]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - stand/libsa/zfs/zfsimpl.c
loader: r362262 did miss the pathlen check
[FreeBSD/FreeBSD.git] / stand / libsa / zfs / zfsimpl.c
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  *      Stand-alone ZFS file reader.
32  */
33
34 #include <sys/endian.h>
35 #include <sys/stat.h>
36 #include <sys/stdint.h>
37 #include <sys/list.h>
38 #include <machine/_inttypes.h>
39
40 #include "zfsimpl.h"
41 #include "zfssubr.c"
42
43
44 struct zfsmount {
45         const spa_t     *spa;
46         objset_phys_t   objset;
47         uint64_t        rootobj;
48 };
49 static struct zfsmount zfsmount __unused;
50
51 /*
52  * The indirect_child_t represents the vdev that we will read from, when we
53  * need to read all copies of the data (e.g. for scrub or reconstruction).
54  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
55  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
56  * ic_vdev is a child of the mirror.
57  */
58 typedef struct indirect_child {
59         void *ic_data;
60         vdev_t *ic_vdev;
61 } indirect_child_t;
62
63 /*
64  * The indirect_split_t represents one mapped segment of an i/o to the
65  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
66  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
67  * For split blocks, there will be several of these.
68  */
69 typedef struct indirect_split {
70         list_node_t is_node; /* link on iv_splits */
71
72         /*
73          * is_split_offset is the offset into the i/o.
74          * This is the sum of the previous splits' is_size's.
75          */
76         uint64_t is_split_offset;
77
78         vdev_t *is_vdev; /* top-level vdev */
79         uint64_t is_target_offset; /* offset on is_vdev */
80         uint64_t is_size;
81         int is_children; /* number of entries in is_child[] */
82
83         /*
84          * is_good_child is the child that we are currently using to
85          * attempt reconstruction.
86          */
87         int is_good_child;
88
89         indirect_child_t is_child[1]; /* variable-length */
90 } indirect_split_t;
91
92 /*
93  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
94  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
95  */
96 typedef struct indirect_vsd {
97         boolean_t iv_split_block;
98         boolean_t iv_reconstruct;
99
100         list_t iv_splits; /* list of indirect_split_t's */
101 } indirect_vsd_t;
102
103 /*
104  * List of all vdevs, chained through v_alllink.
105  */
106 static vdev_list_t zfs_vdevs;
107
108 /*
109  * List of ZFS features supported for read
110  */
111 static const char *features_for_read[] = {
112         "org.illumos:lz4_compress",
113         "com.delphix:hole_birth",
114         "com.delphix:extensible_dataset",
115         "com.delphix:embedded_data",
116         "org.open-zfs:large_blocks",
117         "org.illumos:sha512",
118         "org.illumos:skein",
119         "org.zfsonlinux:large_dnode",
120         "com.joyent:multi_vdev_crash_dump",
121         "com.delphix:spacemap_histogram",
122         "com.delphix:zpool_checkpoint",
123         "com.delphix:spacemap_v2",
124         "com.datto:encryption",
125         "org.zfsonlinux:allocation_classes",
126         "com.datto:resilver_defer",
127         "com.delphix:device_removal",
128         "com.delphix:obsolete_counts",
129         "com.intel:allocation_classes",
130         NULL
131 };
132
133 /*
134  * List of all pools, chained through spa_link.
135  */
136 static spa_list_t zfs_pools;
137
138 static const dnode_phys_t *dnode_cache_obj;
139 static uint64_t dnode_cache_bn;
140 static char *dnode_cache_buf;
141
142 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
143 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
144 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
145 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
146     const char *name, uint64_t integer_size, uint64_t num_integers,
147     void *value);
148 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
149     dnode_phys_t *);
150 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
151     size_t);
152 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
153     size_t);
154 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
155 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
156     uint64_t);
157 vdev_indirect_mapping_entry_phys_t *
158     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
159     uint64_t, uint64_t *);
160
161 static void
162 zfs_init(void)
163 {
164         STAILQ_INIT(&zfs_vdevs);
165         STAILQ_INIT(&zfs_pools);
166
167         dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
168
169         zfs_init_crc();
170 }
171
172 static int
173 xdr_int(const unsigned char **xdr, int *ip)
174 {
175         *ip = be32dec(*xdr);
176         (*xdr) += 4;
177         return (0);
178 }
179
180 static int
181 xdr_u_int(const unsigned char **xdr, u_int *ip)
182 {
183         *ip = be32dec(*xdr);
184         (*xdr) += 4;
185         return (0);
186 }
187
188 static int
189 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
190 {
191         u_int hi, lo;
192
193         xdr_u_int(xdr, &hi);
194         xdr_u_int(xdr, &lo);
195         *lp = (((uint64_t)hi) << 32) | lo;
196         return (0);
197 }
198
199 static int
200 nvlist_find(const unsigned char *nvlist, const char *name, int type,
201     int *elementsp, void *valuep, int *sizep)
202 {
203         const unsigned char *p, *pair;
204         int junk;
205         int encoded_size, decoded_size;
206
207         p = nvlist;
208         xdr_int(&p, &junk);
209         xdr_int(&p, &junk);
210
211         pair = p;
212         xdr_int(&p, &encoded_size);
213         xdr_int(&p, &decoded_size);
214         while (encoded_size && decoded_size) {
215                 int namelen, pairtype, elements;
216                 const char *pairname;
217
218                 xdr_int(&p, &namelen);
219                 pairname = (const char *)p;
220                 p += roundup(namelen, 4);
221                 xdr_int(&p, &pairtype);
222
223                 if (memcmp(name, pairname, namelen) == 0 && type == pairtype) {
224                         xdr_int(&p, &elements);
225                         if (elementsp)
226                                 *elementsp = elements;
227                         if (type == DATA_TYPE_UINT64) {
228                                 xdr_uint64_t(&p, (uint64_t *)valuep);
229                                 return (0);
230                         } else if (type == DATA_TYPE_STRING) {
231                                 int len;
232                                 xdr_int(&p, &len);
233                                 if (sizep != NULL)
234                                         *sizep = len;
235                                 (*(const char **)valuep) = (const char *)p;
236                                 return (0);
237                         } else if (type == DATA_TYPE_NVLIST ||
238                             type == DATA_TYPE_NVLIST_ARRAY) {
239                                 (*(const unsigned char **)valuep) =
240                                     (const unsigned char *)p;
241                                 return (0);
242                         } else {
243                                 return (EIO);
244                         }
245                 } else {
246                         /*
247                          * Not the pair we are looking for, skip to the
248                          * next one.
249                          */
250                         p = pair + encoded_size;
251                 }
252
253                 pair = p;
254                 xdr_int(&p, &encoded_size);
255                 xdr_int(&p, &decoded_size);
256         }
257
258         return (EIO);
259 }
260
261 static int
262 nvlist_check_features_for_read(const unsigned char *nvlist)
263 {
264         const unsigned char *p, *pair;
265         int junk;
266         int encoded_size, decoded_size;
267         int rc;
268
269         rc = 0;
270
271         p = nvlist;
272         xdr_int(&p, &junk);
273         xdr_int(&p, &junk);
274
275         pair = p;
276         xdr_int(&p, &encoded_size);
277         xdr_int(&p, &decoded_size);
278         while (encoded_size && decoded_size) {
279                 int namelen, pairtype;
280                 const char *pairname;
281                 int i, found;
282
283                 found = 0;
284
285                 xdr_int(&p, &namelen);
286                 pairname = (const char *)p;
287                 p += roundup(namelen, 4);
288                 xdr_int(&p, &pairtype);
289
290                 for (i = 0; features_for_read[i] != NULL; i++) {
291                         if (memcmp(pairname, features_for_read[i],
292                             namelen) == 0) {
293                                 found = 1;
294                                 break;
295                         }
296                 }
297
298                 if (!found) {
299                         printf("ZFS: unsupported feature: %s\n", pairname);
300                         rc = EIO;
301                 }
302
303                 p = pair + encoded_size;
304
305                 pair = p;
306                 xdr_int(&p, &encoded_size);
307                 xdr_int(&p, &decoded_size);
308         }
309
310         return (rc);
311 }
312
313 /*
314  * Return the next nvlist in an nvlist array.
