]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - secure/usr.bin/openssl/man/pkcs8.1
MFC: r331627
[FreeBSD/FreeBSD.git] / secure / usr.bin / openssl / man / pkcs8.1
1 .\" Automatically generated by Pod::Man 4.07 (Pod::Simple 3.35)
2 .\"
3 .\" Standard preamble:
4 .\" ========================================================================
5 .de Sp \" Vertical space (when we can't use .PP)
6 .if t .sp .5v
7 .if n .sp
8 ..
9 .de Vb \" Begin verbatim text
10 .ft CW
11 .nf
12 .ne \\$1
13 ..
14 .de Ve \" End verbatim text
15 .ft R
16 .fi
17 ..
18 .\" Set up some character translations and predefined strings.  \*(-- will
19 .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
20 .\" double quote, and \*(R" will give a right double quote.  \*(C+ will
21 .\" give a nicer C++.  Capital omega is used to do unbreakable dashes and
22 .\" therefore won't be available.  \*(C` and \*(C' expand to `' in nroff,
23 .\" nothing in troff, for use with C<>.
24 .tr \(*W-
25 .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
26 .ie n \{\
27 .    ds -- \(*W-
28 .    ds PI pi
29 .    if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
30 .    if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\"  diablo 12 pitch
31 .    ds L" ""
32 .    ds R" ""
33 .    ds C` ""
34 .    ds C' ""
35 'br\}
36 .el\{\
37 .    ds -- \|\(em\|
38 .    ds PI \(*p
39 .    ds L" ``
40 .    ds R" ''
41 .    ds C`
42 .    ds C'
43 'br\}
44 .\"
45 .\" Escape single quotes in literal strings from groff's Unicode transform.
46 .ie \n(.g .ds Aq \(aq
47 .el       .ds Aq '
48 .\"
49 .\" If the F register is >0, we'll generate index entries on stderr for
50 .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
51 .\" entries marked with X<> in POD.  Of course, you'll have to process the
52 .\" output yourself in some meaningful fashion.
53 .\"
54 .\" Avoid warning from groff about undefined register 'F'.
55 .de IX
56 ..
57 .if !\nF .nr F 0
58 .if \nF>0 \{\
59 .    de IX
60 .    tm Index:\\$1\t\\n%\t"\\$2"
61 ..
62 .    if !\nF==2 \{\
63 .        nr % 0
64 .        nr F 2
65 .    \}
66 .\}
67 .\"
68 .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
69 .\" Fear.  Run.  Save yourself.  No user-serviceable parts.
70 .    \" fudge factors for nroff and troff
71 .if n \{\
72 .    ds #H 0
73 .    ds #V .8m
74 .    ds #F .3m
75 .    ds #[ \f1
76 .    ds #] \fP
77 .\}
78 .if t \{\
79 .    ds #H ((1u-(\\\\n(.fu%2u))*.13m)
80 .    ds #V .6m
81 .    ds #F 0
82 .    ds #[ \&
83 .    ds #] \&
84 .\}
85 .    \" simple accents for nroff and troff
86 .if n \{\
87 .    ds ' \&
88 .    ds ` \&
89 .    ds ^ \&
90 .    ds , \&
91 .    ds ~ ~
92 .    ds /
93 .\}
94 .if t \{\
95 .    ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
96 .    ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
97 .    ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
98 .    ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
99 .    ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
100 .    ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
101 .\}
102 .    \" troff and (daisy-wheel) nroff accents
103 .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
104 .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
105 .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
106 .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
107 .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
108 .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
109 .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
110 .ds ae a\h'-(\w'a'u*4/10)'e
111 .ds Ae A\h'-(\w'A'u*4/10)'E
112 .    \" corrections for vroff
113 .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
114 .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
115 .    \" for low resolution devices (crt and lpr)
116 .if \n(.H>23 .if \n(.V>19 \
117 \{\
118 .    ds : e
119 .    ds 8 ss
120 .    ds o a
121 .    ds d- d\h'-1'\(ga
122 .    ds D- D\h'-1'\(hy
123 .    ds th \o'bp'
124 .    ds Th \o'LP'
125 .    ds ae ae
126 .    ds Ae AE
127 .\}
128 .rm #[ #] #H #V #F C
129 .\" ========================================================================
130 .\"
131 .IX Title "PKCS8 1"
132 .TH PKCS8 1 "2018-03-27" "1.0.2o" "OpenSSL"
133 .\" For nroff, turn off justification.  Always turn off hyphenation; it makes
134 .\" way too many mistakes in technical documents.
