]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - share/man/man4/bpf.4
This commit was generated by cvs2svn to compensate for changes in r152390,
[FreeBSD/FreeBSD.git] / share / man / man4 / bpf.4
1 .\" Copyright (c) 1990 The Regents of the University of California.
2 .\" All rights reserved.
3 .\"
4 .\" Redistribution and use in source and binary forms, with or without
5 .\" modification, are permitted provided that: (1) source code distributions
6 .\" retain the above copyright notice and this paragraph in its entirety, (2)
7 .\" distributions including binary code include the above copyright notice and
8 .\" this paragraph in its entirety in the documentation or other materials
9 .\" provided with the distribution, and (3) all advertising materials mentioning
10 .\" features or use of this software display the following acknowledgement:
11 .\" ``This product includes software developed by the University of California,
12 .\" Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
13 .\" the University nor the names of its contributors may be used to endorse
14 .\" or promote products derived from this software without specific prior
15 .\" written permission.
16 .\" THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
17 .\" WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
18 .\" MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
19 .\"
20 .\" This document is derived in part from the enet man page (enet.4)
21 .\" distributed with 4.3BSD Unix.
22 .\"
23 .\" $FreeBSD$
24 .\"
25 .Dd January 16, 1996
26 .Dt BPF 4
27 .Os
28 .Sh NAME
29 .Nm bpf
30 .Nd Berkeley Packet Filter
31 .Sh SYNOPSIS
32 .Cd device bpf
33 .Sh DESCRIPTION
34 The Berkeley Packet Filter
35 provides a raw interface to data link layers in a protocol
36 independent fashion.
37 All packets on the network, even those destined for other hosts,
38 are accessible through this mechanism.
39 .Pp
40 The packet filter appears as a character special device,
41 .Pa /dev/bpf0 ,
42 .Pa /dev/bpf1 ,
43 etc.
44 After opening the device, the file descriptor must be bound to a
45 specific network interface with the
46 .Dv BIOCSETIF
47 ioctl.
48 A given interface can be shared by multiple listeners, and the filter
49 underlying each descriptor will see an identical packet stream.
50 .Pp
51 A separate device file is required for each minor device.
52 If a file is in use, the open will fail and
53 .Va errno
54 will be set to
55 .Er EBUSY .
56 .Pp
57 Associated with each open instance of a
58 .Nm
59 file is a user-settable packet filter.
60 Whenever a packet is received by an interface,
61 all file descriptors listening on that interface apply their filter.
62 Each descriptor that accepts the packet receives its own copy.
63 .Pp
64 Reads from these files return the next group of packets
65 that have matched the filter.
66 To improve performance, the buffer passed to read must be
67 the same size as the buffers used internally by
68 .Nm .
69 This size is returned by the
70 .Dv BIOCGBLEN
71 ioctl (see below), and
72 can be set with
73 .Dv BIOCSBLEN .
74 Note that an individual packet larger than this size is necessarily
75 truncated.
76 .Pp
77 The packet filter will support any link level protocol that has fixed length
78 headers.
79 Currently, only Ethernet,
80 .Tn SLIP ,
81 and
82 .Tn PPP
83 drivers have been modified to interact with
84 .Nm .
85 .Pp
86 Since packet data is in network byte order, applications should use the
87 .Xr byteorder 3
88 macros to extract multi-byte values.
89 .Pp
90 A packet can be sent out on the network by writing to a
91 .Nm
92 file descriptor.
93 The writes are unbuffered, meaning only one packet can be processed per write.
94 Currently, only writes to Ethernets and
95 .Tn SLIP
96 links are supported.
97 .Sh IOCTLS
98 The
99 .Xr ioctl 2
100 command codes below are defined in
101 .In net/bpf.h .
102 All commands require
103 these includes:
104 .Bd -literal
105         #include <sys/types.h>
106         #include <sys/time.h>
107         #include <sys/ioctl.h>
108         #include <net/bpf.h>
109 .Ed
110 .Pp
111 Additionally,
112 .Dv BIOCGETIF
113 and
114 .Dv BIOCSETIF
115 require
116 .In sys/socket.h
117 and
118 .In net/if.h .