315  */
316 static const unsigned char *
317 nvlist_next(const unsigned char *nvlist)
318 {
319         const unsigned char *p, *pair;
320         int junk;
321         int encoded_size, decoded_size;
322
323         p = nvlist;
324         xdr_int(&p, &junk);
325         xdr_int(&p, &junk);
326
327         pair = p;
328         xdr_int(&p, &encoded_size);
329         xdr_int(&p, &decoded_size);
330         while (encoded_size && decoded_size) {
331                 p = pair + encoded_size;
332
333                 pair = p;
334                 xdr_int(&p, &encoded_size);
335                 xdr_int(&p, &decoded_size);
336         }
337
338         return (p);
339 }
340
341 #ifdef TEST
342
343 static const unsigned char *
344 nvlist_print(const unsigned char *nvlist, unsigned int indent)
345 {
346         static const char *typenames[] = {
347                 "DATA_TYPE_UNKNOWN",
348                 "DATA_TYPE_BOOLEAN",
349                 "DATA_TYPE_BYTE",
350                 "DATA_TYPE_INT16",
351                 "DATA_TYPE_UINT16",
352                 "DATA_TYPE_INT32",
353                 "DATA_TYPE_UINT32",
354                 "DATA_TYPE_INT64",
355                 "DATA_TYPE_UINT64",
356                 "DATA_TYPE_STRING",
357                 "DATA_TYPE_BYTE_ARRAY",
358                 "DATA_TYPE_INT16_ARRAY",
359                 "DATA_TYPE_UINT16_ARRAY",
360                 "DATA_TYPE_INT32_ARRAY",
361                 "DATA_TYPE_UINT32_ARRAY",
362                 "DATA_TYPE_INT64_ARRAY",
363                 "DATA_TYPE_UINT64_ARRAY",
364                 "DATA_TYPE_STRING_ARRAY",
365                 "DATA_TYPE_HRTIME",
366                 "DATA_TYPE_NVLIST",
367                 "DATA_TYPE_NVLIST_ARRAY",
368                 "DATA_TYPE_BOOLEAN_VALUE",
369                 "DATA_TYPE_INT8",
370                 "DATA_TYPE_UINT8",
371                 "DATA_TYPE_BOOLEAN_ARRAY",
372                 "DATA_TYPE_INT8_ARRAY",
373                 "DATA_TYPE_UINT8_ARRAY"
374         };
375
376         unsigned int i, j;
377         const unsigned char *p, *pair;
378         int junk;
379         int encoded_size, decoded_size;
380
381         p = nvlist;
382         xdr_int(&p, &junk);
383         xdr_int(&p, &junk);
384
385         pair = p;
386         xdr_int(&p, &encoded_size);
387         xdr_int(&p, &decoded_size);
388         while (encoded_size && decoded_size) {
389                 int namelen, pairtype, elements;
390                 const char *pairname;
391
392                 xdr_int(&p, &namelen);
393                 pairname = (const char *)p;
394                 p += roundup(namelen, 4);
395                 xdr_int(&p, &pairtype);
396
397                 for (i = 0; i < indent; i++)
398                         printf(" ");
399                 printf("%s %.*s", typenames[pairtype], namelen, pairname);
400
401                 xdr_int(&p, &elements);
402                 switch (pairtype) {
403                 case DATA_TYPE_UINT64: {
404                         uint64_t val;
405                         xdr_uint64_t(&p, &val);
406                         printf(" = 0x%jx\n", (uintmax_t)val);
407                         break;
408                 }
409
410                 case DATA_TYPE_STRING: {
411                         int len;
412                         xdr_int(&p, &len);
413                         printf(" = \"%.*s\"\n", len, p);
414                         break;
415                 }
416
417                 case DATA_TYPE_NVLIST:
418                         printf("\n");
419                         nvlist_print(p, indent + 1);
420                         break;
421
422                 case DATA_TYPE_NVLIST_ARRAY:
423                         for (j = 0; j < elements; j++) {
424                                 printf("[%d]\n", j);
425                                 p = nvlist_print(p, indent + 1);
426                                 if (j != elements - 1) {
427                                         for (i = 0; i < indent; i++)
428                                                 printf(" ");
429                                         printf("%s %.*s", typenames[pairtype],
430                                             namelen, pairname);
431                                 }
432                         }
433                         break;
434
435                 default:
436                         printf("\n");
437                 }
438
439                 p = pair + encoded_size;
440
441                 pair = p;
442                 xdr_int(&p, &encoded_size);
443                 xdr_int(&p, &decoded_size);
444         }
445
446         return (p);
447 }
448
449 #endif
450
451 static int
452 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
453     off_t offset, size_t size)
454 {
455         size_t psize;
456         int rc;
457
458         if (!vdev->v_phys_read)
459                 return (EIO);
460
461         if (bp) {
462                 psize = BP_GET_PSIZE(bp);
463         } else {
464                 psize = size;
465         }
466
467         rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
468         if (rc == 0) {
469                 if (bp != NULL)
470                         rc = zio_checksum_verify(vdev->v_spa, bp, buf);
471         }
472
473         return (rc);
474 }
475
476 typedef struct remap_segment {
477         vdev_t *rs_vd;
478         uint64_t rs_offset;
479         uint64_t rs_asize;
480         uint64_t rs_split_offset;
481         list_node_t rs_node;
482 } remap_segment_t;
483
484 static remap_segment_t *
485 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
486 {
487         remap_segment_t *rs = malloc(sizeof (remap_segment_t));
488
489         if (rs != NULL) {
490                 rs->rs_vd = vd;
491                 rs->rs_offset = offset;
492                 rs->rs_asize = asize;
493                 rs->rs_split_offset = split_offset;
494         }
495
496         return (rs);
497 }
498
499 vdev_indirect_mapping_t *
500 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
501     uint64_t mapping_object)
502 {
503         vdev_indirect_mapping_t *vim;
504         vdev_indirect_mapping_phys_t *vim_phys;
505         int rc;
506
507         vim = calloc(1, sizeof (*vim));
508         if (vim == NULL)
509                 return (NULL);
510
511         vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
512         if (vim->vim_dn == NULL) {
513                 free(vim);
514                 return (NULL);
515         }
516
517         rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
518         if (rc != 0) {
519                 free(vim->vim_dn);
520                 free(vim);
521                 return (NULL);
522         }
523
524         vim->vim_spa = spa;
525         vim->vim_phys = malloc(sizeof (*vim->vim_phys));
526         if (vim->vim_phys == NULL) {
527                 free(vim->vim_dn);
528                 free(vim);
529                 return (NULL);
530         }
531
532         vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
533         *vim->vim_phys = *vim_phys;
534
535         vim->vim_objset = os;
536         vim->vim_object = mapping_object;
537         vim->vim_entries = NULL;
538
539         vim->vim_havecounts =
540             (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
541
542         return (vim);
543 }
544
545 /*
546  * Compare an offset with an indirect mapping entry; there are three
547  * possible scenarios:
548  *
549  *     1. The offset is "less than" the mapping entry; meaning the
550  *        offset is less than the source offset of the mapping entry. In
551  *        this case, there is no overlap between the offset and the
552  *        mapping entry and -1 will be returned.
553  *
554  *     2. The offset is "greater than" the mapping entry; meaning the
555  *        offset is greater than the mapping entry's source offset plus
556  *        the entry's size. In this case, there is no overlap between
557  *        the offset and the mapping entry and 1 will be returned.
558  *
559  *        NOTE: If the offset is actually equal to the entry's offset
560  *        plus size, this is considered to be "greater" than the entry,
561  *        and this case applies (i.e. 1 will be returned). Thus, the
562  *        entry's "range" can be considered to be inclusive at its
563  *        start, but exclusive at its end: e.g. [src, src + size).
564  *
565  *     3. The last case to consider is if the offset actually falls
566  *        within the mapping entry's range. If this is the case, the
567  *        offset is considered to be "equal to" the mapping entry and
568  *        0 will be returned.
569  *
570  *        NOTE: If the offset is equal to the entry's source offset,
571  *        this case applies and 0 will be returned. If the offset is
572  *        equal to the entry's source plus its size, this case does
573  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
574  *        returned.
575  */
576 static int
577 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
578 {
579         const uint64_t *key = v_key;
580         const vdev_indirect_mapping_entry_phys_t *array_elem =
581             v_array_elem;
582         uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
583
584         if (*key < src_offset) {
585                 return (-1);
586         } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
587                 return (0);
588         } else {
589                 return (1);
590         }
591 }
592
593 /*
594  * Return array entry.
595  */
596 static vdev_indirect_mapping_entry_phys_t *
597 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
598 {
599         uint64_t size;
600         off_t offset = 0;
601         int rc;
602
603         if (vim->vim_phys->vimp_num_entries == 0)
604                 return (NULL);
605
606         if (vim->vim_entries == NULL) {
607                 uint64_t bsize;
608
609                 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
610                 size = vim->vim_phys->vimp_num_entries *
611                     sizeof (*vim->vim_entries);
612                 if (size > bsize) {
613                         size = bsize / sizeof (*vim->vim_entries);
614                         size *= sizeof (*vim->vim_entries);
615                 }
616                 vim->vim_entries = malloc(size);
617                 if (vim->vim_entries == NULL)
618                         return (NULL);
619                 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
620                 offset = index * sizeof (*vim->vim_entries);
621         }
622
623         /* We have data in vim_entries */
624         if (offset == 0) {
625                 if (index >= vim->vim_entry_offset &&
626                     index <= vim->vim_entry_offset + vim->vim_num_entries) {
627                         index -= vim->vim_entry_offset;
628                         return (&vim->vim_entries[index]);
629                 }
630                 offset = index * sizeof (*vim->vim_entries);
631         }
632
633         vim->vim_entry_offset = index;
634         size = vim->vim_num_entries * sizeof (*vim->vim_entries);
635         rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
636             size);
637         if (rc != 0) {
638                 /* Read error, invalidate vim_entries. */
639                 free(vim->vim_entries);
640                 vim->vim_entries = NULL;
641                 return (NULL);
642         }
643         index -= vim->vim_entry_offset;
644         return (&vim->vim_entries[index]);
645 }
646
647 /*
648  * Returns the mapping entry for the given offset.
649  *
650  * It's possible that the given offset will not be in the mapping table
651  * (i.e. no mapping entries contain this offset), in which case, the
652  * return value value depends on the "next_if_missing" parameter.
653  *
654  * If the offset is not found in the table and "next_if_missing" is
655  * B_FALSE, then NULL will always be returned. The behavior is intended
656  * to allow consumers to get the entry corresponding to the offset
657  * parameter, iff the offset overlaps with an entry in the table.
658  *
659  * If the offset is not found in the table and "next_if_missing" is
660  * B_TRUE, then the entry nearest to the given offset will be returned,
661  * such that the entry's source offset is greater than the offset
662  * passed in (i.e. the "next" mapping entry in the table is returned, if
663  * the offset is missing from the table). If there are no entries whose
664  * source offset is greater than the passed in offset, NULL is returned.
665  */
666 static vdev_indirect_mapping_entry_phys_t *
667 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
668     uint64_t offset)
669 {
670         ASSERT(vim->vim_phys->vimp_num_entries > 0);
671
672         vdev_indirect_mapping_entry_phys_t *entry;
673
674         uint64_t last = vim->vim_phys->vimp_num_entries - 1;
675         uint64_t base = 0;
676
677         /*
678          * We don't define these inside of the while loop because we use
679          * their value in the case that offset isn't in the mapping.
680          */
681         uint64_t mid;
682         int result;
683
684         while (last >= base) {
685                 mid = base + ((last - base) >> 1);
686
687                 entry = vdev_indirect_mapping_entry(vim, mid);
688                 if (entry == NULL)
689                         break;
690                 result = dva_mapping_overlap_compare(&offset, entry);
691
692                 if (result == 0) {
693                         break;
694                 } else if (result < 0) {
695                         last = mid - 1;
696                 } else {
697                         base = mid + 1;
698                 }
699         }
700         return (entry);
701 }
702
703 /*
704  * Given an indirect vdev and an extent on that vdev, it duplicates the
705  * physical entries of the indirect mapping that correspond to the extent
706  * to a new array and returns a pointer to it. In addition, copied_entries
707  * is populated with the number of mapping entries that were duplicated.
708  *
709  * Finally, since we are doing an allocation, it is up to the caller to
710  * free the array allocated in this function.
711  */
712 vdev_indirect_mapping_entry_phys_t *
713 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
714     uint64_t asize, uint64_t *copied_entries)
715 {
716         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
717         vdev_indirect_mapping_t *vim = vd->v_mapping;
718         uint64_t entries = 0;
719
720         vdev_indirect_mapping_entry_phys_t *first_mapping =
721             vdev_indirect_mapping_entry_for_offset(vim, offset);
722         ASSERT3P(first_mapping, !=, NULL);
723
724         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
725         while (asize > 0) {
726                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
727                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
728                 uint64_t inner_size = MIN(asize, size - inner_offset);
729
730                 offset += inner_size;
731                 asize -= inner_size;
732                 entries++;
733                 m++;
734         }
735
736         size_t copy_length = entries * sizeof (*first_mapping);
737         duplicate_mappings = malloc(copy_length);
738         if (duplicate_mappings != NULL)
739                 bcopy(first_mapping, duplicate_mappings, copy_length);
740         else
741                 entries = 0;
742
743         *copied_entries = entries;
744
745         return (duplicate_mappings);
746 }
747
748 static vdev_t *
749 vdev_lookup_top(spa_t *spa, uint64_t vdev)
750 {
751         vdev_t *rvd;
752         vdev_list_t *vlist;
753
754         vlist = &spa->spa_root_vdev->v_children;
755         STAILQ_FOREACH(rvd, vlist, v_childlink)
756                 if (rvd->v_id == vdev)
757                         break;
758
759         return (rvd);
760 }
761
762 /*
763  * This is a callback for vdev_indirect_remap() which allocates an
764  * indirect_split_t for each split segment and adds it to iv_splits.