135 .if n .ad l
136 .nh
137 .SH "NAME"
138 openssl\-pkcs8,
139 pkcs8 \- PKCS#8 format private key conversion tool
140 .SH "SYNOPSIS"
141 .IX Header "SYNOPSIS"
142 \&\fBopenssl\fR \fBpkcs8\fR
143 [\fB\-topk8\fR]
144 [\fB\-inform PEM|DER\fR]
145 [\fB\-outform PEM|DER\fR]
146 [\fB\-in filename\fR]
147 [\fB\-passin arg\fR]
148 [\fB\-out filename\fR]
149 [\fB\-passout arg\fR]
150 [\fB\-noiter\fR]
151 [\fB\-nocrypt\fR]
152 [\fB\-nooct\fR]
153 [\fB\-embed\fR]
154 [\fB\-nsdb\fR]
155 [\fB\-v2 alg\fR]
156 [\fB\-v2prf alg\fR]
157 [\fB\-v1 alg\fR]
158 [\fB\-engine id\fR]
159 .SH "DESCRIPTION"
160 .IX Header "DESCRIPTION"
161 The \fBpkcs8\fR command processes private keys in PKCS#8 format. It can handle
162 both unencrypted PKCS#8 PrivateKeyInfo format and EncryptedPrivateKeyInfo
163 format with a variety of PKCS#5 (v1.5 and v2.0) and PKCS#12 algorithms.
164 .SH "COMMAND OPTIONS"
165 .IX Header "COMMAND OPTIONS"
166 .IP "\fB\-topk8\fR" 4
167 .IX Item "-topk8"
168 Normally a PKCS#8 private key is expected on input and a traditional format
169 private key will be written. With the \fB\-topk8\fR option the situation is
170 reversed: it reads a traditional format private key and writes a PKCS#8
171 format key.
172 .IP "\fB\-inform DER|PEM\fR" 4
173 .IX Item "-inform DER|PEM"
174 This specifies the input format. If a PKCS#8 format key is expected on input
175 then either a \fB\s-1DER\s0\fR or \fB\s-1PEM\s0\fR encoded version of a PKCS#8 key will be
176 expected. Otherwise the \fB\s-1DER\s0\fR or \fB\s-1PEM\s0\fR format of the traditional format
177 private key is used.
178 .IP "\fB\-outform DER|PEM\fR" 4
179 .IX Item "-outform DER|PEM"
180 This specifies the output format, the options have the same meaning as the 
181 \&\fB\-inform\fR option.
182 .IP "\fB\-in filename\fR" 4
183 .IX Item "-in filename"
184 This specifies the input filename to read a key from or standard input if this
185 option is not specified. If the key is encrypted a pass phrase will be
186 prompted for.
187 .IP "\fB\-passin arg\fR" 4
188 .IX Item "-passin arg"
189 the input file password source. For more information about the format of \fBarg\fR
190 see the \fB\s-1PASS PHRASE ARGUMENTS\s0\fR section in \fIopenssl\fR\|(1).
191 .IP "\fB\-out filename\fR" 4
192 .IX Item "-out filename"
193 This specifies the output filename to write a key to or standard output by
194 default. If any encryption options are set then a pass phrase will be
195 prompted for. The output filename should \fBnot\fR be the same as the input
196 filename.
197 .IP "\fB\-passout arg\fR" 4
198 .IX Item "-passout arg"
199 the output file password source. For more information about the format of \fBarg\fR
200 see the \fB\s-1PASS PHRASE ARGUMENTS\s0\fR section in \fIopenssl\fR\|(1).
201 .IP "\fB\-nocrypt\fR" 4
202 .IX Item "-nocrypt"
203 PKCS#8 keys generated or input are normally PKCS#8 EncryptedPrivateKeyInfo
204 structures using an appropriate password based encryption algorithm. With
205 this option an unencrypted PrivateKeyInfo structure is expected or output.
206 This option does not encrypt private keys at all and should only be used
207 when absolutely necessary. Certain software such as some versions of Java
208 code signing software used unencrypted private keys.
209 .IP "\fB\-nooct\fR" 4
210 .IX Item "-nooct"
211 This option generates \s-1RSA\s0 private keys in a broken format that some software
212 uses. Specifically the private key should be enclosed in a \s-1OCTET STRING\s0
213 but some software just includes the structure itself without the
214 surrounding \s-1OCTET STRING.\s0
215 .IP "\fB\-embed\fR" 4
216 .IX Item "-embed"
217 This option generates \s-1DSA\s0 keys in a broken format. The \s-1DSA\s0 parameters are
218 embedded inside the PrivateKey structure. In this form the \s-1OCTET STRING\s0
219 contains an \s-1ASN1 SEQUENCE\s0 consisting of two structures: a \s-1SEQUENCE\s0 containing
220 the parameters and an \s-1ASN1 INTEGER\s0 containing the private key.
