]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sbin/newfs/mkfs.c
Merge branch 'releng/11.3' into releng-CDN/11.3
[FreeBSD/FreeBSD.git] / sbin / newfs / mkfs.c
1 /*
2  * Copyright (c) 2002 Networks Associates Technology, Inc.
3  * All rights reserved.
4  *
5  * This software was developed for the FreeBSD Project by Marshall
6  * Kirk McKusick and Network Associates Laboratories, the Security
7  * Research Division of Network Associates, Inc. under DARPA/SPAWAR
8  * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS
9  * research program.
10  *
11  * Copyright (c) 1980, 1989, 1993
12  *      The Regents of the University of California.  All rights reserved.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 4. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  */
38
39 #if 0
40 #ifndef lint
41 static char sccsid[] = "@(#)mkfs.c      8.11 (Berkeley) 5/3/95";
42 #endif /* not lint */
43 #endif
44 #include <sys/cdefs.h>
45 __FBSDID("$FreeBSD$");
46
47 #include <sys/param.h>
48 #include <sys/disklabel.h>
49 #include <sys/file.h>
50 #include <sys/ioctl.h>
51 #include <sys/mman.h>
52 #include <sys/resource.h>
53 #include <sys/stat.h>
54 #include <sys/wait.h>
55 #include <err.h>
56 #include <grp.h>
57 #include <limits.h>
58 #include <signal.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <stdint.h>
62 #include <stdio.h>
63 #include <time.h>
64 #include <unistd.h>
65 #include <ufs/ufs/dinode.h>
66 #include <ufs/ufs/dir.h>
67 #include <ufs/ffs/fs.h>
68 #include "newfs.h"
69
70 /*
71  * make file system for cylinder-group style file systems
72  */
73 #define UMASK           0755
74 #define POWEROF2(num)   (((num) & ((num) - 1)) == 0)
75
76 static struct   csum *fscs;
77 #define sblock  disk.d_fs
78 #define acg     disk.d_cg
79
80 union dinode {
81         struct ufs1_dinode dp1;
82         struct ufs2_dinode dp2;
83 };
84 #define DIP(dp, field) \
85         ((sblock.fs_magic == FS_UFS1_MAGIC) ? \
86         (dp)->dp1.field : (dp)->dp2.field)
87
88 static caddr_t iobuf;
89 static long iobufsize;
90 static ufs2_daddr_t alloc(int size, int mode);
91 static int charsperline(void);
92 static void clrblock(struct fs *, unsigned char *, int);
93 static void fsinit(time_t);
94 static int ilog2(int);
95 static void initcg(int, time_t);
96 static int isblock(struct fs *, unsigned char *, int);
97 static void iput(union dinode *, ino_t);
98 static int makedir(struct direct *, int);
99 static void setblock(struct fs *, unsigned char *, int);
100 static void wtfs(ufs2_daddr_t, int, char *);
101 static u_int32_t newfs_random(void);
102
103 static int
104 do_sbwrite(struct uufsd *disk)
105 {
106         if (!disk->d_sblock)
107                 disk->d_sblock = disk->d_fs.fs_sblockloc / disk->d_bsize;
108         return (pwrite(disk->d_fd, &disk->d_fs, SBLOCKSIZE, (off_t)((part_ofs +
109             disk->d_sblock) * disk->d_bsize)));
110 }
111
112 void
113 mkfs(struct partition *pp, char *fsys)
114 {
115         int fragsperinode, optimalfpg, origdensity, minfpg, lastminfpg;
116         long i, j, csfrags;
117         uint cg;
118         time_t utime;
119         quad_t sizepb;
120         int width;
121         ino_t maxinum;
122         int minfragsperinode;   /* minimum ratio of frags to inodes */
123         char tmpbuf[100];       /* XXX this will break in about 2,500 years */
124         struct fsrecovery fsr;
125         union {
126                 struct fs fdummy;
127                 char cdummy[SBLOCKSIZE];
128         } dummy;
129 #define fsdummy dummy.fdummy
130 #define chdummy dummy.cdummy
131
132         /*
133          * Our blocks == sector size, and the version of UFS we are using is
134          * specified by Oflag.
135          */
136         disk.d_bsize = sectorsize;
137         disk.d_ufs = Oflag;
138         if (Rflag)
139                 utime = 1000000000;
140         else
141                 time(&utime);
142         sblock.fs_old_flags = FS_FLAGS_UPDATED;
143         sblock.fs_flags = 0;
144         if (Uflag)
145                 sblock.fs_flags |= FS_DOSOFTDEP;
146         if (Lflag)
147                 strlcpy(sblock.fs_volname, volumelabel, MAXVOLLEN);
148         if (Jflag)
149                 sblock.fs_flags |= FS_GJOURNAL;
150         if (lflag)
151                 sblock.fs_flags |= FS_MULTILABEL;
152         if (tflag)
153                 sblock.fs_flags |= FS_TRIM;
154         /*
155          * Validate the given file system size.
156          * Verify that its last block can actually be accessed.
157          * Convert to file system fragment sized units.