765  */
766 static void
767 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
768     uint64_t size, void *arg)
769 {
770         int n = 1;
771         zio_t *zio = arg;
772         indirect_vsd_t *iv = zio->io_vsd;
773
774         if (vd->v_read == vdev_indirect_read)
775                 return;
776
777         if (vd->v_read == vdev_mirror_read)
778                 n = vd->v_nchildren;
779
780         indirect_split_t *is =
781             malloc(offsetof(indirect_split_t, is_child[n]));
782         if (is == NULL) {
783                 zio->io_error = ENOMEM;
784                 return;
785         }
786         bzero(is, offsetof(indirect_split_t, is_child[n]));
787
788         is->is_children = n;
789         is->is_size = size;
790         is->is_split_offset = split_offset;
791         is->is_target_offset = offset;
792         is->is_vdev = vd;
793
794         /*
795          * Note that we only consider multiple copies of the data for
796          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
797          * though they use the same ops as mirror, because there's only one
798          * "good" copy under the replacing/spare.
799          */
800         if (vd->v_read == vdev_mirror_read) {
801                 int i = 0;
802                 vdev_t *kid;
803
804                 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
805                         is->is_child[i++].ic_vdev = kid;
806                 }
807         } else {
808                 is->is_child[0].ic_vdev = vd;
809         }
810
811         list_insert_tail(&iv->iv_splits, is);
812 }
813
814 static void
815 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
816 {
817         list_t stack;
818         spa_t *spa = vd->v_spa;
819         zio_t *zio = arg;
820         remap_segment_t *rs;
821
822         list_create(&stack, sizeof (remap_segment_t),
823             offsetof(remap_segment_t, rs_node));
824
825         rs = rs_alloc(vd, offset, asize, 0);
826         if (rs == NULL) {
827                 printf("vdev_indirect_remap: out of memory.\n");
828                 zio->io_error = ENOMEM;
829         }
830         for (; rs != NULL; rs = list_remove_head(&stack)) {
831                 vdev_t *v = rs->rs_vd;
832                 uint64_t num_entries = 0;
833                 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
834                 vdev_indirect_mapping_entry_phys_t *mapping =
835                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
836                     rs->rs_offset, rs->rs_asize, &num_entries);
837
838                 if (num_entries == 0)
839                         zio->io_error = ENOMEM;
840
841                 for (uint64_t i = 0; i < num_entries; i++) {
842                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
843                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
844                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
845                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
846                         uint64_t inner_offset = rs->rs_offset -
847                             DVA_MAPPING_GET_SRC_OFFSET(m);
848                         uint64_t inner_size =
849                             MIN(rs->rs_asize, size - inner_offset);
850                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
851
852                         if (dst_v->v_read == vdev_indirect_read) {
853                                 remap_segment_t *o;
854
855                                 o = rs_alloc(dst_v, dst_offset + inner_offset,
856                                     inner_size, rs->rs_split_offset);
857                                 if (o == NULL) {
858                                         printf("vdev_indirect_remap: "
859                                             "out of memory.\n");
860                                         zio->io_error = ENOMEM;
861                                         break;
862                                 }
863
864                                 list_insert_head(&stack, o);
865                         }
866                         vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
867                             dst_offset + inner_offset,
868                             inner_size, arg);
869
870                         /*
871                          * vdev_indirect_gather_splits can have memory
872                          * allocation error, we can not recover from it.
873                          */
874                         if (zio->io_error != 0)
875                                 break;
876                         rs->rs_offset += inner_size;
877                         rs->rs_asize -= inner_size;
878                         rs->rs_split_offset += inner_size;
879                 }
880
881                 free(mapping);
882                 free(rs);
883                 if (zio->io_error != 0)
884                         break;
885         }
886
887         list_destroy(&stack);
888 }
889
890 static void
891 vdev_indirect_map_free(zio_t *zio)
892 {
893         indirect_vsd_t *iv = zio->io_vsd;
894         indirect_split_t *is;
895
896         while ((is = list_head(&iv->iv_splits)) != NULL) {
897                 for (int c = 0; c < is->is_children; c++) {
898                         indirect_child_t *ic = &is->is_child[c];
899                         free(ic->ic_data);
900                 }
901                 list_remove(&iv->iv_splits, is);
902                 free(is);
903         }
904         free(iv);
905 }
906
907 static int
908 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
909     off_t offset, size_t bytes)
910 {
911         zio_t zio;
912         spa_t *spa = vdev->v_spa;
913         indirect_vsd_t *iv;
914         indirect_split_t *first;
915         int rc = EIO;
916
917         iv = calloc(1, sizeof(*iv));
918         if (iv == NULL)
919                 return (ENOMEM);
920
921         list_create(&iv->iv_splits,
922             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
923
924         bzero(&zio, sizeof(zio));
925         zio.io_spa = spa;
926         zio.io_bp = (blkptr_t *)bp;
927         zio.io_data = buf;
928         zio.io_size = bytes;
929         zio.io_offset = offset;
930         zio.io_vd = vdev;
931         zio.io_vsd = iv;
932
933         if (vdev->v_mapping == NULL) {
934                 vdev_indirect_config_t *vic;
935
936                 vic = &vdev->vdev_indirect_config;
937                 vdev->v_mapping = vdev_indirect_mapping_open(spa,
938                     &spa->spa_mos, vic->vic_mapping_object);
939         }
940
941         vdev_indirect_remap(vdev, offset, bytes, &zio);
942         if (zio.io_error != 0)
943                 return (zio.io_error);
944
945         first = list_head(&iv->iv_splits);
946         if (first->is_size == zio.io_size) {
947                 /*
948                  * This is not a split block; we are pointing to the entire
949                  * data, which will checksum the same as the original data.
950                  * Pass the BP down so that the child i/o can verify the
951                  * checksum, and try a different location if available
952                  * (e.g. on a mirror).
953                  *
954                  * While this special case could be handled the same as the
955                  * general (split block) case, doing it this way ensures
956                  * that the vast majority of blocks on indirect vdevs
957                  * (which are not split) are handled identically to blocks
958                  * on non-indirect vdevs.  This allows us to be less strict
959                  * about performance in the general (but rare) case.
960                  */
961                 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
962                     zio.io_data, first->is_target_offset, bytes);
963         } else {
964                 iv->iv_split_block = B_TRUE;
965                 /*
966                  * Read one copy of each split segment, from the
967                  * top-level vdev.  Since we don't know the
968                  * checksum of each split individually, the child
969                  * zio can't ensure that we get the right data.
970                  * E.g. if it's a mirror, it will just read from a
971                  * random (healthy) leaf vdev.  We have to verify
972                  * the checksum in vdev_indirect_io_done().
973                  */
974                 for (indirect_split_t *is = list_head(&iv->iv_splits);
975                     is != NULL; is = list_next(&iv->iv_splits, is)) {
976                         char *ptr = zio.io_data;
977
978                         rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
979                             ptr + is->is_split_offset, is->is_target_offset,
980                             is->is_size);
981                 }
982                 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
983                         rc = ECKSUM;
984                 else
985                         rc = 0;
986         }
987
988         vdev_indirect_map_free(&zio);
989         if (rc == 0)
990                 rc = zio.io_error;
991
992         return (rc);
993 }
994
995 static int
996 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
997     off_t offset, size_t bytes)
998 {
999
1000         return (vdev_read_phys(vdev, bp, buf,
1001             offset + VDEV_LABEL_START_SIZE, bytes));
1002 }
1003
1004
1005 static int
1006 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1007     off_t offset, size_t bytes)
1008 {
1009         vdev_t *kid;
1010         int rc;
1011
1012         rc = EIO;
1013         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1014                 if (kid->v_state != VDEV_STATE_HEALTHY)
1015                         continue;
1016                 rc = kid->v_read(kid, bp, buf, offset, bytes);
1017                 if (!rc)
1018                         return (0);
1019         }
1020
1021         return (rc);
1022 }
1023
1024 static int
1025 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1026     off_t offset, size_t bytes)
1027 {
1028         vdev_t *kid;
1029
1030         /*
1031          * Here we should have two kids:
1032          * First one which is the one we are replacing and we can trust
1033          * only this one to have valid data, but it might not be present.
1034          * Second one is that one we are replacing with. It is most likely
1035          * healthy, but we can't trust it has needed data, so we won't use it.
1036          */
1037         kid = STAILQ_FIRST(&vdev->v_children);
1038         if (kid == NULL)
1039                 return (EIO);
1040         if (kid->v_state != VDEV_STATE_HEALTHY)
1041                 return (EIO);
1042         return (kid->v_read(kid, bp, buf, offset, bytes));
1043 }
1044
1045 static vdev_t *
1046 vdev_find(uint64_t guid)
1047 {
1048         vdev_t *vdev;
1049
1050         STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
1051                 if (vdev->v_guid == guid)
1052                         return (vdev);
1053
1054         return (0);
1055 }
1056
1057 static vdev_t *
1058 vdev_create(uint64_t guid, vdev_read_t *_read)
1059 {
1060         vdev_t *vdev;
1061         vdev_indirect_config_t *vic;
1062
1063         vdev = calloc(1, sizeof(vdev_t));
1064         if (vdev != NULL) {
1065                 STAILQ_INIT(&vdev->v_children);
1066                 vdev->v_guid = guid;
1067                 vdev->v_read = _read;
1068
1069                 /*
1070                  * root vdev has no read function, we use this fact to
1071                  * skip setting up data we do not need for root vdev.
1072                  * We only point root vdev from spa.
