(0);
479         }
480         if (Xflag == 2)
481                 printf("** Leaving BAD MAGIC on Xflag 2\n");
482         else
483                 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
484
485         /*
486          * Now build the cylinders group blocks and
487          * then print out indices of cylinder groups.
488          */
489         printf("super-block backups (for fsck -b #) at:\n");
490         i = 0;
491         width = charsperline();
492         /*
493          * allocate space for superblock, cylinder group map, and
494          * two sets of inode blocks.
495          */
496         if (sblock.fs_bsize < SBLOCKSIZE)
497                 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
498         else
499                 iobufsize = 4 * sblock.fs_bsize;
500         if ((iobuf = calloc(1, iobufsize)) == 0) {
501                 printf("Cannot allocate I/O buffer\n");
502                 exit(38);
503         }
504         /*
505          * Make a copy of the superblock into the buffer that we will be
506          * writing out in each cylinder group.
507          */
508         bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
509         for (cylno = 0; cylno < sblock.fs_ncg; cylno++) {
510                 initcg(cylno, utime);
511                 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
512                     (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cylno)),
513                     cylno < (sblock.fs_ncg-1) ? "," : "");
514                 if (j < 0)
515                         tmpbuf[j = 0] = '\0';
516                 if (i + j >= width) {
517                         printf("\n");
518                         i = 0;
519                 }
520                 i += j;
521                 printf("%s", tmpbuf);
522                 fflush(stdout);
523         }
524         printf("\n");
525         if (Nflag)
526                 exit(0);
527         /*
528          * Now construct the initial file system,
529          * then write out the super-block.
530          */
531         fsinit(utime);
532         if (Oflag == 1) {
533                 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
534                 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
535                 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
536                 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
537         }
538         if (Xflag == 3) {
539                 printf("** Exiting on Xflag 3\n");
540                 exit(0);
541         }
542         if (!Nflag)
543                 sbwrite(&disk, 0);
544         for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
545                 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
546                         sblock.fs_cssize - i < sblock.fs_bsize ?
547                         sblock.fs_cssize - i : sblock.fs_bsize,
548                         ((char *)fscs) + i);
549         /*
550          * Update information about this partion in pack
551          * label, to that it may be updated on disk.
552          */
553         if (pp != NULL) {
554                 pp->p_fstype = FS_BSDFFS;
555                 pp->p_fsize = sblock.fs_fsize;
556                 pp->p_frag = sblock.fs_frag;
557                 pp->p_cpg = sblock.fs_fpg;
558         }
559 }
560
561 /*
562  * Initialize a cylinder group.
563  */
564 void
565 initcg(int cylno, time_t utime)
566 {
567         long i, j, d, dlower, dupper, blkno, start;
568         ufs2_daddr_t cbase, dmax;
569         struct ufs1_dinode *dp1;
570         struct ufs2_dinode *dp2;
571         struct csum *cs;
572
573         /*
574          * Determine block bounds for cylinder group.
575          * Allow space for super block summary information in first
576          * cylinder group.
577          */
578         cbase = cgbase(&sblock, cylno);
579         dmax = cbase + sblock.fs_fpg;
580         if (dmax > sblock.fs_size)
581                 dmax = sblock.fs_size;
582         dlower = cgsblock(&sblock, cylno) - cbase;
583         dupper = cgdmin(&sblock, cylno) - cbase;
584         if (cylno == 0)
585                 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
586         cs = &fscs[cylno];
587         memset(&acg, 0, sblock.fs_cgsize);
588         acg.cg_time = utime;
589         acg.cg_magic = CG_MAGIC;
590         acg.cg_cgx = cylno;
591         acg.cg_niblk = sblock.fs_ipg;
592         acg.cg_initediblk = sblock.fs_ipg < 2 * INOPB(&sblock) ?
