]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - stand/common/load_elf.c
Merge OpenSSL 3.0.9
[FreeBSD/FreeBSD.git] / stand / common / load_elf.c
1 /*-
2  * Copyright (c) 1998 Michael Smith <msmith@freebsd.org>
3  * Copyright (c) 1998 Peter Wemm <peter@freebsd.org>
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30
31 #include <sys/param.h>
32 #include <sys/endian.h>
33 #include <sys/exec.h>
34 #include <sys/linker.h>
35 #include <sys/module.h>
36 #include <sys/stdint.h>
37 #include <string.h>
38 #include <machine/elf.h>
39 #include <stand.h>
40 #define FREEBSD_ELF
41 #include <sys/link_elf.h>
42
43 #include "bootstrap.h"
44
45 #define COPYOUT(s,d,l)  archsw.arch_copyout((vm_offset_t)(s), d, l)
46
47 #if defined(__i386__) && __ELF_WORD_SIZE == 64
48 #undef ELF_TARG_CLASS
49 #undef ELF_TARG_MACH
50 #define ELF_TARG_CLASS  ELFCLASS64
51 #define ELF_TARG_MACH   EM_X86_64
52 #endif
53
54 typedef struct elf_file {
55         Elf_Phdr        *ph;
56         Elf_Ehdr        *ehdr;
57         Elf_Sym         *symtab;
58         Elf_Hashelt     *hashtab;
59         Elf_Hashelt     nbuckets;
60         Elf_Hashelt     nchains;
61         Elf_Hashelt     *buckets;
62         Elf_Hashelt     *chains;
63         Elf_Rel *rel;
64         size_t  relsz;
65         Elf_Rela        *rela;
66         size_t  relasz;
67         char    *strtab;
68         size_t  strsz;
69         int             fd;
70         caddr_t firstpage;
71         size_t  firstlen;
72         int             kernel;
73         uint64_t        off;
74 #ifdef LOADER_VERIEXEC_VECTX
75         struct vectx    *vctx;
76 #endif
77 } *elf_file_t;
78
79 #ifdef LOADER_VERIEXEC_VECTX
80 #define VECTX_HANDLE(ef) (ef)->vctx
81 #else
82 #define VECTX_HANDLE(ef) (ef)->fd
83 #endif
84
85 static int __elfN(loadimage)(struct preloaded_file *mp, elf_file_t ef,
86     uint64_t loadaddr);
87 static int __elfN(lookup_symbol)(elf_file_t ef, const char* name,
88     Elf_Sym *sym, unsigned char type);
89 static int __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
90     Elf_Addr p, void *val, size_t len);
91 static int __elfN(parse_modmetadata)(struct preloaded_file *mp, elf_file_t ef,
92     Elf_Addr p_start, Elf_Addr p_end);
93 static symaddr_fn __elfN(symaddr);
94 static char     *fake_modname(const char *name);
95
96 const char      *__elfN(kerneltype) = "elf kernel";
97 const char      *__elfN(moduletype) = "elf module";
98
99 uint64_t        __elfN(relocation_offset) = 0;
100
101 #ifdef __powerpc__
102 extern void elf_wrong_field_size(void);
103 #define CONVERT_FIELD(b, f, e)                  \
104         switch (sizeof((b)->f)) {               \
105         case 2:                                 \
106                 (b)->f = e ## 16toh((b)->f);    \
107                 break;                          \
108         case 4:                                 \
109                 (b)->f = e ## 32toh((b)->f);    \
110                 break;                          \
111         case 8:                                 \
112                 (b)->f = e ## 64toh((b)->f);    \
113                 break;                          \
114         default:                                \
115                 /* Force a link time error. */  \
116                 elf_wrong_field_size();         \
117                 break;                          \
118         }
119
120 #define CONVERT_SWITCH(h, d, f)                 \
121         switch ((h)->e_ident[EI_DATA]) {        \
122         case ELFDATA2MSB:                       \
123                 f(d, be);                       \
124                 break;                          \
125         case ELFDATA2LSB:                       \
126                 f(d, le);                       \
127                 break;                          \
128         default:                                \
129                 return (EINVAL);                \
130         }
131
132
133 static int elf_header_convert(Elf_Ehdr *ehdr)
134 {
135         /*
136          * Fixup ELF header endianness.
137          *
138          * The Xhdr structure was loaded using block read call to optimize file
139          * accesses. It might happen, that the endianness of the system memory
140          * is different that endianness of the ELF header.  Swap fields here to
141          * guarantee that Xhdr always contain valid data regardless of
142          * architecture.