1073                  */
1074                 if (_read != NULL) {
1075                         vic = &vdev->vdev_indirect_config;
1076                         vic->vic_prev_indirect_vdev = UINT64_MAX;
1077                         STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
1078                 }
1079         }
1080
1081         return (vdev);
1082 }
1083
1084 static void
1085 vdev_set_initial_state(vdev_t *vdev, const unsigned char *nvlist)
1086 {
1087         uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
1088         uint64_t is_log;
1089
1090         is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
1091         is_log = 0;
1092         (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
1093             &is_offline, NULL);
1094         (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
1095             &is_removed, NULL);
1096         (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
1097             &is_faulted, NULL);
1098         (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
1099             NULL, &is_degraded, NULL);
1100         (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
1101             NULL, &isnt_present, NULL);
1102         (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
1103             &is_log, NULL);
1104
1105         if (is_offline != 0)
1106                 vdev->v_state = VDEV_STATE_OFFLINE;
1107         else if (is_removed != 0)
1108                 vdev->v_state = VDEV_STATE_REMOVED;
1109         else if (is_faulted != 0)
1110                 vdev->v_state = VDEV_STATE_FAULTED;
1111         else if (is_degraded != 0)
1112                 vdev->v_state = VDEV_STATE_DEGRADED;
1113         else if (isnt_present != 0)
1114                 vdev->v_state = VDEV_STATE_CANT_OPEN;
1115
1116         vdev->v_islog = is_log != 0;
1117 }
1118
1119 static int
1120 vdev_init(uint64_t guid, const unsigned char *nvlist, vdev_t **vdevp)
1121 {
1122         uint64_t id, ashift, asize, nparity;
1123         const char *path;
1124         const char *type;
1125         int len, pathlen;
1126         char *name;
1127         vdev_t *vdev;
1128
1129         if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
1130             NULL) ||
1131             nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1132             NULL, &type, &len)) {
1133                 return (ENOENT);
1134         }
1135
1136         if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1137             memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1138 #ifdef ZFS_TEST
1139             memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
1140 #endif
1141             memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
1142             memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
1143             memcmp(type, VDEV_TYPE_REPLACING, len) != 0) {
1144                 printf("ZFS: can only boot from disk, mirror, raidz1, "
1145                     "raidz2 and raidz3 vdevs\n");
1146                 return (EIO);
1147         }
1148
1149         if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
1150                 vdev = vdev_create(guid, vdev_mirror_read);
1151         else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
1152                 vdev = vdev_create(guid, vdev_raidz_read);
1153         else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
1154                 vdev = vdev_create(guid, vdev_replacing_read);
1155         else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
1156                 vdev_indirect_config_t *vic;
1157
1158                 vdev = vdev_create(guid, vdev_indirect_read);
1159                 if (vdev != NULL) {
1160                         vdev->v_state = VDEV_STATE_HEALTHY;
1161                         vic = &vdev->vdev_indirect_config;
1162
1163                         nvlist_find(nvlist,
1164                             ZPOOL_CONFIG_INDIRECT_OBJECT,
1165                             DATA_TYPE_UINT64,
1166                             NULL, &vic->vic_mapping_object, NULL);
1167                         nvlist_find(nvlist,
1168                             ZPOOL_CONFIG_INDIRECT_BIRTHS,
1169                             DATA_TYPE_UINT64,
1170                             NULL, &vic->vic_births_object, NULL);
1171                         nvlist_find(nvlist,
1172                             ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
1173                             DATA_TYPE_UINT64,
1174                             NULL, &vic->vic_prev_indirect_vdev, NULL);
1175                 }
1176         } else {
1177                 vdev = vdev_create(guid, vdev_disk_read);
1178         }
1179
1180         if (vdev == NULL)
1181                 return (ENOMEM);
1182
1183         vdev_set_initial_state(vdev, nvlist);
1184         vdev->v_id = id;
1185         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
1186             DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
1187                 vdev->v_ashift = ashift;
1188
1189         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1190             DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
1191                 vdev->v_psize = asize +
1192                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1193         }
1194
1195         if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1196             DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
1197                 vdev->v_nparity = nparity;
1198
1199         if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1200             DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
1201                 char prefix[] = "/dev/";
1202
1203                 len = strlen(prefix);
1204                 if (len < pathlen && memcmp(path, prefix, len) == 0) {
1205                         path += len;
1206                         pathlen -= len;
1207                 }
1208                 name = malloc(pathlen + 1);
1209                 bcopy(path, name, pathlen);
1210                 name[pathlen] = '\0';
1211                 vdev->v_name = name;
1212         } else {
1213                 name = NULL;
1214                 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1215                         if (vdev->v_nparity < 1 ||
1216                             vdev->v_nparity > 3) {
1217                                 printf("ZFS: invalid raidz parity: %d\n",
1218                                     vdev->v_nparity);
1219                                 return (EIO);
1220                         }
1221                         (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1222                             vdev->v_nparity, id);
1223                 } else {
1224                         (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1225                 }
1226                 vdev->v_name = name;
1227         }
1228         *vdevp = vdev;
1229         return (0);
1230 }
1231
1232 /*
1233  * Find slot for vdev. We return either NULL to signal to use
1234  * STAILQ_INSERT_HEAD, or we return link element to be used with
1235  * STAILQ_INSERT_AFTER.
1236  */
1237 static vdev_t *
1238 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1239 {
1240         vdev_t *v, *previous;
1241
1242         if (STAILQ_EMPTY(&top_vdev->v_children))
1243                 return (NULL);
1244
1245         previous = NULL;
1246         STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1247                 if (v->v_id > vdev->v_id)
1248                         return (previous);
1249
1250                 if (v->v_id == vdev->v_id)
1251                         return (v);
1252
1253                 if (v->v_id < vdev->v_id)
1254                         previous = v;
1255         }
1256         return (previous);
1257 }
1258
1259 static size_t
1260 vdev_child_count(vdev_t *vdev)
1261 {
1262         vdev_t *v;
1263         size_t count;
1264
1265         count = 0;
1266         STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1267                 count++;
1268         }
1269         return (count);
1270 }
1271
1272 /*
1273  * Insert vdev into top_vdev children list. List is ordered by v_id.
1274  */
1275 static void
1276 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1277 {
1278         vdev_t *previous;
1279         size_t count;
1280
1281         /*
1282          * The top level vdev can appear in random order, depending how
1283          * the firmware is presenting the disk devices.
1284          * However, we will insert vdev to create list ordered by v_id,
1285          * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1286          * as STAILQ does not have insert before.
1287          */
1288         previous = vdev_find_previous(top_vdev, vdev);
1289
1290         if (previous == NULL) {
1291                 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1292         } else if (previous->v_id == vdev->v_id) {
1293                 /*
1294                  * This vdev was configured from label config,
1295                  * do not insert duplicate.
1296                  */
1297                 return;
1298         } else {
1299                 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1300                     v_childlink);
1301         }
1302
1303         count = vdev_child_count(top_vdev);
1304         if (top_vdev->v_nchildren < count)
1305                 top_vdev->v_nchildren = count;
1306 }
1307
1308 static int
1309 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const unsigned char *nvlist)
1310 {
1311         vdev_t *top_vdev, *vdev;
1312         const unsigned char *kids;
1313         int rc, nkids;
1314
1315         /* Get top vdev. */
1316         top_vdev = vdev_find(top_guid);
1317         if (top_vdev == NULL) {
1318                 rc = vdev_init(top_guid, nvlist, &top_vdev);
1319                 if (rc != 0)
1320                         return (rc);
1321                 top_vdev->v_spa = spa;
1322                 top_vdev->v_top = top_vdev;
1323                 vdev_insert(spa->spa_root_vdev, top_vdev);
1324         }
1325
1326         /* Add children if there are any. */
1327         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1328             &nkids, &kids, NULL);
1329         if (rc == 0) {
1330                 for (int i = 0; i < nkids; i++) {
1331                         uint64_t guid;
1332
1333                         rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
1334                             DATA_TYPE_UINT64, NULL, &guid, NULL);
1335                         if (rc != 0)
1336                                 return (rc);
1337                         rc = vdev_init(guid, kids, &vdev);
1338                         if (rc != 0)
1339                                 return (rc);
1340
1341                         vdev->v_spa = spa;
1342                         vdev->v_top = top_vdev;
1343                         vdev_insert(top_vdev, vdev);
1344
1345                         kids = nvlist_next(kids);
1346                 }
1347         } else {
1348                 /*
1349                  * When there are no children, nvlist_find() does return
1350                  * error, reset it because leaf devices have no children.
1351                  */
1352                 rc = 0;
1353         }
1354
1355         return (rc);
1356 }
1357
1358 static int
1359 vdev_init_from_label(spa_t *spa, const unsigned char *nvlist)
1360 {
1361         uint64_t pool_guid, top_guid;
1362         const unsigned char *vdevs;
1363
1364         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1365             NULL, &pool_guid, NULL) ||
1366             nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1367             NULL, &top_guid, NULL) ||
1368             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1369             NULL, &vdevs, NULL)) {
1370                 printf("ZFS: can't find vdev details\n");
1371                 return (ENOENT);
1372         }
1373
1374         return (vdev_from_nvlist(spa, top_guid, vdevs));
1375 }
1376
1377 static void
1378 vdev_set_state(vdev_t *vdev)
1379 {
1380         vdev_t *kid;
1381         int good_kids;
1382         int bad_kids;
1383
1384         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1385                 vdev_set_state(kid);
1386         }
1387
1388         /*
1389          * A mirror or raidz is healthy if all its kids are healthy. A
1390          * mirror is degraded if any of its kids is healthy; a raidz
1391          * is degraded if at most nparity kids are offline.
1392          */
1393         if (STAILQ_FIRST(&vdev->v_children)) {
1394                 good_kids = 0;
1395                 bad_kids = 0;
1396                 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1397                         if (kid->v_state == VDEV_STATE_HEALTHY)
1398                                 good_kids++;
1399                         else
1400                                 bad_kids++;
1401                 }
1402                 if (bad_kids == 0) {
1403                         vdev->v_state = VDEV_STATE_HEALTHY;
1404                 } else {
1405                         if (vdev->v_read == vdev_mirror_read) {
1406                                 if (good_kids) {
1407                                         vdev->v_state = VDEV_STATE_DEGRADED;
1408                                 } else {
1409                                         vdev->v_state = VDEV_STATE_OFFLINE;
1410                                 }
1411                         } else if (vdev->v_read == vdev_raidz_read) {
1412                                 if (bad_kids > vdev->v_nparity) {
1413                                         vdev->v_state = VDEV_STATE_OFFLINE;
1414                                 } else {
1415                                         vdev->v_state = VDEV_STATE_DEGRADED;
1416                                 }
1417                         }
1418                 }
1419         }
1420 }
1421
1422 static int
1423 vdev_update_from_nvlist(uint64_t top_guid, const unsigned char *nvlist)
1424 {
1425         vdev_t *vdev;
1426         const unsigned char *kids;
1427         int rc, nkids;
1428
1429         /* Update top vdev. */
1430         vdev = vdev_find(top_guid);
1431         if (vdev != NULL)
1432                 vdev_set_initial_state(vdev, nvlist);
1433
1434         /* Update children if there are any. */
1435         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1436             &nkids, &kids, NULL);
1437         if (rc == 0) {
1438                 for (int i = 0; i < nkids; i++) {
1439                         uint64_t guid;
1440
1441                         rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
1442                             DATA_TYPE_UINT64, NULL, &guid, NULL);
1443                         if (rc != 0)
1444                                 break;
1445
1446                         vdev = vdev_find(guid);
1447                         if (vdev != NULL)
1448                                 vdev_set_initial_state(vdev, kids);
1449
1450                         kids = nvlist_next(kids);
1451                 }
1452         } else {
1453                 rc = 0;
1454         }
1455
1456         return (rc);
1457 }
1458
1459 static int
1460 vdev_init_from_nvlist(spa_t *spa, const unsigned char *nvlist)
1461 {
1462         uint64_t pool_guid, vdev_children;
1463         const unsigned char *vdevs, *kids;
1464         int rc, nkids;
1465
1466         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1467             NULL, &pool_guid, NULL) ||
1468             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1469             NULL, &vdev_children, NULL) ||
1470             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1471             NULL, &vdevs, NULL)) {
1472                 printf("ZFS: can't find vdev details\n");
1473                 return (ENOENT);
1474         }
1475
1476         /* Wrong guid?! */
1477         if (spa->spa_guid != pool_guid)
1478                 return (EINVAL);
1479
1480         spa->spa_root_vdev->v_nchildren = vdev_children;
1481
1482         rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1483             &nkids, &kids, NULL);
1484
1485         /*
1486          * MOS config has at least one child for root vdev.
1487          */
1488         if (rc != 0)
1489                 return (rc);
1490
1491         for (int i = 0; i < nkids; i++) {
1492                 uint64_t guid;
1493                 vdev_t *vdev;
1494
1495                 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1496                     NULL, &guid, NULL);
1497                 if (rc != 0)
1498                         break;
1499                 vdev = vdev_find(guid);
1500                 /*
1501                  * Top level vdev is missing, create it.