119 .Pp
120 In addition to
121 .Dv FIONREAD
122 and
123 .Dv SIOCGIFADDR ,
124 the following commands may be applied to any open
125 .Nm
126 file.
127 The (third) argument to
128 .Xr ioctl 2
129 should be a pointer to the type indicated.
130 .Bl -tag -width BIOCGRTIMEOUT
131 .It Dv BIOCGBLEN
132 .Pq Li u_int
133 Returns the required buffer length for reads on
134 .Nm
135 files.
136 .It Dv BIOCSBLEN
137 .Pq Li u_int
138 Sets the buffer length for reads on
139 .Nm
140 files.
141 The buffer must be set before the file is attached to an interface
142 with
143 .Dv BIOCSETIF .
144 If the requested buffer size cannot be accommodated, the closest
145 allowable size will be set and returned in the argument.
146 A read call will result in
147 .Er EIO
148 if it is passed a buffer that is not this size.
149 .It Dv BIOCGDLT
150 .Pq Li u_int
151 Returns the type of the data link layer underlying the attached interface.
152 .Er EINVAL
153 is returned if no interface has been specified.
154 The device types, prefixed with
155 .Dq Li DLT_ ,
156 are defined in
157 .In net/bpf.h .
158 .It Dv BIOCPROMISC
159 Forces the interface into promiscuous mode.
160 All packets, not just those destined for the local host, are processed.
161 Since more than one file can be listening on a given interface,
162 a listener that opened its interface non-promiscuously may receive
163 packets promiscuously.
164 This problem can be remedied with an appropriate filter.
165 .It Dv BIOCFLUSH
166 Flushes the buffer of incoming packets,
167 and resets the statistics that are returned by BIOCGSTATS.
168 .It Dv BIOCGETIF
169 .Pq Li "struct ifreq"
170 Returns the name of the hardware interface that the file is listening on.
171 The name is returned in the ifr_name field of
172 the
173 .Li ifreq
174 structure.
175 All other fields are undefined.
176 .It Dv BIOCSETIF
177 .Pq Li "struct ifreq"
178 Sets the hardware interface associate with the file.
179 This
180 command must be performed before any packets can be read.
181 The device is indicated by name using the
182 .Li ifr_name
183 field of the
184 .Li ifreq
185 structure.
186 Additionally, performs the actions of
187 .Dv BIOCFLUSH .
188 .It Dv BIOCSRTIMEOUT
189 .It Dv BIOCGRTIMEOUT
190 .Pq Li "struct timeval"
191 Set or get the read timeout parameter.
192 The argument
193 specifies the length of time to wait before timing
194 out on a read request.
195 This parameter is initialized to zero by
196 .Xr open 2 ,
197 indicating no timeout.
198 .It Dv BIOCGSTATS
199 .Pq Li "struct bpf_stat"
200 Returns the following structure of packet statistics:
201 .Bd -literal
202 struct bpf_stat {
203         u_int bs_recv;    /* number of packets received */
204         u_int bs_drop;    /* number of packets dropped */
205 };
206 .Ed
207 .Pp
208 The fields are:
209 .Bl -hang -offset indent
210 .It Li bs_recv
211 the number of packets received by the descriptor since opened or reset
212 (including any buffered since the last read call);
213 and
214 .It Li bs_drop
215 the number of packets which were accepted by the filter but dropped by the
216 kernel because of buffer overflows
217 (i.e., the application's reads are not keeping up with the packet traffic).
218 .El
219 .It Dv BIOCIMMEDIATE
220 .Pq Li u_int
221 Enable or disable
222 .Dq immediate mode ,
223 based on the truth value of the argument.
224 When immediate mode is enabled, reads return immediately upon packet
225 reception.
226 Otherwise, a read will block until either the kernel buffer
227 becomes full or a timeout occurs.
228 This is useful for programs like
229 .Xr rarpd 8
230 which must respond to messages in real time.