143          */
144 #define HEADER_FIELDS(b, e)                     \
145         CONVERT_FIELD(b, e_type, e);            \
146         CONVERT_FIELD(b, e_machine, e);         \
147         CONVERT_FIELD(b, e_version, e);         \
148         CONVERT_FIELD(b, e_entry, e);           \
149         CONVERT_FIELD(b, e_phoff, e);           \
150         CONVERT_FIELD(b, e_shoff, e);           \
151         CONVERT_FIELD(b, e_flags, e);           \
152         CONVERT_FIELD(b, e_ehsize, e);          \
153         CONVERT_FIELD(b, e_phentsize, e);       \
154         CONVERT_FIELD(b, e_phnum, e);           \
155         CONVERT_FIELD(b, e_shentsize, e);       \
156         CONVERT_FIELD(b, e_shnum, e);           \
157         CONVERT_FIELD(b, e_shstrndx, e)
158
159         CONVERT_SWITCH(ehdr, ehdr, HEADER_FIELDS);
160
161 #undef HEADER_FIELDS
162
163         return (0);
164 }
165
166 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
167 {
168 #define PROGRAM_HEADER_FIELDS(b, e)             \
169         CONVERT_FIELD(b, p_type, e);            \
170         CONVERT_FIELD(b, p_flags, e);           \
171         CONVERT_FIELD(b, p_offset, e);          \
172         CONVERT_FIELD(b, p_vaddr, e);           \
173         CONVERT_FIELD(b, p_paddr, e);           \
174         CONVERT_FIELD(b, p_filesz, e);          \
175         CONVERT_FIELD(b, p_memsz, e);           \
176         CONVERT_FIELD(b, p_align, e)
177
178         CONVERT_SWITCH(ehdr, phdr, PROGRAM_HEADER_FIELDS);
179
180 #undef PROGRAM_HEADER_FIELDS
181
182         return (0);
183 }
184
185 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
186 {
187 #define SECTION_HEADER_FIELDS(b, e)             \
188         CONVERT_FIELD(b, sh_name, e);           \
189         CONVERT_FIELD(b, sh_type, e);           \
190         CONVERT_FIELD(b, sh_link, e);           \
191         CONVERT_FIELD(b, sh_info, e);           \
192         CONVERT_FIELD(b, sh_flags, e);          \
193         CONVERT_FIELD(b, sh_addr, e);           \
194         CONVERT_FIELD(b, sh_offset, e);         \
195         CONVERT_FIELD(b, sh_size, e);           \
196         CONVERT_FIELD(b, sh_addralign, e);      \
197         CONVERT_FIELD(b, sh_entsize, e)
198
199         CONVERT_SWITCH(ehdr, shdr, SECTION_HEADER_FIELDS);
200
201 #undef SECTION_HEADER_FIELDS
202
203         return (0);
204 }
205 #undef CONVERT_SWITCH
206 #undef CONVERT_FIELD
207 #else
208 static int elf_header_convert(Elf_Ehdr *ehdr)
209 {
210         return (0);
211 }
212
213 static int elf_program_header_convert(const Elf_Ehdr *ehdr, Elf_Phdr *phdr)
214 {
215         return (0);
216 }
217
218 static int elf_section_header_convert(const Elf_Ehdr *ehdr, Elf_Shdr *shdr)
219 {
220         return (0);
221 }
222 #endif
223
224 #ifdef __amd64__
225 static bool
226 is_kernphys_relocatable(elf_file_t ef)
227 {
228         Elf_Sym sym;
229
230         return (__elfN(lookup_symbol)(ef, "kernphys", &sym, STT_OBJECT) == 0);
231 }
232 #endif
233
234 #ifdef __i386__
235 static bool
236 is_tg_kernel_support(struct preloaded_file *fp, elf_file_t ef)
237 {
238         Elf_Sym         sym;
239         Elf_Addr        p_start, p_end, v, p;
240         char            vd_name[16];
241         int             error;
242
243         if (__elfN(lookup_symbol)(ef, "__start_set_vt_drv_set", &sym, STT_NOTYPE) != 0)
244                 return (false);
245         p_start = sym.st_value + ef->off;
246         if (__elfN(lookup_symbol)(ef, "__stop_set_vt_drv_set", &sym, STT_NOTYPE) != 0)
247                 return (false);
248         p_end = sym.st_value + ef->off;
249
250         /*
251          * Walk through vt_drv_set, each vt driver structure starts with
252          * static 16 chars for driver name. If we have "vbefb", return true.
253          */
254         for (p = p_start; p < p_end; p += sizeof(Elf_Addr)) {
255                 COPYOUT(p, &v, sizeof(v));
256
257                 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
258                 if (error == EOPNOTSUPP)
259                         v += ef->off;
260                 else if (error != 0)
261                         return (false);
262                 COPYOUT(v, &vd_name, sizeof(vd_name));
263                 if (strncmp(vd_name, "vbefb", sizeof(vd_name)) == 0)
264                         return (true);
265         }
266
267         return (false);
268 }
269 #endif
270
271 static int
272 __elfN(load_elf_header)(char *filename, elf_file_t ef)
273 {
274         ssize_t                  bytes_read;
275         Elf_Ehdr                *ehdr;
276         int                      err;
277
278         /*
279          * Open the image, read and validate the ELF header
280          */
281         if (filename == NULL)   /* can't handle nameless */
282                 return (EFTYPE);
283         if ((ef->fd = open(filename, O_RDONLY)) == -1)
284                 return (errno);
285         ef->firstpage = malloc(PAGE_SIZE);
286         if (ef->firstpage == NULL) {
287                 close(ef->fd);
288                 return (ENOMEM);
289         }
290         preload(ef->fd);
291 #ifdef LOADER_VERIEXEC_VECTX
292         {
293                 int verror;
294
295                 ef->vctx = vectx_open(ef->fd, filename, 0L, NULL, &verror, __func__);
296                 if (verror) {
297                         printf("Unverified %s: %s\n", filename, ve_error_get());
298                         close(ef->fd);
299                         free(ef->vctx);
300                         return (EAUTH);
301                 }
302         }
303 #endif
304         bytes_read = VECTX_READ(VECTX_HANDLE(ef), ef->firstpage, PAGE_SIZE);
305         ef->firstlen = (size_t)bytes_read;
306         if (bytes_read < 0 || ef->firstlen <= sizeof(Elf_Ehdr)) {
307                 err = EFTYPE; /* could be EIO, but may be small file */
308                 goto error;
309         }
310         ehdr = ef->ehdr = (Elf_Ehdr *)ef->firstpage;
311
312         /* Is it ELF? */
313         if (!IS_ELF(*ehdr)) {
314                 err = EFTYPE;
315                 goto error;
316         }
317
318         if (ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || /* Layout ? */
319             ehdr->e_ident[EI_DATA] != ELF_TARG_DATA ||
320             ehdr->e_ident[EI_VERSION] != EV_CURRENT) /* Version ? */ {
321                 err = EFTYPE;
322                 goto error;
323         }
324
325         err = elf_header_convert(ehdr);
326         if (err)
327                 goto error;
328
329         if (ehdr->e_version != EV_CURRENT || ehdr->e_machine != ELF_TARG_MACH) {
330                 /* Machine ? */
331                 err = EFTYPE;
332                 goto error;
333         }
334
335 #if defined(LOADER_VERIEXEC) && !defined(LOADER_VERIEXEC_VECTX)
336         if (verify_file(ef->fd, filename, bytes_read, VE_MUST, __func__) < 0) {
337                 err = EAUTH;
338                 goto error;
339         }
340 #endif
341         return (0);
342
343 error:
344         if (ef->firstpage != NULL) {
345                 free(ef->firstpage);
346                 ef->firstpage = NULL;
347         }
348         if (ef->fd != -1) {
349 #ifdef LOADER_VERIEXEC_VECTX
350                 free(ef->vctx);
351 #endif
352                 close(ef->fd);
353                 ef->fd = -1;
354         }
355         return (err);
356 }
357
358 /*
359  * Attempt to load the file (file) as an ELF module.  It will be stored at
360  * (dest), and a pointer to a module structure describing the loaded object
361  * will be saved in (result).