1502                  */
1503                 if (vdev == NULL)
1504                         rc = vdev_from_nvlist(spa, guid, kids);
1505                 else
1506                         rc = vdev_update_from_nvlist(guid, kids);
1507                 if (rc != 0)
1508                         break;
1509                 kids = nvlist_next(kids);
1510         }
1511
1512         /*
1513          * Re-evaluate top-level vdev state.
1514          */
1515         vdev_set_state(spa->spa_root_vdev);
1516
1517         return (rc);
1518 }
1519
1520 static spa_t *
1521 spa_find_by_guid(uint64_t guid)
1522 {
1523         spa_t *spa;
1524
1525         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1526                 if (spa->spa_guid == guid)
1527                         return (spa);
1528
1529         return (NULL);
1530 }
1531
1532 static spa_t *
1533 spa_find_by_name(const char *name)
1534 {
1535         spa_t *spa;
1536
1537         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1538                 if (strcmp(spa->spa_name, name) == 0)
1539                         return (spa);
1540
1541         return (NULL);
1542 }
1543
1544 #ifdef BOOT2
1545 static spa_t *
1546 spa_get_primary(void)
1547 {
1548
1549         return (STAILQ_FIRST(&zfs_pools));
1550 }
1551
1552 static vdev_t *
1553 spa_get_primary_vdev(const spa_t *spa)
1554 {
1555         vdev_t *vdev;
1556         vdev_t *kid;
1557
1558         if (spa == NULL)
1559                 spa = spa_get_primary();
1560         if (spa == NULL)
1561                 return (NULL);
1562         vdev = spa->spa_root_vdev;
1563         if (vdev == NULL)
1564                 return (NULL);
1565         for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
1566             kid = STAILQ_FIRST(&vdev->v_children))
1567                 vdev = kid;
1568         return (vdev);
1569 }
1570 #endif
1571
1572 static spa_t *
1573 spa_create(uint64_t guid, const char *name)
1574 {
1575         spa_t *spa;
1576
1577         if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1578                 return (NULL);
1579         if ((spa->spa_name = strdup(name)) == NULL) {
1580                 free(spa);
1581                 return (NULL);
1582         }
1583         spa->spa_guid = guid;
1584         spa->spa_root_vdev = vdev_create(guid, NULL);
1585         if (spa->spa_root_vdev == NULL) {
1586                 free(spa->spa_name);
1587                 free(spa);
1588                 return (NULL);
1589         }
1590         spa->spa_root_vdev->v_name = strdup("root");
1591         STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1592
1593         return (spa);
1594 }
1595
1596 static const char *
1597 state_name(vdev_state_t state)
1598 {
1599         static const char *names[] = {
1600                 "UNKNOWN",
1601                 "CLOSED",
1602                 "OFFLINE",
1603                 "REMOVED",
1604                 "CANT_OPEN",
1605                 "FAULTED",
1606                 "DEGRADED",
1607                 "ONLINE"
1608         };
1609         return (names[state]);
1610 }
1611
1612 #ifdef BOOT2
1613
1614 #define pager_printf printf
1615
1616 #else
1617
1618 static int
1619 pager_printf(const char *fmt, ...)
1620 {
1621         char line[80];
1622         va_list args;
1623
1624         va_start(args, fmt);
1625         vsnprintf(line, sizeof(line), fmt, args);
1626         va_end(args);
1627         return (pager_output(line));
1628 }
1629
1630 #endif
1631
1632 #define STATUS_FORMAT   "        %s %s\n"
1633
1634 static int
1635 print_state(int indent, const char *name, vdev_state_t state)
1636 {
1637         int i;
1638         char buf[512];
1639
1640         buf[0] = 0;
1641         for (i = 0; i < indent; i++)
1642                 strcat(buf, "  ");
1643         strcat(buf, name);
1644         return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1645 }
1646
1647 static int
1648 vdev_status(vdev_t *vdev, int indent)
1649 {
1650         vdev_t *kid;
1651         int ret;
1652
1653         if (vdev->v_islog) {
1654                 (void) pager_output("        logs\n");
1655                 indent++;
1656         }
1657
1658         ret = print_state(indent, vdev->v_name, vdev->v_state);
1659         if (ret != 0)
1660                 return (ret);
1661
1662         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1663                 ret = vdev_status(kid, indent + 1);
1664                 if (ret != 0)
1665                         return (ret);
1666         }
1667         return (ret);
1668 }
1669
1670 static int
1671 spa_status(spa_t *spa)
1672 {
1673         static char bootfs[ZFS_MAXNAMELEN];
1674         uint64_t rootid;
1675         vdev_list_t *vlist;
1676         vdev_t *vdev;
1677         int good_kids, bad_kids, degraded_kids, ret;
1678         vdev_state_t state;
1679
1680         ret = pager_printf("  pool: %s\n", spa->spa_name);
1681         if (ret != 0)
1682                 return (ret);
1683
1684         if (zfs_get_root(spa, &rootid) == 0 &&
1685             zfs_rlookup(spa, rootid, bootfs) == 0) {
1686                 if (bootfs[0] == '\0')
1687                         ret = pager_printf("bootfs: %s\n", spa->spa_name);
1688                 else
1689                         ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1690                             bootfs);
1691                 if (ret != 0)
1692                         return (ret);
1693         }
1694         ret = pager_printf("config:\n\n");
1695         if (ret != 0)
1696                 return (ret);
1697         ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1698         if (ret != 0)
1699                 return (ret);
1700
1701         good_kids = 0;
1702         degraded_kids = 0;
1703         bad_kids = 0;
1704         vlist = &spa->spa_root_vdev->v_children;
1705         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1706                 if (vdev->v_state == VDEV_STATE_HEALTHY)
1707                         good_kids++;
1708                 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1709                         degraded_kids++;
1710                 else
1711                         bad_kids++;
1712         }
1713
1714         state = VDEV_STATE_CLOSED;
1715         if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1716                 state = VDEV_STATE_HEALTHY;
1717         else if ((good_kids + degraded_kids) > 0)
1718                 state = VDEV_STATE_DEGRADED;
1719
1720         ret = print_state(0, spa->spa_name, state);
1721         if (ret != 0)
1722                 return (ret);
1723
1724         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1725                 ret = vdev_status(vdev, 1);
1726                 if (ret != 0)
1727                         return (ret);
1728         }
1729         return (ret);
1730 }
1731
1732 static int
1733 spa_all_status(void)
1734 {
1735         spa_t *spa;
1736         int first = 1, ret = 0;
1737
1738         STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1739                 if (!first) {
1740                         ret = pager_printf("\n");
1741                         if (ret != 0)
1742                                 return (ret);
1743                 }
1744                 first = 0;
1745                 ret = spa_status(spa);
1746                 if (ret != 0)
1747                         return (ret);
1748         }
1749         return (ret);
1750 }
1751
1752 static uint64_t
1753 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1754 {
1755         uint64_t label_offset;
1756
1757         if (l < VDEV_LABELS / 2)
1758                 label_offset = 0;
1759         else
1760                 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1761
1762         return (offset + l * sizeof (vdev_label_t) + label_offset);
1763 }
1764
1765 static int
1766 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1767 {
1768         unsigned int seq1 = 0;
1769         unsigned int seq2 = 0;
1770         int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1771
1772         if (cmp != 0)
1773                 return (cmp);
1774
1775         cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1776         if (cmp != 0)
1777                 return (cmp);
1778
1779         if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1780                 seq1 = MMP_SEQ(ub1);
1781
1782         if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1783                 seq2 = MMP_SEQ(ub2);
1784
1785         return (AVL_CMP(seq1, seq2));
1786 }
1787
1788 static int
1789 uberblock_verify(uberblock_t *ub)
1790 {
1791         if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1792                 byteswap_uint64_array(ub, sizeof (uberblock_t));
1793         }
1794
1795         if (ub->ub_magic != UBERBLOCK_MAGIC ||
1796             !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1797                 return (EINVAL);
1798
1799         return (0);
1800 }
1801
1802 static int
1803 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1804     size_t size)
1805 {
1806         blkptr_t bp;
1807         off_t off;
1808
1809         off = vdev_label_offset(vd->v_psize, l, offset);
1810
1811         BP_ZERO(&bp);
1812         BP_SET_LSIZE(&bp, size);
1813         BP_SET_PSIZE(&bp, size);
1814         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1815         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1816         DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1817         ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1818
1819         return (vdev_read_phys(vd, &bp, buf, off, size));
1820 }
1821
1822 static unsigned char *
1823 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1824 {
1825         vdev_phys_t *label;
1826         uint64_t best_txg = 0;
1827         uint64_t label_txg = 0;
1828         uint64_t asize;
1829         unsigned char *nvl;
1830         size_t nvl_size;
1831         int error;
1832
1833         label = malloc(sizeof (vdev_phys_t));
1834         if (label == NULL)
1835                 return (NULL);
1836
1837         nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4;
1838         nvl = malloc(nvl_size);
1839         if (nvl == NULL)
1840                 goto done;
1841
1842         for (int l = 0; l < VDEV_LABELS; l++) {
1843                 const unsigned char *nvlist;
1844
1845                 if (vdev_label_read(vd, l, label,
1846                     offsetof(vdev_label_t, vl_vdev_phys),
1847                     sizeof (vdev_phys_t)))
1848                         continue;
1849
1850                 if (label->vp_nvlist[0] != NV_ENCODE_XDR)
1851                         continue;
1852
1853                 nvlist = (const unsigned char *) label->vp_nvlist + 4;
1854                 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG,
1855                     DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1856                 if (error != 0 || label_txg == 0) {
1857                         memcpy(nvl, nvlist, nvl_size);
1858                         goto done;
1859                 }
1860
1861                 if (label_txg <= txg && label_txg > best_txg) {
1862                         best_txg = label_txg;
1863                         memcpy(nvl, nvlist, nvl_size);
1864
1865                         /*
1866                          * Use asize from pool config. We need this
1867                          * because we can get bad value from BIOS.
1868                          */
1869                         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1870                             DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
1871                                 vd->v_psize = asize +
1872                                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1873                         }
1874                 }
1875         }
1876
1877         if (best_txg == 0) {
1878                 free(nvl);
1879                 nvl = NULL;
1880         }
1881 done:
1882         free(label);
1883         return (nvl);
1884 }
1885
1886 static void
1887 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1888 {
1889         uberblock_t *buf;
1890
1891         buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1892         if (buf == NULL)
1893                 return;
1894
1895         for (int l = 0; l < VDEV_LABELS; l++) {
1896                 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1897                         if (vdev_label_read(vd, l, buf,
1898                             VDEV_UBERBLOCK_OFFSET(vd, n),
1899                             VDEV_UBERBLOCK_SIZE(vd)))
1900                                 continue;
1901                         if (uberblock_verify(buf) != 0)
1902                                 continue;
1903
1904                         if (vdev_uberblock_compare(buf, ub) > 0)
1905                                 *ub = *buf;
1906                 }
1907         }
1908         free(buf);
1909 }
1910
1911 static int
1912 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap)
1913 {
1914         vdev_t vtmp;
1915         spa_t *spa;
1916         vdev_t *vdev;
1917         unsigned char *nvlist;
1918         uint64_t val;
1919         uint64_t guid, vdev_children;
1920         uint64_t pool_txg, pool_guid;
1921         const char *pool_name;
1922         const unsigned char *features;
1923         int rc, namelen;
1924
1925         /*
1926          * Load the vdev label and figure out which
1927          * uberblock is most current.