231 The default for a new file is off.
232 .It Dv BIOCSETF
233 .Pq Li "struct bpf_program"
234 Sets the read filter program used by the kernel to discard uninteresting
235 packets.
236 An array of instructions and its length is passed in using
237 the following structure:
238 .Bd -literal
239 struct bpf_program {
240         int bf_len;
241         struct bpf_insn *bf_insns;
242 };
243 .Ed
244 .Pp
245 The filter program is pointed to by the
246 .Li bf_insns
247 field while its length in units of
248 .Sq Li struct bpf_insn
249 is given by the
250 .Li bf_len
251 field.
252 Also, the actions of
253 .Dv BIOCFLUSH
254 are performed.
255 See section
256 .Sx "FILTER MACHINE"
257 for an explanation of the filter language.
258 .It Dv BIOCSETWF
259 .Pq Li "struct bpf_program"
260 Sets the write filter program used by the kernel to control what type of
261 packets can be written to the interface. See the BIOCSETF command for more
262 information on the bpf filter program.
263 .It Dv BIOCVERSION
264 .Pq Li "struct bpf_version"
265 Returns the major and minor version numbers of the filter language currently
266 recognized by the kernel.
267 Before installing a filter, applications must check
268 that the current version is compatible with the running kernel.
269 Version numbers are compatible if the major numbers match and the application minor
270 is less than or equal to the kernel minor.
271 The kernel version number is returned in the following structure:
272 .Bd -literal
273 struct bpf_version {
274         u_short bv_major;
275         u_short bv_minor;
276 };
277 .Ed
278 .Pp
279 The current version numbers are given by
280 .Dv BPF_MAJOR_VERSION
281 and
282 .Dv BPF_MINOR_VERSION
283 from
284 .In net/bpf.h .
285 An incompatible filter
286 may result in undefined behavior (most likely, an error returned by
287 .Fn ioctl
288 or haphazard packet matching).
289 .It Dv BIOCSHDRCMPLT
290 .It Dv BIOCGHDRCMPLT
291 .Pq Li u_int
292 Set or get the status of the
293 .Dq header complete
294 flag.
295 Set to zero if the link level source address should be filled in automatically
296 by the interface output routine.
297 Set to one if the link level source
298 address will be written, as provided, to the wire.
299 This flag is initialized to zero by default.
300 .It Dv BIOCSSEESENT
301 .It Dv BIOCGSEESENT
302 .Pq Li u_int
303 Set or get the flag determining whether locally generated packets on the
304 interface should be returned by BPF.
305 Set to zero to see only incoming packets on the interface.
306 Set to one to see packets originating locally and remotely on the interface.
307 This flag is initialized to one by
308 default.
309 .It Dv BIOCLOCK
310 Set the locked flag on the bpf descriptor. This prevents the execution of
311 ioctl commands which could change the underlying operating parameters of
312 the device.
313 .El
314 .Sh BPF HEADER
315 The following structure is prepended to each packet returned by
316 .Xr read 2 :
317 .Bd -literal
318 struct bpf_hdr {
319         struct timeval bh_tstamp;     /* time stamp */
320         u_long bh_caplen;             /* length of captured portion */
321         u_long bh_datalen;            /* original length of packet */
322         u_short bh_hdrlen;            /* length of bpf header (this struct
323                                          plus alignment padding */
324 };
325 .Ed
326 .Pp
327 The fields, whose values are stored in host order, and are:
328 .Pp
329 .Bl -tag -compact -width bh_datalen
330 .It Li bh_tstamp
331 The time at which the packet was processed by the packet filter.
332 .It Li bh_caplen
333 The length of the captured portion of the packet.
334 This is the minimum of
335 the truncation amount specified by the filter and the length of the packet.
336 .It Li bh_datalen
337 The length of the packet off the wire.
338 This value is independent of the truncation amount specified by the filter.
339 .It Li bh_hdrlen
340 The length of the
341 .Nm
342 header, which may not be equal to
343 .\" XXX - not really a function call
344 .Fn sizeof "struct bpf_hdr" .