593             sblock.fs_ipg : 2 * INOPB(&sblock);
594         acg.cg_ndblk = dmax - cbase;
595         if (sblock.fs_contigsumsize > 0)
596                 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
597         start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
598         if (Oflag == 2) {
599                 acg.cg_iusedoff = start;
600         } else {
601                 acg.cg_old_ncyl = sblock.fs_old_cpg;
602                 acg.cg_old_time = acg.cg_time;
603                 acg.cg_time = 0;
604                 acg.cg_old_niblk = acg.cg_niblk;
605                 acg.cg_niblk = 0;
606                 acg.cg_initediblk = 0;
607                 acg.cg_old_btotoff = start;
608                 acg.cg_old_boff = acg.cg_old_btotoff +
609                     sblock.fs_old_cpg * sizeof(int32_t);
610                 acg.cg_iusedoff = acg.cg_old_boff +
611                     sblock.fs_old_cpg * sizeof(u_int16_t);
612         }
613         acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
614         acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
615         if (sblock.fs_contigsumsize > 0) {
616                 acg.cg_clustersumoff =
617                     roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
618                 acg.cg_clustersumoff -= sizeof(u_int32_t);
619                 acg.cg_clusteroff = acg.cg_clustersumoff +
620                     (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
621                 acg.cg_nextfreeoff = acg.cg_clusteroff +
622                     howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
623         }
624         if (acg.cg_nextfreeoff > sblock.fs_cgsize) {
625                 printf("Panic: cylinder group too big\n");
626                 exit(37);
627         }
628         acg.cg_cs.cs_nifree += sblock.fs_ipg;
629         if (cylno == 0)
630                 for (i = 0; i < (long)ROOTINO; i++) {
631                         setbit(cg_inosused(&acg), i);
632                         acg.cg_cs.cs_nifree--;
633                 }
634         if (cylno > 0) {
635                 /*
636                  * In cylno 0, beginning space is reserved
637                  * for boot and super blocks.
638                  */
639                 for (d = 0; d < dlower; d += sblock.fs_frag) {
640                         blkno = d / sblock.fs_frag;
641                         setblock(&sblock, cg_blksfree(&acg), blkno);
642                         if (sblock.fs_contigsumsize > 0)
643                                 setbit(cg_clustersfree(&acg), blkno);
644                         acg.cg_cs.cs_nbfree++;
645                 }
646         }
647         if ((i = dupper % sblock.fs_frag)) {
648                 acg.cg_frsum[sblock.fs_frag - i]++;
649                 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
650                         setbit(cg_blksfree(&acg), dupper);
651                         acg.cg_cs.cs_nffree++;
652                 }
653         }
654         for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
655              d += sblock.fs_frag) {
656                 blkno = d / sblock.fs_frag;
657                 setblock(&sblock, cg_blksfree(&acg), blkno);
658                 if (sblock.fs_contigsumsize > 0)
659                         setbit(cg_clustersfree(&acg), blkno);
660                 acg.cg_cs.cs_nbfree++;
661         }
662         if (d < acg.cg_ndblk) {
663                 acg.cg_frsum[acg.cg_ndblk - d]++;
664                 for (; d < acg.cg_ndblk; d++) {
665                         setbit(cg_blksfree(&acg), d);
666                         acg.cg_cs.cs_nffree++;
667                 }
668         }
669         if (sblock.fs_contigsumsize > 0) {
670                 int32_t *sump = cg_clustersum(&acg);
671                 u_char *mapp = cg_clustersfree(&acg);
672                 int map = *mapp++;
673                 int bit = 1;
674                 int run = 0;
675
676                 for (i = 0; i < acg.cg_nclusterblks; i++) {
677                         if ((map & bit) != 0)
678                                 run++;
679                         else if (run != 0) {
680                                 if (run > sblock.fs_contigsumsize)
681                                         run = sblock.fs_contigsumsize;
682                                 sump[run]++;
683                                 run = 0;
684                         }
685                         if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
686                                 bit <<= 1;
687                         else {
688                                 map = *mapp++;
689                                 bit = 1;
690                         }
691                 }
692                 if (run != 0) {
693                         if (run > sblock.fs_contigsumsize)
694                                 run = sblock.fs_contigsumsize;
695                         sump[run]++;
696                 }
697         }
698         *cs = acg.cg_cs;
699         /*
700          * Write out the duplicate super block, the cylinder group map
701          * and two blocks worth of inodes in a single write.