1928          */
1929         memset(&vtmp, 0, sizeof(vtmp));
1930         vtmp.v_phys_read = _read;
1931         vtmp.v_read_priv = read_priv;
1932         vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv),
1933             (uint64_t)sizeof (vdev_label_t));
1934
1935         /* Test for minimum device size. */
1936         if (vtmp.v_psize < SPA_MINDEVSIZE)
1937                 return (EIO);
1938
1939         nvlist = vdev_label_read_config(&vtmp, UINT64_MAX);
1940         if (nvlist == NULL)
1941                 return (EIO);
1942
1943         if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
1944             NULL, &val, NULL) != 0) {
1945                 free(nvlist);
1946                 return (EIO);
1947         }
1948
1949         if (!SPA_VERSION_IS_SUPPORTED(val)) {
1950                 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
1951                     (unsigned)val, (unsigned)SPA_VERSION);
1952                 free(nvlist);
1953                 return (EIO);
1954         }
1955
1956         /* Check ZFS features for read */
1957         if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1958             DATA_TYPE_NVLIST, NULL, &features, NULL) == 0 &&
1959             nvlist_check_features_for_read(features) != 0) {
1960                 free(nvlist);
1961                 return (EIO);
1962         }
1963
1964         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
1965             NULL, &val, NULL) != 0) {
1966                 free(nvlist);
1967                 return (EIO);
1968         }
1969
1970         if (val == POOL_STATE_DESTROYED) {
1971                 /* We don't boot only from destroyed pools. */
1972                 free(nvlist);
1973                 return (EIO);
1974         }
1975
1976         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
1977             NULL, &pool_txg, NULL) != 0 ||
1978             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1979             NULL, &pool_guid, NULL) != 0 ||
1980             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
1981             NULL, &pool_name, &namelen) != 0) {
1982                 /*
1983                  * Cache and spare devices end up here - just ignore
1984                  * them.
1985                  */
1986                 free(nvlist);
1987                 return (EIO);
1988         }
1989
1990         /*
1991          * Create the pool if this is the first time we've seen it.
1992          */
1993         spa = spa_find_by_guid(pool_guid);
1994         if (spa == NULL) {
1995                 char *name;
1996
1997                 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN,
1998                     DATA_TYPE_UINT64, NULL, &vdev_children, NULL);
1999                 name = malloc(namelen + 1);
2000                 if (name == NULL) {
2001                         free(nvlist);
2002                         return (ENOMEM);
2003                 }
2004                 bcopy(pool_name, name, namelen);
2005                 name[namelen] = '\0';
2006                 spa = spa_create(pool_guid, name);
2007                 free(name);
2008                 if (spa == NULL) {
2009                         free(nvlist);
2010                         return (ENOMEM);
2011                 }
2012                 spa->spa_root_vdev->v_nchildren = vdev_children;
2013         }
2014         if (pool_txg > spa->spa_txg)
2015                 spa->spa_txg = pool_txg;
2016
2017         /*
2018          * Get the vdev tree and create our in-core copy of it.
2019          * If we already have a vdev with this guid, this must
2020          * be some kind of alias (overlapping slices, dangerously dedicated
2021          * disks etc).
2022          */
2023         if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2024             NULL, &guid, NULL) != 0) {
2025                 free(nvlist);
2026                 return (EIO);
2027         }
2028         vdev = vdev_find(guid);
2029         /* Has this vdev already been inited? */
2030         if (vdev && vdev->v_phys_read) {
2031                 free(nvlist);
2032                 return (EIO);
2033         }
2034
2035         rc = vdev_init_from_label(spa, nvlist);
2036         free(nvlist);
2037         if (rc != 0)
2038                 return (rc);
2039
2040         /*
2041          * We should already have created an incomplete vdev for this
2042          * vdev. Find it and initialise it with our read proc.
2043          */
2044         vdev = vdev_find(guid);
2045         if (vdev != NULL) {
2046                 vdev->v_phys_read = _read;
2047                 vdev->v_read_priv = read_priv;
2048                 vdev->v_psize = vtmp.v_psize;
2049                 /*
2050                  * If no other state is set, mark vdev healthy.
2051                  */
2052                 if (vdev->v_state == VDEV_STATE_UNKNOWN)
2053                         vdev->v_state = VDEV_STATE_HEALTHY;
2054         } else {
2055                 printf("ZFS: inconsistent nvlist contents\n");
2056                 return (EIO);
2057         }
2058
2059         if (vdev->v_islog)
2060                 spa->spa_with_log = vdev->v_islog;
2061
2062         /*
2063          * Re-evaluate top-level vdev state.
2064          */
2065         vdev_set_state(vdev->v_top);
2066
2067         /*
2068          * Ok, we are happy with the pool so far. Lets find
2069          * the best uberblock and then we can actually access
2070          * the contents of the pool.
2071          */
2072         vdev_uberblock_load(vdev, &spa->spa_uberblock);
2073
2074         if (spap != NULL)
2075                 *spap = spa;
2076         return (0);
2077 }
2078
2079 static int
2080 ilog2(int n)
2081 {
2082         int v;
2083
2084         for (v = 0; v < 32; v++)
2085                 if (n == (1 << v))
2086                         return (v);
2087         return (-1);
2088 }
2089
2090 static int
2091 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2092 {
2093         blkptr_t gbh_bp;
2094         zio_gbh_phys_t zio_gb;
2095         char *pbuf;
2096         int i;
2097
2098         /* Artificial BP for gang block header. */
2099         gbh_bp = *bp;
2100         BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2101         BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2102         BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2103         BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2104         for (i = 0; i < SPA_DVAS_PER_BP; i++)
2105                 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2106
2107         /* Read gang header block using the artificial BP. */
2108         if (zio_read(spa, &gbh_bp, &zio_gb))
2109                 return (EIO);
2110
2111         pbuf = buf;
2112         for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2113                 blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2114
2115                 if (BP_IS_HOLE(gbp))
2116                         continue;
2117                 if (zio_read(spa, gbp, pbuf))
2118                         return (EIO);
2119                 pbuf += BP_GET_PSIZE(gbp);
2120         }
2121
2122         if (zio_checksum_verify(spa, bp, buf))
2123                 return (EIO);
2124         return (0);
2125 }
2126
2127 static int
2128 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2129 {
2130         int cpfunc = BP_GET_COMPRESS(bp);
2131         uint64_t align, size;
2132         void *pbuf;
2133         int i, error;
2134
2135         /*
2136          * Process data embedded in block pointer
2137          */
2138         if (BP_IS_EMBEDDED(bp)) {
2139                 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2140
2141                 size = BPE_GET_PSIZE(bp);
2142                 ASSERT(size <= BPE_PAYLOAD_SIZE);
2143
2144                 if (cpfunc != ZIO_COMPRESS_OFF)
2145                         pbuf = malloc(size);
2146                 else
2147                         pbuf = buf;
2148
2149                 if (pbuf == NULL)
2150                         return (ENOMEM);
2151
2152                 decode_embedded_bp_compressed(bp, pbuf);
2153                 error = 0;
2154
2155                 if (cpfunc != ZIO_COMPRESS_OFF) {
2156                         error = zio_decompress_data(cpfunc, pbuf,
2157                             size, buf, BP_GET_LSIZE(bp));
2158                         free(pbuf);
2159                 }
2160                 if (error != 0)
2161                         printf("ZFS: i/o error - unable to decompress "
2162                             "block pointer data, error %d\n", error);
2163                 return (error);
2164         }
2165
2166         error = EIO;
2167
2168         for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2169                 const dva_t *dva = &bp->blk_dva[i];
2170                 vdev_t *vdev;
2171                 vdev_list_t *vlist;
2172                 uint64_t vdevid;
2173                 off_t offset;
2174
2175                 if (!dva->dva_word[0] && !dva->dva_word[1])
2176                         continue;
2177
2178                 vdevid = DVA_GET_VDEV(dva);
2179                 offset = DVA_GET_OFFSET(dva);
2180                 vlist = &spa->spa_root_vdev->v_children;
2181                 STAILQ_FOREACH(vdev, vlist, v_childlink) {
2182                         if (vdev->v_id == vdevid)
2183                                 break;
2184                 }
2185                 if (!vdev || !vdev->v_read)
2186                         continue;
2187
2188                 size = BP_GET_PSIZE(bp);
2189                 if (vdev->v_read == vdev_raidz_read) {
2190                         align = 1ULL << vdev->v_ashift;
2191                         if (P2PHASE(size, align) != 0)
2192                                 size = P2ROUNDUP(size, align);
2193                 }
2194                 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2195                         pbuf = malloc(size);
2196                 else
2197                         pbuf = buf;
2198
2199                 if (pbuf == NULL) {
2200                         error = ENOMEM;
2201                         break;
2202                 }
2203
2204                 if (DVA_GET_GANG(dva))
2205                         error = zio_read_gang(spa, bp, pbuf);
2206                 else
2207                         error = vdev->v_read(vdev, bp, pbuf, offset, size);
2208                 if (error == 0) {
2209                         if (cpfunc != ZIO_COMPRESS_OFF)
2210                                 error = zio_decompress_data(cpfunc, pbuf,
2211                                     BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2212                         else if (size != BP_GET_PSIZE(bp))
2213                                 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2214                 }
2215                 if (buf != pbuf)
2216                         free(pbuf);
2217                 if (error == 0)
2218                         break;
2219         }
2220         if (error != 0)
2221                 printf("ZFS: i/o error - all block copies unavailable\n");
2222
2223         return (error);
2224 }
2225
2226 static int
2227 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2228     void *buf, size_t buflen)
2229 {
2230         int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2231         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2232         int nlevels = dnode->dn_nlevels;
2233         int i, rc;
2234
2235         if (bsize > SPA_MAXBLOCKSIZE) {
2236                 printf("ZFS: I/O error - blocks larger than %llu are not "
2237                     "supported\n", SPA_MAXBLOCKSIZE);
2238                 return (EIO);
2239         }
2240
2241         /*
2242          * Note: bsize may not be a power of two here so we need to do an
2243          * actual divide rather than a bitshift.
2244          */
2245         while (buflen > 0) {
2246                 uint64_t bn = offset / bsize;
2247                 int boff = offset % bsize;
2248                 int ibn;
2249                 const blkptr_t *indbp;
2250                 blkptr_t bp;
2251
2252                 if (bn > dnode->dn_maxblkid)
2253                         return (EIO);
2254
2255                 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2256                         goto cached;
2257
2258                 indbp = dnode->dn_blkptr;
2259                 for (i = 0; i < nlevels; i++) {
2260                         /*
2261                          * Copy the bp from the indirect array so that
2262                          * we can re-use the scratch buffer for multi-level
2263                          * objects.
2264                          */
2265                         ibn = bn >> ((nlevels - i - 1) * ibshift);
2266                         ibn &= ((1 << ibshift) - 1);
2267                         bp = indbp[ibn];
2268                         if (BP_IS_HOLE(&bp)) {
2269                                 memset(dnode_cache_buf, 0, bsize);
2270                                 break;
2271                         }
2272                         rc = zio_read(spa, &bp, dnode_cache_buf);
2273                         if (rc)
2274                                 return (rc);
2275                         indbp = (const blkptr_t *) dnode_cache_buf;
2276                 }
2277                 dnode_cache_obj = dnode;
2278                 dnode_cache_bn = bn;
2279         cached:
2280
2281                 /*
2282                  * The buffer contains our data block. Copy what we
2283                  * need from it and loop.