158          */
159         if (fssize <= 0) {
160                 printf("preposterous size %jd\n", (intmax_t)fssize);
161                 exit(13);
162         }
163         wtfs(fssize - (realsectorsize / DEV_BSIZE), realsectorsize,
164             (char *)&sblock);
165         /*
166          * collect and verify the file system density info
167          */
168         sblock.fs_avgfilesize = avgfilesize;
169         sblock.fs_avgfpdir = avgfilesperdir;
170         if (sblock.fs_avgfilesize <= 0)
171                 printf("illegal expected average file size %d\n",
172                     sblock.fs_avgfilesize), exit(14);
173         if (sblock.fs_avgfpdir <= 0)
174                 printf("illegal expected number of files per directory %d\n",
175                     sblock.fs_avgfpdir), exit(15);
176
177 restart:
178         /*
179          * collect and verify the block and fragment sizes
180          */
181         sblock.fs_bsize = bsize;
182         sblock.fs_fsize = fsize;
183         if (!POWEROF2(sblock.fs_bsize)) {
184                 printf("block size must be a power of 2, not %d\n",
185                     sblock.fs_bsize);
186                 exit(16);
187         }
188         if (!POWEROF2(sblock.fs_fsize)) {
189                 printf("fragment size must be a power of 2, not %d\n",
190                     sblock.fs_fsize);
191                 exit(17);
192         }
193         if (sblock.fs_fsize < sectorsize) {
194                 printf("increasing fragment size from %d to sector size (%d)\n",
195                     sblock.fs_fsize, sectorsize);
196                 sblock.fs_fsize = sectorsize;
197         }
198         if (sblock.fs_bsize > MAXBSIZE) {
199                 printf("decreasing block size from %d to maximum (%d)\n",
200                     sblock.fs_bsize, MAXBSIZE);
201                 sblock.fs_bsize = MAXBSIZE;
202         }
203         if (sblock.fs_bsize < MINBSIZE) {
204                 printf("increasing block size from %d to minimum (%d)\n",
205                     sblock.fs_bsize, MINBSIZE);
206                 sblock.fs_bsize = MINBSIZE;
207         }
208         if (sblock.fs_fsize > MAXBSIZE) {
209                 printf("decreasing fragment size from %d to maximum (%d)\n",
210                     sblock.fs_fsize, MAXBSIZE);
211                 sblock.fs_fsize = MAXBSIZE;
212         }
213         if (sblock.fs_bsize < sblock.fs_fsize) {
214                 printf("increasing block size from %d to fragment size (%d)\n",
215                     sblock.fs_bsize, sblock.fs_fsize);
216                 sblock.fs_bsize = sblock.fs_fsize;
217         }
218         if (sblock.fs_fsize * MAXFRAG < sblock.fs_bsize) {
219                 printf(
220                 "increasing fragment size from %d to block size / %d (%d)\n",
221                     sblock.fs_fsize, MAXFRAG, sblock.fs_bsize / MAXFRAG);
222                 sblock.fs_fsize = sblock.fs_bsize / MAXFRAG;
223         }
224         if (maxbsize == 0)
225                 maxbsize = bsize;
226         if (maxbsize < bsize || !POWEROF2(maxbsize)) {
227                 sblock.fs_maxbsize = sblock.fs_bsize;
228                 printf("Extent size set to %d\n", sblock.fs_maxbsize);
229         } else if (sblock.fs_maxbsize > FS_MAXCONTIG * sblock.fs_bsize) {
230                 sblock.fs_maxbsize = FS_MAXCONTIG * sblock.fs_bsize;
231                 printf("Extent size reduced to %d\n", sblock.fs_maxbsize);
232         } else {
233                 sblock.fs_maxbsize = maxbsize;
234         }
235         /*
236          * Maxcontig sets the default for the maximum number of blocks
237          * that may be allocated sequentially. With file system clustering
238          * it is possible to allocate contiguous blocks up to the maximum
239          * transfer size permitted by the controller or buffering.
240          */
241         if (maxcontig == 0)
242                 maxcontig = MAX(1, MAXPHYS / bsize);
243         sblock.fs_maxcontig = maxcontig;
244         if (sblock.fs_maxcontig < sblock.fs_maxbsize / sblock.fs_bsize) {
245                 sblock.fs_maxcontig = sblock.fs_maxbsize / sblock.fs_bsize;
246                 printf("Maxcontig raised to %d\n", sblock.fs_maxbsize);
247         }
248         if (sblock.fs_maxcontig > 1)
249                 sblock.fs_contigsumsize = MIN(sblock.fs_maxcontig,FS_MAXCONTIG);
250         sblock.fs_bmask = ~(sblock.fs_bsize - 1);
251         sblock.fs_fmask = ~(sblock.fs_fsize - 1);
252         sblock.fs_qbmask = ~sblock.fs_bmask;
253         sblock.fs_qfmask = ~sblock.fs_fmask;
254         sblock.fs_bshift = ilog2(sblock.fs_bsize);
255         sblock.fs_fshift = ilog2(sblock.fs_fsize);
256         sblock.fs_frag = numfrags(&sblock, sblock.fs_bsize);
257         sblock.fs_fragshift = ilog2(sblock.fs_frag);
258         if (sblock.fs_frag > MAXFRAG) {
259                 printf("fragment size %d is still too small (can't happen)\n",
260                     sblock.fs_bsize / MAXFRAG);
261                 exit(21);
262         }
263         sblock.fs_fsbtodb = ilog2(sblock.fs_fsize / sectorsize);
264         sblock.fs_size = fssize = dbtofsb(&sblock, fssize);
265         sblock.fs_providersize = dbtofsb(&sblock, mediasize / sectorsize);
266
267         /*
268          * Before the filesystem is finally initialized, mark it
269          * as incompletely initialized.
270          */
271         sblock.fs_magic = FS_BAD_MAGIC;
272
273         if (Oflag == 1) {
274                 sblock.fs_sblockloc = SBLOCK_UFS1;
275                 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs1_daddr_t);
276                 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs1_dinode);
277                 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
278                     sizeof(ufs1_daddr_t));
279                 sblock.fs_old_inodefmt = FS_44INODEFMT;
280                 sblock.fs_old_cgoffset = 0;
281                 sblock.fs_old_cgmask = 0xffffffff;
282                 sblock.fs_old_size = sblock.fs_size;
283                 sblock.fs_old_rotdelay = 0;
284                 sblock.fs_old_rps = 60;
285                 sblock.fs_old_nspf = sblock.fs_fsize / sectorsize;
286                 sblock.fs_old_cpg = 1;
287                 sblock.fs_old_interleave = 1;
288                 sblock.fs_old_trackskew = 0;
289                 sblock.fs_old_cpc = 0;
290                 sblock.fs_old_postblformat = 1;
291                 sblock.fs_old_nrpos = 1;
292         } else {
293                 sblock.fs_sblockloc = SBLOCK_UFS2;
294                 sblock.fs_nindir = sblock.fs_bsize / sizeof(ufs2_daddr_t);
295                 sblock.fs_inopb = sblock.fs_bsize / sizeof(struct ufs2_dinode);
296                 sblock.fs_maxsymlinklen = ((NDADDR + NIADDR) *
297                     sizeof(ufs2_daddr_t));
298         }
299         sblock.fs_sblkno =
300             roundup(howmany(sblock.fs_sblockloc + SBLOCKSIZE, sblock.fs_fsize),
301                 sblock.fs_frag);
302         sblock.fs_cblkno = sblock.fs_sblkno +
303             roundup(howmany(SBLOCKSIZE, sblock.fs_fsize), sblock.fs_frag);
304         sblock.fs_iblkno = sblock.fs_cblkno + sblock.fs_frag;
305         sblock.fs_maxfilesize = sblock.fs_bsize * NDADDR - 1;
306         for (sizepb = sblock.fs_bsize, i = 0; i < NIADDR; i++) {
307                 sizepb *= NINDIR(&sblock);
308                 sblock.fs_maxfilesize += sizepb;
309         }
310
311         /*
312          * It's impossible to create a snapshot in case that fs_maxfilesize
313          * is smaller than the fssize.
