]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - stand/libsa/zfs/zfsimpl.c
Add zstd support to the boot loader.
[FreeBSD/FreeBSD.git] / stand / libsa / zfs / zfsimpl.c
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  *      Stand-alone ZFS file reader.
32  */
33
34 #include <stdbool.h>
35 #include <sys/endian.h>
36 #include <sys/stat.h>
37 #include <sys/stdint.h>
38 #include <sys/list.h>
39 #include <sys/zfs_bootenv.h>
40 #include <machine/_inttypes.h>
41
42 #include "zfsimpl.h"
43 #include "zfssubr.c"
44
45 extern int zstd_init(void);
46
47 struct zfsmount {
48         const spa_t     *spa;
49         objset_phys_t   objset;
50         uint64_t        rootobj;
51 };
52 static struct zfsmount zfsmount __unused;
53
54 /*
55  * The indirect_child_t represents the vdev that we will read from, when we
56  * need to read all copies of the data (e.g. for scrub or reconstruction).
57  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
58  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
59  * ic_vdev is a child of the mirror.
60  */
61 typedef struct indirect_child {
62         void *ic_data;
63         vdev_t *ic_vdev;
64 } indirect_child_t;
65
66 /*
67  * The indirect_split_t represents one mapped segment of an i/o to the
68  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
69  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
70  * For split blocks, there will be several of these.
71  */
72 typedef struct indirect_split {
73         list_node_t is_node; /* link on iv_splits */
74
75         /*
76          * is_split_offset is the offset into the i/o.
77          * This is the sum of the previous splits' is_size's.
78          */
79         uint64_t is_split_offset;
80
81         vdev_t *is_vdev; /* top-level vdev */
82         uint64_t is_target_offset; /* offset on is_vdev */
83         uint64_t is_size;
84         int is_children; /* number of entries in is_child[] */
85
86         /*
87          * is_good_child is the child that we are currently using to
88          * attempt reconstruction.
89          */
90         int is_good_child;
91
92         indirect_child_t is_child[1]; /* variable-length */
93 } indirect_split_t;
94
95 /*
96  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
97  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
98  */
99 typedef struct indirect_vsd {
100         boolean_t iv_split_block;
101         boolean_t iv_reconstruct;
102
103         list_t iv_splits; /* list of indirect_split_t's */
104 } indirect_vsd_t;
105
106 /*
107  * List of all vdevs, chained through v_alllink.
108  */
109 static vdev_list_t zfs_vdevs;
110
111 /*
112  * List of ZFS features supported for read
113  */
114 static const char *features_for_read[] = {
115         "org.illumos:lz4_compress",
116         "com.delphix:hole_birth",
117         "com.delphix:extensible_dataset",
118         "com.delphix:embedded_data",
119         "org.open-zfs:large_blocks",
120         "org.illumos:sha512",
121         "org.illumos:skein",
122         "org.zfsonlinux:large_dnode",
123         "com.joyent:multi_vdev_crash_dump",
124         "com.delphix:spacemap_histogram",
125         "com.delphix:zpool_checkpoint",
126         "com.delphix:spacemap_v2",
127         "com.datto:encryption",
128         "org.zfsonlinux:allocation_classes",
129         "com.datto:resilver_defer",
130         "com.delphix:device_removal",
131         "com.delphix:obsolete_counts",
132         "com.intel:allocation_classes",
133         "org.freebsd:zstd_compress",
134         NULL
135 };
136
137 /*
138  * List of all pools, chained through spa_link.
139  */
140 static spa_list_t zfs_pools;
141
142 static const dnode_phys_t *dnode_cache_obj;
143 static uint64_t dnode_cache_bn;
144 static char *dnode_cache_buf;
145
146 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
147 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
148 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
149 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
150     const char *name, uint64_t integer_size, uint64_t num_integers,
151     void *value);
152 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
153     dnode_phys_t *);
154 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
155     size_t);
156 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
157     size_t);
158 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
159 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
160     uint64_t);
161 vdev_indirect_mapping_entry_phys_t *
162     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
163     uint64_t, uint64_t *);
164
165 static void
166 zfs_init(void)
167 {
168         STAILQ_INIT(&zfs_vdevs);
169         STAILQ_INIT(&zfs_pools);
170
171         dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
172
173         zfs_init_crc();
174         zstd_init();
175 }
176
177 static int
178 nvlist_check_features_for_read(nvlist_t *nvl)
179 {
180         nvlist_t *features = NULL;
181         nvs_data_t *data;
182         nvp_header_t *nvp;
183         nv_string_t *nvp_name;
184         int rc;
185
186         rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
187             DATA_TYPE_NVLIST, NULL, &features, NULL);
188         if (rc != 0)
189                 return (rc);
190
191         data = (nvs_data_t *)features->nv_data;
192         nvp = &data->nvl_pair;  /* first pair in nvlist */
193
194         while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
195                 int i, found;
196
197                 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp));
198                 found = 0;
199
200                 for (i = 0; features_for_read[i] != NULL; i++) {
201                         if (memcmp(nvp_name->nv_data, features_for_read[i],
202                             nvp_name->nv_size) == 0) {
203                                 found = 1;
204                                 break;
205                         }
206                 }
207
208                 if (!found) {
209                         printf("ZFS: unsupported feature: %.*s\n",
210                             nvp_name->nv_size, nvp_name->nv_data);
211                         rc = EIO;
212                 }
213                 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
214         }
215         nvlist_destroy(features);
216
217         return (rc);
218 }
219
220 static int
221 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
222     off_t offset, size_t size)
223 {
224         size_t psize;
225         int rc;
226
227         if (vdev->v_phys_read == NULL)
228                 return (ENOTSUP);
229
230         if (bp) {
231                 psize = BP_GET_PSIZE(bp);
232         } else {
233                 psize = size;
234         }
235
236         rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
237         if (rc == 0) {
238                 if (bp != NULL)
239                         rc = zio_checksum_verify(vdev->v_spa, bp, buf);
240         }
241
242         return (rc);
243 }
244
245 static int
246 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
247 {
248         if (vdev->v_phys_write == NULL)
249                 return (ENOTSUP);
250
251         return (vdev->v_phys_write(vdev, offset, buf, size));
252 }
253
254 typedef struct remap_segment {
255         vdev_t *rs_vd;
256         uint64_t rs_offset;
257         uint64_t rs_asize;
258         uint64_t rs_split_offset;
259         list_node_t rs_node;
260 } remap_segment_t;
261
262 static remap_segment_t *
263 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
264 {
265         remap_segment_t *rs = malloc(sizeof (remap_segment_t));
266
267         if (rs != NULL) {
268                 rs->rs_vd = vd;
269                 rs->rs_offset = offset;
270                 rs->rs_asize = asize;
271                 rs->rs_split_offset = split_offset;
272         }
273
274         return (rs);
275 }
276
277 vdev_indirect_mapping_t *
278 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
279     uint64_t mapping_object)
280 {
281         vdev_indirect_mapping_t *vim;
282         vdev_indirect_mapping_phys_t *vim_phys;
283         int rc;
284
285         vim = calloc(1, sizeof (*vim));
286         if (vim == NULL)
287                 return (NULL);
288
289         vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
290         if (vim->vim_dn == NULL) {
291                 free(vim);
292                 return (NULL);
293         }
294
295         rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
296         if (rc != 0) {
297                 free(vim->vim_dn);
298                 free(vim);
299                 return (NULL);
300         }
301
302         vim->vim_spa = spa;
303         vim->vim_phys = malloc(sizeof (*vim->vim_phys));
304         if (vim->vim_phys == NULL) {
305                 free(vim->vim_dn);
306                 free(vim);
307                 return (NULL);
308         }
309
310         vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
311         *vim->vim_phys = *vim_phys;
312
313         vim->vim_objset = os;
314         vim->vim_object = mapping_object;
315         vim->vim_entries = NULL;
316
317         vim->vim_havecounts =
318             (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
319
320         return (vim);
321 }
322
323 /*
324  * Compare an offset with an indirect mapping entry; there are three
325  * possible scenarios:
326  *
327  *     1. The offset is "less than" the mapping entry; meaning the
328  *        offset is less than the source offset of the mapping entry. In
329  *        this case, there is no overlap between the offset and the
330  *        mapping entry and -1 will be returned.
331  *
332  *     2. The offset is "greater than" the mapping entry; meaning the
333  *        offset is greater than the mapping entry's source offset plus
334  *        the entry's size. In this case, there is no overlap between
335  *        the offset and the mapping entry and 1 will be returned.
336  *
337  *        NOTE: If the offset is actually equal to the entry's offset
338  *        plus size, this is considered to be "greater" than the entry,
339  *        and this case applies (i.e. 1 will be returned). Thus, the
340  *        entry's "range" can be considered to be inclusive at its
341  *        start, but exclusive at its end: e.g. [src, src + size).
342  *
343  *     3. The last case to consider is if the offset actually falls
344  *        within the mapping entry's range. If this is the case, the
345  *        offset is considered to be "equal to" the mapping entry and
346  *        0 will be returned.
347  *
348  *        NOTE: If the offset is equal to the entry's source offset,
349  *        this case applies and 0 will be returned. If the offset is
350  *        equal to the entry's source plus its size, this case does
351  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
352  *        returned.
353  */
354 static int
355 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
356 {
357         const uint64_t *key = v_key;
358         const vdev_indirect_mapping_entry_phys_t *array_elem =
359             v_array_elem;
360         uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
361
362         if (*key < src_offset) {
363                 return (-1);
364         } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
365                 return (0);
366         } else {
367                 return (1);
368         }
369 }
370
371 /*
372  * Return array entry.
373  */
374 static vdev_indirect_mapping_entry_phys_t *
375 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
376 {
377         uint64_t size;
378         off_t offset = 0;
379         int rc;
380
381         if (vim->vim_phys->vimp_num_entries == 0)
382                 return (NULL);
383
384         if (vim->vim_entries == NULL) {
385                 uint64_t bsize;
386
387                 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
388                 size = vim->vim_phys->vimp_num_entries *
389                     sizeof (*vim->vim_entries);
390                 if (size > bsize) {
391                         size = bsize / sizeof (*vim->vim_entries);
392                         size *= sizeof (*vim->vim_entries);
393                 }
394                 vim->vim_entries = malloc(size);
395                 if (vim->vim_entries == NULL)
396                         return (NULL);
397                 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
398                 offset = index * sizeof (*vim->vim_entries);
399         }
400
401         /* We have data in vim_entries */
402         if (offset == 0) {
403                 if (index >= vim->vim_entry_offset &&
404                     index <= vim->vim_entry_offset + vim->vim_num_entries) {
405                         index -= vim->vim_entry_offset;
406                         return (&vim->vim_entries[index]);
407                 }
408                 offset = index * sizeof (*vim->vim_entries);
409         }
410
411         vim->vim_entry_offset = index;
412         size = vim->vim_num_entries * sizeof (*vim->vim_entries);
413         rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
414             size);
415         if (rc != 0) {
416                 /* Read error, invalidate vim_entries. */
417                 free(vim->vim_entries);
418                 vim->vim_entries = NULL;
419                 return (NULL);
420         }
421         index -= vim->vim_entry_offset;
422         return (&vim->vim_entries[index]);
423 }
424
425 /*
426  * Returns the mapping entry for the given offset.
427  *
428  * It's possible that the given offset will not be in the mapping table
429  * (i.e. no mapping entries contain this offset), in which case, the
430  * return value value depends on the "next_if_missing" parameter.
431  *
432  * If the offset is not found in the table and "next_if_missing" is
433  * B_FALSE, then NULL will always be returned. The behavior is intended
434  * to allow consumers to get the entry corresponding to the offset
435  * parameter, iff the offset overlaps with an entry in the table.
436  *
437  * If the offset is not found in the table and "next_if_missing" is
438  * B_TRUE, then the entry nearest to the given offset will be returned,
439  * such that the entry's source offset is greater than the offset
440  * passed in (i.e. the "next" mapping entry in the table is returned, if
441  * the offset is missing from the table). If there are no entries whose
442  * source offset is greater than the passed in offset, NULL is returned.
443  */
444 static vdev_indirect_mapping_entry_phys_t *
445 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
446     uint64_t offset)
447 {
448         ASSERT(vim->vim_phys->vimp_num_entries > 0);
449
450         vdev_indirect_mapping_entry_phys_t *entry;
451
452         uint64_t last = vim->vim_phys->vimp_num_entries - 1;
453         uint64_t base = 0;
454
455         /*
456          * We don't define these inside of the while loop because we use
457          * their value in the case that offset isn't in the mapping.
458          */
459         uint64_t mid;
460         int result;
461
462         while (last >= base) {
463                 mid = base + ((last - base) >> 1);
464
465                 entry = vdev_indirect_mapping_entry(vim, mid);
466                 if (entry == NULL)
467                         break;
468                 result = dva_mapping_overlap_compare(&offset, entry);
469
470                 if (result == 0) {
471                         break;
472                 } else if (result < 0) {
473                         last = mid - 1;
474                 } else {
475                         base = mid + 1;
476                 }
477         }
478         return (entry);
479 }
480
481 /*
482  * Given an indirect vdev and an extent on that vdev, it duplicates the
483  * physical entries of the indirect mapping that correspond to the extent
484  * to a new array and returns a pointer to it. In addition, copied_entries
485  * is populated with the number of mapping entries that were duplicated.