702          */
703         start = sblock.fs_bsize > SBLOCKSIZE ? sblock.fs_bsize : SBLOCKSIZE;
704         bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
705         start += sblock.fs_bsize;
706         dp1 = (struct ufs1_dinode *)(&iobuf[start]);
707         dp2 = (struct ufs2_dinode *)(&iobuf[start]);
708         for (i = 0; i < acg.cg_initediblk; i++) {
709                 if (sblock.fs_magic == FS_UFS1_MAGIC) {
710                         dp1->di_gen = newfs_random();
711                         dp1++;
712                 } else {
713                         dp2->di_gen = newfs_random();
714                         dp2++;
715                 }
716         }
717         wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
718         /*
719          * For the old file system, we have to initialize all the inodes.
720          */
721         if (Oflag == 1) {
722                 for (i = 2 * sblock.fs_frag;
723                      i < sblock.fs_ipg / INOPF(&sblock);
724                      i += sblock.fs_frag) {
725                         dp1 = (struct ufs1_dinode *)(&iobuf[start]);
726                         for (j = 0; j < INOPB(&sblock); j++) {
727                                 dp1->di_gen = newfs_random();
728                                 dp1++;
729                         }
730                         wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
731                             sblock.fs_bsize, &iobuf[start]);
732                 }
733         }
734 }
735
736 /*
737  * initialize the file system
738  */
739 #define ROOTLINKCNT 3
740
741 struct direct root_dir[] = {
742         { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
743         { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
744         { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
745 };
746
747 #define SNAPLINKCNT 2
748
749 struct direct snap_dir[] = {
750         { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
751         { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
752 };
753
754 void
755 fsinit(time_t utime)
756 {
757         union dinode node;
758         struct group *grp;
759         gid_t gid;
760         int entries;
761
762         memset(&node, 0, sizeof node);
763         if ((grp = getgrnam("operator")) != NULL) {
764                 gid = grp->gr_gid;
765         } else {
766                 warnx("Cannot retrieve operator gid, using gid 0.");
767                 gid = 0;
768         }
769         entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
770         if (sblock.fs_magic == FS_UFS1_MAGIC) {
771                 /*
772                  * initialize the node
773                  */
774                 node.dp1.di_atime = utime;
775                 node.dp1.di_mtime = utime;
776                 node.dp1.di_ctime = utime;
777                 /*
778                  * create the root directory
779                  */
780                 node.dp1.di_mode = IFDIR | UMASK;
781                 node.dp1.di_nlink = entries;
782                 node.dp1.di_size = makedir(root_dir, entries);
783                 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
784                 node.dp1.di_blocks =
785                     btodb(fragroundup(&sblock, node.dp1.di_size));
786                 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
787                     iobuf);
788                 iput(&node, ROOTINO);
789                 if (!nflag) {
790                         /*
791                          * create the .snap directory
792                          */
793                         node.dp1.di_mode |= 020;
794                         node.dp1.di_gid = gid;
795                         node.dp1.di_nlink = SNAPLINKCNT;
796                         node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
797                                 node.dp1.di_db[0] =
798                                     alloc(sblock.fs_fsize, node.dp1.di_mode);
799                         node.dp1.di_blocks =
800                             btodb(fragroundup(&sblock, node.dp1.di_size));
801                                 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
802                                     sblock.fs_fsize, iobuf);
803                         iput(&node, ROOTINO + 1);
804                 }
805         } else {
806                 /*
807                  * initialize the node
808                  */
809                 node.dp2.di_atime = utime;
810                 node.dp2.di_mtime = utime;
811                 node.dp2.di_ctime = utime;
812                 node.dp2.di_birthtime = utime;
813                 /*
814                  * create the root directory
815                  */
816                 node.dp2.di_mode = IFDIR | UMASK;
817                 node.dp2.di_nlink = entries;
818                 node.dp2.di_size = makedir(root_dir, entries);
819                 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
820                 node.dp2.di_blocks =
821                     btodb(fragroundup(&sblock, node.dp2.di_size));
822                 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
823                     iobuf);
824                 iput(&node, ROOTINO);
825                 if (!nflag) {
826                         /*
827                          * create the .snap directory
828                          */
829                         node.dp2.di_mode |= 020;
830                         node.dp2.di_gid = gid;
831                         node.dp2.di_nlink = SNAPLINKCNT;
832                         node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
833                                 node.dp2.di_db[0] =
834                                     alloc(sblock.fs_fsize, node.dp2.di_mode);
835                         node.dp2.di_blocks =
836                             btodb(fragroundup(&sblock, node.dp2.di_size));
837                                 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 
838                                     sblock.fs_fsize, iobuf);
839                         iput(&node, ROOTINO + 1);
840                 }
841         }
842 }
843
844 /*
845  * construct a set of directory entries in "iobuf".