345 .El
346 .Pp
347 The
348 .Li bh_hdrlen
349 field exists to account for
350 padding between the header and the link level protocol.
351 The purpose here is to guarantee proper alignment of the packet
352 data structures, which is required on alignment sensitive
353 architectures and improves performance on many other architectures.
354 The packet filter insures that the
355 .Li bpf_hdr
356 and the network layer
357 header will be word aligned.
358 Suitable precautions
359 must be taken when accessing the link layer protocol fields on alignment
360 restricted machines.
361 (This is not a problem on an Ethernet, since
362 the type field is a short falling on an even offset,
363 and the addresses are probably accessed in a bytewise fashion).
364 .Pp
365 Additionally, individual packets are padded so that each starts
366 on a word boundary.
367 This requires that an application
368 has some knowledge of how to get from packet to packet.
369 The macro
370 .Dv BPF_WORDALIGN
371 is defined in
372 .In net/bpf.h
373 to facilitate
374 this process.
375 It rounds up its argument to the nearest word aligned value (where a word is
376 .Dv BPF_ALIGNMENT
377 bytes wide).
378 .Pp
379 For example, if
380 .Sq Li p
381 points to the start of a packet, this expression
382 will advance it to the next packet:
383 .Dl p = (char *)p + BPF_WORDALIGN(p->bh_hdrlen + p->bh_caplen)
384 .Pp
385 For the alignment mechanisms to work properly, the
386 buffer passed to
387 .Xr read 2
388 must itself be word aligned.
389 The
390 .Xr malloc 3
391 function
392 will always return an aligned buffer.
393 .Sh FILTER MACHINE
394 A filter program is an array of instructions, with all branches forwardly
395 directed, terminated by a
396 .Em return
397 instruction.
398 Each instruction performs some action on the pseudo-machine state,
399 which consists of an accumulator, index register, scratch memory store,
400 and implicit program counter.
401 .Pp
402 The following structure defines the instruction format:
403 .Bd -literal
404 struct bpf_insn {
405         u_short code;
406         u_char  jt;
407         u_char  jf;
408         u_long k;
409 };
410 .Ed
411 .Pp
412 The
413 .Li k
414 field is used in different ways by different instructions,
415 and the
416 .Li jt
417 and
418 .Li jf
419 fields are used as offsets
420 by the branch instructions.
421 The opcodes are encoded in a semi-hierarchical fashion.
422 There are eight classes of instructions:
423 .Dv BPF_LD ,
424 .Dv BPF_LDX ,
425 .Dv BPF_ST ,
426 .Dv BPF_STX ,
427 .Dv BPF_ALU ,
428 .Dv BPF_JMP ,
429 .Dv BPF_RET ,
430 and
431 .Dv BPF_MISC .
432 Various other mode and
433 operator bits are or'd into the class to give the actual instructions.
434 The classes and modes are defined in
435 .In net/bpf.h .
436 .Pp
437 Below are the semantics for each defined
438 .Nm
439 instruction.
440 We use the convention that A is the accumulator, X is the index register,
441 P[] packet data, and M[] scratch memory store.
442 P[i:n] gives the data at byte offset
443 .Dq i
444 in the packet,
445 interpreted as a word (n=4),
446 unsigned halfword (n=2), or unsigned byte (n=1).
447 M[i] gives the i'th word in the scratch memory store, which is only
448 addressed in word units.
449 The memory store is indexed from 0 to
450 .Dv BPF_MEMWORDS
451 - 1.
452 .Li k ,
453 .Li jt ,
454 and
455 .Li jf
456 are the corresponding fields in the
457 instruction definition.
458 .Dq len
459 refers to the length of the packet.
460 .Pp
461 .Bl -tag -width BPF_STXx
462 .It Dv BPF_LD
463 These instructions copy a value into the accumulator.
464 The type of the source operand is specified by an
465 .Dq addressing mode
466 and can be a constant
467 .Pq Dv BPF_IMM ,
468 packet data at a fixed offset
469 .Pq Dv BPF_ABS ,
470 packet data at a variable offset
471 .Pq Dv BPF_IND ,
472 the packet length
473 .Pq Dv BPF_LEN ,
474 or a word in the scratch memory store
475 .Pq Dv BPF_MEM .