362  */
363 int
364 __elfN(loadfile)(char *filename, uint64_t dest, struct preloaded_file **result)
365 {
366         return (__elfN(loadfile_raw)(filename, dest, result, 0));
367 }
368
369 int
370 __elfN(loadfile_raw)(char *filename, uint64_t dest,
371     struct preloaded_file **result, int multiboot)
372 {
373         struct preloaded_file   *fp, *kfp;
374         struct elf_file         ef;
375         Elf_Ehdr                *ehdr;
376         int                     err;
377
378         fp = NULL;
379         bzero(&ef, sizeof(struct elf_file));
380         ef.fd = -1;
381
382         err = __elfN(load_elf_header)(filename, &ef);
383         if (err != 0)
384                 return (err);
385
386         ehdr = ef.ehdr;
387
388         /*
389          * Check to see what sort of module we are.
390          */
391         kfp = file_findfile(NULL, __elfN(kerneltype));
392 #ifdef __powerpc__
393         /*
394          * Kernels can be ET_DYN, so just assume the first loaded object is the
395          * kernel. This assumption will be checked later.
396          */
397         if (kfp == NULL)
398                 ef.kernel = 1;
399 #endif
400         if (ef.kernel || ehdr->e_type == ET_EXEC) {
401                 /* Looks like a kernel */
402                 if (kfp != NULL) {
403                         printf("elf" __XSTRING(__ELF_WORD_SIZE)
404                             "_loadfile: kernel already loaded\n");
405                         err = EPERM;
406                         goto oerr;
407                 }
408                 /*
409                  * Calculate destination address based on kernel entrypoint.
410                  *
411                  * For ARM, the destination address is independent of any values
412                  * in the elf header (an ARM kernel can be loaded at any 2MB
413                  * boundary), so we leave dest set to the value calculated by
414                  * archsw.arch_loadaddr() and passed in to this function.
415                  */
416 #ifndef __arm__
417                 if (ehdr->e_type == ET_EXEC)
418                         dest = (ehdr->e_entry & ~PAGE_MASK);
419 #endif
420                 if ((ehdr->e_entry & ~PAGE_MASK) == 0) {
421                         printf("elf" __XSTRING(__ELF_WORD_SIZE)
422                             "_loadfile: not a kernel (maybe static binary?)\n");
423                         err = EPERM;
424                         goto oerr;
425                 }
426                 ef.kernel = 1;
427
428         } else if (ehdr->e_type == ET_DYN) {
429                 /* Looks like a kld module */
430                 if (multiboot != 0) {
431                         printf("elf" __XSTRING(__ELF_WORD_SIZE)
432                             "_loadfile: can't load module as multiboot\n");
433                         err = EPERM;
434                         goto oerr;
435                 }
436                 if (kfp == NULL) {
437                         printf("elf" __XSTRING(__ELF_WORD_SIZE)
438                             "_loadfile: can't load module before kernel\n");
439                         err = EPERM;
440                         goto oerr;
441                 }
442                 if (strcmp(__elfN(kerneltype), kfp->f_type)) {
443                         printf("elf" __XSTRING(__ELF_WORD_SIZE)
444                          "_loadfile: can't load module with kernel type '%s'\n",
445                             kfp->f_type);
446                         err = EPERM;
447                         goto oerr;
448                 }
449                 /* Looks OK, got ahead */
450                 ef.kernel = 0;
451         
452         } else {
453                 err = EFTYPE;
454                 goto oerr;
455         }
456
457         if (archsw.arch_loadaddr != NULL)
458                 dest = archsw.arch_loadaddr(LOAD_ELF, ehdr, dest);
459         else
460                 dest = roundup(dest, PAGE_SIZE);
461
462         /*
463          * Ok, we think we should handle this.
464          */
465         fp = file_alloc();
466         if (fp == NULL) {
467                 printf("elf" __XSTRING(__ELF_WORD_SIZE)
468                     "_loadfile: cannot allocate module info\n");
469                 err = EPERM;
470                 goto out;
471         }
472         if (ef.kernel == 1 && multiboot == 0)
473                 setenv("kernelname", filename, 1);
474         fp->f_name = strdup(filename);
475         if (multiboot == 0)
476                 fp->f_type = strdup(ef.kernel ?
477                     __elfN(kerneltype) : __elfN(moduletype));
478         else
479                 fp->f_type = strdup("elf multiboot kernel");
480
481         if (module_verbose >= MODULE_VERBOSE_FULL) {
482                 if (ef.kernel)
483                         printf("%s entry at 0x%jx\n", filename,
484                             (uintmax_t)ehdr->e_entry);
485         } else if (module_verbose > MODULE_VERBOSE_SILENT)
486                 printf("%s ", filename);
487
488         fp->f_size = __elfN(loadimage)(fp, &ef, dest);
489         if (fp->f_size == 0 || fp->f_addr == 0)
490                 goto ioerr;
491
492         /* save exec header as metadata */
493         file_addmetadata(fp, MODINFOMD_ELFHDR, sizeof(*ehdr), ehdr);
494
495         /* Load OK, return module pointer */
496         *result = (struct preloaded_file *)fp;
497         err = 0;
498 #ifdef __amd64__
499         fp->f_kernphys_relocatable = multiboot || is_kernphys_relocatable(&ef);
500 #endif
501 #ifdef __i386__
502         fp->f_tg_kernel_support = is_tg_kernel_support(fp, &ef);
503 #endif
504         goto out;
505
506 ioerr:
507         err = EIO;
508 oerr:
509         file_discard(fp);
510 out:
511         if (ef.firstpage)
512                 free(ef.firstpage);
513         if (ef.fd != -1) {
514 #ifdef LOADER_VERIEXEC_VECTX
515                 if (!err && ef.vctx) {
516                         int verror;
517
518                         verror = vectx_close(ef.vctx, VE_MUST, __func__);
519                         if (verror) {
520                                 err = EAUTH;
521                                 file_discard(fp);
522                         }
523                 }
524 #endif
525                 close(ef.fd);
526         }
527         return (err);
528 }
529
530 /*
531  * With the file (fd) open on the image, and (ehdr) containing
532  * the Elf header, load the image at (off)
533  */
534 static int
535 __elfN(loadimage)(struct preloaded_file *fp, elf_file_t ef, uint64_t off)
536 {
537         int             i;
538         u_int           j;
539         Elf_Ehdr        *ehdr;
540         Elf_Phdr        *phdr, *php;
541         Elf_Shdr        *shdr;
542         char            *shstr;
543         int             ret;
544         vm_offset_t     firstaddr;
545         vm_offset_t     lastaddr;
546         size_t          chunk;
547         ssize_t         result;
548         Elf_Addr        ssym, esym;
549         Elf_Dyn         *dp;
550         Elf_Addr        adp;
551         Elf_Addr        ctors;
552         int             ndp;
553         int             symstrindex;
554         int             symtabindex;
555         Elf_Size        size;
556         u_int           fpcopy;
557         Elf_Sym         sym;
558         Elf_Addr        p_start, p_end;
559
560         dp = NULL;
561         shdr = NULL;
562         ret = 0;
563         firstaddr = lastaddr = 0;
564         ehdr = ef->ehdr;
565 #ifdef __powerpc__
566         if (ef->kernel) {
567 #else
568         if (ehdr->e_type == ET_EXEC) {
569 #endif
570 #if defined(__i386__) || defined(__amd64__)
571 #if __ELF_WORD_SIZE == 64
572                 /* x86_64 relocates after locore */
573                 off = - (off & 0xffffffffff000000ull);
574 #else
575                 /* i386 relocates after locore */
576                 off = - (off & 0xff000000u);
577 #endif
578 #elif defined(__powerpc__)
579                 /*
580                  * On the purely virtual memory machines like e500, the kernel
581                  * is linked against its final VA range, which is most often
582                  * not available at the loader stage, but only after kernel
583                  * initializes and completes its VM settings. In such cases we
584                  * cannot use p_vaddr field directly to load ELF segments, but
585                  * put them at some 'load-time' locations.
