]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - source/Target/Memory.cpp
Vendor import of lldb release_39 branch r276489:
[FreeBSD/FreeBSD.git] / source / Target / Memory.cpp
1 //===-- Memory.cpp ----------------------------------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "lldb/Target/Memory.h"
11 // C Includes
12 #include <inttypes.h>
13 // C++ Includes
14 // Other libraries and framework includes
15 // Project includes
16 #include "lldb/Core/DataBufferHeap.h"
17 #include "lldb/Core/Log.h"
18 #include "lldb/Core/RangeMap.h"
19 #include "lldb/Core/State.h"
20 #include "lldb/Target/Process.h"
21
22 using namespace lldb;
23 using namespace lldb_private;
24
25 //----------------------------------------------------------------------
26 // MemoryCache constructor
27 //----------------------------------------------------------------------
28 MemoryCache::MemoryCache(Process &process)
29     : m_mutex(),
30       m_L1_cache(),
31       m_L2_cache(),
32       m_invalid_ranges(),
33       m_process(process),
34       m_L2_cache_line_byte_size(process.GetMemoryCacheLineSize())
35 {
36 }
37
38 //----------------------------------------------------------------------
39 // Destructor
40 //----------------------------------------------------------------------
41 MemoryCache::~MemoryCache()
42 {
43 }
44
45 void
46 MemoryCache::Clear(bool clear_invalid_ranges)
47 {
48     std::lock_guard<std::recursive_mutex> guard(m_mutex);
49     m_L1_cache.clear();
50     m_L2_cache.clear();
51     if (clear_invalid_ranges)
52         m_invalid_ranges.Clear();
53     m_L2_cache_line_byte_size = m_process.GetMemoryCacheLineSize();
54 }
55
56 void
57 MemoryCache::AddL1CacheData(lldb::addr_t addr, const void *src, size_t src_len)
58 {
59     AddL1CacheData(addr,DataBufferSP (new DataBufferHeap(DataBufferHeap(src, src_len))));
60 }
61
62 void
63 MemoryCache::AddL1CacheData(lldb::addr_t addr, const DataBufferSP &data_buffer_sp)
64 {
65     std::lock_guard<std::recursive_mutex> guard(m_mutex);
66     m_L1_cache[addr] = data_buffer_sp;
67 }
68
69 void
70 MemoryCache::Flush (addr_t addr, size_t size)
71 {
72     if (size == 0)
73         return;
74
75     std::lock_guard<std::recursive_mutex> guard(m_mutex);
76
77     // Erase any blocks from the L1 cache that intersect with the flush range
78     if (!m_L1_cache.empty())
79     {
80         AddrRange flush_range(addr, size);
81         BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
82         if (pos != m_L1_cache.begin())
83         {
84             --pos;
85         }
86         while (pos != m_L1_cache.end())
87         {
88             AddrRange chunk_range(pos->first, pos->second->GetByteSize());
89             if (!chunk_range.DoesIntersect(flush_range))
90                 break;
91             pos = m_L1_cache.erase(pos);
92         }
93     }
94
95     if (!m_L2_cache.empty())
96     {
97         const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
98         const addr_t end_addr = (addr + size - 1);
99         const addr_t first_cache_line_addr = addr - (addr % cache_line_byte_size);
100         const addr_t last_cache_line_addr = end_addr - (end_addr % cache_line_byte_size);
101         // Watch for overflow where size will cause us to go off the end of the
102         // 64 bit address space
103         uint32_t num_cache_lines;
104         if (last_cache_line_addr >= first_cache_line_addr)
105             num_cache_lines = ((last_cache_line_addr - first_cache_line_addr)/cache_line_byte_size) + 1;
106         else
107             num_cache_lines = (UINT64_MAX - first_cache_line_addr + 1)/cache_line_byte_size;
108
109         uint32_t cache_idx = 0;
110         for (addr_t curr_addr = first_cache_line_addr;
111              cache_idx < num_cache_lines;
112              curr_addr += cache_line_byte_size, ++cache_idx)
113         {
114             BlockMap::iterator pos = m_L2_cache.find (curr_addr);
115             if (pos != m_L2_cache.end())
116                 m_L2_cache.erase(pos);
117         }
118     }
119 }
120
121 void
122 MemoryCache::AddInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size)
123 {
124     if (byte_size > 0)
125     {
126         std::lock_guard<std::recursive_mutex> guard(m_mutex);
127         InvalidRanges::Entry range (base_addr, byte_size);
128         m_invalid_ranges.Append(range);
129         m_invalid_ranges.Sort();
130     }
131 }
132
133 bool
134 MemoryCache::RemoveInvalidRange (lldb::addr_t base_addr, lldb::addr_t byte_size)
135 {
136     if (byte_size > 0)
137     {
138         std::lock_guard<std::recursive_mutex> guard(m_mutex);
139         const uint32_t idx = m_invalid_ranges.FindEntryIndexThatContains(base_addr);
140         if (idx != UINT32_MAX)
141         {
142             const InvalidRanges::Entry *entry = m_invalid_ranges.GetEntryAtIndex (idx);
143             if (entry->GetRangeBase() == base_addr && entry->GetByteSize() == byte_size)