314          */
315         if (sblock.fs_maxfilesize < (u_quad_t)fssize) {
316                 warnx("WARNING: You will be unable to create snapshots on this "
317                       "file system.  Correct by using a larger blocksize.");
318         }
319
320         /*
321          * Calculate the number of blocks to put into each cylinder group.
322          *
323          * This algorithm selects the number of blocks per cylinder
324          * group. The first goal is to have at least enough data blocks
325          * in each cylinder group to meet the density requirement. Once
326          * this goal is achieved we try to expand to have at least
327          * MINCYLGRPS cylinder groups. Once this goal is achieved, we
328          * pack as many blocks into each cylinder group map as will fit.
329          *
330          * We start by calculating the smallest number of blocks that we
331          * can put into each cylinder group. If this is too big, we reduce
332          * the density until it fits.
333          */
334         maxinum = (((int64_t)(1)) << 32) - INOPB(&sblock);
335         minfragsperinode = 1 + fssize / maxinum;
336         if (density == 0) {
337                 density = MAX(NFPI, minfragsperinode) * fsize;
338         } else if (density < minfragsperinode * fsize) {
339                 origdensity = density;
340                 density = minfragsperinode * fsize;
341                 fprintf(stderr, "density increased from %d to %d\n",
342                     origdensity, density);
343         }
344         origdensity = density;
345         for (;;) {
346                 fragsperinode = MAX(numfrags(&sblock, density), 1);
347                 if (fragsperinode < minfragsperinode) {
348                         bsize <<= 1;
349                         fsize <<= 1;
350                         printf("Block size too small for a file system %s %d\n",
351                              "of this size. Increasing blocksize to", bsize);
352                         goto restart;
353                 }
354                 minfpg = fragsperinode * INOPB(&sblock);
355                 if (minfpg > sblock.fs_size)
356                         minfpg = sblock.fs_size;
357                 sblock.fs_ipg = INOPB(&sblock);
358                 sblock.fs_fpg = roundup(sblock.fs_iblkno +
359                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
360                 if (sblock.fs_fpg < minfpg)
361                         sblock.fs_fpg = minfpg;
362                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
363                     INOPB(&sblock));
364                 sblock.fs_fpg = roundup(sblock.fs_iblkno +
365                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
366                 if (sblock.fs_fpg < minfpg)
367                         sblock.fs_fpg = minfpg;
368                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
369                     INOPB(&sblock));
370                 if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
371                         break;
372                 density -= sblock.fs_fsize;
373         }
374         if (density != origdensity)
375                 printf("density reduced from %d to %d\n", origdensity, density);
376         /*
377          * Start packing more blocks into the cylinder group until
378          * it cannot grow any larger, the number of cylinder groups
379          * drops below MINCYLGRPS, or we reach the size requested.
380          * For UFS1 inodes per cylinder group are stored in an int16_t
381          * so fs_ipg is limited to 2^15 - 1.
382          */
383         for ( ; sblock.fs_fpg < maxblkspercg; sblock.fs_fpg += sblock.fs_frag) {
384                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
385                     INOPB(&sblock));
386                 if (Oflag > 1 || (Oflag == 1 && sblock.fs_ipg <= 0x7fff)) {
387                         if (sblock.fs_size / sblock.fs_fpg < MINCYLGRPS)
388                                 break;
389                         if (CGSIZE(&sblock) < (unsigned long)sblock.fs_bsize)
390                                 continue;
391                         if (CGSIZE(&sblock) == (unsigned long)sblock.fs_bsize)
392                                 break;
393                 }
394                 sblock.fs_fpg -= sblock.fs_frag;
395                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
396                     INOPB(&sblock));
397                 break;
398         }
399         /*
400          * Check to be sure that the last cylinder group has enough blocks
401          * to be viable. If it is too small, reduce the number of blocks
402          * per cylinder group which will have the effect of moving more
403          * blocks into the last cylinder group.