476 For
477 .Dv BPF_IND
478 and
479 .Dv BPF_ABS ,
480 the data size must be specified as a word
481 .Pq Dv BPF_W ,
482 halfword
483 .Pq Dv BPF_H ,
484 or byte
485 .Pq Dv BPF_B .
486 The semantics of all the recognized
487 .Dv BPF_LD
488 instructions follow.
489 .Pp
490 .Bd -literal
491 BPF_LD+BPF_W+BPF_ABS    A <- P[k:4]
492 BPF_LD+BPF_H+BPF_ABS    A <- P[k:2]
493 BPF_LD+BPF_B+BPF_ABS    A <- P[k:1]
494 BPF_LD+BPF_W+BPF_IND    A <- P[X+k:4]
495 BPF_LD+BPF_H+BPF_IND    A <- P[X+k:2]
496 BPF_LD+BPF_B+BPF_IND    A <- P[X+k:1]
497 BPF_LD+BPF_W+BPF_LEN    A <- len
498 BPF_LD+BPF_IMM          A <- k
499 BPF_LD+BPF_MEM          A <- M[k]
500 .Ed
501 .It Dv BPF_LDX
502 These instructions load a value into the index register.
503 Note that
504 the addressing modes are more restrictive than those of the accumulator loads,
505 but they include
506 .Dv BPF_MSH ,
507 a hack for efficiently loading the IP header length.
508 .Pp
509 .Bd -literal
510 BPF_LDX+BPF_W+BPF_IMM   X <- k
511 BPF_LDX+BPF_W+BPF_MEM   X <- M[k]
512 BPF_LDX+BPF_W+BPF_LEN   X <- len
513 BPF_LDX+BPF_B+BPF_MSH   X <- 4*(P[k:1]&0xf)
514 .Ed
515 .It Dv BPF_ST
516 This instruction stores the accumulator into the scratch memory.
517 We do not need an addressing mode since there is only one possibility
518 for the destination.
519 .Pp
520 .Bd -literal
521 BPF_ST                  M[k] <- A
522 .Ed
523 .It Dv BPF_STX
524 This instruction stores the index register in the scratch memory store.
525 .Pp
526 .Bd -literal
527 BPF_STX                 M[k] <- X
528 .Ed
529 .It Dv BPF_ALU
530 The alu instructions perform operations between the accumulator and
531 index register or constant, and store the result back in the accumulator.
532 For binary operations, a source mode is required
533 .Dv ( BPF_K
534 or
535 .Dv BPF_X ) .
536 .Pp
537 .Bd -literal
538 BPF_ALU+BPF_ADD+BPF_K   A <- A + k
539 BPF_ALU+BPF_SUB+BPF_K   A <- A - k
540 BPF_ALU+BPF_MUL+BPF_K   A <- A * k
541 BPF_ALU+BPF_DIV+BPF_K   A <- A / k
542 BPF_ALU+BPF_AND+BPF_K   A <- A & k
543 BPF_ALU+BPF_OR+BPF_K    A <- A | k
544 BPF_ALU+BPF_LSH+BPF_K   A <- A << k
545 BPF_ALU+BPF_RSH+BPF_K   A <- A >> k
546 BPF_ALU+BPF_ADD+BPF_X   A <- A + X
547 BPF_ALU+BPF_SUB+BPF_X   A <- A - X
548 BPF_ALU+BPF_MUL+BPF_X   A <- A * X
549 BPF_ALU+BPF_DIV+BPF_X   A <- A / X
550 BPF_ALU+BPF_AND+BPF_X   A <- A & X
551 BPF_ALU+BPF_OR+BPF_X    A <- A | X
552 BPF_ALU+BPF_LSH+BPF_X   A <- A << X
553 BPF_ALU+BPF_RSH+BPF_X   A <- A >> X
554 BPF_ALU+BPF_NEG         A <- -A
555 .Ed
556 .It Dv BPF_JMP
557 The jump instructions alter flow of control.
558 Conditional jumps
559 compare the accumulator against a constant
560 .Pq Dv BPF_K
561 or the index register
562 .Pq Dv BPF_X .