144                 return m_invalid_ranges.RemoveEntrtAtIndex (idx);
145         }
146     }
147     return false;
148 }
149
150
151
152 size_t
153 MemoryCache::Read (addr_t addr,  
154                    void *dst, 
155                    size_t dst_len,
156                    Error &error)
157 {
158     size_t bytes_left = dst_len;
159
160     // Check the L1 cache for a range that contain the entire memory read.
161     // If we find a range in the L1 cache that does, we use it. Else we fall
162     // back to reading memory in m_L2_cache_line_byte_size byte sized chunks.
163     // The L1 cache contains chunks of memory that are not required to be
164     // m_L2_cache_line_byte_size bytes in size, so we don't try anything
165     // tricky when reading from them (no partial reads from the L1 cache).
166
167     std::lock_guard<std::recursive_mutex> guard(m_mutex);
168     if (!m_L1_cache.empty())
169     {
170         AddrRange read_range(addr, dst_len);
171         BlockMap::iterator pos = m_L1_cache.upper_bound(addr);
172         if (pos != m_L1_cache.begin ())
173         {
174             --pos;
175         }
176         AddrRange chunk_range(pos->first, pos->second->GetByteSize());
177         if (chunk_range.Contains(read_range))
178         {
179             memcpy(dst, pos->second->GetBytes() + addr - chunk_range.GetRangeBase(), dst_len);
180             return dst_len;
181         }
182     }
183
184
185     // If this memory read request is larger than the cache line size, then 
186     // we (1) try to read as much of it at once as possible, and (2) don't
187     // add the data to the memory cache.  We don't want to split a big read
188     // up into more separate reads than necessary, and with a large memory read
189     // request, it is unlikely that the caller function will ask for the next
190     // 4 bytes after the large memory read - so there's little benefit to saving
191     // it in the cache.
192     if (dst && dst_len > m_L2_cache_line_byte_size)
193     {
194         size_t bytes_read = m_process.ReadMemoryFromInferior (addr, dst, dst_len, error);
195         // Add this non block sized range to the L1 cache if we actually read anything
196         if (bytes_read > 0)
197             AddL1CacheData(addr, dst, bytes_read);
198         return bytes_read;
199     }
200
201     if (dst && bytes_left > 0)
202     {
203         const uint32_t cache_line_byte_size = m_L2_cache_line_byte_size;
204         uint8_t *dst_buf = (uint8_t *)dst;
205         addr_t curr_addr = addr - (addr % cache_line_byte_size);
206         addr_t cache_offset = addr - curr_addr;
207
208         while (bytes_left > 0)
209         {
210             if (m_invalid_ranges.FindEntryThatContains(curr_addr))
211             {
212                 error.SetErrorStringWithFormat("memory read failed for 0x%" PRIx64, curr_addr);
213                 return dst_len - bytes_left;
214             }
215
216             BlockMap::const_iterator pos = m_L2_cache.find (curr_addr);
217             BlockMap::const_iterator end = m_L2_cache.end ();
218             
219             if (pos != end)
220             {
221                 size_t curr_read_size = cache_line_byte_size - cache_offset;
222                 if (curr_read_size > bytes_left)
223                     curr_read_size = bytes_left;
224                 
225                 memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes() + cache_offset, curr_read_size);
226                 
227                 bytes_left -= curr_read_size;
228                 curr_addr += curr_read_size + cache_offset;
229                 cache_offset = 0;
230                 
231                 if (bytes_left > 0)
232                 {
233                     // Get sequential cache page hits
234                     for (++pos; (pos != end) && (bytes_left > 0); ++pos)
235                     {
236                         assert ((curr_addr % cache_line_byte_size) == 0);
237                         
238                         if (pos->first != curr_addr)
239                             break;
240                         
241                         curr_read_size = pos->second->GetByteSize();
242                         if (curr_read_size > bytes_left)
243                             curr_read_size = bytes_left;
244                         
245                         memcpy (dst_buf + dst_len - bytes_left, pos->second->GetBytes(), curr_read_size);
246                         
247                         bytes_left -= curr_read_size;
248                         curr_addr += curr_read_size;
249                         
250                         // We have a cache page that succeeded to read some bytes
251                         // but not an entire page. If this happens, we must cap
252                         // off how much data we are able to read...