404          */
405         optimalfpg = sblock.fs_fpg;
406         for (;;) {
407                 sblock.fs_ncg = howmany(sblock.fs_size, sblock.fs_fpg);
408                 lastminfpg = roundup(sblock.fs_iblkno +
409                     sblock.fs_ipg / INOPF(&sblock), sblock.fs_frag);
410                 if (sblock.fs_size < lastminfpg) {
411                         printf("Filesystem size %jd < minimum size of %d\n",
412                             (intmax_t)sblock.fs_size, lastminfpg);
413                         exit(28);
414                 }
415                 if (sblock.fs_size % sblock.fs_fpg >= lastminfpg ||
416                     sblock.fs_size % sblock.fs_fpg == 0)
417                         break;
418                 sblock.fs_fpg -= sblock.fs_frag;
419                 sblock.fs_ipg = roundup(howmany(sblock.fs_fpg, fragsperinode),
420                     INOPB(&sblock));
421         }
422         if (optimalfpg != sblock.fs_fpg)
423                 printf("Reduced frags per cylinder group from %d to %d %s\n",
424                    optimalfpg, sblock.fs_fpg, "to enlarge last cyl group");
425         sblock.fs_cgsize = fragroundup(&sblock, CGSIZE(&sblock));
426         sblock.fs_dblkno = sblock.fs_iblkno + sblock.fs_ipg / INOPF(&sblock);
427         if (Oflag == 1) {
428                 sblock.fs_old_spc = sblock.fs_fpg * sblock.fs_old_nspf;
429                 sblock.fs_old_nsect = sblock.fs_old_spc;
430                 sblock.fs_old_npsect = sblock.fs_old_spc;
431                 sblock.fs_old_ncyl = sblock.fs_ncg;
432         }
433         /*
434          * fill in remaining fields of the super block
435          */
436         sblock.fs_csaddr = cgdmin(&sblock, 0);
437         sblock.fs_cssize =
438             fragroundup(&sblock, sblock.fs_ncg * sizeof(struct csum));
439         fscs = (struct csum *)calloc(1, sblock.fs_cssize);
440         if (fscs == NULL)
441                 errx(31, "calloc failed");
442         sblock.fs_sbsize = fragroundup(&sblock, sizeof(struct fs));
443         if (sblock.fs_sbsize > SBLOCKSIZE)
444                 sblock.fs_sbsize = SBLOCKSIZE;
445         sblock.fs_minfree = minfree;
446         if (metaspace > 0 && metaspace < sblock.fs_fpg / 2)
447                 sblock.fs_metaspace = blknum(&sblock, metaspace);
448         else if (metaspace != -1)
449                 /* reserve half of minfree for metadata blocks */
450                 sblock.fs_metaspace = blknum(&sblock,
451                     (sblock.fs_fpg * minfree) / 200);
452         if (maxbpg == 0)
453                 sblock.fs_maxbpg = MAXBLKPG(sblock.fs_bsize);
454         else
455                 sblock.fs_maxbpg = maxbpg;
456         sblock.fs_optim = opt;
457         sblock.fs_cgrotor = 0;
458         sblock.fs_pendingblocks = 0;
459         sblock.fs_pendinginodes = 0;
460         sblock.fs_fmod = 0;
461         sblock.fs_ronly = 0;
462         sblock.fs_state = 0;
463         sblock.fs_clean = 1;
464         sblock.fs_id[0] = (long)utime;
465         sblock.fs_id[1] = newfs_random();
466         sblock.fs_fsmnt[0] = '\0';
467         csfrags = howmany(sblock.fs_cssize, sblock.fs_fsize);
468         sblock.fs_dsize = sblock.fs_size - sblock.fs_sblkno -
469             sblock.fs_ncg * (sblock.fs_dblkno - sblock.fs_sblkno);
470         sblock.fs_cstotal.cs_nbfree =
471             fragstoblks(&sblock, sblock.fs_dsize) -
472             howmany(csfrags, sblock.fs_frag);
473         sblock.fs_cstotal.cs_nffree =
474             fragnum(&sblock, sblock.fs_size) +
475             (fragnum(&sblock, csfrags) > 0 ?
476              sblock.fs_frag - fragnum(&sblock, csfrags) : 0);
477         sblock.fs_cstotal.cs_nifree = sblock.fs_ncg * sblock.fs_ipg - ROOTINO;
478         sblock.fs_cstotal.cs_ndir = 0;
479         sblock.fs_dsize -= csfrags;
480         sblock.fs_time = utime;
481         if (Oflag == 1) {
482                 sblock.fs_old_time = utime;
483                 sblock.fs_old_dsize = sblock.fs_dsize;
484                 sblock.fs_old_csaddr = sblock.fs_csaddr;
485                 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
486                 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
487                 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
488                 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
489         }
490
491         /*
492          * Dump out summary information about file system.
493          */
494 #       define B2MBFACTOR (1 / (1024.0 * 1024.0))
495         printf("%s: %.1fMB (%jd sectors) block size %d, fragment size %d\n",
496             fsys, (float)sblock.fs_size * sblock.fs_fsize * B2MBFACTOR,
497             (intmax_t)fsbtodb(&sblock, sblock.fs_size), sblock.fs_bsize,
498             sblock.fs_fsize);
499         printf("\tusing %d cylinder groups of %.2fMB, %d blks, %d inodes.\n",
500             sblock.fs_ncg, (float)sblock.fs_fpg * sblock.fs_fsize * B2MBFACTOR,
501             sblock.fs_fpg / sblock.fs_frag, sblock.fs_ipg);
502         if (sblock.fs_flags & FS_DOSOFTDEP)
503                 printf("\twith soft updates\n");
504 #       undef B2MBFACTOR
505
506         if (Eflag && !Nflag) {
507                 printf("Erasing sectors [%jd...%jd]\n", 
508                     sblock.fs_sblockloc / disk.d_bsize,
509                     fsbtodb(&sblock, sblock.fs_size) - 1);
510                 berase(&disk, sblock.fs_sblockloc / disk.d_bsize,
511                     sblock.fs_size * sblock.fs_fsize - sblock.fs_sblockloc);
512         }
513         /*
514          * Wipe out old UFS1 superblock(s) if necessary.
515          */
516         if (!Nflag && Oflag != 1) {
517                 i = bread(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize, chdummy, SBLOCKSIZE);
518                 if (i == -1)
519                         err(1, "can't read old UFS1 superblock: %s", disk.d_error);
520
521                 if (fsdummy.fs_magic == FS_UFS1_MAGIC) {
522                         fsdummy.fs_magic = 0;
523                         bwrite(&disk, part_ofs + SBLOCK_UFS1 / disk.d_bsize,
524                             chdummy, SBLOCKSIZE);
525                         for (cg = 0; cg < fsdummy.fs_ncg; cg++) {
526                                 if (fsbtodb(&fsdummy, cgsblock(&fsdummy, cg)) > fssize)
527                                         break;
528                                 bwrite(&disk, part_ofs + fsbtodb(&fsdummy,
529                                   cgsblock(&fsdummy, cg)), chdummy, SBLOCKSIZE);
530                         }
531                 }
532         }
533         if (!Nflag)
534                 do_sbwrite(&disk);
535         if (Xflag == 1) {
536                 printf("** Exiting on Xflag 1\n");
537                 exit(0);
538         }
539         if (Xflag == 2)
540                 printf("** Leaving BAD MAGIC on Xflag 2\n");
541         else
542                 sblock.fs_magic = (Oflag != 1) ? FS_UFS2_MAGIC : FS_UFS1_MAGIC;
543
544         /*
545          * Now build the cylinders group blocks and
546          * then print out indices of cylinder groups.
547          */
548         printf("super-block backups (for fsck_ffs -b #) at:\n");
549         i = 0;
550         width = charsperline();
551         /*
552          * allocate space for superblock, cylinder group map, and
553          * two sets of inode blocks.
554          */
555         if (sblock.fs_bsize < SBLOCKSIZE)
556                 iobufsize = SBLOCKSIZE + 3 * sblock.fs_bsize;
557         else
558                 iobufsize = 4 * sblock.fs_bsize;
559         if ((iobuf = calloc(1, iobufsize)) == 0) {
560                 printf("Cannot allocate I/O buffer\n");
561                 exit(38);
562         }
563         /*
564          * Make a copy of the superblock into the buffer that we will be
565          * writing out in each cylinder group.