486  *
487  * Finally, since we are doing an allocation, it is up to the caller to
488  * free the array allocated in this function.
489  */
490 vdev_indirect_mapping_entry_phys_t *
491 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
492     uint64_t asize, uint64_t *copied_entries)
493 {
494         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
495         vdev_indirect_mapping_t *vim = vd->v_mapping;
496         uint64_t entries = 0;
497
498         vdev_indirect_mapping_entry_phys_t *first_mapping =
499             vdev_indirect_mapping_entry_for_offset(vim, offset);
500         ASSERT3P(first_mapping, !=, NULL);
501
502         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
503         while (asize > 0) {
504                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
505                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
506                 uint64_t inner_size = MIN(asize, size - inner_offset);
507
508                 offset += inner_size;
509                 asize -= inner_size;
510                 entries++;
511                 m++;
512         }
513
514         size_t copy_length = entries * sizeof (*first_mapping);
515         duplicate_mappings = malloc(copy_length);
516         if (duplicate_mappings != NULL)
517                 bcopy(first_mapping, duplicate_mappings, copy_length);
518         else
519                 entries = 0;
520
521         *copied_entries = entries;
522
523         return (duplicate_mappings);
524 }
525
526 static vdev_t *
527 vdev_lookup_top(spa_t *spa, uint64_t vdev)
528 {
529         vdev_t *rvd;
530         vdev_list_t *vlist;
531
532         vlist = &spa->spa_root_vdev->v_children;
533         STAILQ_FOREACH(rvd, vlist, v_childlink)
534                 if (rvd->v_id == vdev)
535                         break;
536
537         return (rvd);
538 }
539
540 /*
541  * This is a callback for vdev_indirect_remap() which allocates an
542  * indirect_split_t for each split segment and adds it to iv_splits.
543  */
544 static void
545 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
546     uint64_t size, void *arg)
547 {
548         int n = 1;
549         zio_t *zio = arg;
550         indirect_vsd_t *iv = zio->io_vsd;
551
552         if (vd->v_read == vdev_indirect_read)
553                 return;
554
555         if (vd->v_read == vdev_mirror_read)
556                 n = vd->v_nchildren;
557
558         indirect_split_t *is =
559             malloc(offsetof(indirect_split_t, is_child[n]));
560         if (is == NULL) {
561                 zio->io_error = ENOMEM;
562                 return;
563         }
564         bzero(is, offsetof(indirect_split_t, is_child[n]));
565
566         is->is_children = n;
567         is->is_size = size;
568         is->is_split_offset = split_offset;
569         is->is_target_offset = offset;
570         is->is_vdev = vd;
571
572         /*
573          * Note that we only consider multiple copies of the data for
574          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
575          * though they use the same ops as mirror, because there's only one
576          * "good" copy under the replacing/spare.
577          */
578         if (vd->v_read == vdev_mirror_read) {
579                 int i = 0;
580                 vdev_t *kid;
581
582                 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
583                         is->is_child[i++].ic_vdev = kid;
584                 }
585         } else {
586                 is->is_child[0].ic_vdev = vd;
587         }
588
589         list_insert_tail(&iv->iv_splits, is);
590 }
591
592 static void
593 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
594 {
595         list_t stack;
596         spa_t *spa = vd->v_spa;
597         zio_t *zio = arg;
598         remap_segment_t *rs;
599
600         list_create(&stack, sizeof (remap_segment_t),
601             offsetof(remap_segment_t, rs_node));
602
603         rs = rs_alloc(vd, offset, asize, 0);
604         if (rs == NULL) {
605                 printf("vdev_indirect_remap: out of memory.\n");
606                 zio->io_error = ENOMEM;
607         }
608         for (; rs != NULL; rs = list_remove_head(&stack)) {
609                 vdev_t *v = rs->rs_vd;
610                 uint64_t num_entries = 0;
611                 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
612                 vdev_indirect_mapping_entry_phys_t *mapping =
613                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
614                     rs->rs_offset, rs->rs_asize, &num_entries);
615
616                 if (num_entries == 0)
617                         zio->io_error = ENOMEM;
618
619                 for (uint64_t i = 0; i < num_entries; i++) {
620                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
621                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
622                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
623                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
624                         uint64_t inner_offset = rs->rs_offset -
625                             DVA_MAPPING_GET_SRC_OFFSET(m);
626                         uint64_t inner_size =
627                             MIN(rs->rs_asize, size - inner_offset);
628                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
629
630                         if (dst_v->v_read == vdev_indirect_read) {
631                                 remap_segment_t *o;
632
633                                 o = rs_alloc(dst_v, dst_offset + inner_offset,
634                                     inner_size, rs->rs_split_offset);
635                                 if (o == NULL) {
636                                         printf("vdev_indirect_remap: "
637                                             "out of memory.\n");
638                                         zio->io_error = ENOMEM;
639                                         break;
640                                 }
641
642                                 list_insert_head(&stack, o);
643                         }
644                         vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
645                             dst_offset + inner_offset,
646                             inner_size, arg);
647
648                         /*
649                          * vdev_indirect_gather_splits can have memory
650                          * allocation error, we can not recover from it.
651                          */
652                         if (zio->io_error != 0)
653                                 break;
654                         rs->rs_offset += inner_size;
655                         rs->rs_asize -= inner_size;
656                         rs->rs_split_offset += inner_size;
657                 }
658
659                 free(mapping);
660                 free(rs);
661                 if (zio->io_error != 0)
662                         break;
663         }
664
665         list_destroy(&stack);
666 }
667
668 static void
669 vdev_indirect_map_free(zio_t *zio)
670 {
671         indirect_vsd_t *iv = zio->io_vsd;
672         indirect_split_t *is;
673
674         while ((is = list_head(&iv->iv_splits)) != NULL) {
675                 for (int c = 0; c < is->is_children; c++) {
676                         indirect_child_t *ic = &is->is_child[c];
677                         free(ic->ic_data);
678                 }
679                 list_remove(&iv->iv_splits, is);
680                 free(is);
681         }
682         free(iv);
683 }
684
685 static int
686 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
687     off_t offset, size_t bytes)
688 {
689         zio_t zio;
690         spa_t *spa = vdev->v_spa;
691         indirect_vsd_t *iv;
692         indirect_split_t *first;
693         int rc = EIO;
694
695         iv = calloc(1, sizeof(*iv));
696         if (iv == NULL)
697                 return (ENOMEM);
698
699         list_create(&iv->iv_splits,
700             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
701
702         bzero(&zio, sizeof(zio));
703         zio.io_spa = spa;
704         zio.io_bp = (blkptr_t *)bp;
705         zio.io_data = buf;
706         zio.io_size = bytes;
707         zio.io_offset = offset;
708         zio.io_vd = vdev;
709         zio.io_vsd = iv;
710
711         if (vdev->v_mapping == NULL) {
712                 vdev_indirect_config_t *vic;
713
714                 vic = &vdev->vdev_indirect_config;
715                 vdev->v_mapping = vdev_indirect_mapping_open(spa,
716                     spa->spa_mos, vic->vic_mapping_object);
717         }
718
719         vdev_indirect_remap(vdev, offset, bytes, &zio);
720         if (zio.io_error != 0)
721                 return (zio.io_error);
722
723         first = list_head(&iv->iv_splits);
724         if (first->is_size == zio.io_size) {
725                 /*
726                  * This is not a split block; we are pointing to the entire
727                  * data, which will checksum the same as the original data.
728                  * Pass the BP down so that the child i/o can verify the
729                  * checksum, and try a different location if available
730                  * (e.g. on a mirror).
731                  *
732                  * While this special case could be handled the same as the
733                  * general (split block) case, doing it this way ensures
734                  * that the vast majority of blocks on indirect vdevs
735                  * (which are not split) are handled identically to blocks
736                  * on non-indirect vdevs.  This allows us to be less strict
737                  * about performance in the general (but rare) case.
738                  */
739                 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
740                     zio.io_data, first->is_target_offset, bytes);
741         } else {
742                 iv->iv_split_block = B_TRUE;
743                 /*
744                  * Read one copy of each split segment, from the
745                  * top-level vdev.  Since we don't know the
746                  * checksum of each split individually, the child
747                  * zio can't ensure that we get the right data.
748                  * E.g. if it's a mirror, it will just read from a
749                  * random (healthy) leaf vdev.  We have to verify
750                  * the checksum in vdev_indirect_io_done().
751                  */
752                 for (indirect_split_t *is = list_head(&iv->iv_splits);
753                     is != NULL; is = list_next(&iv->iv_splits, is)) {
754                         char *ptr = zio.io_data;
755
756                         rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
757                             ptr + is->is_split_offset, is->is_target_offset,
758                             is->is_size);
759                 }
760                 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
761                         rc = ECKSUM;
762                 else
763                         rc = 0;
764         }
765
766         vdev_indirect_map_free(&zio);
767         if (rc == 0)
768                 rc = zio.io_error;
769
770         return (rc);
771 }
772
773 static int
774 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
775     off_t offset, size_t bytes)
776 {
777
778         return (vdev_read_phys(vdev, bp, buf,
779             offset + VDEV_LABEL_START_SIZE, bytes));
780 }
781
782 static int
783 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
784     void *buf __unused, off_t offset __unused, size_t bytes __unused)
785 {
786
787         return (ENOTSUP);
788 }
789
790 static int
791 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
792     off_t offset, size_t bytes)
793 {
794         vdev_t *kid;
795         int rc;
796
797         rc = EIO;
798         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
799                 if (kid->v_state != VDEV_STATE_HEALTHY)
800                         continue;
801                 rc = kid->v_read(kid, bp, buf, offset, bytes);
802                 if (!rc)
803                         return (0);
804         }
805
806         return (rc);
807 }
808
809 static int
810 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
811     off_t offset, size_t bytes)
812 {
813         vdev_t *kid;
814
815         /*
816          * Here we should have two kids:
817          * First one which is the one we are replacing and we can trust
818          * only this one to have valid data, but it might not be present.
819          * Second one is that one we are replacing with. It is most likely
820          * healthy, but we can't trust it has needed data, so we won't use it.
821          */
822         kid = STAILQ_FIRST(&vdev->v_children);
823         if (kid == NULL)
824                 return (EIO);
825         if (kid->v_state != VDEV_STATE_HEALTHY)
826                 return (EIO);
827         return (kid->v_read(kid, bp, buf, offset, bytes));
828 }
829
830 static vdev_t *
831 vdev_find(uint64_t guid)
832 {
833         vdev_t *vdev;
834
835         STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
836                 if (vdev->v_guid == guid)
837                         return (vdev);
838
839         return (0);
840 }
841
842 static vdev_t *
843 vdev_create(uint64_t guid, vdev_read_t *_read)
844 {
845         vdev_t *vdev;
846         vdev_indirect_config_t *vic;
847
848         vdev = calloc(1, sizeof(vdev_t));
849         if (vdev != NULL) {
850                 STAILQ_INIT(&vdev->v_children);
851                 vdev->v_guid = guid;
852                 vdev->v_read = _read;
853
854                 /*
855                  * root vdev has no read function, we use this fact to
856                  * skip setting up data we do not need for root vdev.
857                  * We only point root vdev from spa.