253                         if (pos->second->GetByteSize() != cache_line_byte_size)
254                             return dst_len - bytes_left;
255                     }
256                 }
257             }
258             
259             // We need to read from the process
260             
261             if (bytes_left > 0)
262             {
263                 assert ((curr_addr % cache_line_byte_size) == 0);
264                 std::unique_ptr<DataBufferHeap> data_buffer_heap_ap(new DataBufferHeap (cache_line_byte_size, 0));
265                 size_t process_bytes_read = m_process.ReadMemoryFromInferior (curr_addr, 
266                                                                               data_buffer_heap_ap->GetBytes(), 
267                                                                               data_buffer_heap_ap->GetByteSize(), 
268                                                                               error);
269                 if (process_bytes_read == 0)
270                     return dst_len - bytes_left;
271                 
272                 if (process_bytes_read != cache_line_byte_size)
273                     data_buffer_heap_ap->SetByteSize (process_bytes_read);
274                 m_L2_cache[curr_addr] = DataBufferSP (data_buffer_heap_ap.release());
275                 // We have read data and put it into the cache, continue through the
276                 // loop again to get the data out of the cache...
277             }
278         }
279     }
280     
281     return dst_len - bytes_left;
282 }
283
284
285
286 AllocatedBlock::AllocatedBlock (lldb::addr_t addr, 
287                                 uint32_t byte_size, 
288                                 uint32_t permissions,
289                                 uint32_t chunk_size) :
290     m_addr (addr),
291     m_byte_size (byte_size),
292     m_permissions (permissions),
293     m_chunk_size (chunk_size),
294     m_offset_to_chunk_size ()
295 //    m_allocated (byte_size / chunk_size)
296 {
297     assert (byte_size > chunk_size);
298 }
299
300 AllocatedBlock::~AllocatedBlock ()
301 {
302 }
303
304 lldb::addr_t
305 AllocatedBlock::ReserveBlock (uint32_t size)
306 {
307     addr_t addr = LLDB_INVALID_ADDRESS;
308     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE));
309     if (size <= m_byte_size)
310     {
311         const uint32_t needed_chunks = CalculateChunksNeededForSize (size);
312
313         if (m_offset_to_chunk_size.empty())
314         {
315             m_offset_to_chunk_size[0] = needed_chunks;
316             if (log)
317                 log->Printf("[1] AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks", (void *)this,
318                             size, size, 0, needed_chunks, m_chunk_size);
319             addr = m_addr;
320         }
321         else
322         {
323             uint32_t last_offset = 0;
324             OffsetToChunkSize::const_iterator pos = m_offset_to_chunk_size.begin();
325             OffsetToChunkSize::const_iterator end = m_offset_to_chunk_size.end();
326             while (pos != end)
327             {
328                 if (pos->first > last_offset)
329                 {
330                     const uint32_t bytes_available = pos->first - last_offset;
331                     const uint32_t num_chunks = CalculateChunksNeededForSize (bytes_available);
332                     if (num_chunks >= needed_chunks)
333                     {
334                         m_offset_to_chunk_size[last_offset] = needed_chunks;
335                         if (log)
336                             log->Printf("[2] AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks - "
337                                         "num_chunks %lu",
338                                         (void *)this, size, size, last_offset, needed_chunks, m_chunk_size, m_offset_to_chunk_size.size());
339                         addr = m_addr + last_offset;
340                         break;
341                     }
342                 }
343                 
344                 last_offset = pos->first + pos->second * m_chunk_size;
345
346                 if (++pos == end)
347                 {
348                     // Last entry...