221 .IP "\fB\-nsdb\fR" 4
222 .IX Item "-nsdb"
223 This option generates \s-1DSA\s0 keys in a broken format compatible with Netscape
224 private key databases. The PrivateKey contains a \s-1SEQUENCE\s0 consisting of
225 the public and private keys respectively.
226 .IP "\fB\-v2 alg\fR" 4
227 .IX Item "-v2 alg"
228 This option enables the use of PKCS#5 v2.0 algorithms. Normally PKCS#8
229 private keys are encrypted with the password based encryption algorithm
230 called \fBpbeWithMD5AndDES\-CBC\fR this uses 56 bit \s-1DES\s0 encryption but it
231 was the strongest encryption algorithm supported in PKCS#5 v1.5. Using 
232 the \fB\-v2\fR option PKCS#5 v2.0 algorithms are used which can use any
233 encryption algorithm such as 168 bit triple \s-1DES\s0 or 128 bit \s-1RC2\s0 however
234 not many implementations support PKCS#5 v2.0 yet. If you are just using
235 private keys with OpenSSL then this doesn't matter.
236 .Sp
237 The \fBalg\fR argument is the encryption algorithm to use, valid values include
238 \&\fBdes\fR, \fBdes3\fR and \fBrc2\fR. It is recommended that \fBdes3\fR is used.
239 .IP "\fB\-v2prf alg\fR" 4
240 .IX Item "-v2prf alg"
241 This option sets the \s-1PRF\s0 algorithm to use with PKCS#5 v2.0. A typical value
242 values would be \fBhmacWithSHA256\fR. If this option isn't set then the default
243 for the cipher is used or \fBhmacWithSHA1\fR if there is no default.
244 .IP "\fB\-v1 alg\fR" 4
245 .IX Item "-v1 alg"
246 This option specifies a PKCS#5 v1.5 or PKCS#12 algorithm to use. A complete
247 list of possible algorithms is included below.
248 .IP "\fB\-engine id\fR" 4
249 .IX Item "-engine id"
250 specifying an engine (by its unique \fBid\fR string) will cause \fBpkcs8\fR
251 to attempt to obtain a functional reference to the specified engine,
252 thus initialising it if needed. The engine will then be set as the default
253 for all available algorithms.
254 .SH "NOTES"
255 .IX Header "NOTES"
256 The encrypted form of a \s-1PEM\s0 encode PKCS#8 files uses the following
257 headers and footers:
258 .PP
259 .Vb 2
260 \& \-\-\-\-\-BEGIN ENCRYPTED PRIVATE KEY\-\-\-\-\-
261 \& \-\-\-\-\-END ENCRYPTED PRIVATE KEY\-\-\-\-\-
262 .Ve
263 .PP
264 The unencrypted form uses:
265 .PP
266 .Vb 2
267 \& \-\-\-\-\-BEGIN PRIVATE KEY\-\-\-\-\-
268 \& \-\-\-\-\-END PRIVATE KEY\-\-\-\-\-
269 .Ve
270 .PP
271 Private keys encrypted using PKCS#5 v2.0 algorithms and high iteration
272 counts are more secure that those encrypted using the traditional
273 SSLeay compatible formats. So if additional security is considered
274 important the keys should be converted.
275 .PP
276 The default encryption is only 56 bits because this is the encryption
277 that most current implementations of PKCS#8 will support.
278 .PP
279 Some software may use PKCS#12 password based encryption algorithms
280 with PKCS#8 format private keys: these are handled automatically
281 but there is no option to produce them.
282 .PP
283 It is possible to write out \s-1DER\s0 encoded encrypted private keys in
284 PKCS#8 format because the encryption details are included at an \s-1ASN1\s0
285 level whereas the traditional format includes them at a \s-1PEM\s0 level.
286 .SH "PKCS#5 v1.5 and PKCS#12 algorithms."
287 .IX Header "PKCS#5 v1.5 and PKCS#12 algorithms."
288 Various algorithms can be used with the \fB\-v1\fR command line option,
289 including PKCS#5 v1.5 and PKCS#12. These are described in more detail
290 below.