586                  */
587                 if (off & 0xf0000000u) {
588                         off = -(off & 0xf0000000u);
589                         /*
590                          * XXX the physical load address should not be
591                          * hardcoded. Note that the Book-E kernel assumes that
592                          * it's loaded at a 16MB boundary for now...
593                          */
594                         off += 0x01000000;
595                 }
596                 ehdr->e_entry += off;
597                 if (module_verbose >= MODULE_VERBOSE_FULL)
598                         printf("Converted entry 0x%jx\n",
599                             (uintmax_t)ehdr->e_entry);
600
601 #elif defined(__arm__) && !defined(EFI)
602                 /*
603                  * The elf headers in arm kernels specify virtual addresses in
604                  * all header fields, even the ones that should be physical
605                  * addresses.  We assume the entry point is in the first page,
606                  * and masking the page offset will leave us with the virtual
607                  * address the kernel was linked at.  We subtract that from the
608                  * load offset, making 'off' into the value which, when added
609                  * to a virtual address in an elf header, translates it to a
610                  * physical address.  We do the va->pa conversion on the entry
611                  * point address in the header now, so that later we can launch
612                  * the kernel by just jumping to that address.
613                  *
614                  * When booting from UEFI the copyin and copyout functions
615                  * handle adjusting the location relative to the first virtual
616                  * address.  Because of this there is no need to adjust the
617                  * offset or entry point address as these will both be handled
618                  * by the efi code.
619                  */
620                 off -= ehdr->e_entry & ~PAGE_MASK;
621                 ehdr->e_entry += off;
622                 if (module_verbose >= MODULE_VERBOSE_FULL)
623                         printf("ehdr->e_entry 0x%jx, va<->pa off %llx\n",
624                             (uintmax_t)ehdr->e_entry, off);
625 #else
626                 off = 0;        /* other archs use direct mapped kernels */
627 #endif
628         }
629         ef->off = off;
630
631         if (ef->kernel)
632                 __elfN(relocation_offset) = off;
633
634         if ((ehdr->e_phoff + ehdr->e_phnum * sizeof(*phdr)) > ef->firstlen) {
635                 printf("elf" __XSTRING(__ELF_WORD_SIZE)
636                     "_loadimage: program header not within first page\n");
637                 goto out;
638         }
639         phdr = (Elf_Phdr *)(ef->firstpage + ehdr->e_phoff);
640
641         for (i = 0; i < ehdr->e_phnum; i++) {
642                 if (elf_program_header_convert(ehdr, phdr))
643                         continue;
644
645                 /* We want to load PT_LOAD segments only.. */
646                 if (phdr[i].p_type != PT_LOAD)
647                         continue;
648
649                 if (module_verbose >= MODULE_VERBOSE_FULL) {
650                         printf("Segment: 0x%lx@0x%lx -> 0x%lx-0x%lx",
651                             (long)phdr[i].p_filesz, (long)phdr[i].p_offset,
652                             (long)(phdr[i].p_vaddr + off),
653                             (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz - 1));
654                 } else if (module_verbose > MODULE_VERBOSE_SILENT) {
655                         if ((phdr[i].p_flags & PF_W) == 0) {
656                                 printf("text=0x%lx ", (long)phdr[i].p_filesz);
657                         } else {
658                                 printf("data=0x%lx", (long)phdr[i].p_filesz);
659                                 if (phdr[i].p_filesz < phdr[i].p_memsz)
660                                         printf("+0x%lx", (long)(phdr[i].p_memsz -
661                                                 phdr[i].p_filesz));
662                                 printf(" ");
663                         }
664                 }
665                 fpcopy = 0;
666                 if (ef->firstlen > phdr[i].p_offset) {
667                         fpcopy = ef->firstlen - phdr[i].p_offset;
668                         archsw.arch_copyin(ef->firstpage + phdr[i].p_offset,
669                             phdr[i].p_vaddr + off, fpcopy);
670                 }
671                 if (phdr[i].p_filesz > fpcopy) {
672                         if (kern_pread(VECTX_HANDLE(ef),
673                             phdr[i].p_vaddr + off + fpcopy,
674                             phdr[i].p_filesz - fpcopy,
675                             phdr[i].p_offset + fpcopy) != 0) {
676                                 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
677                                     "_loadimage: read failed\n");
678                                 goto out;
679                         }
680                 }
681                 /* clear space from oversized segments; eg: bss */
682                 if (phdr[i].p_filesz < phdr[i].p_memsz) {
683                         if (module_verbose >= MODULE_VERBOSE_FULL) {
684                                 printf(" (bss: 0x%lx-0x%lx)",
685                                     (long)(phdr[i].p_vaddr + off + phdr[i].p_filesz),
686                                     (long)(phdr[i].p_vaddr + off + phdr[i].p_memsz -1));
687                         }       
688                         kern_bzero(phdr[i].p_vaddr + off + phdr[i].p_filesz,
689                             phdr[i].p_memsz - phdr[i].p_filesz);
690                 }
691                 if (module_verbose >= MODULE_VERBOSE_FULL)
692                         printf("\n");
693
694                 if (archsw.arch_loadseg != NULL)
695                         archsw.arch_loadseg(ehdr, phdr + i, off);
696
697                 if (firstaddr == 0 || firstaddr > (phdr[i].p_vaddr + off))
698                         firstaddr = phdr[i].p_vaddr + off;
699                 if (lastaddr == 0 || lastaddr <
700                     (phdr[i].p_vaddr + off + phdr[i].p_memsz))
701                         lastaddr = phdr[i].p_vaddr + off + phdr[i].p_memsz;
702         }
703         lastaddr = roundup(lastaddr, sizeof(long));
704
705         /*
706          * Get the section headers.  We need this for finding the .ctors
707          * section as well as for loading any symbols.  Both may be hard
708          * to do if reading from a .gz file as it involves seeking.  I
709          * think the rule is going to have to be that you must strip a
710          * file to remove symbols before gzipping it.