566          */
567         bcopy((char *)&sblock, iobuf, SBLOCKSIZE);
568         for (cg = 0; cg < sblock.fs_ncg; cg++) {
569                 initcg(cg, utime);
570                 j = snprintf(tmpbuf, sizeof(tmpbuf), " %jd%s",
571                     (intmax_t)fsbtodb(&sblock, cgsblock(&sblock, cg)),
572                     cg < (sblock.fs_ncg-1) ? "," : "");
573                 if (j < 0)
574                         tmpbuf[j = 0] = '\0';
575                 if (i + j >= width) {
576                         printf("\n");
577                         i = 0;
578                 }
579                 i += j;
580                 printf("%s", tmpbuf);
581                 fflush(stdout);
582         }
583         printf("\n");
584         if (Nflag)
585                 exit(0);
586         /*
587          * Now construct the initial file system,
588          * then write out the super-block.
589          */
590         fsinit(utime);
591         if (Oflag == 1) {
592                 sblock.fs_old_cstotal.cs_ndir = sblock.fs_cstotal.cs_ndir;
593                 sblock.fs_old_cstotal.cs_nbfree = sblock.fs_cstotal.cs_nbfree;
594                 sblock.fs_old_cstotal.cs_nifree = sblock.fs_cstotal.cs_nifree;
595                 sblock.fs_old_cstotal.cs_nffree = sblock.fs_cstotal.cs_nffree;
596         }
597         if (Xflag == 3) {
598                 printf("** Exiting on Xflag 3\n");
599                 exit(0);
600         }
601         if (!Nflag) {
602                 do_sbwrite(&disk);
603                 /*
604                  * For UFS1 filesystems with a blocksize of 64K, the first
605                  * alternate superblock resides at the location used for
606                  * the default UFS2 superblock. As there is a valid
607                  * superblock at this location, the boot code will use
608                  * it as its first choice. Thus we have to ensure that
609                  * all of its statistcs on usage are correct.
610                  */
611                 if (Oflag == 1 && sblock.fs_bsize == 65536)
612                         wtfs(fsbtodb(&sblock, cgsblock(&sblock, 0)),
613                             sblock.fs_bsize, (char *)&sblock);
614         }
615         for (i = 0; i < sblock.fs_cssize; i += sblock.fs_bsize)
616                 wtfs(fsbtodb(&sblock, sblock.fs_csaddr + numfrags(&sblock, i)),
617                         MIN(sblock.fs_cssize - i, sblock.fs_bsize),
618                         ((char *)fscs) + i);
619         /*
620          * Read the last sector of the boot block, replace the last
621          * 20 bytes with the recovery information, then write it back.
622          * The recovery information only works for UFS2 filesystems.
623          */
624         if (sblock.fs_magic == FS_UFS2_MAGIC) {
625                 i = bread(&disk,
626                     part_ofs + (SBLOCK_UFS2 - sizeof(fsr)) / disk.d_bsize,
627                     (char *)&fsr, sizeof(fsr));
628                 if (i == -1)
629                         err(1, "can't read recovery area: %s", disk.d_error);
630                 fsr.fsr_magic = sblock.fs_magic;
631                 fsr.fsr_fpg = sblock.fs_fpg;
632                 fsr.fsr_fsbtodb = sblock.fs_fsbtodb;
633                 fsr.fsr_sblkno = sblock.fs_sblkno;
634                 fsr.fsr_ncg = sblock.fs_ncg;
635                 wtfs((SBLOCK_UFS2 - sizeof(fsr)) / disk.d_bsize, sizeof(fsr),
636                     (char *)&fsr);
637         }
638         /*
639          * Update information about this partition in pack
640          * label, to that it may be updated on disk.
641          */
642         if (pp != NULL) {
643                 pp->p_fstype = FS_BSDFFS;
644                 pp->p_fsize = sblock.fs_fsize;
645                 pp->p_frag = sblock.fs_frag;
646                 pp->p_cpg = sblock.fs_fpg;
647         }
648 }
649
650 /*
651  * Initialize a cylinder group.
652  */
653 void
654 initcg(int cylno, time_t utime)
655 {
656         long blkno, start;
657         uint i, j, d, dlower, dupper;
658         ufs2_daddr_t cbase, dmax;
659         struct ufs1_dinode *dp1;
660         struct ufs2_dinode *dp2;
661         struct csum *cs;
662
663         /*
664          * Determine block bounds for cylinder group.
665          * Allow space for super block summary information in first
666          * cylinder group.