846  * return size of directory.
847  */
848 int
849 makedir(struct direct *protodir, int entries)
850 {
851         char *cp;
852         int i, spcleft;
853
854         spcleft = DIRBLKSIZ;
855         memset(iobuf, 0, DIRBLKSIZ);
856         for (cp = iobuf, i = 0; i < entries - 1; i++) {
857                 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
858                 memmove(cp, &protodir[i], protodir[i].d_reclen);
859                 cp += protodir[i].d_reclen;
860                 spcleft -= protodir[i].d_reclen;
861         }
862         protodir[i].d_reclen = spcleft;
863         memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
864         return (DIRBLKSIZ);
865 }
866
867 /*
868  * allocate a block or frag
869  */
870 ufs2_daddr_t
871 alloc(int size, int mode)
872 {
873         int i, d, blkno, frag;
874
875         bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
876             sblock.fs_cgsize);
877         if (acg.cg_magic != CG_MAGIC) {
878                 printf("cg 0: bad magic number\n");
879                 exit(38);
880         }
881         if (acg.cg_cs.cs_nbfree == 0) {
882                 printf("first cylinder group ran out of space\n");
883                 exit(39);
884         }
885         for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
886                 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
887                         goto goth;
888         printf("internal error: can't find block in cyl 0\n");
889         exit(40);
890 goth:
891         blkno = fragstoblks(&sblock, d);
892         clrblock(&sblock, cg_blksfree(&acg), blkno);
893         if (sblock.fs_contigsumsize > 0)
894                 clrbit(cg_clustersfree(&acg), blkno);
895         acg.cg_cs.cs_nbfree--;
896         sblock.fs_cstotal.cs_nbfree--;
897         fscs[0].cs_nbfree--;
898         if (mode & IFDIR) {
899                 acg.cg_cs.cs_ndir++;
900                 sblock.fs_cstotal.cs_ndir++;
901                 fscs[0].cs_ndir++;
902         }
903         if (size != sblock.fs_bsize) {
904                 frag = howmany(size, sblock.fs_fsize);
905                 fscs[0].cs_nffree += sblock.fs_frag - frag;
906                 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
907                 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
908                 acg.cg_frsum[sblock.fs_frag - frag]++;
909                 for (i = frag; i < sblock.fs_frag; i++)
910                         setbit(cg_blksfree(&acg), d + i);
911         }
912         /* XXX cgwrite(&disk, 0)??? */
913         wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
914             (char *)&acg);
915         return ((ufs2_daddr_t)d);
916 }
917
918 /*
919  * Allocate an inode on the disk
920  */
921 void
922 iput(union dinode *ip, ino_t ino)
923 {
924         ufs2_daddr_t d;
925         int c;
926
927         c = ino_to_cg(&sblock, ino);
928         bread(&disk, fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
929             sblock.fs_cgsize);
930         if (acg.cg_magic != CG_MAGIC) {
931                 printf("cg 0: bad magic number\n");
932                 exit(31);
933         }
934         acg.cg_cs.cs_nifree--;
935         setbit(cg_inosused(&acg), ino);
936         wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
937             (char *)&acg);
938         sblock.fs_cstotal.cs_nifree--;
939         fscs[0].cs_nifree--;
940         if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
941                 printf("fsinit: inode value out of range (%d).\n", ino);
942                 exit(32);
943         }
944         d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
945         bread(&disk, d, (char *)iobuf, sblock.fs_bsize);
946         if (sblock.fs_magic == FS_UFS1_MAGIC)
947                 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
948                     ip->dp1;
949         else
950                 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