858                  */
859                 if (_read != NULL) {
860                         vic = &vdev->vdev_indirect_config;
861                         vic->vic_prev_indirect_vdev = UINT64_MAX;
862                         STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
863                 }
864         }
865
866         return (vdev);
867 }
868
869 static void
870 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
871 {
872         uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
873         uint64_t is_log;
874
875         is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
876         is_log = 0;
877         (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
878             &is_offline, NULL);
879         (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
880             &is_removed, NULL);
881         (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
882             &is_faulted, NULL);
883         (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
884             NULL, &is_degraded, NULL);
885         (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
886             NULL, &isnt_present, NULL);
887         (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
888             &is_log, NULL);
889
890         if (is_offline != 0)
891                 vdev->v_state = VDEV_STATE_OFFLINE;
892         else if (is_removed != 0)
893                 vdev->v_state = VDEV_STATE_REMOVED;
894         else if (is_faulted != 0)
895                 vdev->v_state = VDEV_STATE_FAULTED;
896         else if (is_degraded != 0)
897                 vdev->v_state = VDEV_STATE_DEGRADED;
898         else if (isnt_present != 0)
899                 vdev->v_state = VDEV_STATE_CANT_OPEN;
900
901         vdev->v_islog = is_log != 0;
902 }
903
904 static int
905 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
906 {
907         uint64_t id, ashift, asize, nparity;
908         const char *path;
909         const char *type;
910         int len, pathlen;
911         char *name;
912         vdev_t *vdev;
913
914         if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
915             NULL) ||
916             nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL,
917             &type, &len)) {
918                 return (ENOENT);
919         }
920
921         if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
922             memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
923 #ifdef ZFS_TEST
924             memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
925 #endif
926             memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
927             memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
928             memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
929             memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
930                 printf("ZFS: can only boot from disk, mirror, raidz1, "
931                     "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
932                 return (EIO);
933         }
934
935         if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
936                 vdev = vdev_create(guid, vdev_mirror_read);
937         else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
938                 vdev = vdev_create(guid, vdev_raidz_read);
939         else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
940                 vdev = vdev_create(guid, vdev_replacing_read);
941         else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
942                 vdev_indirect_config_t *vic;
943
944                 vdev = vdev_create(guid, vdev_indirect_read);
945                 if (vdev != NULL) {
946                         vdev->v_state = VDEV_STATE_HEALTHY;
947                         vic = &vdev->vdev_indirect_config;
948
949                         nvlist_find(nvlist,
950                             ZPOOL_CONFIG_INDIRECT_OBJECT,
951                             DATA_TYPE_UINT64,
952                             NULL, &vic->vic_mapping_object, NULL);
953                         nvlist_find(nvlist,
954                             ZPOOL_CONFIG_INDIRECT_BIRTHS,
955                             DATA_TYPE_UINT64,
956                             NULL, &vic->vic_births_object, NULL);
957                         nvlist_find(nvlist,
958                             ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
959                             DATA_TYPE_UINT64,
960                             NULL, &vic->vic_prev_indirect_vdev, NULL);
961                 }
962         } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
963                 vdev = vdev_create(guid, vdev_missing_read);
964         } else {
965                 vdev = vdev_create(guid, vdev_disk_read);
966         }
967
968         if (vdev == NULL)
969                 return (ENOMEM);
970
971         vdev_set_initial_state(vdev, nvlist);
972         vdev->v_id = id;
973         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
974             DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
975                 vdev->v_ashift = ashift;
976
977         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
978             DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
979                 vdev->v_psize = asize +
980                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
981         }
982
983         if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
984             DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
985                 vdev->v_nparity = nparity;
986
987         if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
988             DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
989                 char prefix[] = "/dev/";
990
991                 len = strlen(prefix);
992                 if (len < pathlen && memcmp(path, prefix, len) == 0) {
993                         path += len;
994                         pathlen -= len;
995                 }
996                 name = malloc(pathlen + 1);
997                 bcopy(path, name, pathlen);
998                 name[pathlen] = '\0';
999                 vdev->v_name = name;
1000         } else {
1001                 name = NULL;
1002                 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1003                         if (vdev->v_nparity < 1 ||
1004                             vdev->v_nparity > 3) {
1005                                 printf("ZFS: invalid raidz parity: %d\n",
1006                                     vdev->v_nparity);
1007                                 return (EIO);
1008                         }
1009                         (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1010                             vdev->v_nparity, id);
1011                 } else {
1012                         (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1013                 }
1014                 vdev->v_name = name;
1015         }
1016         *vdevp = vdev;
1017         return (0);
1018 }
1019
1020 /*
1021  * Find slot for vdev. We return either NULL to signal to use
1022  * STAILQ_INSERT_HEAD, or we return link element to be used with
1023  * STAILQ_INSERT_AFTER.
1024  */
1025 static vdev_t *
1026 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1027 {
1028         vdev_t *v, *previous;
1029
1030         if (STAILQ_EMPTY(&top_vdev->v_children))
1031                 return (NULL);
1032
1033         previous = NULL;
1034         STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1035                 if (v->v_id > vdev->v_id)
1036                         return (previous);
1037
1038                 if (v->v_id == vdev->v_id)
1039                         return (v);
1040
1041                 if (v->v_id < vdev->v_id)
1042                         previous = v;
1043         }
1044         return (previous);
1045 }
1046
1047 static size_t
1048 vdev_child_count(vdev_t *vdev)
1049 {
1050         vdev_t *v;
1051         size_t count;
1052
1053         count = 0;
1054         STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1055                 count++;
1056         }
1057         return (count);
1058 }
1059
1060 /*
1061  * Insert vdev into top_vdev children list. List is ordered by v_id.
1062  */
1063 static void
1064 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1065 {
1066         vdev_t *previous;
1067         size_t count;
1068
1069         /*
1070          * The top level vdev can appear in random order, depending how
1071          * the firmware is presenting the disk devices.
1072          * However, we will insert vdev to create list ordered by v_id,
1073          * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1074          * as STAILQ does not have insert before.
1075          */
1076         previous = vdev_find_previous(top_vdev, vdev);
1077
1078         if (previous == NULL) {
1079                 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1080         } else if (previous->v_id == vdev->v_id) {
1081                 /*
1082                  * This vdev was configured from label config,
1083                  * do not insert duplicate.
1084                  */
1085                 return;
1086         } else {
1087                 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1088                     v_childlink);
1089         }
1090
1091         count = vdev_child_count(top_vdev);
1092         if (top_vdev->v_nchildren < count)
1093                 top_vdev->v_nchildren = count;
1094 }
1095
1096 static int
1097 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist)
1098 {
1099         vdev_t *top_vdev, *vdev;
1100         nvlist_t **kids = NULL;
1101         int rc, nkids;
1102
1103         /* Get top vdev. */
1104         top_vdev = vdev_find(top_guid);
1105         if (top_vdev == NULL) {
1106                 rc = vdev_init(top_guid, nvlist, &top_vdev);
1107                 if (rc != 0)
1108                         return (rc);
1109                 top_vdev->v_spa = spa;
1110                 top_vdev->v_top = top_vdev;
1111                 vdev_insert(spa->spa_root_vdev, top_vdev);
1112         }
1113
1114         /* Add children if there are any. */
1115         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1116             &nkids, &kids, NULL);
1117         if (rc == 0) {
1118                 for (int i = 0; i < nkids; i++) {
1119                         uint64_t guid;
1120
1121                         rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1122                             DATA_TYPE_UINT64, NULL, &guid, NULL);
1123                         if (rc != 0)
1124                                 goto done;
1125
1126                         rc = vdev_init(guid, kids[i], &vdev);
1127                         if (rc != 0)
1128                                 goto done;
1129
1130                         vdev->v_spa = spa;
1131                         vdev->v_top = top_vdev;
1132                         vdev_insert(top_vdev, vdev);
1133                 }
1134         } else {
1135                 /*
1136                  * When there are no children, nvlist_find() does return
1137                  * error, reset it because leaf devices have no children.
1138                  */
1139                 rc = 0;
1140         }
1141 done:
1142         if (kids != NULL) {
1143                 for (int i = 0; i < nkids; i++)
1144                         nvlist_destroy(kids[i]);
1145                 free(kids);
1146         }
1147
1148         return (rc);
1149 }
1150
1151 static int
1152 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist)
1153 {
1154         uint64_t pool_guid, top_guid;
1155         nvlist_t *vdevs;
1156         int rc;
1157
1158         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1159             NULL, &pool_guid, NULL) ||
1160             nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1161             NULL, &top_guid, NULL) ||
1162             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1163             NULL, &vdevs, NULL)) {
1164                 printf("ZFS: can't find vdev details\n");
1165                 return (ENOENT);
1166         }
1167
1168         rc = vdev_from_nvlist(spa, top_guid, vdevs);
1169         nvlist_destroy(vdevs);
1170         return (rc);
1171 }
1172
1173 static void
1174 vdev_set_state(vdev_t *vdev)
1175 {
1176         vdev_t *kid;
1177         int good_kids;
1178         int bad_kids;
1179
1180         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1181                 vdev_set_state(kid);
1182         }
1183
1184         /*
1185          * A mirror or raidz is healthy if all its kids are healthy. A
1186          * mirror is degraded if any of its kids is healthy; a raidz
1187          * is degraded if at most nparity kids are offline.
1188          */
1189         if (STAILQ_FIRST(&vdev->v_children)) {
1190                 good_kids = 0;
1191                 bad_kids = 0;
1192                 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1193                         if (kid->v_state == VDEV_STATE_HEALTHY)
1194                                 good_kids++;
1195                         else
1196                                 bad_kids++;
1197                 }
1198                 if (bad_kids == 0) {
1199                         vdev->v_state = VDEV_STATE_HEALTHY;
1200                 } else {
1201                         if (vdev->v_read == vdev_mirror_read) {
1202                                 if (good_kids) {
1203                                         vdev->v_state = VDEV_STATE_DEGRADED;
1204                                 } else {
1205                                         vdev->v_state = VDEV_STATE_OFFLINE;
1206                                 }
1207                         } else if (vdev->v_read == vdev_raidz_read) {
1208                                 if (bad_kids > vdev->v_nparity) {
1209                                         vdev->v_state = VDEV_STATE_OFFLINE;
1210                                 } else {
1211                                         vdev->v_state = VDEV_STATE_DEGRADED;
1212                                 }
1213                         }
1214                 }
1215         }
1216 }
1217
1218 static int
1219 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist)
1220 {
1221         vdev_t *vdev;
1222         nvlist_t **kids = NULL;
1223         int rc, nkids;
1224
1225         /* Update top vdev. */
1226         vdev = vdev_find(top_guid);
1227         if (vdev != NULL)
1228                 vdev_set_initial_state(vdev, nvlist);
1229
1230         /* Update children if there are any. */
1231         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1232             &nkids, &kids, NULL);
1233         if (rc == 0) {
1234                 for (int i = 0; i < nkids; i++) {
1235                         uint64_t guid;
1236
1237                         rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1238                             DATA_TYPE_UINT64, NULL, &guid, NULL);
1239                         if (rc != 0)
1240                                 break;
1241
1242                         vdev = vdev_find(guid);
1243                         if (vdev != NULL)
1244                                 vdev_set_initial_state(vdev, kids[i]);
1245                 }
1246         } else {
1247                 rc = 0;
1248         }
1249         if (kids != NULL) {
1250                 for (int i = 0; i < nkids; i++)
1251                         nvlist_destroy(kids[i]);
1252                 free(kids);
1253         }
1254
1255         return (rc);
1256 }
1257
1258 static int
1259 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
1260 {
1261         uint64_t pool_guid, vdev_children;
1262         nvlist_t *vdevs = NULL, **kids = NULL;
1263         int rc, nkids;
1264
1265         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1266             NULL, &pool_guid, NULL) ||
1267             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1268             NULL, &vdev_children, NULL) ||
1269             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1270             NULL, &vdevs, NULL)) {
1271                 printf("ZFS: can't find vdev details\n");
1272                 return (ENOENT);
1273         }
1274
1275         /* Wrong guid?! */
1276         if (spa->spa_guid != pool_guid) {
1277                 nvlist_destroy(vdevs);
1278                 return (EINVAL);
1279         }
1280
1281         spa->spa_root_vdev->v_nchildren = vdev_children;
1282
1283         rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1284             &nkids, &kids, NULL);
1285         nvlist_destroy(vdevs);
1286
1287         /*
1288          * MOS config has at least one child for root vdev.
1289          */
1290         if (rc != 0)
1291                 return (rc);
1292
1293         for (int i = 0; i < nkids; i++) {
1294                 uint64_t guid;
1295                 vdev_t *vdev;
1296
1297                 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1298                     NULL, &guid, NULL);
1299                 if (rc != 0)
1300                         break;
1301                 vdev = vdev_find(guid);
1302                 /*
1303                  * Top level vdev is missing, create it.
1304                  */
1305                 if (vdev == NULL)
1306                         rc = vdev_from_nvlist(spa, guid, kids[i]);
1307                 else
1308                         rc = vdev_update_from_nvlist(guid, kids[i]);
1309                 if (rc != 0)
1310                         break;
1311         }
1312         if (kids != NULL) {
1313                 for (int i = 0; i < nkids; i++)
1314                         nvlist_destroy(kids[i]);
1315                 free(kids);
1316         }
1317
1318         /*
1319          * Re-evaluate top-level vdev state.
1320          */
1321         vdev_set_state(spa->spa_root_vdev);
1322
1323         return (rc);
1324 }
1325
1326 static spa_t *
1327 spa_find_by_guid(uint64_t guid)
1328 {
1329         spa_t *spa;
1330
1331         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1332                 if (spa->spa_guid == guid)
1333                         return (spa);
1334
1335         return (NULL);
1336 }
1337
1338 static spa_t *
1339 spa_find_by_name(const char *name)
1340 {
1341         spa_t *spa;
1342
1343         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1344                 if (strcmp(spa->spa_name, name) == 0)
1345                         return (spa);
1346
1347         return (NULL);
1348 }
1349
1350 static spa_t *
1351 spa_find_by_dev(struct zfs_devdesc *dev)
1352 {
1353
1354         if (dev->dd.d_dev->dv_type != DEVT_ZFS)
1355                 return (NULL);
1356
1357         if (dev->pool_guid == 0)
1358                 return (STAILQ_FIRST(&zfs_pools));
1359
1360         return (spa_find_by_guid(dev->pool_guid));
1361 }
1362
1363 static spa_t *
1364 spa_create(uint64_t guid, const char *name)
1365 {
1366         spa_t *spa;
1367
1368         if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1369                 return (NULL);
1370         if ((spa->spa_name = strdup(name)) == NULL) {
1371                 free(spa);
1372                 return (NULL);
1373         }
1374         spa->spa_uberblock = &spa->spa_uberblock_master;
1375         spa->spa_mos = &spa->spa_mos_master;
1376         spa->spa_guid = guid;
1377         spa->spa_root_vdev = vdev_create(guid, NULL);
1378         if (spa->spa_root_vdev == NULL) {
1379                 free(spa->spa_name);
1380                 free(spa);
1381                 return (NULL);
1382         }
1383         spa->spa_root_vdev->v_name = strdup("root");
1384         STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1385
1386         return (spa);
1387 }
1388
1389 static const char *
1390 state_name(vdev_state_t state)
1391 {
1392         static const char *names[] = {
1393                 "UNKNOWN",
1394                 "CLOSED",
1395                 "OFFLINE",
1396                 "REMOVED",
1397                 "CANT_OPEN",
1398                 "FAULTED",
1399                 "DEGRADED",
1400                 "ONLINE"
1401         };
1402         return (names[state]);
1403 }
1404
1405 #ifdef BOOT2
1406
1407 #define pager_printf printf
1408
1409 #else
1410
1411 static int
1412 pager_printf(const char *fmt, ...)