711          */
712         chunk = (size_t)ehdr->e_shnum * (size_t)ehdr->e_shentsize;
713         if (chunk == 0 || ehdr->e_shoff == 0)
714                 goto nosyms;
715         shdr = alloc_pread(VECTX_HANDLE(ef), ehdr->e_shoff, chunk);
716         if (shdr == NULL) {
717                 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
718                     "_loadimage: failed to read section headers");
719                 goto nosyms;
720         }
721
722         for (i = 0; i < ehdr->e_shnum; i++)
723                 elf_section_header_convert(ehdr, &shdr[i]);
724
725         file_addmetadata(fp, MODINFOMD_SHDR, chunk, shdr);
726
727         /*
728          * Read the section string table and look for the .ctors section.
729          * We need to tell the kernel where it is so that it can call the
730          * ctors.
731          */
732         chunk = shdr[ehdr->e_shstrndx].sh_size;
733         if (chunk) {
734                 shstr = alloc_pread(VECTX_HANDLE(ef),
735                     shdr[ehdr->e_shstrndx].sh_offset, chunk);
736                 if (shstr) {
737                         for (i = 0; i < ehdr->e_shnum; i++) {
738                                 if (strcmp(shstr + shdr[i].sh_name,
739                                     ".ctors") != 0)
740                                         continue;
741                                 ctors = shdr[i].sh_addr;
742                                 file_addmetadata(fp, MODINFOMD_CTORS_ADDR,
743                                     sizeof(ctors), &ctors);
744                                 size = shdr[i].sh_size;
745                                 file_addmetadata(fp, MODINFOMD_CTORS_SIZE,
746                                     sizeof(size), &size);
747                                 break;
748                         }
749                         free(shstr);
750                 }
751         }
752
753         /*
754          * Now load any symbols.
755          */
756         symtabindex = -1;
757         symstrindex = -1;
758         for (i = 0; i < ehdr->e_shnum; i++) {
759                 if (shdr[i].sh_type != SHT_SYMTAB)
760                         continue;
761                 for (j = 0; j < ehdr->e_phnum; j++) {
762                         if (phdr[j].p_type != PT_LOAD)
763                                 continue;
764                         if (shdr[i].sh_offset >= phdr[j].p_offset &&
765                             (shdr[i].sh_offset + shdr[i].sh_size <=
766                             phdr[j].p_offset + phdr[j].p_filesz)) {
767                                 shdr[i].sh_offset = 0;
768                                 shdr[i].sh_size = 0;
769                                 break;
770                         }
771                 }
772                 if (shdr[i].sh_offset == 0 || shdr[i].sh_size == 0)
773                         continue;       /* alread loaded in a PT_LOAD above */
774                 /* Save it for loading below */
775                 symtabindex = i;
776                 symstrindex = shdr[i].sh_link;
777         }
778         if (symtabindex < 0 || symstrindex < 0)
779                 goto nosyms;
780
781         /* Ok, committed to a load. */
782         if (module_verbose >= MODULE_VERBOSE_FULL)
783                 printf("syms=[");
784         ssym = lastaddr;
785         for (i = symtabindex; i >= 0; i = symstrindex) {
786                 char    *secname;
787
788                 switch(shdr[i].sh_type) {
789                 case SHT_SYMTAB:                /* Symbol table */
790                         secname = "symtab";
791                         break;
792                 case SHT_STRTAB:                /* String table */
793                         secname = "strtab";
794                         break;
795                 default:
796                         secname = "WHOA!!";
797                         break;
798                 }
799                 size = shdr[i].sh_size;
800
801                 archsw.arch_copyin(&size, lastaddr, sizeof(size));
802                 lastaddr += sizeof(size);
803
804                 if (module_verbose >= MODULE_VERBOSE_FULL) {
805                         printf("\n%s: 0x%jx@0x%jx -> 0x%jx-0x%jx", secname,
806                             (uintmax_t)shdr[i].sh_size, (uintmax_t)shdr[i].sh_offset,
807                             (uintmax_t)lastaddr,
808                             (uintmax_t)(lastaddr + shdr[i].sh_size));
809                 } else if (module_verbose > MODULE_VERBOSE_SILENT) {
810                         if (i == symstrindex)
811                                 printf("+");
812                         printf("0x%lx+0x%lx", (long)sizeof(size), (long)size);
813                 }
814                 if (VECTX_LSEEK(VECTX_HANDLE(ef), (off_t)shdr[i].sh_offset, SEEK_SET) == -1) {
815                         printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
816                            "_loadimage: could not seek for symbols - skipped!");
817                         lastaddr = ssym;
818                         ssym = 0;
819                         goto nosyms;
820                 }
821                 result = archsw.arch_readin(VECTX_HANDLE(ef), lastaddr, shdr[i].sh_size);
822                 if (result < 0 || (size_t)result != shdr[i].sh_size) {
823                         printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
824                             "_loadimage: could not read symbols - skipped! "
825                             "(%ju != %ju)", (uintmax_t)result,
826                             (uintmax_t)shdr[i].sh_size);
827                         lastaddr = ssym;
828                         ssym = 0;
829                         goto nosyms;
830                 }
831                 /* Reset offsets relative to ssym */
832                 lastaddr += shdr[i].sh_size;
833                 lastaddr = roundup(lastaddr, sizeof(size));
834                 if (i == symtabindex)
835                         symtabindex = -1;
836                 else if (i == symstrindex)
837                         symstrindex = -1;
838         }
839         esym = lastaddr;
840         if (module_verbose >= MODULE_VERBOSE_FULL)
841                 printf("]");
842
843         file_addmetadata(fp, MODINFOMD_SSYM, sizeof(ssym), &ssym);