563 If the result is true (or non-zero),
564 the true branch is taken, otherwise the false branch is taken.
565 Jump offsets are encoded in 8 bits so the longest jump is 256 instructions.
566 However, the jump always
567 .Pq Dv BPF_JA
568 opcode uses the 32 bit
569 .Li k
570 field as the offset, allowing arbitrarily distant destinations.
571 All conditionals use unsigned comparison conventions.
572 .Pp
573 .Bd -literal
574 BPF_JMP+BPF_JA          pc += k
575 BPF_JMP+BPF_JGT+BPF_K   pc += (A > k) ? jt : jf
576 BPF_JMP+BPF_JGE+BPF_K   pc += (A >= k) ? jt : jf
577 BPF_JMP+BPF_JEQ+BPF_K   pc += (A == k) ? jt : jf
578 BPF_JMP+BPF_JSET+BPF_K  pc += (A & k) ? jt : jf
579 BPF_JMP+BPF_JGT+BPF_X   pc += (A > X) ? jt : jf
580 BPF_JMP+BPF_JGE+BPF_X   pc += (A >= X) ? jt : jf
581 BPF_JMP+BPF_JEQ+BPF_X   pc += (A == X) ? jt : jf
582 BPF_JMP+BPF_JSET+BPF_X  pc += (A & X) ? jt : jf
583 .Ed
584 .It Dv BPF_RET
585 The return instructions terminate the filter program and specify the amount
586 of packet to accept (i.e., they return the truncation amount).
587 A return value of zero indicates that the packet should be ignored.
588 The return value is either a constant
589 .Pq Dv BPF_K
590 or the accumulator
591 .Pq Dv BPF_A .
592 .Pp
593 .Bd -literal
594 BPF_RET+BPF_A           accept A bytes
595 BPF_RET+BPF_K           accept k bytes
596 .Ed
597 .It Dv BPF_MISC
598 The miscellaneous category was created for anything that does not
599 fit into the above classes, and for any new instructions that might need to
600 be added.
601 Currently, these are the register transfer instructions
602 that copy the index register to the accumulator or vice versa.
603 .Pp
604 .Bd -literal
605 BPF_MISC+BPF_TAX        X <- A
606 BPF_MISC+BPF_TXA        A <- X
607 .Ed
608 .El
609 .Pp
610 The
611 .Nm
612 interface provides the following macros to facilitate
613 array initializers:
614 .Fn BPF_STMT opcode operand
615 and
616 .Fn BPF_JUMP opcode operand true_offset false_offset .
617 .Sh FILES
618 .Bl -tag -compact -width /dev/bpfXXX
619 .It Pa /dev/bpf Ns Sy n
620 the packet filter device
621 .El
622 .Sh EXAMPLES
623 The following filter is taken from the Reverse ARP Daemon.
624 It accepts only Reverse ARP requests.
625 .Bd -literal
626 struct bpf_insn insns[] = {
627         BPF_STMT(BPF_LD+BPF_H+BPF_ABS, 12),
628         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ETHERTYPE_REVARP, 0, 3),
629         BPF_STMT(BPF_LD+BPF_H+BPF_ABS, 20),
630         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, REVARP_REQUEST, 0, 1),
631         BPF_STMT(BPF_RET+BPF_K, sizeof(struct ether_arp) +
632                  sizeof(struct ether_header)),
633         BPF_STMT(BPF_RET+BPF_K, 0),
634 };
635 .Ed
636 .Pp
637 This filter accepts only IP packets between host 128.3.112.15 and
638 128.3.112.35.