1413 {
1414         char line[80];
1415         va_list args;
1416
1417         va_start(args, fmt);
1418         vsnprintf(line, sizeof(line), fmt, args);
1419         va_end(args);
1420         return (pager_output(line));
1421 }
1422
1423 #endif
1424
1425 #define STATUS_FORMAT   "        %s %s\n"
1426
1427 static int
1428 print_state(int indent, const char *name, vdev_state_t state)
1429 {
1430         int i;
1431         char buf[512];
1432
1433         buf[0] = 0;
1434         for (i = 0; i < indent; i++)
1435                 strcat(buf, "  ");
1436         strcat(buf, name);
1437         return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1438 }
1439
1440 static int
1441 vdev_status(vdev_t *vdev, int indent)
1442 {
1443         vdev_t *kid;
1444         int ret;
1445
1446         if (vdev->v_islog) {
1447                 (void) pager_output("        logs\n");
1448                 indent++;
1449         }
1450
1451         ret = print_state(indent, vdev->v_name, vdev->v_state);
1452         if (ret != 0)
1453                 return (ret);
1454
1455         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1456                 ret = vdev_status(kid, indent + 1);
1457                 if (ret != 0)
1458                         return (ret);
1459         }
1460         return (ret);
1461 }
1462
1463 static int
1464 spa_status(spa_t *spa)
1465 {
1466         static char bootfs[ZFS_MAXNAMELEN];
1467         uint64_t rootid;
1468         vdev_list_t *vlist;
1469         vdev_t *vdev;
1470         int good_kids, bad_kids, degraded_kids, ret;
1471         vdev_state_t state;
1472
1473         ret = pager_printf("  pool: %s\n", spa->spa_name);
1474         if (ret != 0)
1475                 return (ret);
1476
1477         if (zfs_get_root(spa, &rootid) == 0 &&
1478             zfs_rlookup(spa, rootid, bootfs) == 0) {
1479                 if (bootfs[0] == '\0')
1480                         ret = pager_printf("bootfs: %s\n", spa->spa_name);
1481                 else
1482                         ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1483                             bootfs);
1484                 if (ret != 0)
1485                         return (ret);
1486         }
1487         ret = pager_printf("config:\n\n");
1488         if (ret != 0)
1489                 return (ret);
1490         ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1491         if (ret != 0)
1492                 return (ret);
1493
1494         good_kids = 0;
1495         degraded_kids = 0;
1496         bad_kids = 0;
1497         vlist = &spa->spa_root_vdev->v_children;
1498         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1499                 if (vdev->v_state == VDEV_STATE_HEALTHY)
1500                         good_kids++;
1501                 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1502                         degraded_kids++;
1503                 else
1504                         bad_kids++;
1505         }
1506
1507         state = VDEV_STATE_CLOSED;
1508         if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1509                 state = VDEV_STATE_HEALTHY;
1510         else if ((good_kids + degraded_kids) > 0)
1511                 state = VDEV_STATE_DEGRADED;
1512
1513         ret = print_state(0, spa->spa_name, state);
1514         if (ret != 0)
1515                 return (ret);
1516
1517         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1518                 ret = vdev_status(vdev, 1);
1519                 if (ret != 0)
1520                         return (ret);
1521         }
1522         return (ret);
1523 }
1524
1525 static int
1526 spa_all_status(void)
1527 {
1528         spa_t *spa;
1529         int first = 1, ret = 0;
1530
1531         STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1532                 if (!first) {
1533                         ret = pager_printf("\n");
1534                         if (ret != 0)
1535                                 return (ret);
1536                 }
1537                 first = 0;
1538                 ret = spa_status(spa);
1539                 if (ret != 0)
1540                         return (ret);
1541         }
1542         return (ret);
1543 }
1544
1545 static uint64_t
1546 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1547 {
1548         uint64_t label_offset;
1549
1550         if (l < VDEV_LABELS / 2)
1551                 label_offset = 0;
1552         else
1553                 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1554
1555         return (offset + l * sizeof (vdev_label_t) + label_offset);
1556 }
1557
1558 static int
1559 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1560 {
1561         unsigned int seq1 = 0;
1562         unsigned int seq2 = 0;
1563         int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1564
1565         if (cmp != 0)
1566                 return (cmp);
1567
1568         cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1569         if (cmp != 0)
1570                 return (cmp);
1571
1572         if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1573                 seq1 = MMP_SEQ(ub1);
1574
1575         if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1576                 seq2 = MMP_SEQ(ub2);
1577
1578         return (AVL_CMP(seq1, seq2));
1579 }
1580
1581 static int
1582 uberblock_verify(uberblock_t *ub)
1583 {
1584         if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1585                 byteswap_uint64_array(ub, sizeof (uberblock_t));
1586         }
1587
1588         if (ub->ub_magic != UBERBLOCK_MAGIC ||
1589             !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1590                 return (EINVAL);
1591
1592         return (0);
1593 }
1594
1595 static int
1596 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1597     size_t size)
1598 {
1599         blkptr_t bp;
1600         off_t off;
1601
1602         off = vdev_label_offset(vd->v_psize, l, offset);
1603
1604         BP_ZERO(&bp);
1605         BP_SET_LSIZE(&bp, size);
1606         BP_SET_PSIZE(&bp, size);
1607         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1608         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1609         DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1610         ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1611
1612         return (vdev_read_phys(vd, &bp, buf, off, size));
1613 }
1614
1615 /*
1616  * We do need to be sure we write to correct location.
1617  * Our vdev label does consist of 4 fields:
1618  * pad1 (8k), reserved.
1619  * bootenv (8k), checksummed, previously reserved, may contian garbage.
1620  * vdev_phys (112k), checksummed
1621  * uberblock ring (128k), checksummed.
1622  *
1623  * Since bootenv area may contain garbage, we can not reliably read it, as
1624  * we can get checksum errors.
1625  * Next best thing is vdev_phys - it is just after bootenv. It still may
1626  * be corrupted, but in such case we will miss this one write.
1627  */
1628 static int
1629 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
1630 {
1631         uint64_t off, o_phys;
1632         void *buf;
1633         size_t size = VDEV_PHYS_SIZE;
1634         int rc;
1635
1636         o_phys = offsetof(vdev_label_t, vl_vdev_phys);
1637         off = vdev_label_offset(vd->v_psize, l, o_phys);
1638
1639         /* off should be 8K from bootenv */
1640         if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
1641                 return (EINVAL);
1642
1643         buf = malloc(size);
1644         if (buf == NULL)
1645                 return (ENOMEM);
1646
1647         /* Read vdev_phys */
1648         rc = vdev_label_read(vd, l, buf, o_phys, size);
1649         free(buf);
1650         return (rc);
1651 }
1652
1653 static int
1654 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
1655 {
1656         zio_checksum_info_t *ci;
1657         zio_cksum_t cksum;
1658         off_t off;
1659         size_t size = VDEV_PAD_SIZE;
1660         int rc;
1661
1662         if (vd->v_phys_write == NULL)
1663                 return (ENOTSUP);
1664
1665         off = vdev_label_offset(vd->v_psize, l, offset);
1666
1667         rc = vdev_label_write_validate(vd, l, offset);
1668         if (rc != 0) {
1669                 return (rc);
1670         }
1671
1672         ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
1673         be->vbe_zbt.zec_magic = ZEC_MAGIC;
1674         zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
1675         ci->ci_func[0](be, size, NULL, &cksum);
1676         be->vbe_zbt.zec_cksum = cksum;
1677
1678         return (vdev_write_phys(vd, be, off, size));
1679 }
1680
1681 static int
1682 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
1683 {
1684         vdev_t *kid;
1685         int rv = 0, rc;
1686
1687         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1688                 if (kid->v_state != VDEV_STATE_HEALTHY)
1689                         continue;
1690                 rc = vdev_write_bootenv_impl(kid, be);
1691                 if (rv == 0)
1692                         rv = rc;
1693         }
1694
1695         /*
1696          * Non-leaf vdevs do not have v_phys_write.
1697          */
1698         if (vdev->v_phys_write == NULL)
1699                 return (rv);
1700
1701         for (int l = 0; l < VDEV_LABELS; l++) {
1702                 rc = vdev_label_write(vdev, l, be,
1703                     offsetof(vdev_label_t, vl_be));
1704                 if (rc != 0) {
1705                         printf("failed to write bootenv to %s label %d: %d\n",
1706                             vdev->v_name ? vdev->v_name : "unknown", l, rc);
1707                         rv = rc;
1708                 }
1709         }
1710         return (rv);
1711 }
1712
1713 int
1714 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
1715 {
1716         vdev_boot_envblock_t *be;
1717         nvlist_t nv, *nvp;
1718         uint64_t version;
1719         int rv;
1720
1721         if (nvl->nv_size > sizeof(be->vbe_bootenv))
1722                 return (E2BIG);
1723
1724         version = VB_RAW;
1725         nvp = vdev_read_bootenv(vdev);
1726         if (nvp != NULL) {
1727                 nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
1728                     &version, NULL);
1729                 nvlist_destroy(nvp);
1730         }
1731
1732         be = calloc(1, sizeof(*be));
1733         if (be == NULL)
1734                 return (ENOMEM);
1735
1736         be->vbe_version = version;
1737         switch (version) {
1738         case VB_RAW:
1739                 /*
1740                  * If there is no envmap, we will just wipe bootenv.
1741                  */
1742                 nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
1743                     be->vbe_bootenv, NULL);
1744                 rv = 0;
1745                 break;
1746
1747         case VB_NVLIST:
1748                 nv.nv_header = nvl->nv_header;
1749                 nv.nv_asize = nvl->nv_asize;
1750                 nv.nv_size = nvl->nv_size;
1751
1752                 bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header));
1753                 nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t);
1754                 bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
1755                 rv = nvlist_export(&nv);
1756                 break;
1757
1758         default:
1759                 rv = EINVAL;
1760                 break;
1761         }
1762
1763         if (rv == 0) {
1764                 be->vbe_version = htobe64(be->vbe_version);
1765                 rv = vdev_write_bootenv_impl(vdev, be);
1766         }
1767         free(be);
1768         return (rv);
1769 }
1770
1771 /*
1772  * Read the bootenv area from pool label, return the nvlist from it.
1773  * We return from first successful read.
1774  */
1775 nvlist_t *
1776 vdev_read_bootenv(vdev_t *vdev)
1777 {
1778         vdev_t *kid;
1779         nvlist_t *benv;
1780         vdev_boot_envblock_t *be;
1781         char *command;
1782         bool ok;
1783         int rv;
1784
1785         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1786                 if (kid->v_state != VDEV_STATE_HEALTHY)
1787                         continue;
1788
1789                 benv = vdev_read_bootenv(kid);
1790                 if (benv != NULL)
1791                         return (benv);
1792         }
1793
1794         be = malloc(sizeof (*be));
1795         if (be == NULL)
1796                 return (NULL);
1797
1798         rv = 0;
1799         for (int l = 0; l < VDEV_LABELS; l++) {
1800                 rv = vdev_label_read(vdev, l, be,
1801                     offsetof(vdev_label_t, vl_be),
1802                     sizeof (*be));
1803                 if (rv == 0)
1804                         break;
1805         }
1806         if (rv != 0) {
1807                 free(be);
1808                 return (NULL);
1809         }
1810
1811         be->vbe_version = be64toh(be->vbe_version);
1812         switch (be->vbe_version) {
1813         case VB_RAW:
1814                 /*
1815                  * we have textual data in vbe_bootenv, create nvlist
1816                  * with key "envmap".
1817                  */
1818                 benv = nvlist_create(NV_UNIQUE_NAME);
1819                 if (benv != NULL) {
1820                         if (*be->vbe_bootenv == '\0') {
1821                                 nvlist_add_uint64(benv, BOOTENV_VERSION,
1822                                     VB_NVLIST);
1823                                 break;
1824                         }
1825                         nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
1826                         be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
1827                         nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
1828                 }
1829                 break;
1830
1831         case VB_NVLIST:
1832                 benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv));
1833                 break;
1834
1835         default:
1836                 command = (char *)be;
1837                 ok = false;
1838
1839                 /* Check for legacy zfsbootcfg command string */
1840                 for (int i = 0; command[i] != '\0'; i++) {
1841                         if (iscntrl(command[i])) {
1842                                 ok = false;
1843                                 break;
1844                         } else {
1845                                 ok = true;
1846                         }
1847                 }
1848                 benv = nvlist_create(NV_UNIQUE_NAME);
1849                 if (benv != NULL) {
1850                         if (ok)
1851                                 nvlist_add_string(benv, FREEBSD_BOOTONCE,
1852                                     command);
1853                         else
1854                                 nvlist_add_uint64(benv, BOOTENV_VERSION,
1855                                     VB_NVLIST);
1856                 }
1857                 break;
1858         }
1859         free(be);
1860         return (benv);
1861 }
1862
1863 static uint64_t
1864 vdev_get_label_asize(nvlist_t *nvl)
1865 {
1866         nvlist_t *vdevs;
1867         uint64_t asize;
1868         const char *type;
1869         int len;
1870
1871         asize = 0;
1872         /* Get vdev tree */
1873         if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1874             NULL, &vdevs, NULL) != 0)
1875                 return (asize);
1876
1877         /*
1878          * Get vdev type. We will calculate asize for raidz, mirror and disk.