844         file_addmetadata(fp, MODINFOMD_ESYM, sizeof(esym), &esym);
845
846 nosyms:
847         if (module_verbose > MODULE_VERBOSE_SILENT)
848                 printf("\n");
849
850         ret = lastaddr - firstaddr;
851         fp->f_addr = firstaddr;
852
853         php = NULL;
854         for (i = 0; i < ehdr->e_phnum; i++) {
855                 if (phdr[i].p_type == PT_DYNAMIC) {
856                         php = phdr + i;
857                         adp = php->p_vaddr;
858                         file_addmetadata(fp, MODINFOMD_DYNAMIC, sizeof(adp),
859                             &adp);
860                         break;
861                 }
862         }
863
864         if (php == NULL) /* this is bad, we cannot get to symbols or _DYNAMIC */
865                 goto out;
866
867         ndp = php->p_filesz / sizeof(Elf_Dyn);
868         if (ndp == 0)
869                 goto out;
870         dp = malloc(php->p_filesz);
871         if (dp == NULL)
872                 goto out;
873         archsw.arch_copyout(php->p_vaddr + off, dp, php->p_filesz);
874
875         ef->strsz = 0;
876         for (i = 0; i < ndp; i++) {
877                 if (dp[i].d_tag == 0)
878                         break;
879                 switch (dp[i].d_tag) {
880                 case DT_HASH:
881                         ef->hashtab =
882                             (Elf_Hashelt*)(uintptr_t)(dp[i].d_un.d_ptr + off);
883                         break;
884                 case DT_STRTAB:
885                         ef->strtab =
886                             (char *)(uintptr_t)(dp[i].d_un.d_ptr + off);
887                         break;
888                 case DT_STRSZ:
889                         ef->strsz = dp[i].d_un.d_val;
890                         break;
891                 case DT_SYMTAB:
892                         ef->symtab =
893                             (Elf_Sym *)(uintptr_t)(dp[i].d_un.d_ptr + off);
894                         break;
895                 case DT_REL:
896                         ef->rel =
897                             (Elf_Rel *)(uintptr_t)(dp[i].d_un.d_ptr + off);
898                         break;
899                 case DT_RELSZ:
900                         ef->relsz = dp[i].d_un.d_val;
901                         break;
902                 case DT_RELA:
903                         ef->rela =
904                             (Elf_Rela *)(uintptr_t)(dp[i].d_un.d_ptr + off);
905                         break;
906                 case DT_RELASZ:
907                         ef->relasz = dp[i].d_un.d_val;
908                         break;
909                 default:
910                         break;
911                 }
912         }
913         if (ef->hashtab == NULL || ef->symtab == NULL ||
914             ef->strtab == NULL || ef->strsz == 0)
915                 goto out;
916         COPYOUT(ef->hashtab, &ef->nbuckets, sizeof(ef->nbuckets));
917         COPYOUT(ef->hashtab + 1, &ef->nchains, sizeof(ef->nchains));
918         ef->buckets = ef->hashtab + 2;
919         ef->chains = ef->buckets + ef->nbuckets;
920
921         if (__elfN(lookup_symbol)(ef, "__start_set_modmetadata_set", &sym,
922             STT_NOTYPE) != 0)
923                 return 0;
924         p_start = sym.st_value + ef->off;
925         if (__elfN(lookup_symbol)(ef, "__stop_set_modmetadata_set", &sym,
926             STT_NOTYPE) != 0)
927                 return 0;
928         p_end = sym.st_value + ef->off;
929
930         if (__elfN(parse_modmetadata)(fp, ef, p_start, p_end) == 0)
931                 goto out;
932
933         if (ef->kernel)         /* kernel must not depend on anything */
934                 goto out;
935
936 out:
937         if (dp)
938                 free(dp);
939         if (shdr)
940                 free(shdr);
941         return ret;
942 }
943
944 static char invalid_name[] = "bad";
945
946 char *
947 fake_modname(const char *name)
948 {
949         const char *sp, *ep;
950         char *fp;
951         size_t len;
952
953         sp = strrchr(name, '/');
954         if (sp)
955                 sp++;
956         else
957                 sp = name;
958
959         ep = strrchr(sp, '.');
960         if (ep == NULL) {
961                 ep = sp + strlen(sp);
962         }
963         if (ep == sp) {
964                 sp = invalid_name;
965                 ep = invalid_name + sizeof(invalid_name) - 1;
966         }
967
968         len = ep - sp;
969         fp = malloc(len + 1);
970         if (fp == NULL)
971                 return NULL;
972         memcpy(fp, sp, len);
973         fp[len] = '\0';
974         return fp;
975 }
976
977 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
978 struct mod_metadata64 {
979         int             md_version;     /* structure version MDTV_* */
980         int             md_type;        /* type of entry MDT_* */
981         uint64_t        md_data;        /* specific data */
982         uint64_t        md_cval;        /* common string label */
983 };
984 #endif
985 #if defined(__amd64__) && __ELF_WORD_SIZE == 32
986 struct mod_metadata32 {
987         int             md_version;     /* structure version MDTV_* */
988         int             md_type;        /* type of entry MDT_* */
989         uint32_t        md_data;        /* specific data */
990         uint32_t        md_cval;        /* common string label */
991 };
992 #endif
993
994 int
995 __elfN(load_modmetadata)(struct preloaded_file *fp, uint64_t dest)
996 {
997         struct elf_file          ef;
998         int                      err, i, j;
999         Elf_Shdr                *sh_meta, *shdr = NULL;
1000         Elf_Shdr                *sh_data[2];
1001         char                    *shstrtab = NULL;
1002         size_t                   size;
1003         Elf_Addr                 p_start, p_end;
1004
1005         bzero(&ef, sizeof(struct elf_file));
1006         ef.fd = -1;
1007
1008         err = __elfN(load_elf_header)(fp->f_name, &ef);
1009         if (err != 0)
1010                 goto out;
1011
1012         if (ef.kernel == 1 || ef.ehdr->e_type == ET_EXEC) {
1013                 ef.kernel = 1;
1014         } else if (ef.ehdr->e_type != ET_DYN) {
1015                 err = EFTYPE;
1016                 goto out;
1017         }
1018