349                     const uint32_t chunks_left = CalculateChunksNeededForSize (m_byte_size - last_offset);
350                     if (chunks_left >= needed_chunks)
351                     {
352                         m_offset_to_chunk_size[last_offset] = needed_chunks;
353                         if (log)
354                             log->Printf("[3] AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => offset = 0x%x, %u %u bit chunks - "
355                                         "num_chunks %lu",
356                                         (void *)this, size, size, last_offset, needed_chunks, m_chunk_size, m_offset_to_chunk_size.size());
357                         addr = m_addr + last_offset;
358                         break;
359                     }
360                 }
361             }
362         }
363 //        const uint32_t total_chunks = m_allocated.size ();
364 //        uint32_t unallocated_idx = 0;
365 //        uint32_t allocated_idx = m_allocated.find_first();
366 //        uint32_t first_chunk_idx = UINT32_MAX;
367 //        uint32_t num_chunks;
368 //        while (1)
369 //        {
370 //            if (allocated_idx == UINT32_MAX)
371 //            {
372 //                // No more bits are set starting from unallocated_idx, so we
373 //                // either have enough chunks for the request, or we don't.
374 //                // Eiter way we break out of the while loop...
375 //                num_chunks = total_chunks - unallocated_idx;
376 //                if (needed_chunks <= num_chunks)
377 //                    first_chunk_idx = unallocated_idx;
378 //                break;                
379 //            }
380 //            else if (allocated_idx > unallocated_idx)
381 //            {
382 //                // We have some allocated chunks, check if there are enough
383 //                // free chunks to satisfy the request?
384 //                num_chunks = allocated_idx - unallocated_idx;
385 //                if (needed_chunks <= num_chunks)
386 //                {
387 //                    // Yep, we have enough!
388 //                    first_chunk_idx = unallocated_idx;
389 //                    break;
390 //                }
391 //            }
392 //            
393 //            while (unallocated_idx < total_chunks)
394 //            {
395 //                if (m_allocated[unallocated_idx])
396 //                    ++unallocated_idx;
397 //                else
398 //                    break;
399 //            }
400 //            
401 //            if (unallocated_idx >= total_chunks)
402 //                break;
403 //            
404 //            allocated_idx = m_allocated.find_next(unallocated_idx);
405 //        }
406 //        
407 //        if (first_chunk_idx != UINT32_MAX)
408 //        {
409 //            const uint32_t end_bit_idx = unallocated_idx + needed_chunks;
410 //            for (uint32_t idx = first_chunk_idx; idx < end_bit_idx; ++idx)
411 //                m_allocated.set(idx);
412 //            return m_addr + m_chunk_size * first_chunk_idx;
413 //        }
414     }
415
416     if (log)
417         log->Printf("AllocatedBlock::ReserveBlock(%p) (size = %u (0x%x)) => 0x%16.16" PRIx64, (void *)this, size, size, (uint64_t)addr);
418     return addr;
419 }
420
421 bool
422 AllocatedBlock::FreeBlock (addr_t addr)
423 {
424     uint32_t offset = addr - m_addr;
425     OffsetToChunkSize::iterator pos = m_offset_to_chunk_size.find (offset);
426     bool success = false;
427     if (pos != m_offset_to_chunk_size.end())
428     {
429         m_offset_to_chunk_size.erase (pos);
430         success = true;
431     }
432     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_VERBOSE));
433     if (log)
434         log->Printf("AllocatedBlock::FreeBlock(%p) (addr = 0x%16.16" PRIx64 ") => %i, num_chunks: %lu", (void *)this, (uint64_t)addr,