667          */
668         cbase = cgbase(&sblock, cylno);
669         dmax = cbase + sblock.fs_fpg;
670         if (dmax > sblock.fs_size)
671                 dmax = sblock.fs_size;
672         dlower = cgsblock(&sblock, cylno) - cbase;
673         dupper = cgdmin(&sblock, cylno) - cbase;
674         if (cylno == 0)
675                 dupper += howmany(sblock.fs_cssize, sblock.fs_fsize);
676         cs = &fscs[cylno];
677         memset(&acg, 0, sblock.fs_cgsize);
678         acg.cg_time = utime;
679         acg.cg_magic = CG_MAGIC;
680         acg.cg_cgx = cylno;
681         acg.cg_niblk = sblock.fs_ipg;
682         acg.cg_initediblk = MIN(sblock.fs_ipg, 2 * INOPB(&sblock));
683         acg.cg_ndblk = dmax - cbase;
684         if (sblock.fs_contigsumsize > 0)
685                 acg.cg_nclusterblks = acg.cg_ndblk / sblock.fs_frag;
686         start = &acg.cg_space[0] - (u_char *)(&acg.cg_firstfield);
687         if (Oflag == 2) {
688                 acg.cg_iusedoff = start;
689         } else {
690                 acg.cg_old_ncyl = sblock.fs_old_cpg;
691                 acg.cg_old_time = acg.cg_time;
692                 acg.cg_time = 0;
693                 acg.cg_old_niblk = acg.cg_niblk;
694                 acg.cg_niblk = 0;
695                 acg.cg_initediblk = 0;
696                 acg.cg_old_btotoff = start;
697                 acg.cg_old_boff = acg.cg_old_btotoff +
698                     sblock.fs_old_cpg * sizeof(int32_t);
699                 acg.cg_iusedoff = acg.cg_old_boff +
700                     sblock.fs_old_cpg * sizeof(u_int16_t);
701         }
702         acg.cg_freeoff = acg.cg_iusedoff + howmany(sblock.fs_ipg, CHAR_BIT);
703         acg.cg_nextfreeoff = acg.cg_freeoff + howmany(sblock.fs_fpg, CHAR_BIT);
704         if (sblock.fs_contigsumsize > 0) {
705                 acg.cg_clustersumoff =
706                     roundup(acg.cg_nextfreeoff, sizeof(u_int32_t));
707                 acg.cg_clustersumoff -= sizeof(u_int32_t);
708                 acg.cg_clusteroff = acg.cg_clustersumoff +
709                     (sblock.fs_contigsumsize + 1) * sizeof(u_int32_t);
710                 acg.cg_nextfreeoff = acg.cg_clusteroff +
711                     howmany(fragstoblks(&sblock, sblock.fs_fpg), CHAR_BIT);
712         }
713         if (acg.cg_nextfreeoff > (unsigned)sblock.fs_cgsize) {
714                 printf("Panic: cylinder group too big\n");
715                 exit(37);
716         }
717         acg.cg_cs.cs_nifree += sblock.fs_ipg;
718         if (cylno == 0)
719                 for (i = 0; i < (long)ROOTINO; i++) {
720                         setbit(cg_inosused(&acg), i);
721                         acg.cg_cs.cs_nifree--;
722                 }
723         if (cylno > 0) {
724                 /*
725                  * In cylno 0, beginning space is reserved
726                  * for boot and super blocks.
727                  */
728                 for (d = 0; d < dlower; d += sblock.fs_frag) {
729                         blkno = d / sblock.fs_frag;
730                         setblock(&sblock, cg_blksfree(&acg), blkno);
731                         if (sblock.fs_contigsumsize > 0)
732                                 setbit(cg_clustersfree(&acg), blkno);
733                         acg.cg_cs.cs_nbfree++;
734                 }
735         }
736         if ((i = dupper % sblock.fs_frag)) {
737                 acg.cg_frsum[sblock.fs_frag - i]++;
738                 for (d = dupper + sblock.fs_frag - i; dupper < d; dupper++) {
739                         setbit(cg_blksfree(&acg), dupper);
740                         acg.cg_cs.cs_nffree++;
741                 }
742         }
743         for (d = dupper; d + sblock.fs_frag <= acg.cg_ndblk;
744              d += sblock.fs_frag) {
745                 blkno = d / sblock.fs_frag;
746                 setblock(&sblock, cg_blksfree(&acg), blkno);
747                 if (sblock.fs_contigsumsize > 0)
748                         setbit(cg_clustersfree(&acg), blkno);
749                 acg.cg_cs.cs_nbfree++;
750         }
751         if (d < acg.cg_ndblk) {
752                 acg.cg_frsum[acg.cg_ndblk - d]++;
753                 for (; d < acg.cg_ndblk; d++) {
754                         setbit(cg_blksfree(&acg), d);
755                         acg.cg_cs.cs_nffree++;
756                 }
757         }
758         if (sblock.fs_contigsumsize > 0) {
759                 int32_t *sump = cg_clustersum(&acg);
760                 u_char *mapp = cg_clustersfree(&acg);
761                 int map = *mapp++;
762                 int bit = 1;
763                 int run = 0;
764
765                 for (i = 0; i < acg.cg_nclusterblks; i++) {
766                         if ((map & bit) != 0)
767                                 run++;
768                         else if (run != 0) {
769                                 if (run > sblock.fs_contigsumsize)
770                                         run = sblock.fs_contigsumsize;
771                                 sump[run]++;
772                                 run = 0;
773                         }
774                         if ((i & (CHAR_BIT - 1)) != CHAR_BIT - 1)
775                                 bit <<= 1;
776                         else {
777                                 map = *mapp++;
778                                 bit = 1;
779                         }
780                 }
781                 if (run != 0) {
782                         if (run > sblock.fs_contigsumsize)
783                                 run = sblock.fs_contigsumsize;
784                         sump[run]++;
785                 }
786         }
787         *cs = acg.cg_cs;
788         /*
789          * Write out the duplicate super block, the cylinder group map
790          * and two blocks worth of inodes in a single write.
791          */
792         start = MAX(sblock.fs_bsize, SBLOCKSIZE);
793         bcopy((char *)&acg, &iobuf[start], sblock.fs_cgsize);
794         start += sblock.fs_bsize;
795         dp1 = (struct ufs1_dinode *)(&iobuf[start]);
796         dp2 = (struct ufs2_dinode *)(&iobuf[start]);
797         for (i = 0; i < acg.cg_initediblk; i++) {
798                 if (sblock.fs_magic == FS_UFS1_MAGIC) {
799                         dp1->di_gen = newfs_random();
800                         dp1++;
801                 } else {
802                         dp2->di_gen = newfs_random();
803                         dp2++;
804                 }
805         }
806         wtfs(fsbtodb(&sblock, cgsblock(&sblock, cylno)), iobufsize, iobuf);
807         /*
808          * For the old file system, we have to initialize all the inodes.