1879          * For raidz, the asize is raw size of all children.
1880          */
1881         if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1882             NULL, &type, &len) != 0)
1883                 goto done;
1884
1885         if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1886             memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1887             memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
1888                 goto done;
1889
1890         if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
1891             NULL, &asize, NULL) != 0)
1892                 goto done;
1893
1894         if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1895                 nvlist_t **kids;
1896                 int nkids;
1897
1898                 if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
1899                     DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
1900                         asize = 0;
1901                         goto done;
1902                 }
1903
1904                 asize /= nkids;
1905                 for (int i = 0; i < nkids; i++)
1906                         nvlist_destroy(kids[i]);
1907                 free(kids);
1908         }
1909
1910         asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1911 done:
1912         nvlist_destroy(vdevs);
1913         return (asize);
1914 }
1915
1916 static nvlist_t *
1917 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1918 {
1919         vdev_phys_t *label;
1920         uint64_t best_txg = 0;
1921         uint64_t label_txg = 0;
1922         uint64_t asize;
1923         nvlist_t *nvl = NULL, *tmp;
1924         int error;
1925
1926         label = malloc(sizeof (vdev_phys_t));
1927         if (label == NULL)
1928                 return (NULL);
1929
1930         for (int l = 0; l < VDEV_LABELS; l++) {
1931                 if (vdev_label_read(vd, l, label,
1932                     offsetof(vdev_label_t, vl_vdev_phys),
1933                     sizeof (vdev_phys_t)))
1934                         continue;
1935
1936                 tmp = nvlist_import(label->vp_nvlist,
1937                     sizeof(label->vp_nvlist));
1938                 if (tmp == NULL)
1939                         continue;
1940
1941                 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
1942                     DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1943                 if (error != 0 || label_txg == 0) {
1944                         nvlist_destroy(nvl);
1945                         nvl = tmp;
1946                         goto done;
1947                 }
1948
1949                 if (label_txg <= txg && label_txg > best_txg) {
1950                         best_txg = label_txg;
1951                         nvlist_destroy(nvl);
1952                         nvl = tmp;
1953                         tmp = NULL;
1954
1955                         /*
1956                          * Use asize from pool config. We need this
1957                          * because we can get bad value from BIOS.
1958                          */
1959                         asize = vdev_get_label_asize(nvl);
1960                         if (asize != 0) {
1961                                 vd->v_psize = asize;
1962                         }
1963                 }
1964                 nvlist_destroy(tmp);
1965         }
1966
1967         if (best_txg == 0) {
1968                 nvlist_destroy(nvl);
1969                 nvl = NULL;
1970         }
1971 done:
1972         free(label);
1973         return (nvl);
1974 }
1975
1976 static void
1977 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1978 {
1979         uberblock_t *buf;
1980
1981         buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1982         if (buf == NULL)
1983                 return;
1984
1985         for (int l = 0; l < VDEV_LABELS; l++) {
1986                 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1987                         if (vdev_label_read(vd, l, buf,
1988                             VDEV_UBERBLOCK_OFFSET(vd, n),
1989                             VDEV_UBERBLOCK_SIZE(vd)))
1990                                 continue;
1991                         if (uberblock_verify(buf) != 0)
1992                                 continue;
1993
1994                         if (vdev_uberblock_compare(buf, ub) > 0)
1995                                 *ub = *buf;
1996                 }
1997         }
1998         free(buf);
1999 }
2000
2001 static int
2002 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
2003     spa_t **spap)
2004 {
2005         vdev_t vtmp;
2006         spa_t *spa;
2007         vdev_t *vdev;
2008         nvlist_t *nvl;
2009         uint64_t val;
2010         uint64_t guid, vdev_children;
2011         uint64_t pool_txg, pool_guid;
2012         const char *pool_name;
2013         int rc, namelen;
2014
2015         /*
2016          * Load the vdev label and figure out which
2017          * uberblock is most current.
2018          */
2019         memset(&vtmp, 0, sizeof(vtmp));
2020         vtmp.v_phys_read = _read;
2021         vtmp.v_phys_write = _write;
2022         vtmp.v_priv = priv;
2023         vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
2024             (uint64_t)sizeof (vdev_label_t));
2025
2026         /* Test for minimum device size. */
2027         if (vtmp.v_psize < SPA_MINDEVSIZE)
2028                 return (EIO);
2029
2030         nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
2031         if (nvl == NULL)
2032                 return (EIO);
2033
2034         if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
2035             NULL, &val, NULL) != 0) {
2036                 nvlist_destroy(nvl);
2037                 return (EIO);
2038         }
2039
2040         if (!SPA_VERSION_IS_SUPPORTED(val)) {
2041                 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
2042                     (unsigned)val, (unsigned)SPA_VERSION);
2043                 nvlist_destroy(nvl);
2044                 return (EIO);
2045         }
2046
2047         /* Check ZFS features for read */
2048         rc = nvlist_check_features_for_read(nvl);
2049         if (rc != 0) {
2050                 nvlist_destroy(nvl);
2051                 return (EIO);
2052         }
2053
2054         if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
2055             NULL, &val, NULL) != 0) {
2056                 nvlist_destroy(nvl);
2057                 return (EIO);
2058         }
2059
2060         if (val == POOL_STATE_DESTROYED) {
2061                 /* We don't boot only from destroyed pools. */
2062                 nvlist_destroy(nvl);
2063                 return (EIO);
2064         }
2065
2066         if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
2067             NULL, &pool_txg, NULL) != 0 ||
2068             nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2069             NULL, &pool_guid, NULL) != 0 ||
2070             nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2071             NULL, &pool_name, &namelen) != 0) {
2072                 /*
2073                  * Cache and spare devices end up here - just ignore
2074                  * them.
2075                  */
2076                 nvlist_destroy(nvl);
2077                 return (EIO);
2078         }
2079
2080         /*
2081          * Create the pool if this is the first time we've seen it.
2082          */
2083         spa = spa_find_by_guid(pool_guid);
2084         if (spa == NULL) {
2085                 char *name;
2086
2087                 nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN,
2088                     DATA_TYPE_UINT64, NULL, &vdev_children, NULL);
2089                 name = malloc(namelen + 1);
2090                 if (name == NULL) {
2091                         nvlist_destroy(nvl);
2092                         return (ENOMEM);
2093                 }
2094                 bcopy(pool_name, name, namelen);
2095                 name[namelen] = '\0';
2096                 spa = spa_create(pool_guid, name);
2097                 free(name);
2098                 if (spa == NULL) {
2099                         nvlist_destroy(nvl);
2100                         return (ENOMEM);
2101                 }
2102                 spa->spa_root_vdev->v_nchildren = vdev_children;
2103         }
2104         if (pool_txg > spa->spa_txg)
2105                 spa->spa_txg = pool_txg;
2106
2107         /*
2108          * Get the vdev tree and create our in-core copy of it.
2109          * If we already have a vdev with this guid, this must
2110          * be some kind of alias (overlapping slices, dangerously dedicated
2111          * disks etc).
2112          */
2113         if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2114             NULL, &guid, NULL) != 0) {
2115                 nvlist_destroy(nvl);
2116                 return (EIO);
2117         }
2118         vdev = vdev_find(guid);
2119         /* Has this vdev already been inited? */
2120         if (vdev && vdev->v_phys_read) {
2121                 nvlist_destroy(nvl);
2122                 return (EIO);
2123         }
2124
2125         rc = vdev_init_from_label(spa, nvl);
2126         nvlist_destroy(nvl);
2127         if (rc != 0)
2128                 return (rc);
2129
2130         /*
2131          * We should already have created an incomplete vdev for this
2132          * vdev. Find it and initialise it with our read proc.
2133          */
2134         vdev = vdev_find(guid);
2135         if (vdev != NULL) {
2136                 vdev->v_phys_read = _read;
2137                 vdev->v_phys_write = _write;
2138                 vdev->v_priv = priv;
2139                 vdev->v_psize = vtmp.v_psize;
2140                 /*
2141                  * If no other state is set, mark vdev healthy.
2142                  */
2143                 if (vdev->v_state == VDEV_STATE_UNKNOWN)
2144                         vdev->v_state = VDEV_STATE_HEALTHY;
2145         } else {
2146                 printf("ZFS: inconsistent nvlist contents\n");
2147                 return (EIO);
2148         }
2149
2150         if (vdev->v_islog)
2151                 spa->spa_with_log = vdev->v_islog;
2152
2153         /*
2154          * Re-evaluate top-level vdev state.
2155          */
2156         vdev_set_state(vdev->v_top);
2157
2158         /*
2159          * Ok, we are happy with the pool so far. Lets find
2160          * the best uberblock and then we can actually access
2161          * the contents of the pool.
2162          */
2163         vdev_uberblock_load(vdev, spa->spa_uberblock);
2164
2165         if (spap != NULL)
2166                 *spap = spa;
2167         return (0);
2168 }
2169
2170 static int
2171 ilog2(int n)
2172 {
2173         int v;
2174
2175         for (v = 0; v < 32; v++)
2176                 if (n == (1 << v))
2177                         return (v);
2178         return (-1);
2179 }
2180
2181 static int
2182 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2183 {
2184         blkptr_t gbh_bp;
2185         zio_gbh_phys_t zio_gb;
2186         char *pbuf;
2187         int i;
2188
2189         /* Artificial BP for gang block header. */
2190         gbh_bp = *bp;
2191         BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2192         BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2193         BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2194         BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2195         for (i = 0; i < SPA_DVAS_PER_BP; i++)
2196                 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2197
2198         /* Read gang header block using the artificial BP. */
2199         if (zio_read(spa, &gbh_bp, &zio_gb))
2200                 return (EIO);
2201
2202         pbuf = buf;
2203         for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2204                 blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2205
2206                 if (BP_IS_HOLE(gbp))
2207                         continue;
2208                 if (zio_read(spa, gbp, pbuf))
2209                         return (EIO);
2210                 pbuf += BP_GET_PSIZE(gbp);
2211         }
2212
2213         if (zio_checksum_verify(spa, bp, buf))
2214                 return (EIO);
2215         return (0);
2216 }
2217
2218 static int
2219 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2220 {
2221         int cpfunc = BP_GET_COMPRESS(bp);
2222         uint64_t align, size;
2223         void *pbuf;
2224         int i, error;
2225
2226         /*
2227          * Process data embedded in block pointer
2228          */
2229         if (BP_IS_EMBEDDED(bp)) {
2230                 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2231
2232                 size = BPE_GET_PSIZE(bp);
2233                 ASSERT(size <= BPE_PAYLOAD_SIZE);
2234
2235                 if (cpfunc != ZIO_COMPRESS_OFF)
2236                         pbuf = malloc(size);
2237                 else
2238                         pbuf = buf;
2239
2240                 if (pbuf == NULL)
2241                         return (ENOMEM);
2242
2243                 decode_embedded_bp_compressed(bp, pbuf);
2244                 error = 0;
2245
2246                 if (cpfunc != ZIO_COMPRESS_OFF) {
2247                         error = zio_decompress_data(cpfunc, pbuf,
2248                             size, buf, BP_GET_LSIZE(bp));
2249                         free(pbuf);
2250                 }
2251                 if (error != 0)
2252                         printf("ZFS: i/o error - unable to decompress "
2253                             "block pointer data, error %d\n", error);
2254                 return (error);
2255         }
2256
2257         error = EIO;
2258
2259         for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2260                 const dva_t *dva = &bp->blk_dva[i];
2261                 vdev_t *vdev;
2262                 vdev_list_t *vlist;
2263                 uint64_t vdevid;
2264                 off_t offset;
2265
2266                 if (!dva->dva_word[0] && !dva->dva_word[1])
2267                         continue;
2268
2269                 vdevid = DVA_GET_VDEV(dva);
2270                 offset = DVA_GET_OFFSET(dva);
2271                 vlist = &spa->spa_root_vdev->v_children;
2272                 STAILQ_FOREACH(vdev, vlist, v_childlink) {
2273                         if (vdev->v_id == vdevid)
2274                                 break;
2275                 }
2276                 if (!vdev || !vdev->v_read)
2277                         continue;
2278
2279                 size = BP_GET_PSIZE(bp);
2280                 if (vdev->v_read == vdev_raidz_read) {
2281                         align = 1ULL << vdev->v_ashift;
2282                         if (P2PHASE(size, align) != 0)
2283                                 size = P2ROUNDUP(size, align);
2284                 }
2285                 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2286                         pbuf = malloc(size);
2287                 else
2288                         pbuf = buf;
2289
2290                 if (pbuf == NULL) {
2291                         error = ENOMEM;
2292                         break;
2293                 }
2294
2295                 if (DVA_GET_GANG(dva))
2296                         error = zio_read_gang(spa, bp, pbuf);
2297                 else
2298                         error = vdev->v_read(vdev, bp, pbuf, offset, size);
2299                 if (error == 0) {
2300                         if (cpfunc != ZIO_COMPRESS_OFF)
2301                                 error = zio_decompress_data(cpfunc, pbuf,
2302                                     BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2303                         else if (size != BP_GET_PSIZE(bp))
2304                                 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2305                 } else {
2306                         printf("zio_read error: %d\n", error);
2307                 }
2308                 if (buf != pbuf)
2309                         free(pbuf);
2310                 if (error == 0)
2311                         break;
2312         }
2313         if (error != 0)
2314                 printf("ZFS: i/o error - all block copies unavailable\n");
2315
2316         return (error);
2317 }
2318
2319 static int
2320 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2321     void *buf, size_t buflen)
2322 {
2323         int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2324         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2325         int nlevels = dnode->dn_nlevels;
2326         int i, rc;
2327
2328         if (bsize > SPA_MAXBLOCKSIZE) {
2329                 printf("ZFS: I/O error - blocks larger than %llu are not "
2330                     "supported\n", SPA_MAXBLOCKSIZE);
2331                 return (EIO);
2332         }
2333
2334         /*
2335          * Note: bsize may not be a power of two here so we need to do an
2336          * actual divide rather than a bitshift.