951                     ip->dp2;
952         wtfs(d, sblock.fs_bsize, (char *)iobuf);
953 }
954
955 /*
956  * possibly write to disk
957  */
958 static void
959 wtfs(ufs2_daddr_t bno, int size, char *bf)
960 {
961         if (Nflag)
962                 return;
963         if (bwrite(&disk, bno, bf, size) < 0)
964                 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
965 }
966
967 /*
968  * check if a block is available
969  */
970 static int
971 isblock(struct fs *fs, unsigned char *cp, int h)
972 {
973         unsigned char mask;
974
975         switch (fs->fs_frag) {
976         case 8:
977                 return (cp[h] == 0xff);
978         case 4:
979                 mask = 0x0f << ((h & 0x1) << 2);
980                 return ((cp[h >> 1] & mask) == mask);
981         case 2:
982                 mask = 0x03 << ((h & 0x3) << 1);
983                 return ((cp[h >> 2] & mask) == mask);
984         case 1:
985                 mask = 0x01 << (h & 0x7);
986                 return ((cp[h >> 3] & mask) == mask);
987         default:
988                 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
989                 return (0);
990         }
991 }
992
993 /*
994  * take a block out of the map
995  */
996 static void
997 clrblock(struct fs *fs, unsigned char *cp, int h)
998 {
999         switch ((fs)->fs_frag) {
1000         case 8:
1001                 cp[h] = 0;
1002                 return;
1003         case 4:
1004                 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1005                 return;
1006         case 2:
1007                 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1008                 return;
1009         case 1:
1010                 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1011                 return;
1012         default:
1013                 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1014                 return;
1015         }
1016 }
1017
1018 /*
1019  * put a block into the map
1020  */
1021 static void
1022 setblock(struct fs *fs, unsigned char *cp, int h)
1023 {
1024         switch (fs->fs_frag) {
1025         case 8:
1026                 cp[h] = 0xff;
1027                 return;
1028         case 4:
1029                 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1030                 return;
1031         case 2:
1032                 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1033                 return;
1034         case 1:
1035                 cp[h >> 3] |= (0x01 << (h & 0x7));
1036                 return;
1037         default:
1038                 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1039                 return;
1040         }
1041 }
1042
1043 /*
1044  * Determine the number of characters in a
1045  * single line.
1046  */
1047
1048 static int
1049 charsperline(void)
1050 {
1051         int columns;
1052         char *cp;
1053         struct winsize ws;
1054
1055         columns = 0;
1056         if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1057                 columns = ws.ws_col;
1058         if (columns == 0 && (cp = getenv("COLUMNS")))
1059                 columns = atoi(cp);
1060         if (columns == 0)
1061                 columns = 80;   /* last resort */
1062         return (columns);
1063 }
1064
1065 static int
1066 ilog2(int val)
1067 {
1068         u_int n;
1069
1070         for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1071                 if (1 << n == val)
1072                         return (n);
1073         errx(1, "ilog2: %d is not a power of 2\n", val);
1074 }
1075
1076 /*
1077  * For the regression test, return predictable random values.
1078  * Otherwise use a true random number generator.
1079  */
1080 static u_int32_t
1081 newfs_random(void)
1082 {
1083         static int nextnum = 1;
1084
1085         if (Rflag)
1086                 return (nextnum++);
1087         return (arc4random());
1088 }