809          */
810         if (Oflag == 1) {
811                 for (i = 2 * sblock.fs_frag;
812                      i < sblock.fs_ipg / INOPF(&sblock);
813                      i += sblock.fs_frag) {
814                         dp1 = (struct ufs1_dinode *)(&iobuf[start]);
815                         for (j = 0; j < INOPB(&sblock); j++) {
816                                 dp1->di_gen = newfs_random();
817                                 dp1++;
818                         }
819                         wtfs(fsbtodb(&sblock, cgimin(&sblock, cylno) + i),
820                             sblock.fs_bsize, &iobuf[start]);
821                 }
822         }
823 }
824
825 /*
826  * initialize the file system
827  */
828 #define ROOTLINKCNT 3
829
830 static struct direct root_dir[] = {
831         { ROOTINO, sizeof(struct direct), DT_DIR, 1, "." },
832         { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
833         { ROOTINO + 1, sizeof(struct direct), DT_DIR, 5, ".snap" },
834 };
835
836 #define SNAPLINKCNT 2
837
838 static struct direct snap_dir[] = {
839         { ROOTINO + 1, sizeof(struct direct), DT_DIR, 1, "." },
840         { ROOTINO, sizeof(struct direct), DT_DIR, 2, ".." },
841 };
842
843 void
844 fsinit(time_t utime)
845 {
846         union dinode node;
847         struct group *grp;
848         gid_t gid;
849         int entries;
850
851         memset(&node, 0, sizeof node);
852         if ((grp = getgrnam("operator")) != NULL) {
853                 gid = grp->gr_gid;
854         } else {
855                 warnx("Cannot retrieve operator gid, using gid 0.");
856                 gid = 0;
857         }
858         entries = (nflag) ? ROOTLINKCNT - 1: ROOTLINKCNT;
859         if (sblock.fs_magic == FS_UFS1_MAGIC) {
860                 /*
861                  * initialize the node
862                  */
863                 node.dp1.di_atime = utime;
864                 node.dp1.di_mtime = utime;
865                 node.dp1.di_ctime = utime;
866                 /*
867                  * create the root directory
868                  */
869                 node.dp1.di_mode = IFDIR | UMASK;
870                 node.dp1.di_nlink = entries;
871                 node.dp1.di_size = makedir(root_dir, entries);
872                 node.dp1.di_db[0] = alloc(sblock.fs_fsize, node.dp1.di_mode);
873                 node.dp1.di_blocks =
874                     btodb(fragroundup(&sblock, node.dp1.di_size));
875                 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]), sblock.fs_fsize,
876                     iobuf);
877                 iput(&node, ROOTINO);
878                 if (!nflag) {
879                         /*
880                          * create the .snap directory
881                          */
882                         node.dp1.di_mode |= 020;
883                         node.dp1.di_gid = gid;
884                         node.dp1.di_nlink = SNAPLINKCNT;
885                         node.dp1.di_size = makedir(snap_dir, SNAPLINKCNT);
886                                 node.dp1.di_db[0] =
887                                     alloc(sblock.fs_fsize, node.dp1.di_mode);
888                         node.dp1.di_blocks =
889                             btodb(fragroundup(&sblock, node.dp1.di_size));
890                                 wtfs(fsbtodb(&sblock, node.dp1.di_db[0]),
891                                     sblock.fs_fsize, iobuf);
892                         iput(&node, ROOTINO + 1);
893                 }
894         } else {
895                 /*
896                  * initialize the node
897                  */
898                 node.dp2.di_atime = utime;
899                 node.dp2.di_mtime = utime;
900                 node.dp2.di_ctime = utime;
901                 node.dp2.di_birthtime = utime;
902                 /*
903                  * create the root directory
904                  */
905                 node.dp2.di_mode = IFDIR | UMASK;
906                 node.dp2.di_nlink = entries;
907                 node.dp2.di_size = makedir(root_dir, entries);
908                 node.dp2.di_db[0] = alloc(sblock.fs_fsize, node.dp2.di_mode);
909                 node.dp2.di_blocks =
910                     btodb(fragroundup(&sblock, node.dp2.di_size));
911                 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), sblock.fs_fsize,
912                     iobuf);
913                 iput(&node, ROOTINO);
914                 if (!nflag) {
915                         /*
916                          * create the .snap directory
917                          */
918                         node.dp2.di_mode |= 020;
919                         node.dp2.di_gid = gid;
920                         node.dp2.di_nlink = SNAPLINKCNT;
921                         node.dp2.di_size = makedir(snap_dir, SNAPLINKCNT);
922                                 node.dp2.di_db[0] =
923                                     alloc(sblock.fs_fsize, node.dp2.di_mode);
924                         node.dp2.di_blocks =
925                             btodb(fragroundup(&sblock, node.dp2.di_size));
926                                 wtfs(fsbtodb(&sblock, node.dp2.di_db[0]), 
927                                     sblock.fs_fsize, iobuf);
928                         iput(&node, ROOTINO + 1);
929                 }
930         }
931 }
932
933 /*
934  * construct a set of directory entries in "iobuf".
935  * return size of directory.
936  */
937 int
938 makedir(struct direct *protodir, int entries)
939 {
940         char *cp;
941         int i, spcleft;
942
943         spcleft = DIRBLKSIZ;
944         memset(iobuf, 0, DIRBLKSIZ);
945         for (cp = iobuf, i = 0; i < entries - 1; i++) {
946                 protodir[i].d_reclen = DIRSIZ(0, &protodir[i]);
947                 memmove(cp, &protodir[i], protodir[i].d_reclen);
948                 cp += protodir[i].d_reclen;
949                 spcleft -= protodir[i].d_reclen;
950         }
951         protodir[i].d_reclen = spcleft;
952         memmove(cp, &protodir[i], DIRSIZ(0, &protodir[i]));
953         return (DIRBLKSIZ);
954 }
955
956 /*
957  * allocate a block or frag
958  */
959 ufs2_daddr_t
960 alloc(int size, int mode)
961 {
962         int i, blkno, frag;
963         uint d;
964
965         bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
966             sblock.fs_cgsize);
967         if (acg.cg_magic != CG_MAGIC) {
968                 printf("cg 0: bad magic number\n");
969                 exit(38);
970         }
971         if (acg.cg_cs.cs_nbfree == 0) {
972                 printf("first cylinder group ran out of space\n");
973                 exit(39);
974         }
975         for (d = 0; d < acg.cg_ndblk; d += sblock.fs_frag)