1019         size = (size_t)ef.ehdr->e_shnum * (size_t)ef.ehdr->e_shentsize;
1020         shdr = alloc_pread(VECTX_HANDLE(&ef), ef.ehdr->e_shoff, size);
1021         if (shdr == NULL) {
1022                 err = ENOMEM;
1023                 goto out;
1024         }
1025
1026         /* Load shstrtab. */
1027         shstrtab = alloc_pread(VECTX_HANDLE(&ef), shdr[ef.ehdr->e_shstrndx].sh_offset,
1028             shdr[ef.ehdr->e_shstrndx].sh_size);
1029         if (shstrtab == NULL) {
1030                 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1031                     "load_modmetadata: unable to load shstrtab\n");
1032                 err = EFTYPE;
1033                 goto out;
1034         }
1035
1036         /* Find set_modmetadata_set and data sections. */
1037         sh_data[0] = sh_data[1] = sh_meta = NULL;
1038         for (i = 0, j = 0; i < ef.ehdr->e_shnum; i++) {
1039                 if (strcmp(&shstrtab[shdr[i].sh_name],
1040                     "set_modmetadata_set") == 0) {
1041                         sh_meta = &shdr[i];
1042                 }
1043                 if ((strcmp(&shstrtab[shdr[i].sh_name], ".data") == 0) ||
1044                     (strcmp(&shstrtab[shdr[i].sh_name], ".rodata") == 0)) {
1045                         sh_data[j++] = &shdr[i];
1046                 }
1047         }
1048         if (sh_meta == NULL || sh_data[0] == NULL || sh_data[1] == NULL) {
1049                 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1050     "load_modmetadata: unable to find set_modmetadata_set or data sections\n");
1051                 err = EFTYPE;
1052                 goto out;
1053         }
1054
1055         /* Load set_modmetadata_set into memory */
1056         err = kern_pread(VECTX_HANDLE(&ef), dest, sh_meta->sh_size, sh_meta->sh_offset);
1057         if (err != 0) {
1058                 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1059     "load_modmetadata: unable to load set_modmetadata_set: %d\n", err);
1060                 goto out;
1061         }
1062         p_start = dest;
1063         p_end = dest + sh_meta->sh_size;
1064         dest += sh_meta->sh_size;
1065
1066         /* Load data sections into memory. */
1067         err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[0]->sh_size,
1068             sh_data[0]->sh_offset);
1069         if (err != 0) {
1070                 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1071                     "load_modmetadata: unable to load data: %d\n", err);
1072                 goto out;
1073         }
1074
1075         /*
1076          * We have to increment the dest, so that the offset is the same into
1077          * both the .rodata and .data sections.
1078          */
1079         ef.off = -(sh_data[0]->sh_addr - dest);
1080         dest += (sh_data[1]->sh_addr - sh_data[0]->sh_addr);
1081
1082         err = kern_pread(VECTX_HANDLE(&ef), dest, sh_data[1]->sh_size,
1083             sh_data[1]->sh_offset);
1084         if (err != 0) {
1085                 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1086                     "load_modmetadata: unable to load data: %d\n", err);
1087                 goto out;
1088         }
1089
1090         err = __elfN(parse_modmetadata)(fp, &ef, p_start, p_end);
1091         if (err != 0) {
1092                 printf("\nelf" __XSTRING(__ELF_WORD_SIZE)
1093                     "load_modmetadata: unable to parse metadata: %d\n", err);
1094                 goto out;
1095         }
1096
1097 out:
1098         if (shstrtab != NULL)
1099                 free(shstrtab);
1100         if (shdr != NULL)
1101                 free(shdr);
1102         if (ef.firstpage != NULL)
1103                 free(ef.firstpage);
1104         if (ef.fd != -1) {
1105 #ifdef LOADER_VERIEXEC_VECTX
1106                 if (!err && ef.vctx) {
1107                         int verror;
1108
1109                         verror = vectx_close(ef.vctx, VE_MUST, __func__);
1110                         if (verror) {
1111                                 err = EAUTH;
1112                                 file_discard(fp);
1113                         }
1114                 }
1115 #endif
1116                 close(ef.fd);
1117         }
1118         return (err);
1119 }
1120
1121 int
1122 __elfN(parse_modmetadata)(struct preloaded_file *fp, elf_file_t ef,
1123     Elf_Addr p_start, Elf_Addr p_end)
1124 {
1125         struct mod_metadata md;
1126 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
1127         struct mod_metadata64 md64;
1128 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
1129         struct mod_metadata32 md32;
1130 #endif
1131         struct mod_depend *mdepend;
1132         struct mod_version mver;
1133         char *s;
1134         int error, modcnt, minfolen;
1135         Elf_Addr v, p;
1136
1137         modcnt = 0;
1138         p = p_start;
1139         while (p < p_end) {
1140                 COPYOUT(p, &v, sizeof(v));
1141                 error = __elfN(reloc_ptr)(fp, ef, p, &v, sizeof(v));
1142                 if (error == EOPNOTSUPP)
1143                         v += ef->off;
1144                 else if (error != 0)
1145                         return (error);
1146 #if (defined(__i386__) || defined(__powerpc__)) && __ELF_WORD_SIZE == 64
1147                 COPYOUT(v, &md64, sizeof(md64));
1148                 error = __elfN(reloc_ptr)(fp, ef, v, &md64, sizeof(md64));
1149                 if (error == EOPNOTSUPP) {
1150                         md64.md_cval += ef->off;
1151                         md64.md_data += ef->off;
1152                 } else if (error != 0)
1153                         return (error);
1154                 md.md_version = md64.md_version;
1155                 md.md_type = md64.md_type;
1156                 md.md_cval = (const char *)(uintptr_t)md64.md_cval;
1157                 md.md_data = (void *)(uintptr_t)md64.md_data;
1158 #elif defined(__amd64__) && __ELF_WORD_SIZE == 32
1159                 COPYOUT(v, &md32, sizeof(md32));
1160                 error = __elfN(reloc_ptr)(fp, ef, v, &md32, sizeof(md32));
1161                 if (error == EOPNOTSUPP) {
1162                         md32.md_cval += ef->off;
1163                         md32.md_data += ef->off;
1164                 } else if (error != 0)