2337          */
2338         while (buflen > 0) {
2339                 uint64_t bn = offset / bsize;
2340                 int boff = offset % bsize;
2341                 int ibn;
2342                 const blkptr_t *indbp;
2343                 blkptr_t bp;
2344
2345                 if (bn > dnode->dn_maxblkid)
2346                         return (EIO);
2347
2348                 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2349                         goto cached;
2350
2351                 indbp = dnode->dn_blkptr;
2352                 for (i = 0; i < nlevels; i++) {
2353                         /*
2354                          * Copy the bp from the indirect array so that
2355                          * we can re-use the scratch buffer for multi-level
2356                          * objects.
2357                          */
2358                         ibn = bn >> ((nlevels - i - 1) * ibshift);
2359                         ibn &= ((1 << ibshift) - 1);
2360                         bp = indbp[ibn];
2361                         if (BP_IS_HOLE(&bp)) {
2362                                 memset(dnode_cache_buf, 0, bsize);
2363                                 break;
2364                         }
2365                         rc = zio_read(spa, &bp, dnode_cache_buf);
2366                         if (rc)
2367                                 return (rc);
2368                         indbp = (const blkptr_t *) dnode_cache_buf;
2369                 }
2370                 dnode_cache_obj = dnode;
2371                 dnode_cache_bn = bn;
2372         cached:
2373
2374                 /*
2375                  * The buffer contains our data block. Copy what we
2376                  * need from it and loop.
2377                  */
2378                 i = bsize - boff;
2379                 if (i > buflen) i = buflen;
2380                 memcpy(buf, &dnode_cache_buf[boff], i);
2381                 buf = ((char *)buf) + i;
2382                 offset += i;
2383                 buflen -= i;
2384         }
2385
2386         return (0);
2387 }
2388
2389 /*
2390  * Lookup a value in a microzap directory.
2391  */
2392 static int
2393 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2394     uint64_t *value)
2395 {
2396         const mzap_ent_phys_t *mze;
2397         int chunks, i;
2398
2399         /*
2400          * Microzap objects use exactly one block. Read the whole
2401          * thing.
2402          */
2403         chunks = size / MZAP_ENT_LEN - 1;
2404         for (i = 0; i < chunks; i++) {
2405                 mze = &mz->mz_chunk[i];
2406                 if (strcmp(mze->mze_name, name) == 0) {
2407                         *value = mze->mze_value;
2408                         return (0);
2409                 }
2410         }
2411
2412         return (ENOENT);
2413 }
2414
2415 /*
2416  * Compare a name with a zap leaf entry. Return non-zero if the name
2417  * matches.
2418  */
2419 static int
2420 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2421     const char *name)
2422 {
2423         size_t namelen;
2424         const zap_leaf_chunk_t *nc;
2425         const char *p;
2426
2427         namelen = zc->l_entry.le_name_numints;
2428
2429         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2430         p = name;
2431         while (namelen > 0) {
2432                 size_t len;
2433
2434                 len = namelen;
2435                 if (len > ZAP_LEAF_ARRAY_BYTES)
2436                         len = ZAP_LEAF_ARRAY_BYTES;
2437                 if (memcmp(p, nc->l_array.la_array, len))
2438                         return (0);
2439                 p += len;
2440                 namelen -= len;
2441                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2442         }
2443
2444         return (1);
2445 }
2446
2447 /*
2448  * Extract a uint64_t value from a zap leaf entry.
2449  */
2450 static uint64_t
2451 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2452 {
2453         const zap_leaf_chunk_t *vc;
2454         int i;
2455         uint64_t value;
2456         const uint8_t *p;
2457
2458         vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2459         for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2460                 value = (value << 8) | p[i];
2461         }
2462
2463         return (value);
2464 }
2465
2466 static void
2467 stv(int len, void *addr, uint64_t value)
2468 {
2469         switch (len) {
2470         case 1:
2471                 *(uint8_t *)addr = value;
2472                 return;
2473         case 2:
2474                 *(uint16_t *)addr = value;
2475                 return;
2476         case 4:
2477                 *(uint32_t *)addr = value;
2478                 return;
2479         case 8:
2480                 *(uint64_t *)addr = value;
2481                 return;
2482         }
2483 }
2484
2485 /*
2486  * Extract a array from a zap leaf entry.
2487  */
2488 static void
2489 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2490     uint64_t integer_size, uint64_t num_integers, void *buf)
2491 {
2492         uint64_t array_int_len = zc->l_entry.le_value_intlen;
2493         uint64_t value = 0;
2494         uint64_t *u64 = buf;
2495         char *p = buf;
2496         int len = MIN(zc->l_entry.le_value_numints, num_integers);
2497         int chunk = zc->l_entry.le_value_chunk;
2498         int byten = 0;
2499
2500         if (integer_size == 8 && len == 1) {
2501                 *u64 = fzap_leaf_value(zl, zc);
2502                 return;
2503         }
2504
2505         while (len > 0) {
2506                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2507                 int i;
2508
2509                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2510                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2511                         value = (value << 8) | la->la_array[i];
2512                         byten++;
2513                         if (byten == array_int_len) {
2514                                 stv(integer_size, p, value);
2515                                 byten = 0;
2516                                 len--;
2517                                 if (len == 0)
2518                                         return;
2519                                 p += integer_size;
2520                         }
2521                 }
2522                 chunk = la->la_next;
2523         }
2524 }
2525
2526 static int
2527 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2528 {
2529
2530         switch (integer_size) {
2531         case 1:
2532         case 2:
2533         case 4:
2534         case 8:
2535                 break;
2536         default:
2537                 return (EINVAL);
2538         }
2539
2540         if (integer_size * num_integers > ZAP_MAXVALUELEN)
2541                 return (E2BIG);
2542
2543         return (0);
2544 }
2545
2546 static void
2547 zap_leaf_free(zap_leaf_t *leaf)
2548 {
2549         free(leaf->l_phys);
2550         free(leaf);
2551 }
2552
2553 static int
2554 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2555 {
2556         int bs = FZAP_BLOCK_SHIFT(zap);
2557         int err;
2558
2559         *lp = malloc(sizeof(**lp));
2560         if (*lp == NULL)
2561                 return (ENOMEM);
2562
2563         (*lp)->l_bs = bs;
2564         (*lp)->l_phys = malloc(1 << bs);
2565
2566         if ((*lp)->l_phys == NULL) {
2567                 free(*lp);
2568                 return (ENOMEM);
2569         }
2570         err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2571             1 << bs);
2572         if (err != 0) {
2573                 zap_leaf_free(*lp);
2574         }
2575         return (err);
2576 }
2577
2578 static int
2579 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2580     uint64_t *valp)
2581 {
2582         int bs = FZAP_BLOCK_SHIFT(zap);
2583         uint64_t blk = idx >> (bs - 3);
2584         uint64_t off = idx & ((1 << (bs - 3)) - 1);
2585         uint64_t *buf;
2586         int rc;
2587
2588         buf = malloc(1 << zap->zap_block_shift);
2589         if (buf == NULL)
2590                 return (ENOMEM);
2591         rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2592             buf, 1 << zap->zap_block_shift);
2593         if (rc == 0)
2594                 *valp = buf[off];
2595         free(buf);
2596         return (rc);
2597 }
2598
2599 static int
2600 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2601 {
2602         if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2603                 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2604                 return (0);
2605         } else {
2606                 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2607                     idx, valp));
2608         }
2609 }
2610
2611 #define ZAP_HASH_IDX(hash, n)   (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2612 static int
2613 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2614 {
2615         uint64_t idx, blk;
2616         int err;
2617
2618         idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2619         err = zap_idx_to_blk(zap, idx, &blk);
2620         if (err != 0)
2621                 return (err);
2622         return (zap_get_leaf_byblk(zap, blk, lp));
2623 }
2624
2625 #define CHAIN_END       0xffff  /* end of the chunk chain */
2626 #define LEAF_HASH(l, h) \
2627         ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2628         ((h) >> \
2629         (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2630 #define LEAF_HASH_ENTPTR(l, h)  (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2631
2632 static int
2633 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2634     uint64_t integer_size, uint64_t num_integers, void *value)
2635 {
2636         int rc;
2637         uint16_t *chunkp;
2638         struct zap_leaf_entry *le;
2639
2640         /*
2641          * Make sure this chunk matches our hash.
2642          */
2643         if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2644             zl->l_phys->l_hdr.lh_prefix !=
2645             hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2646                 return (EIO);
2647
2648         rc = ENOENT;
2649         for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2650             *chunkp != CHAIN_END; chunkp = &le->le_next) {
2651                 zap_leaf_chunk_t *zc;
2652                 uint16_t chunk = *chunkp;
2653
2654                 le = ZAP_LEAF_ENTRY(zl, chunk);
2655                 if (le->le_hash != hash)
2656                         continue;
2657                 zc = &ZAP_LEAF_CHUNK(zl, chunk);
2658                 if (fzap_name_equal(zl, zc, name)) {
2659                         if (zc->l_entry.le_value_intlen > integer_size) {
2660                                 rc = EINVAL;
2661                         } else {
2662                                 fzap_leaf_array(zl, zc, integer_size,
2663                                     num_integers, value);
2664                                 rc = 0;
2665                         }
2666                         break;
2667                 }
2668         }
2669         return (rc);
2670 }
2671
2672 /*
2673  * Lookup a value in a fatzap directory.
2674  */
2675 static int
2676 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2677     const char *name, uint64_t integer_size, uint64_t num_integers,
2678     void *value)
2679 {
2680         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2681         fat_zap_t z;
2682         zap_leaf_t *zl;
2683         uint64_t hash;
2684         int rc;
2685
2686         if (zh->zap_magic != ZAP_MAGIC)
2687                 return (EIO);
2688
2689         if ((rc = fzap_check_size(integer_size, num_integers)) != 0) {
2690                 return (rc);
2691         }
2692
2693         z.zap_block_shift = ilog2(bsize);
2694         z.zap_phys = zh;
2695         z.zap_spa = spa;
2696         z.zap_dnode = dnode;
2697
2698         hash = zap_hash(zh->zap_salt, name);
2699         rc = zap_deref_leaf(&z, hash, &zl);
2700         if (rc != 0)
2701                 return (rc);
2702
2703         rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2704
2705         zap_leaf_free(zl);
2706         return (rc);
2707 }
2708
2709 /*
2710  * Lookup a name in a zap object and return its value as a uint64_t.
2711  */
2712 static int
2713 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2714     uint64_t integer_size, uint64_t num_integers, void *value)
2715 {
2716         int rc;
2717         zap_phys_t *zap;
2718         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2719
2720         zap = malloc(size);
2721         if (zap == NULL)
2722                 return (ENOMEM);
2723
2724         rc = dnode_read(spa, dnode, 0, zap, size);
2725         if (rc)
2726                 goto done;
2727
2728         switch (zap->zap_block_type) {
2729         case ZBT_MICRO:
2730                 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2731                 break;
2732         case ZBT_HEADER:
2733                 rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2734                     num_integers, value);
2735                 break;
2736         default:
2737                 printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2738                     zap->zap_block_type);
2739                 rc = EIO;
2740         }
2741 done:
2742         free(zap);
2743         return (rc);
2744 }
2745
2746 /*
2747  * List a microzap directory.
2748  */
2749 static int
2750 mzap_list(const mzap_phys_t *mz, size_t size,
2751     int (*callback)(const char *, uint64_t))
2752 {
2753         const mzap_ent_phys_t *mze;
2754         int chunks, i, rc;
2755
2756         /*
2757          * Microzap objects use exactly one block. Read the whole
2758          * thing.
2759          */
2760         rc = 0;
2761         chunks = size / MZAP_ENT_LEN - 1;
2762         for (i = 0; i < chunks; i++) {
2763                 mze = &mz->mz_chunk[i];
2764                 if (mze->mze_name[0]) {
2765                         rc = callback(mze->mze_name, mze->mze_value);
2766                         if (rc != 0)
2767                                 break;
2768                 }
2769         }
2770
2771         return (rc);
2772 }
2773
2774 /*
2775  * List a fatzap directory.
2776  */
2777 static int
2778 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2779     int (*callback)(const char *, uint64_t))
2780 {
2781         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2782         fat_zap_t z;
2783         uint64_t i;
2784         int j, rc;
2785
2786         if (zh->zap_magic != ZAP_MAGIC)
2787                 return (EIO);
2788
2789         z.zap_block_shift = ilog2(bsize);
2790         z.zap_phys = zh;
2791
2792         /*
2793          * This assumes that the leaf blocks start at block 1. The
2794          * documentation isn't exactly clear on this.