2284                  */
2285                 i = bsize - boff;
2286                 if (i > buflen) i = buflen;
2287                 memcpy(buf, &dnode_cache_buf[boff], i);
2288                 buf = ((char *)buf) + i;
2289                 offset += i;
2290                 buflen -= i;
2291         }
2292
2293         return (0);
2294 }
2295
2296 /*
2297  * Lookup a value in a microzap directory.
2298  */
2299 static int
2300 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2301     uint64_t *value)
2302 {
2303         const mzap_ent_phys_t *mze;
2304         int chunks, i;
2305
2306         /*
2307          * Microzap objects use exactly one block. Read the whole
2308          * thing.
2309          */
2310         chunks = size / MZAP_ENT_LEN - 1;
2311         for (i = 0; i < chunks; i++) {
2312                 mze = &mz->mz_chunk[i];
2313                 if (strcmp(mze->mze_name, name) == 0) {
2314                         *value = mze->mze_value;
2315                         return (0);
2316                 }
2317         }
2318
2319         return (ENOENT);
2320 }
2321
2322 /*
2323  * Compare a name with a zap leaf entry. Return non-zero if the name
2324  * matches.
2325  */
2326 static int
2327 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2328     const char *name)
2329 {
2330         size_t namelen;
2331         const zap_leaf_chunk_t *nc;
2332         const char *p;
2333
2334         namelen = zc->l_entry.le_name_numints;
2335
2336         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2337         p = name;
2338         while (namelen > 0) {
2339                 size_t len;
2340
2341                 len = namelen;
2342                 if (len > ZAP_LEAF_ARRAY_BYTES)
2343                         len = ZAP_LEAF_ARRAY_BYTES;
2344                 if (memcmp(p, nc->l_array.la_array, len))
2345                         return (0);
2346                 p += len;
2347                 namelen -= len;
2348                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2349         }
2350
2351         return (1);
2352 }
2353
2354 /*
2355  * Extract a uint64_t value from a zap leaf entry.
2356  */
2357 static uint64_t
2358 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2359 {
2360         const zap_leaf_chunk_t *vc;
2361         int i;
2362         uint64_t value;
2363         const uint8_t *p;
2364
2365         vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2366         for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2367                 value = (value << 8) | p[i];
2368         }
2369
2370         return (value);
2371 }
2372
2373 static void
2374 stv(int len, void *addr, uint64_t value)
2375 {
2376         switch (len) {
2377         case 1:
2378                 *(uint8_t *)addr = value;
2379                 return;
2380         case 2:
2381                 *(uint16_t *)addr = value;
2382                 return;
2383         case 4:
2384                 *(uint32_t *)addr = value;
2385                 return;
2386         case 8:
2387                 *(uint64_t *)addr = value;
2388                 return;
2389         }
2390 }
2391
2392 /*
2393  * Extract a array from a zap leaf entry.
2394  */
2395 static void
2396 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2397     uint64_t integer_size, uint64_t num_integers, void *buf)
2398 {
2399         uint64_t array_int_len = zc->l_entry.le_value_intlen;
2400         uint64_t value = 0;
2401         uint64_t *u64 = buf;
2402         char *p = buf;
2403         int len = MIN(zc->l_entry.le_value_numints, num_integers);
2404         int chunk = zc->l_entry.le_value_chunk;
2405         int byten = 0;
2406
2407         if (integer_size == 8 && len == 1) {
2408                 *u64 = fzap_leaf_value(zl, zc);
2409                 return;
2410         }
2411
2412         while (len > 0) {
2413                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2414                 int i;
2415
2416                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2417                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2418                         value = (value << 8) | la->la_array[i];
2419                         byten++;
2420                         if (byten == array_int_len) {
2421                                 stv(integer_size, p, value);
2422                                 byten = 0;
2423                                 len--;
2424                                 if (len == 0)
2425                                         return;
2426                                 p += integer_size;
2427                         }
2428                 }
2429                 chunk = la->la_next;
2430         }
2431 }
2432
2433 static int
2434 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2435 {
2436
2437         switch (integer_size) {
2438         case 1:
2439         case 2:
2440         case 4:
2441         case 8:
2442                 break;
2443         default:
2444                 return (EINVAL);
2445         }
2446
2447         if (integer_size * num_integers > ZAP_MAXVALUELEN)
2448                 return (E2BIG);
2449
2450         return (0);
2451 }
2452
2453 static void
2454 zap_leaf_free(zap_leaf_t *leaf)
2455 {
2456         free(leaf->l_phys);
2457         free(leaf);
2458 }
2459
2460 static int
2461 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2462 {
2463         int bs = FZAP_BLOCK_SHIFT(zap);
2464         int err;
2465
2466         *lp = malloc(sizeof(**lp));
2467         if (*lp == NULL)
2468                 return (ENOMEM);
2469
2470         (*lp)->l_bs = bs;
2471         (*lp)->l_phys = malloc(1 << bs);
2472
2473         if ((*lp)->l_phys == NULL) {
2474                 free(*lp);
2475                 return (ENOMEM);
2476         }
2477         err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2478             1 << bs);
2479         if (err != 0) {
2480                 zap_leaf_free(*lp);
2481         }
2482         return (err);
2483 }
2484
2485 static int
2486 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2487     uint64_t *valp)
2488 {
2489         int bs = FZAP_BLOCK_SHIFT(zap);
2490         uint64_t blk = idx >> (bs - 3);
2491         uint64_t off = idx & ((1 << (bs - 3)) - 1);
2492         uint64_t *buf;
2493         int rc;
2494
2495         buf = malloc(1 << zap->zap_block_shift);
2496         if (buf == NULL)
2497                 return (ENOMEM);
2498         rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2499             buf, 1 << zap->zap_block_shift);
2500         if (rc == 0)
2501                 *valp = buf[off];
2502         free(buf);
2503         return (rc);
2504 }
2505
2506 static int
2507 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2508 {
2509         if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2510                 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2511                 return (0);
2512         } else {
2513                 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2514                     idx, valp));
2515         }
2516 }
2517
2518 #define ZAP_HASH_IDX(hash, n)   (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2519 static int
2520 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2521 {
2522         uint64_t idx, blk;
2523         int err;
2524
2525         idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2526         err = zap_idx_to_blk(zap, idx, &blk);
2527         if (err != 0)
2528                 return (err);
2529         return (zap_get_leaf_byblk(zap, blk, lp));
2530 }
2531
2532 #define CHAIN_END       0xffff  /* end of the chunk chain */
2533 #define LEAF_HASH(l, h) \
2534         ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2535         ((h) >> \
2536         (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2537 #define LEAF_HASH_ENTPTR(l, h)  (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2538
2539 static int
2540 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2541     uint64_t integer_size, uint64_t num_integers, void *value)
2542 {
2543         int rc;
2544         uint16_t *chunkp;
2545         struct zap_leaf_entry *le;
2546
2547         /*
2548          * Make sure this chunk matches our hash.
2549          */
2550         if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2551             zl->l_phys->l_hdr.lh_prefix !=
2552             hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2553                 return (EIO);
2554
2555         rc = ENOENT;
2556         for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2557             *chunkp != CHAIN_END; chunkp = &le->le_next) {
2558                 zap_leaf_chunk_t *zc;
2559                 uint16_t chunk = *chunkp;
2560
2561                 le = ZAP_LEAF_ENTRY(zl, chunk);
2562                 if (le->le_hash != hash)
2563                         continue;
2564                 zc = &ZAP_LEAF_CHUNK(zl, chunk);
2565                 if (fzap_name_equal(zl, zc, name)) {
2566                         if (zc->l_entry.le_value_intlen > integer_size) {
2567                                 rc = EINVAL;
2568                         } else {
2569                                 fzap_leaf_array(zl, zc, integer_size,
2570                                     num_integers, value);
2571                                 rc = 0;
2572                         }
2573                         break;
2574                 }
2575         }
2576         return (rc);
2577 }
2578
2579 /*
2580  * Lookup a value in a fatzap directory.
2581  */
2582 static int
2583 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2584     const char *name, uint64_t integer_size, uint64_t num_integers,
2585     void *value)
2586 {
2587         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2588         fat_zap_t z;
2589         zap_leaf_t *zl;
2590         uint64_t hash;
2591         int rc;
2592
2593         if (zh->zap_magic != ZAP_MAGIC)
2594                 return (EIO);
2595
2596         if ((rc = fzap_check_size(integer_size, num_integers)) != 0)
2597                 return (rc);
2598
2599         z.zap_block_shift = ilog2(bsize);
2600         z.zap_phys = zh;
2601         z.zap_spa = spa;
2602         z.zap_dnode = dnode;
2603
2604         hash = zap_hash(zh->zap_salt, name);
2605         rc = zap_deref_leaf(&z, hash, &zl);
2606         if (rc != 0)
2607                 return (rc);
2608
2609         rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2610
2611         zap_leaf_free(zl);
2612         return (rc);
2613 }
2614
2615 /*
2616  * Lookup a name in a zap object and return its value as a uint64_t.
2617  */
2618 static int
2619 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2620     uint64_t integer_size, uint64_t num_integers, void *value)
2621 {
2622         int rc;
2623         zap_phys_t *zap;
2624         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2625
2626         zap = malloc(size);
2627         if (zap == NULL)
2628                 return (ENOMEM);
2629
2630         rc = dnode_read(spa, dnode, 0, zap, size);
2631         if (rc)
2632                 goto done;
2633
2634         switch (zap->zap_block_type) {
2635         case ZBT_MICRO:
2636                 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2637                 break;
2638         case ZBT_HEADER:
2639                 rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2640                     num_integers, value);
2641                 break;
2642         default:
2643                 printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2644                     zap->zap_block_type);
2645                 rc = EIO;
2646         }
2647 done:
2648         free(zap);
2649         return (rc);
2650 }
2651
2652 /*
2653  * List a microzap directory.
2654  */
2655 static int
2656 mzap_list(const mzap_phys_t *mz, size_t size,
2657     int (*callback)(const char *, uint64_t))
2658 {
2659         const mzap_ent_phys_t *mze;
2660         int chunks, i, rc;
2661
2662         /*
2663          * Microzap objects use exactly one block. Read the whole
2664          * thing.
2665          */
2666         rc = 0;
2667         chunks = size / MZAP_ENT_LEN - 1;
2668         for (i = 0; i < chunks; i++) {
2669                 mze = &mz->mz_chunk[i];
2670                 if (mze->mze_name[0]) {
2671                         rc = callback(mze->mze_name, mze->mze_value);
2672                         if (rc != 0)
2673                                 break;
2674                 }
2675         }
2676
2677         return (rc);
2678 }
2679
2680 /*
2681  * List a fatzap directory.