1165                         return (error);
1166                 md.md_version = md32.md_version;
1167                 md.md_type = md32.md_type;
1168                 md.md_cval = (const char *)(uintptr_t)md32.md_cval;
1169                 md.md_data = (void *)(uintptr_t)md32.md_data;
1170 #else
1171                 COPYOUT(v, &md, sizeof(md));
1172                 error = __elfN(reloc_ptr)(fp, ef, v, &md, sizeof(md));
1173                 if (error == EOPNOTSUPP) {
1174                         md.md_cval += ef->off;
1175                         md.md_data = (void *)((uintptr_t)md.md_data +
1176                             (uintptr_t)ef->off);
1177                 } else if (error != 0)
1178                         return (error);
1179 #endif
1180                 p += sizeof(Elf_Addr);
1181                 switch(md.md_type) {
1182                 case MDT_DEPEND:
1183                         if (ef->kernel) /* kernel must not depend on anything */
1184                                 break;
1185                         s = strdupout((vm_offset_t)md.md_cval);
1186                         minfolen = sizeof(*mdepend) + strlen(s) + 1;
1187                         mdepend = malloc(minfolen);
1188                         if (mdepend == NULL)
1189                                 return ENOMEM;
1190                         COPYOUT((vm_offset_t)md.md_data, mdepend,
1191                             sizeof(*mdepend));
1192                         strcpy((char*)(mdepend + 1), s);
1193                         free(s);
1194                         file_addmetadata(fp, MODINFOMD_DEPLIST, minfolen,
1195                             mdepend);
1196                         free(mdepend);
1197                         break;
1198                 case MDT_VERSION:
1199                         s = strdupout((vm_offset_t)md.md_cval);
1200                         COPYOUT((vm_offset_t)md.md_data, &mver, sizeof(mver));
1201                         file_addmodule(fp, s, mver.mv_version, NULL);
1202                         free(s);
1203                         modcnt++;
1204                         break;
1205                 }
1206         }
1207         if (modcnt == 0) {
1208                 s = fake_modname(fp->f_name);
1209                 file_addmodule(fp, s, 1, NULL);
1210                 free(s);
1211         }
1212         return 0;
1213 }
1214
1215 static unsigned long
1216 elf_hash(const char *name)
1217 {
1218         const unsigned char *p = (const unsigned char *) name;
1219         unsigned long h = 0;
1220         unsigned long g;
1221
1222         while (*p != '\0') {
1223                 h = (h << 4) + *p++;
1224                 if ((g = h & 0xf0000000) != 0)
1225                         h ^= g >> 24;
1226                 h &= ~g;
1227         }
1228         return h;
1229 }
1230
1231 static const char __elfN(bad_symtable)[] = "elf" __XSTRING(__ELF_WORD_SIZE)
1232     "_lookup_symbol: corrupt symbol table\n";
1233 int
1234 __elfN(lookup_symbol)(elf_file_t ef, const char* name, Elf_Sym *symp,
1235     unsigned char type)
1236 {
1237         Elf_Hashelt symnum;
1238         Elf_Sym sym;
1239         char *strp;
1240         unsigned long hash;
1241
1242         if (ef->nbuckets == 0) {
1243                 printf(__elfN(bad_symtable));
1244                 return ENOENT;
1245         }
1246
1247         hash = elf_hash(name);
1248         COPYOUT(&ef->buckets[hash % ef->nbuckets], &symnum, sizeof(symnum));
1249
1250         while (symnum != STN_UNDEF) {
1251                 if (symnum >= ef->nchains) {
1252                         printf(__elfN(bad_symtable));
1253                         return ENOENT;
1254                 }
1255
1256                 COPYOUT(ef->symtab + symnum, &sym, sizeof(sym));
1257                 if (sym.st_name == 0) {
1258                         printf(__elfN(bad_symtable));
1259                         return ENOENT;
1260                 }
1261
1262                 strp = strdupout((vm_offset_t)(ef->strtab + sym.st_name));
1263                 if (strcmp(name, strp) == 0) {
1264                         free(strp);
1265                         if (sym.st_shndx != SHN_UNDEF && sym.st_value != 0 &&
1266                             ELF_ST_TYPE(sym.st_info) == type) {
1267                                 *symp = sym;
1268                                 return 0;
1269                         }
1270                         return ENOENT;
1271                 }
1272                 free(strp);
1273                 COPYOUT(&ef->chains[symnum], &symnum, sizeof(symnum));
1274         }
1275         return ENOENT;
1276 }
1277
1278 /*
1279  * Apply any intra-module relocations to the value. p is the load address
1280  * of the value and val/len is the value to be modified. This does NOT modify
1281  * the image in-place, because this is done by kern_linker later on.
1282  *
1283  * Returns EOPNOTSUPP if no relocation method is supplied.
1284  */
1285 static int
1286 __elfN(reloc_ptr)(struct preloaded_file *mp, elf_file_t ef,
1287     Elf_Addr p, void *val, size_t len)
1288 {
1289         size_t n;
1290         Elf_Rela a;
1291         Elf_Rel r;
1292         int error;
1293
1294         /*
1295          * The kernel is already relocated, but we still want to apply
1296          * offset adjustments.
1297          */
1298         if (ef->kernel)
1299                 return (EOPNOTSUPP);
1300
1301         for (n = 0; n < ef->relsz / sizeof(r); n++) {
1302                 COPYOUT(ef->rel + n, &r, sizeof(r));
1303
1304                 error = __elfN(reloc)(ef, __elfN(symaddr), &r, ELF_RELOC_REL,
1305                     ef->off, p, val, len);
1306                 if (error != 0)
1307                         return (error);
1308         }
1309         for (n = 0; n < ef->relasz / sizeof(a); n++) {
1310                 COPYOUT(ef->rela + n, &a, sizeof(a));
1311
1312                 error = __elfN(reloc)(ef, __elfN(symaddr), &a, ELF_RELOC_RELA,
1313                     ef->off, p, val, len);
1314                 if (error != 0)
1315                         return (error);
1316         }
1317
1318         return (0);
1319 }
1320
1321 static Elf_Addr
1322 __elfN(symaddr)(struct elf_file *ef, Elf_Size symidx)
1323 {
1324
1325         /* Symbol lookup by index not required here. */
1326         return (0);
1327 }