639 .Bd -literal
640 struct bpf_insn insns[] = {
641         BPF_STMT(BPF_LD+BPF_H+BPF_ABS, 12),
642         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ETHERTYPE_IP, 0, 8),
643         BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 26),
644         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x8003700f, 0, 2),
645         BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 30),
646         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x80037023, 3, 4),
647         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x80037023, 0, 3),
648         BPF_STMT(BPF_LD+BPF_W+BPF_ABS, 30),
649         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 0x8003700f, 0, 1),
650         BPF_STMT(BPF_RET+BPF_K, (u_int)-1),
651         BPF_STMT(BPF_RET+BPF_K, 0),
652 };
653 .Ed
654 .Pp
655 Finally, this filter returns only TCP finger packets.
656 We must parse the IP header to reach the TCP header.
657 The
658 .Dv BPF_JSET
659 instruction
660 checks that the IP fragment offset is 0 so we are sure
661 that we have a TCP header.
662 .Bd -literal
663 struct bpf_insn insns[] = {
664         BPF_STMT(BPF_LD+BPF_H+BPF_ABS, 12),
665         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, ETHERTYPE_IP, 0, 10),
666         BPF_STMT(BPF_LD+BPF_B+BPF_ABS, 23),
667         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, IPPROTO_TCP, 0, 8),
668         BPF_STMT(BPF_LD+BPF_H+BPF_ABS, 20),
669         BPF_JUMP(BPF_JMP+BPF_JSET+BPF_K, 0x1fff, 6, 0),
670         BPF_STMT(BPF_LDX+BPF_B+BPF_MSH, 14),
671         BPF_STMT(BPF_LD+BPF_H+BPF_IND, 14),
672         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 79, 2, 0),
673         BPF_STMT(BPF_LD+BPF_H+BPF_IND, 16),
674         BPF_JUMP(BPF_JMP+BPF_JEQ+BPF_K, 79, 0, 1),
675         BPF_STMT(BPF_RET+BPF_K, (u_int)-1),
676         BPF_STMT(BPF_RET+BPF_K, 0),
677 };
678 .Ed
679 .Sh SEE ALSO
680 .Xr tcpdump 1 ,
681 .Xr ioctl 2 ,
682 .Xr byteorder 3 ,
683 .Xr ng_bpf 4 ,
684 .Xr bpf 9
685 .Rs
686 .%A McCanne, S.
687 .%A Jacobson V.
688 .%T "An efficient, extensible, and portable network monitor"
689 .Re
690 .Sh HISTORY
691 The Enet packet filter was created in 1980 by Mike Accetta and
692 Rick Rashid at Carnegie-Mellon University.
693 Jeffrey Mogul, at
694 Stanford, ported the code to
695 .Bx
696 and continued its development from
697 1983 on.
698 Since then, it has evolved into the Ultrix Packet Filter at
699 .Tn DEC ,
700 a
701 .Tn STREAMS
702 .Tn NIT
703 module under
704 .Tn SunOS 4.1 ,
705 and
706 .Tn BPF .
707 .Sh AUTHORS
708 .An -nosplit
709 .An Steven McCanne ,
710 of Lawrence Berkeley Laboratory, implemented BPF in
711 Summer 1990.
712 Much of the design is due to
713 .An Van Jacobson .
714 .Sh BUGS
715 The read buffer must be of a fixed size (returned by the
716 .Dv BIOCGBLEN
717 ioctl).
718 .Pp
719 A file that does not request promiscuous mode may receive promiscuously
720 received packets as a side effect of another file requesting this
721 mode on the same hardware interface.
722 This could be fixed in the kernel with additional processing overhead.
723 However, we favor the model where
724 all files must assume that the interface is promiscuous, and if
725 so desired, must utilize a filter to reject foreign packets.
726 .Pp
727 Data link protocols with variable length headers are not currently supported.
728 .Pp
729 The
730 .Dv SEESENT
731 flag has been observed to work incorrectly on some interface
732 types, including those with hardware loopback rather than software loopback,
733 and point-to-point interfaces.
734 It appears to function correctly on a
735 broad range of Ethernet-style interfaces.