976                 if (isblock(&sblock, cg_blksfree(&acg), d / sblock.fs_frag))
977                         goto goth;
978         printf("internal error: can't find block in cyl 0\n");
979         exit(40);
980 goth:
981         blkno = fragstoblks(&sblock, d);
982         clrblock(&sblock, cg_blksfree(&acg), blkno);
983         if (sblock.fs_contigsumsize > 0)
984                 clrbit(cg_clustersfree(&acg), blkno);
985         acg.cg_cs.cs_nbfree--;
986         sblock.fs_cstotal.cs_nbfree--;
987         fscs[0].cs_nbfree--;
988         if (mode & IFDIR) {
989                 acg.cg_cs.cs_ndir++;
990                 sblock.fs_cstotal.cs_ndir++;
991                 fscs[0].cs_ndir++;
992         }
993         if (size != sblock.fs_bsize) {
994                 frag = howmany(size, sblock.fs_fsize);
995                 fscs[0].cs_nffree += sblock.fs_frag - frag;
996                 sblock.fs_cstotal.cs_nffree += sblock.fs_frag - frag;
997                 acg.cg_cs.cs_nffree += sblock.fs_frag - frag;
998                 acg.cg_frsum[sblock.fs_frag - frag]++;
999                 for (i = frag; i < sblock.fs_frag; i++)
1000                         setbit(cg_blksfree(&acg), d + i);
1001         }
1002         /* XXX cgwrite(&disk, 0)??? */
1003         wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1004             (char *)&acg);
1005         return ((ufs2_daddr_t)d);
1006 }
1007
1008 /*
1009  * Allocate an inode on the disk
1010  */
1011 void
1012 iput(union dinode *ip, ino_t ino)
1013 {
1014         ufs2_daddr_t d;
1015
1016         bread(&disk, part_ofs + fsbtodb(&sblock, cgtod(&sblock, 0)), (char *)&acg,
1017             sblock.fs_cgsize);
1018         if (acg.cg_magic != CG_MAGIC) {
1019                 printf("cg 0: bad magic number\n");
1020                 exit(31);
1021         }
1022         acg.cg_cs.cs_nifree--;
1023         setbit(cg_inosused(&acg), ino);
1024         wtfs(fsbtodb(&sblock, cgtod(&sblock, 0)), sblock.fs_cgsize,
1025             (char *)&acg);
1026         sblock.fs_cstotal.cs_nifree--;
1027         fscs[0].cs_nifree--;
1028         if (ino >= (unsigned long)sblock.fs_ipg * sblock.fs_ncg) {
1029                 printf("fsinit: inode value out of range (%ju).\n",
1030                     (uintmax_t)ino);
1031                 exit(32);
1032         }
1033         d = fsbtodb(&sblock, ino_to_fsba(&sblock, ino));
1034         bread(&disk, part_ofs + d, (char *)iobuf, sblock.fs_bsize);
1035         if (sblock.fs_magic == FS_UFS1_MAGIC)
1036                 ((struct ufs1_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1037                     ip->dp1;
1038         else
1039                 ((struct ufs2_dinode *)iobuf)[ino_to_fsbo(&sblock, ino)] =
1040                     ip->dp2;
1041         wtfs(d, sblock.fs_bsize, (char *)iobuf);
1042 }
1043
1044 /*
1045  * possibly write to disk
1046  */
1047 static void
1048 wtfs(ufs2_daddr_t bno, int size, char *bf)
1049 {
1050         if (Nflag)
1051                 return;
1052         if (bwrite(&disk, part_ofs + bno, bf, size) < 0)
1053                 err(36, "wtfs: %d bytes at sector %jd", size, (intmax_t)bno);
1054 }
1055
1056 /*
1057  * check if a block is available
1058  */
1059 static int
1060 isblock(struct fs *fs, unsigned char *cp, int h)
1061 {
1062         unsigned char mask;
1063
1064         switch (fs->fs_frag) {
1065         case 8:
1066                 return (cp[h] == 0xff);
1067         case 4:
1068                 mask = 0x0f << ((h & 0x1) << 2);
1069                 return ((cp[h >> 1] & mask) == mask);
1070         case 2:
1071                 mask = 0x03 << ((h & 0x3) << 1);
1072                 return ((cp[h >> 2] & mask) == mask);
1073         case 1:
1074                 mask = 0x01 << (h & 0x7);
1075                 return ((cp[h >> 3] & mask) == mask);
1076         default:
1077                 fprintf(stderr, "isblock bad fs_frag %d\n", fs->fs_frag);
1078                 return (0);
1079         }
1080 }
1081
1082 /*
1083  * take a block out of the map
1084  */
1085 static void
1086 clrblock(struct fs *fs, unsigned char *cp, int h)
1087 {
1088         switch ((fs)->fs_frag) {
1089         case 8:
1090                 cp[h] = 0;
1091                 return;
1092         case 4:
1093                 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2));
1094                 return;
1095         case 2:
1096                 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1));
1097                 return;
1098         case 1:
1099                 cp[h >> 3] &= ~(0x01 << (h & 0x7));
1100                 return;
1101         default:
1102                 fprintf(stderr, "clrblock bad fs_frag %d\n", fs->fs_frag);
1103                 return;
1104         }
1105 }
1106
1107 /*
1108  * put a block into the map
1109  */
1110 static void
1111 setblock(struct fs *fs, unsigned char *cp, int h)
1112 {
1113         switch (fs->fs_frag) {
1114         case 8:
1115                 cp[h] = 0xff;
1116                 return;
1117         case 4:
1118                 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2));
1119                 return;
1120         case 2:
1121                 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1));
1122                 return;
1123         case 1:
1124                 cp[h >> 3] |= (0x01 << (h & 0x7));
1125                 return;
1126         default:
1127                 fprintf(stderr, "setblock bad fs_frag %d\n", fs->fs_frag);
1128                 return;
1129         }
1130 }
1131
1132 /*
1133  * Determine the number of characters in a
1134  * single line.
1135  */
1136
1137 static int
1138 charsperline(void)
1139 {
1140         int columns;
1141         char *cp;
1142         struct winsize ws;
1143
1144         columns = 0;
1145         if (ioctl(0, TIOCGWINSZ, &ws) != -1)
1146                 columns = ws.ws_col;
1147         if (columns == 0 && (cp = getenv("COLUMNS")))
1148                 columns = atoi(cp);
1149         if (columns == 0)
1150                 columns = 80;   /* last resort */
1151         return (columns);
1152 }
1153
1154 static int
1155 ilog2(int val)
1156 {
1157         u_int n;
1158
1159         for (n = 0; n < sizeof(n) * CHAR_BIT; n++)
1160                 if (1 << n == val)
1161                         return (n);
1162         errx(1, "ilog2: %d is not a power of 2\n", val);
1163 }
1164
1165 /*
1166  * For the regression test, return predictable random values.
1167  * Otherwise use a true random number generator.
1168  */
1169 static u_int32_t
1170 newfs_random(void)
1171 {
1172         static int nextnum = 1;
1173
1174         if (Rflag)
1175                 return (nextnum++);
1176         return (arc4random());
1177 }