291 .IP "\fB\s-1PBE\-MD2\-DES PBE\-MD5\-DES\s0\fR" 4
292 .IX Item "PBE-MD2-DES PBE-MD5-DES"
293 These algorithms were included in the original PKCS#5 v1.5 specification.
294 They only offer 56 bits of protection since they both use \s-1DES.\s0
295 .IP "\fB\s-1PBE\-SHA1\-RC2\-64 PBE\-MD2\-RC2\-64 PBE\-MD5\-RC2\-64 PBE\-SHA1\-DES\s0\fR" 4
296 .IX Item "PBE-SHA1-RC2-64 PBE-MD2-RC2-64 PBE-MD5-RC2-64 PBE-SHA1-DES"
297 These algorithms are not mentioned in the original PKCS#5 v1.5 specification
298 but they use the same key derivation algorithm and are supported by some
299 software. They are mentioned in PKCS#5 v2.0. They use either 64 bit \s-1RC2\s0 or
300 56 bit \s-1DES.\s0
301 .IP "\fB\s-1PBE\-SHA1\-RC4\-128 PBE\-SHA1\-RC4\-40 PBE\-SHA1\-3DES PBE\-SHA1\-2DES PBE\-SHA1\-RC2\-128 PBE\-SHA1\-RC2\-40\s0\fR" 4
302 .IX Item "PBE-SHA1-RC4-128 PBE-SHA1-RC4-40 PBE-SHA1-3DES PBE-SHA1-2DES PBE-SHA1-RC2-128 PBE-SHA1-RC2-40"
303 These algorithms use the PKCS#12 password based encryption algorithm and
304 allow strong encryption algorithms like triple \s-1DES\s0 or 128 bit \s-1RC2\s0 to be used.
305 .SH "EXAMPLES"
306 .IX Header "EXAMPLES"
307 Convert a private from traditional to PKCS#5 v2.0 format using triple
308 \&\s-1DES:\s0
309 .PP
310 .Vb 1
311 \& openssl pkcs8 \-in key.pem \-topk8 \-v2 des3 \-out enckey.pem
312 .Ve
313 .PP
314 Convert a private from traditional to PKCS#5 v2.0 format using \s-1AES\s0 with
315 256 bits in \s-1CBC\s0 mode and \fBhmacWithSHA256\fR \s-1PRF:\s0
316 .PP
317 .Vb 1
318 \& openssl pkcs8 \-in key.pem \-topk8 \-v2 aes\-256\-cbc \-v2prf hmacWithSHA256 \-out enckey.pem
319 .Ve
320 .PP
321 Convert a private key to PKCS#8 using a PKCS#5 1.5 compatible algorithm
322 (\s-1DES\s0):
323 .PP
324 .Vb 1
325 \& openssl pkcs8 \-in key.pem \-topk8 \-out enckey.pem
326 .Ve
327 .PP
328 Convert a private key to PKCS#8 using a PKCS#12 compatible algorithm
329 (3DES):
330 .PP
331 .Vb 1
332 \& openssl pkcs8 \-in key.pem \-topk8 \-out enckey.pem \-v1 PBE\-SHA1\-3DES
333 .Ve
334 .PP
335 Read a \s-1DER\s0 unencrypted PKCS#8 format private key:
336 .PP
337 .Vb 1
338 \& openssl pkcs8 \-inform DER \-nocrypt \-in key.der \-out key.pem
339 .Ve
340 .PP
341 Convert a private key from any PKCS#8 format to traditional format:
342 .PP
343 .Vb 1
344 \& openssl pkcs8 \-in pk8.pem \-out key.pem
345 .Ve
346 .SH "STANDARDS"
347 .IX Header "STANDARDS"
348 Test vectors from this PKCS#5 v2.0 implementation were posted to the
349 pkcs-tng mailing list using triple \s-1DES, DES\s0 and \s-1RC2\s0 with high iteration
350 counts, several people confirmed that they could decrypt the private
351 keys produced and Therefore it can be assumed that the PKCS#5 v2.0
352 implementation is reasonably accurate at least as far as these
353 algorithms are concerned.
354 .PP
355 The format of PKCS#8 \s-1DSA \s0(and other) private keys is not well documented:
356 it is hidden away in PKCS#11 v2.01, section 11.9. OpenSSL's default \s-1DSA\s0
357 PKCS#8 private key format complies with this standard.
358 .SH "BUGS"
359 .IX Header "BUGS"
360 There should be an option that prints out the encryption algorithm
361 in use and other details such as the iteration count.
362 .PP
363 PKCS#8 using triple \s-1DES\s0 and PKCS#5 v2.0 should be the default private
364 key format for OpenSSL: for compatibility several of the utilities use
365 the old format at present.
366 .SH "SEE ALSO"
367 .IX Header "SEE ALSO"
368 \&\fIdsa\fR\|(1), \fIrsa\fR\|(1), \fIgenrsa\fR\|(1),
369 \&\fIgendsa\fR\|(1)