2795          */
2796         zap_leaf_t zl;
2797         zl.l_bs = z.zap_block_shift;
2798         zl.l_phys = malloc(bsize);
2799         if (zl.l_phys == NULL)
2800                 return (ENOMEM);
2801
2802         for (i = 0; i < zh->zap_num_leafs; i++) {
2803                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2804                 char name[256], *p;
2805                 uint64_t value;
2806
2807                 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2808                         free(zl.l_phys);
2809                         return (EIO);
2810                 }
2811
2812                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2813                         zap_leaf_chunk_t *zc, *nc;
2814                         int namelen;
2815
2816                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2817                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2818                                 continue;
2819                         namelen = zc->l_entry.le_name_numints;
2820                         if (namelen > sizeof(name))
2821                                 namelen = sizeof(name);
2822
2823                         /*
2824                          * Paste the name back together.
2825                          */
2826                         nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2827                         p = name;
2828                         while (namelen > 0) {
2829                                 int len;
2830                                 len = namelen;
2831                                 if (len > ZAP_LEAF_ARRAY_BYTES)
2832                                         len = ZAP_LEAF_ARRAY_BYTES;
2833                                 memcpy(p, nc->l_array.la_array, len);
2834                                 p += len;
2835                                 namelen -= len;
2836                                 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2837                         }
2838
2839                         /*
2840                          * Assume the first eight bytes of the value are
2841                          * a uint64_t.
2842                          */
2843                         value = fzap_leaf_value(&zl, zc);
2844
2845                         /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2846                         rc = callback((const char *)name, value);
2847                         if (rc != 0) {
2848                                 free(zl.l_phys);
2849                                 return (rc);
2850                         }
2851                 }
2852         }
2853
2854         free(zl.l_phys);
2855         return (0);
2856 }
2857
2858 static int zfs_printf(const char *name, uint64_t value __unused)
2859 {
2860
2861         printf("%s\n", name);
2862
2863         return (0);
2864 }
2865
2866 /*
2867  * List a zap directory.
2868  */
2869 static int
2870 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2871 {
2872         zap_phys_t *zap;
2873         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2874         int rc;
2875
2876         zap = malloc(size);
2877         if (zap == NULL)
2878                 return (ENOMEM);
2879
2880         rc = dnode_read(spa, dnode, 0, zap, size);
2881         if (rc == 0) {
2882                 if (zap->zap_block_type == ZBT_MICRO)
2883                         rc = mzap_list((const mzap_phys_t *)zap, size,
2884                             zfs_printf);
2885                 else
2886                         rc = fzap_list(spa, dnode, zap, zfs_printf);
2887         }
2888         free(zap);
2889         return (rc);
2890 }
2891
2892 static int
2893 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2894     dnode_phys_t *dnode)
2895 {
2896         off_t offset;
2897
2898         offset = objnum * sizeof(dnode_phys_t);
2899         return dnode_read(spa, &os->os_meta_dnode, offset,
2900                 dnode, sizeof(dnode_phys_t));
2901 }
2902
2903 /*
2904  * Lookup a name in a microzap directory.
2905  */
2906 static int
2907 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
2908 {
2909         const mzap_ent_phys_t *mze;
2910         int chunks, i;
2911
2912         /*
2913          * Microzap objects use exactly one block. Read the whole
2914          * thing.
2915          */
2916         chunks = size / MZAP_ENT_LEN - 1;
2917         for (i = 0; i < chunks; i++) {
2918                 mze = &mz->mz_chunk[i];
2919                 if (value == mze->mze_value) {
2920                         strcpy(name, mze->mze_name);
2921                         return (0);
2922                 }
2923         }
2924
2925         return (ENOENT);
2926 }
2927
2928 static void
2929 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2930 {
2931         size_t namelen;
2932         const zap_leaf_chunk_t *nc;
2933         char *p;
2934
2935         namelen = zc->l_entry.le_name_numints;
2936
2937         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2938         p = name;
2939         while (namelen > 0) {
2940                 size_t len;
2941                 len = namelen;
2942                 if (len > ZAP_LEAF_ARRAY_BYTES)
2943                         len = ZAP_LEAF_ARRAY_BYTES;
2944                 memcpy(p, nc->l_array.la_array, len);
2945                 p += len;
2946                 namelen -= len;
2947                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2948         }
2949
2950         *p = '\0';
2951 }
2952
2953 static int
2954 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2955     char *name, uint64_t value)
2956 {
2957         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2958         fat_zap_t z;
2959         uint64_t i;
2960         int j, rc;
2961
2962         if (zh->zap_magic != ZAP_MAGIC)
2963                 return (EIO);
2964
2965         z.zap_block_shift = ilog2(bsize);
2966         z.zap_phys = zh;
2967
2968         /*
2969          * This assumes that the leaf blocks start at block 1. The
2970          * documentation isn't exactly clear on this.
2971          */
2972         zap_leaf_t zl;
2973         zl.l_bs = z.zap_block_shift;
2974         zl.l_phys = malloc(bsize);
2975         if (zl.l_phys == NULL)
2976                 return (ENOMEM);
2977
2978         for (i = 0; i < zh->zap_num_leafs; i++) {
2979                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2980
2981                 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
2982                 if (rc != 0)
2983                         goto done;
2984
2985                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2986                         zap_leaf_chunk_t *zc;
2987
2988                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2989                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2990                                 continue;
2991                         if (zc->l_entry.le_value_intlen != 8 ||
2992                             zc->l_entry.le_value_numints != 1)
2993                                 continue;
2994
2995                         if (fzap_leaf_value(&zl, zc) == value) {
2996                                 fzap_name_copy(&zl, zc, name);
2997                                 goto done;
2998                         }
2999                 }
3000         }
3001
3002         rc = ENOENT;
3003 done:
3004         free(zl.l_phys);
3005         return (rc);
3006 }
3007
3008 static int
3009 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
3010     uint64_t value)
3011 {
3012         zap_phys_t *zap;
3013         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3014         int rc;
3015
3016         zap = malloc(size);
3017         if (zap == NULL)
3018                 return (ENOMEM);
3019
3020         rc = dnode_read(spa, dnode, 0, zap, size);
3021         if (rc == 0) {
3022                 if (zap->zap_block_type == ZBT_MICRO)
3023                         rc = mzap_rlookup((const mzap_phys_t *)zap, size,
3024                             name, value);
3025                 else
3026                         rc = fzap_rlookup(spa, dnode, zap, name, value);
3027         }
3028         free(zap);
3029         return (rc);
3030 }
3031
3032 static int
3033 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
3034 {
3035         char name[256];
3036         char component[256];
3037         uint64_t dir_obj, parent_obj, child_dir_zapobj;
3038         dnode_phys_t child_dir_zap, dataset, dir, parent;
3039         dsl_dir_phys_t *dd;
3040         dsl_dataset_phys_t *ds;
3041         char *p;
3042         int len;
3043
3044         p = &name[sizeof(name) - 1];
3045         *p = '\0';
3046
3047         if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3048                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3049                 return (EIO);
3050         }
3051         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3052         dir_obj = ds->ds_dir_obj;
3053
3054         for (;;) {
3055                 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0)
3056                         return (EIO);
3057                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3058
3059                 /* Actual loop condition. */
3060                 parent_obj = dd->dd_parent_obj;
3061                 if (parent_obj == 0)
3062                         break;
3063
3064                 if (objset_get_dnode(spa, spa->spa_mos, parent_obj,
3065                     &parent) != 0)
3066                         return (EIO);
3067                 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
3068                 child_dir_zapobj = dd->dd_child_dir_zapobj;
3069                 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3070                     &child_dir_zap) != 0)
3071                         return (EIO);
3072                 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
3073                         return (EIO);
3074
3075                 len = strlen(component);
3076                 p -= len;
3077                 memcpy(p, component, len);
3078                 --p;
3079                 *p = '/';
3080
3081                 /* Actual loop iteration. */
3082                 dir_obj = parent_obj;
3083         }
3084
3085         if (*p != '\0')
3086                 ++p;
3087         strcpy(result, p);
3088
3089         return (0);
3090 }
3091
3092 static int
3093 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3094 {
3095         char element[256];
3096         uint64_t dir_obj, child_dir_zapobj;
3097         dnode_phys_t child_dir_zap, dir;
3098         dsl_dir_phys_t *dd;
3099         const char *p, *q;
3100
3101         if (objset_get_dnode(spa, spa->spa_mos,
3102             DMU_POOL_DIRECTORY_OBJECT, &dir))
3103                 return (EIO);
3104         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3105             1, &dir_obj))
3106                 return (EIO);
3107
3108         p = name;
3109         for (;;) {
3110                 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir))
3111                         return (EIO);
3112                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3113
3114                 while (*p == '/')
3115                         p++;
3116                 /* Actual loop condition #1. */
3117                 if (*p == '\0')
3118                         break;
3119
3120                 q = strchr(p, '/');
3121                 if (q) {
3122                         memcpy(element, p, q - p);
3123                         element[q - p] = '\0';
3124                         p = q + 1;
3125                 } else {
3126                         strcpy(element, p);
3127                         p += strlen(p);
3128                 }
3129
3130                 child_dir_zapobj = dd->dd_child_dir_zapobj;
3131                 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3132                     &child_dir_zap) != 0)
3133                         return (EIO);
3134
3135                 /* Actual loop condition #2. */
3136                 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3137                     1, &dir_obj) != 0)
3138                         return (ENOENT);
3139         }
3140
3141         *objnum = dd->dd_head_dataset_obj;
3142         return (0);
3143 }
3144
3145 #ifndef BOOT2
3146 static int
3147 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3148 {
3149         uint64_t dir_obj, child_dir_zapobj;
3150         dnode_phys_t child_dir_zap, dir, dataset;
3151         dsl_dataset_phys_t *ds;
3152         dsl_dir_phys_t *dd;
3153
3154         if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3155                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3156                 return (EIO);
3157         }
3158         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3159         dir_obj = ds->ds_dir_obj;
3160
3161         if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) {
3162                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3163                 return (EIO);
3164         }
3165         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3166
3167         child_dir_zapobj = dd->dd_child_dir_zapobj;
3168         if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3169             &child_dir_zap) != 0) {
3170                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3171                 return (EIO);
3172         }
3173
3174         return (zap_list(spa, &child_dir_zap) != 0);
3175 }
3176
3177 int
3178 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3179     int (*callback)(const char *, uint64_t))
3180 {
3181         uint64_t dir_obj, child_dir_zapobj;
3182         dnode_phys_t child_dir_zap, dir, dataset;
3183         dsl_dataset_phys_t *ds;
3184         dsl_dir_phys_t *dd;
3185         zap_phys_t *zap;
3186         size_t size;
3187         int err;
3188
3189         err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset);
3190         if (err != 0) {
3191                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3192                 return (err);
3193         }
3194         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3195         dir_obj = ds->ds_dir_obj;
3196
3197         err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir);
3198         if (err != 0) {
3199                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3200                 return (err);
3201         }
3202         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3203
3204         child_dir_zapobj = dd->dd_child_dir_zapobj;
3205         err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3206             &child_dir_zap);
3207         if (err != 0) {
3208                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3209                 return (err);
3210         }
3211
3212         size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3213         zap = malloc(size);
3214         if (zap != NULL) {
3215                 err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3216                 if (err != 0)
3217                         goto done;
3218
3219                 if (zap->zap_block_type == ZBT_MICRO)
3220                         err = mzap_list((const mzap_phys_t *)zap, size,
3221                             callback);
3222                 else
3223                         err = fzap_list(spa, &child_dir_zap, zap, callback);
3224         } else {
3225                 err = ENOMEM;
3226         }
3227 done:
3228         free(zap);
3229         return (err);
3230 }
3231 #endif
3232
3233 /*
3234  * Find the object set given the object number of its dataset object
3235  * and return its details in *objset
3236  */
3237 static int
3238 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3239 {
3240         dnode_phys_t dataset;
3241         dsl_dataset_phys_t *ds;
3242
3243         if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3244                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3245                 return (EIO);
3246         }
3247
3248         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3249         if (zio_read(spa, &ds->ds_bp, objset)) {
3250                 printf("ZFS: can't read object set for dataset %ju\n",
3251                     (uintmax_t)objnum);
3252                 return (EIO);
3253         }
3254
3255         return (0);
3256 }
3257
3258 /*
3259  * Find the object set pointed to by the BOOTFS property or the root
3260  * dataset if there is none and return its details in *objset
3261  */
3262 static int
3263 zfs_get_root(const spa_t *spa, uint64_t *objid)
3264 {
3265         dnode_phys_t dir, propdir;
3266         uint64_t props, bootfs, root;
3267
3268         *objid = 0;
3269
3270         /*
3271          * Start with the MOS directory object.
3272          */
3273         if (objset_get_dnode(spa, spa->spa_mos,
3274             DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3275                 printf("ZFS: can't read MOS object directory\n");
3276                 return (EIO);
3277         }
3278
3279         /*
3280          * Lookup the pool_props and see if we can find a bootfs.