435                     success, m_offset_to_chunk_size.size());
436     return success;
437 }
438
439 AllocatedMemoryCache::AllocatedMemoryCache(Process &process) : m_process(process), m_mutex(), m_memory_map()
440 {
441 }
442
443 AllocatedMemoryCache::~AllocatedMemoryCache ()
444 {
445 }
446
447
448 void
449 AllocatedMemoryCache::Clear()
450 {
451     std::lock_guard<std::recursive_mutex> guard(m_mutex);
452     if (m_process.IsAlive())
453     {
454         PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
455         for (pos = m_memory_map.begin(); pos != end; ++pos)
456             m_process.DoDeallocateMemory(pos->second->GetBaseAddress());
457     }
458     m_memory_map.clear();
459 }
460
461
462 AllocatedMemoryCache::AllocatedBlockSP
463 AllocatedMemoryCache::AllocatePage (uint32_t byte_size, 
464                                     uint32_t permissions, 
465                                     uint32_t chunk_size, 
466                                     Error &error)
467 {
468     AllocatedBlockSP block_sp;
469     const size_t page_size = 4096;
470     const size_t num_pages = (byte_size + page_size - 1) / page_size;
471     const size_t page_byte_size = num_pages * page_size;
472
473     addr_t addr = m_process.DoAllocateMemory(page_byte_size, permissions, error);
474
475     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
476     if (log)
477     {
478         log->Printf ("Process::DoAllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64,
479                      (uint32_t)page_byte_size, 
480                      GetPermissionsAsCString(permissions), 
481                      (uint64_t)addr);
482     }
483
484     if (addr != LLDB_INVALID_ADDRESS)
485     {
486         block_sp.reset (new AllocatedBlock (addr, page_byte_size, permissions, chunk_size));
487         m_memory_map.insert (std::make_pair (permissions, block_sp));
488     }
489     return block_sp;
490 }
491
492 lldb::addr_t
493 AllocatedMemoryCache::AllocateMemory (size_t byte_size, 
494                                       uint32_t permissions, 
495                                       Error &error)
496 {
497     std::lock_guard<std::recursive_mutex> guard(m_mutex);
498
499     addr_t addr = LLDB_INVALID_ADDRESS;
500     std::pair<PermissionsToBlockMap::iterator, PermissionsToBlockMap::iterator> range = m_memory_map.equal_range (permissions);
501
502     for (PermissionsToBlockMap::iterator pos = range.first; pos != range.second; ++pos)
503     {
504         addr = (*pos).second->ReserveBlock (byte_size);
505         if (addr != LLDB_INVALID_ADDRESS)
506             break;
507     }
508     
509     if (addr == LLDB_INVALID_ADDRESS)
510     {
511         AllocatedBlockSP block_sp (AllocatePage (byte_size, permissions, 16, error));
512
513         if (block_sp)
514             addr = block_sp->ReserveBlock (byte_size);
515     }
516     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
517     if (log)
518         log->Printf ("AllocatedMemoryCache::AllocateMemory (byte_size = 0x%8.8" PRIx32 ", permissions = %s) => 0x%16.16" PRIx64, (uint32_t)byte_size, GetPermissionsAsCString(permissions), (uint64_t)addr);
519     return addr;
520 }
521
522 bool
523 AllocatedMemoryCache::DeallocateMemory (lldb::addr_t addr)
524 {
525     std::lock_guard<std::recursive_mutex> guard(m_mutex);
526
527     PermissionsToBlockMap::iterator pos, end = m_memory_map.end();
528     bool success = false;
529     for (pos = m_memory_map.begin(); pos != end; ++pos)
530     {
531         if (pos->second->Contains (addr))
532         {
533             success = pos->second->FreeBlock (addr);
534             break;
535         }
536     }
537     Log *log (GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS));
538     if (log)
539         log->Printf("AllocatedMemoryCache::DeallocateMemory (addr = 0x%16.16" PRIx64 ") => %i", (uint64_t)addr, success);
540     return success;
541 }
542
543