3281          */
3282         if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3283             sizeof(props), 1, &props) == 0 &&
3284             objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 &&
3285             zap_lookup(spa, &propdir, "bootfs",
3286             sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3287                 *objid = bootfs;
3288                 return (0);
3289         }
3290         /*
3291          * Lookup the root dataset directory
3292          */
3293         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3294             sizeof(root), 1, &root) ||
3295             objset_get_dnode(spa, spa->spa_mos, root, &dir)) {
3296                 printf("ZFS: can't find root dsl_dir\n");
3297                 return (EIO);
3298         }
3299
3300         /*
3301          * Use the information from the dataset directory's bonus buffer
3302          * to find the dataset object and from that the object set itself.
3303          */
3304         dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3305         *objid = dd->dd_head_dataset_obj;
3306         return (0);
3307 }
3308
3309 static int
3310 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3311 {
3312
3313         mount->spa = spa;
3314
3315         /*
3316          * Find the root object set if not explicitly provided
3317          */
3318         if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3319                 printf("ZFS: can't find root filesystem\n");
3320                 return (EIO);
3321         }
3322
3323         if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3324                 printf("ZFS: can't open root filesystem\n");
3325                 return (EIO);
3326         }
3327
3328         mount->rootobj = rootobj;
3329
3330         return (0);
3331 }
3332
3333 /*
3334  * callback function for feature name checks.
3335  */
3336 static int
3337 check_feature(const char *name, uint64_t value)
3338 {
3339         int i;
3340
3341         if (value == 0)
3342                 return (0);
3343         if (name[0] == '\0')
3344                 return (0);
3345
3346         for (i = 0; features_for_read[i] != NULL; i++) {
3347                 if (strcmp(name, features_for_read[i]) == 0)
3348                         return (0);
3349         }
3350         printf("ZFS: unsupported feature: %s\n", name);
3351         return (EIO);
3352 }
3353
3354 /*
3355  * Checks whether the MOS features that are active are supported.
3356  */
3357 static int
3358 check_mos_features(const spa_t *spa)
3359 {
3360         dnode_phys_t dir;
3361         zap_phys_t *zap;
3362         uint64_t objnum;
3363         size_t size;
3364         int rc;
3365
3366         if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3367             &dir)) != 0)
3368                 return (rc);
3369         if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3370             sizeof (objnum), 1, &objnum)) != 0) {
3371                 /*
3372                  * It is older pool without features. As we have already
3373                  * tested the label, just return without raising the error.
3374                  */
3375                 return (0);
3376         }
3377
3378         if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0)
3379                 return (rc);
3380
3381         if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3382                 return (EIO);
3383
3384         size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3385         zap = malloc(size);
3386         if (zap == NULL)
3387                 return (ENOMEM);
3388
3389         if (dnode_read(spa, &dir, 0, zap, size)) {
3390                 free(zap);
3391                 return (EIO);
3392         }
3393
3394         if (zap->zap_block_type == ZBT_MICRO)
3395                 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3396         else
3397                 rc = fzap_list(spa, &dir, zap, check_feature);
3398
3399         free(zap);
3400         return (rc);
3401 }
3402
3403 static int
3404 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
3405 {
3406         dnode_phys_t dir;
3407         size_t size;
3408         int rc;
3409         char *nv;
3410
3411         *value = NULL;
3412         if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0)
3413                 return (rc);
3414         if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3415             dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3416                 return (EIO);
3417         }
3418
3419         if (dir.dn_bonuslen != sizeof (uint64_t))
3420                 return (EIO);
3421
3422         size = *(uint64_t *)DN_BONUS(&dir);
3423         nv = malloc(size);
3424         if (nv == NULL)
3425                 return (ENOMEM);
3426
3427         rc = dnode_read(spa, &dir, 0, nv, size);
3428         if (rc != 0) {
3429                 free(nv);
3430                 nv = NULL;
3431                 return (rc);
3432         }
3433         *value = nvlist_import(nv, size);
3434         free(nv);
3435         return (rc);
3436 }
3437
3438 static int
3439 zfs_spa_init(spa_t *spa)
3440 {
3441         struct uberblock checkpoint;
3442         dnode_phys_t dir;
3443         uint64_t config_object;
3444         nvlist_t *nvlist;
3445         int rc;
3446
3447         if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) {
3448                 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3449                 return (EIO);
3450         }
3451         if (spa->spa_mos->os_type != DMU_OST_META) {
3452                 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3453                 return (EIO);
3454         }
3455
3456         if (objset_get_dnode(spa, &spa->spa_mos_master,
3457             DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3458                 printf("ZFS: failed to read pool %s directory object\n",
3459                     spa->spa_name);
3460                 return (EIO);
3461         }
3462         /* this is allowed to fail, older pools do not have salt */
3463         rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3464             sizeof (spa->spa_cksum_salt.zcs_bytes),
3465             spa->spa_cksum_salt.zcs_bytes);
3466
3467         rc = check_mos_features(spa);
3468         if (rc != 0) {
3469                 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3470                 return (rc);
3471         }
3472
3473         rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3474             sizeof (config_object), 1, &config_object);
3475         if (rc != 0) {
3476                 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3477                 return (EIO);
3478         }
3479         rc = load_nvlist(spa, config_object, &nvlist);
3480         if (rc != 0)
3481                 return (rc);
3482
3483         rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT,
3484             sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t),
3485             &checkpoint);
3486         if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) {
3487                 memcpy(&spa->spa_uberblock_checkpoint, &checkpoint,
3488                     sizeof(checkpoint));
3489                 if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp,
3490                     &spa->spa_mos_checkpoint)) {
3491                         printf("ZFS: can not read checkpoint data.\n");
3492                         return (EIO);
3493                 }
3494         }
3495
3496         /*
3497          * Update vdevs from MOS config. Note, we do skip encoding bytes
3498          * here. See also vdev_label_read_config().
3499          */
3500         rc = vdev_init_from_nvlist(spa, nvlist);
3501         nvlist_destroy(nvlist);
3502         return (rc);
3503 }
3504
3505 static int
3506 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3507 {
3508
3509         if (dn->dn_bonustype != DMU_OT_SA) {
3510                 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3511
3512                 sb->st_mode = zp->zp_mode;
3513                 sb->st_uid = zp->zp_uid;
3514                 sb->st_gid = zp->zp_gid;
3515                 sb->st_size = zp->zp_size;
3516         } else {
3517                 sa_hdr_phys_t *sahdrp;
3518                 int hdrsize;
3519                 size_t size = 0;
3520                 void *buf = NULL;
3521
3522                 if (dn->dn_bonuslen != 0)
3523                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3524                 else {
3525                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3526                                 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3527                                 int error;
3528
3529                                 size = BP_GET_LSIZE(bp);
3530                                 buf = malloc(size);
3531                                 if (buf == NULL)
3532                                         error = ENOMEM;
3533                                 else
3534                                         error = zio_read(spa, bp, buf);
3535
3536                                 if (error != 0) {
3537                                         free(buf);
3538                                         return (error);
3539                                 }
3540                                 sahdrp = buf;
3541                         } else {
3542                                 return (EIO);
3543                         }
3544                 }
3545                 hdrsize = SA_HDR_SIZE(sahdrp);
3546                 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3547                     SA_MODE_OFFSET);
3548                 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3549                     SA_UID_OFFSET);
3550                 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3551                     SA_GID_OFFSET);
3552                 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3553                     SA_SIZE_OFFSET);
3554                 free(buf);
3555         }
3556
3557         return (0);
3558 }
3559
3560 static int
3561 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3562 {
3563         int rc = 0;
3564
3565         if (dn->dn_bonustype == DMU_OT_SA) {
3566                 sa_hdr_phys_t *sahdrp = NULL;
3567                 size_t size = 0;
3568                 void *buf = NULL;
3569                 int hdrsize;
3570                 char *p;
3571
3572                 if (dn->dn_bonuslen != 0) {
3573                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3574                 } else {
3575                         blkptr_t *bp;
3576
3577                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3578                                 return (EIO);
3579                         bp = DN_SPILL_BLKPTR(dn);
3580
3581                         size = BP_GET_LSIZE(bp);
3582                         buf = malloc(size);
3583                         if (buf == NULL)
3584                                 rc = ENOMEM;
3585                         else
3586                                 rc = zio_read(spa, bp, buf);
3587                         if (rc != 0) {
3588                                 free(buf);
3589                                 return (rc);
3590                         }
3591                         sahdrp = buf;
3592                 }
3593                 hdrsize = SA_HDR_SIZE(sahdrp);
3594                 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3595                 memcpy(path, p, psize);
3596                 free(buf);
3597                 return (0);
3598         }
3599         /*
3600          * Second test is purely to silence bogus compiler
3601          * warning about accessing past the end of dn_bonus.
3602          */
3603         if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3604             sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3605                 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3606         } else {
3607                 rc = dnode_read(spa, dn, 0, path, psize);
3608         }
3609         return (rc);
3610 }
3611
3612 struct obj_list {
3613         uint64_t                objnum;
3614         STAILQ_ENTRY(obj_list)  entry;
3615 };
3616
3617 /*
3618  * Lookup a file and return its dnode.
3619  */
3620 static int
3621 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3622 {
3623         int rc;
3624         uint64_t objnum;
3625         const spa_t *spa;
3626         dnode_phys_t dn;
3627         const char *p, *q;
3628         char element[256];
3629         char path[1024];
3630         int symlinks_followed = 0;
3631         struct stat sb;
3632         struct obj_list *entry, *tentry;
3633         STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3634
3635         spa = mount->spa;
3636         if (mount->objset.os_type != DMU_OST_ZFS) {
3637                 printf("ZFS: unexpected object set type %ju\n",
3638                     (uintmax_t)mount->objset.os_type);
3639                 return (EIO);
3640         }
3641
3642         if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3643                 return (ENOMEM);
3644
3645         /*
3646          * Get the root directory dnode.
3647          */
3648         rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3649         if (rc) {
3650                 free(entry);
3651                 return (rc);
3652         }
3653
3654         rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3655         if (rc) {
3656                 free(entry);
3657                 return (rc);
3658         }
3659         entry->objnum = objnum;
3660         STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3661
3662         rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3663         if (rc != 0)
3664                 goto done;
3665
3666         p = upath;
3667         while (p && *p) {
3668                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3669                 if (rc != 0)
3670                         goto done;
3671
3672                 while (*p == '/')
3673                         p++;
3674                 if (*p == '\0')
3675                         break;
3676                 q = p;
3677                 while (*q != '\0' && *q != '/')
3678                         q++;
3679
3680                 /* skip dot */
3681                 if (p + 1 == q && p[0] == '.') {
3682                         p++;
3683                         continue;
3684                 }
3685                 /* double dot */
3686                 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3687                         p += 2;
3688                         if (STAILQ_FIRST(&on_cache) ==
3689                             STAILQ_LAST(&on_cache, obj_list, entry)) {
3690                                 rc = ENOENT;
3691                                 goto done;
3692                         }
3693                         entry = STAILQ_FIRST(&on_cache);
3694                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3695                         free(entry);
3696                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3697                         continue;
3698                 }
3699                 if (q - p + 1 > sizeof(element)) {
3700                         rc = ENAMETOOLONG;
3701                         goto done;
3702                 }
3703                 memcpy(element, p, q - p);
3704                 element[q - p] = 0;
3705                 p = q;
3706
3707                 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3708                         goto done;
3709                 if (!S_ISDIR(sb.st_mode)) {
3710                         rc = ENOTDIR;
3711                         goto done;
3712                 }
3713
3714                 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3715                 if (rc)
3716                         goto done;
3717                 objnum = ZFS_DIRENT_OBJ(objnum);
3718
3719                 if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3720                         rc = ENOMEM;
3721                         goto done;
3722                 }
3723                 entry->objnum = objnum;
3724                 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3725                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3726                 if (rc)
3727                         goto done;
3728
3729                 /*
3730                  * Check for symlink.
3731                  */
3732                 rc = zfs_dnode_stat(spa, &dn, &sb);
3733                 if (rc)
3734                         goto done;
3735                 if (S_ISLNK(sb.st_mode)) {
3736                         if (symlinks_followed > 10) {
3737                                 rc = EMLINK;
3738                                 goto done;
3739                         }
3740                         symlinks_followed++;
3741
3742                         /*
3743                          * Read the link value and copy the tail of our
3744                          * current path onto the end.
3745                          */
3746                         if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3747                                 rc = ENAMETOOLONG;
3748                                 goto done;
3749                         }
3750                         strcpy(&path[sb.st_size], p);
3751
3752                         rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3753                         if (rc != 0)
3754                                 goto done;
3755
3756                         /*
3757                          * Restart with the new path, starting either at
3758                          * the root or at the parent depending whether or
3759                          * not the link is relative.
3760                          */
3761                         p = path;
3762                         if (*p == '/') {
3763                                 while (STAILQ_FIRST(&on_cache) !=
3764                                     STAILQ_LAST(&on_cache, obj_list, entry)) {
3765                                         entry = STAILQ_FIRST(&on_cache);
3766                                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3767                                         free(entry);
3768                                 }
3769                         } else {
3770                                 entry = STAILQ_FIRST(&on_cache);
3771                                 STAILQ_REMOVE_HEAD(&on_cache, entry);
3772                                 free(entry);
3773                         }
3774                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3775                 }
3776         }
3777
3778         *dnode = dn;
3779 done:
3780         STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3781                 free(entry);
3782         return (rc);
3783 }