2682  */
2683 static int
2684 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2685     int (*callback)(const char *, uint64_t))
2686 {
2687         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2688         fat_zap_t z;
2689         uint64_t i;
2690         int j, rc;
2691
2692         if (zh->zap_magic != ZAP_MAGIC)
2693                 return (EIO);
2694
2695         z.zap_block_shift = ilog2(bsize);
2696         z.zap_phys = zh;
2697
2698         /*
2699          * This assumes that the leaf blocks start at block 1. The
2700          * documentation isn't exactly clear on this.
2701          */
2702         zap_leaf_t zl;
2703         zl.l_bs = z.zap_block_shift;
2704         zl.l_phys = malloc(bsize);
2705         if (zl.l_phys == NULL)
2706                 return (ENOMEM);
2707
2708         for (i = 0; i < zh->zap_num_leafs; i++) {
2709                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2710                 char name[256], *p;
2711                 uint64_t value;
2712
2713                 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2714                         free(zl.l_phys);
2715                         return (EIO);
2716                 }
2717
2718                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2719                         zap_leaf_chunk_t *zc, *nc;
2720                         int namelen;
2721
2722                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2723                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2724                                 continue;
2725                         namelen = zc->l_entry.le_name_numints;
2726                         if (namelen > sizeof(name))
2727                                 namelen = sizeof(name);
2728
2729                         /*
2730                          * Paste the name back together.
2731                          */
2732                         nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2733                         p = name;
2734                         while (namelen > 0) {
2735                                 int len;
2736                                 len = namelen;
2737                                 if (len > ZAP_LEAF_ARRAY_BYTES)
2738                                         len = ZAP_LEAF_ARRAY_BYTES;
2739                                 memcpy(p, nc->l_array.la_array, len);
2740                                 p += len;
2741                                 namelen -= len;
2742                                 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2743                         }
2744
2745                         /*
2746                          * Assume the first eight bytes of the value are
2747                          * a uint64_t.
2748                          */
2749                         value = fzap_leaf_value(&zl, zc);
2750
2751                         /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2752                         rc = callback((const char *)name, value);
2753                         if (rc != 0) {
2754                                 free(zl.l_phys);
2755                                 return (rc);
2756                         }
2757                 }
2758         }
2759
2760         free(zl.l_phys);
2761         return (0);
2762 }
2763
2764 static int zfs_printf(const char *name, uint64_t value __unused)
2765 {
2766
2767         printf("%s\n", name);
2768
2769         return (0);
2770 }
2771
2772 /*
2773  * List a zap directory.
2774  */
2775 static int
2776 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2777 {
2778         zap_phys_t *zap;
2779         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2780         int rc;
2781
2782         zap = malloc(size);
2783         if (zap == NULL)
2784                 return (ENOMEM);
2785
2786         rc = dnode_read(spa, dnode, 0, zap, size);
2787         if (rc == 0) {
2788                 if (zap->zap_block_type == ZBT_MICRO)
2789                         rc = mzap_list((const mzap_phys_t *)zap, size,
2790                             zfs_printf);
2791                 else
2792                         rc = fzap_list(spa, dnode, zap, zfs_printf);
2793         }
2794         free(zap);
2795         return (rc);
2796 }
2797
2798 static int
2799 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2800     dnode_phys_t *dnode)
2801 {
2802         off_t offset;
2803
2804         offset = objnum * sizeof(dnode_phys_t);
2805         return dnode_read(spa, &os->os_meta_dnode, offset,
2806                 dnode, sizeof(dnode_phys_t));
2807 }
2808
2809 /*
2810  * Lookup a name in a microzap directory.
2811  */
2812 static int
2813 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
2814 {
2815         const mzap_ent_phys_t *mze;
2816         int chunks, i;
2817
2818         /*
2819          * Microzap objects use exactly one block. Read the whole
2820          * thing.
2821          */
2822         chunks = size / MZAP_ENT_LEN - 1;
2823         for (i = 0; i < chunks; i++) {
2824                 mze = &mz->mz_chunk[i];
2825                 if (value == mze->mze_value) {
2826                         strcpy(name, mze->mze_name);
2827                         return (0);
2828                 }
2829         }
2830
2831         return (ENOENT);
2832 }
2833
2834 static void
2835 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2836 {
2837         size_t namelen;
2838         const zap_leaf_chunk_t *nc;
2839         char *p;
2840
2841         namelen = zc->l_entry.le_name_numints;
2842
2843         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2844         p = name;
2845         while (namelen > 0) {
2846                 size_t len;
2847                 len = namelen;
2848                 if (len > ZAP_LEAF_ARRAY_BYTES)
2849                         len = ZAP_LEAF_ARRAY_BYTES;
2850                 memcpy(p, nc->l_array.la_array, len);
2851                 p += len;
2852                 namelen -= len;
2853                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2854         }
2855
2856         *p = '\0';
2857 }
2858
2859 static int
2860 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2861     char *name, uint64_t value)
2862 {
2863         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2864         fat_zap_t z;
2865         uint64_t i;
2866         int j, rc;
2867
2868         if (zh->zap_magic != ZAP_MAGIC)
2869                 return (EIO);
2870
2871         z.zap_block_shift = ilog2(bsize);
2872         z.zap_phys = zh;
2873
2874         /*
2875          * This assumes that the leaf blocks start at block 1. The
2876          * documentation isn't exactly clear on this.
2877          */
2878         zap_leaf_t zl;
2879         zl.l_bs = z.zap_block_shift;
2880         zl.l_phys = malloc(bsize);
2881         if (zl.l_phys == NULL)
2882                 return (ENOMEM);
2883
2884         for (i = 0; i < zh->zap_num_leafs; i++) {
2885                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2886
2887                 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
2888                 if (rc != 0)
2889                         goto done;
2890
2891                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2892                         zap_leaf_chunk_t *zc;
2893
2894                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2895                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2896                                 continue;
2897                         if (zc->l_entry.le_value_intlen != 8 ||
2898                             zc->l_entry.le_value_numints != 1)
2899                                 continue;
2900
2901                         if (fzap_leaf_value(&zl, zc) == value) {
2902                                 fzap_name_copy(&zl, zc, name);
2903                                 goto done;
2904                         }
2905                 }
2906         }
2907
2908         rc = ENOENT;
2909 done:
2910         free(zl.l_phys);
2911         return (rc);
2912 }
2913
2914 static int
2915 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
2916     uint64_t value)
2917 {
2918         zap_phys_t *zap;
2919         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2920         int rc;
2921
2922         zap = malloc(size);
2923         if (zap == NULL)
2924                 return (ENOMEM);
2925
2926         rc = dnode_read(spa, dnode, 0, zap, size);
2927         if (rc == 0) {
2928                 if (zap->zap_block_type == ZBT_MICRO)
2929                         rc = mzap_rlookup((const mzap_phys_t *)zap, size,
2930                             name, value);
2931                 else
2932                         rc = fzap_rlookup(spa, dnode, zap, name, value);
2933         }
2934         free(zap);
2935         return (rc);
2936 }
2937
2938 static int
2939 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
2940 {
2941         char name[256];
2942         char component[256];
2943         uint64_t dir_obj, parent_obj, child_dir_zapobj;
2944         dnode_phys_t child_dir_zap, dataset, dir, parent;
2945         dsl_dir_phys_t *dd;
2946         dsl_dataset_phys_t *ds;
2947         char *p;
2948         int len;
2949
2950         p = &name[sizeof(name) - 1];
2951         *p = '\0';
2952
2953         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2954                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2955                 return (EIO);
2956         }
2957         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2958         dir_obj = ds->ds_dir_obj;
2959
2960         for (;;) {
2961                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
2962                         return (EIO);
2963                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2964
2965                 /* Actual loop condition. */
2966                 parent_obj = dd->dd_parent_obj;
2967                 if (parent_obj == 0)
2968                         break;
2969
2970                 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj,
2971                     &parent) != 0)
2972                         return (EIO);
2973                 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
2974                 child_dir_zapobj = dd->dd_child_dir_zapobj;
2975                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
2976                     &child_dir_zap) != 0)
2977                         return (EIO);
2978                 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
2979                         return (EIO);
2980
2981                 len = strlen(component);
2982                 p -= len;
2983                 memcpy(p, component, len);
2984                 --p;
2985                 *p = '/';
2986
2987                 /* Actual loop iteration. */
2988                 dir_obj = parent_obj;
2989         }
2990
2991         if (*p != '\0')
2992                 ++p;
2993         strcpy(result, p);
2994
2995         return (0);
2996 }
2997
2998 static int
2999 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3000 {
3001         char element[256];
3002         uint64_t dir_obj, child_dir_zapobj;
3003         dnode_phys_t child_dir_zap, dir;
3004         dsl_dir_phys_t *dd;
3005         const char *p, *q;
3006
3007         if (objset_get_dnode(spa, &spa->spa_mos,
3008             DMU_POOL_DIRECTORY_OBJECT, &dir))
3009                 return (EIO);
3010         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3011             1, &dir_obj))
3012                 return (EIO);
3013
3014         p = name;
3015         for (;;) {
3016                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
3017                         return (EIO);
3018                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3019
3020                 while (*p == '/')
3021                         p++;
3022                 /* Actual loop condition #1. */
3023                 if (*p == '\0')
3024                         break;
3025
3026                 q = strchr(p, '/');
3027                 if (q) {
3028                         memcpy(element, p, q - p);
3029                         element[q - p] = '\0';
3030                         p = q + 1;
3031                 } else {
3032                         strcpy(element, p);
3033                         p += strlen(p);
3034                 }
3035
3036                 child_dir_zapobj = dd->dd_child_dir_zapobj;
3037                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3038                     &child_dir_zap) != 0)
3039                         return (EIO);
3040
3041                 /* Actual loop condition #2. */
3042                 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3043                     1, &dir_obj) != 0)
3044                         return (ENOENT);
3045         }
3046
3047         *objnum = dd->dd_head_dataset_obj;
3048         return (0);
3049 }
3050
3051 #ifndef BOOT2
3052 static int
3053 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3054 {
3055         uint64_t dir_obj, child_dir_zapobj;
3056         dnode_phys_t child_dir_zap, dir, dataset;
3057         dsl_dataset_phys_t *ds;
3058         dsl_dir_phys_t *dd;
3059
3060         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3061                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3062                 return (EIO);
3063         }
3064         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3065         dir_obj = ds->ds_dir_obj;
3066
3067         if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
3068                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3069                 return (EIO);
3070         }
3071         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3072
3073         child_dir_zapobj = dd->dd_child_dir_zapobj;
3074         if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3075             &child_dir_zap) != 0) {
3076                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3077                 return (EIO);
3078         }
3079
3080         return (zap_list(spa, &child_dir_zap) != 0);
3081 }
3082
3083 int
3084 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3085     int (*callback)(const char *, uint64_t))
3086 {
3087         uint64_t dir_obj, child_dir_zapobj;
3088         dnode_phys_t child_dir_zap, dir, dataset;
3089         dsl_dataset_phys_t *ds;
3090         dsl_dir_phys_t *dd;
3091         zap_phys_t *zap;
3092         size_t size;
3093         int err;
3094
3095         err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
3096         if (err != 0) {
3097                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3098                 return (err);
3099         }
3100         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3101         dir_obj = ds->ds_dir_obj;
3102
3103         err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
3104         if (err != 0) {
3105                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3106                 return (err);
3107         }
3108         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3109
3110         child_dir_zapobj = dd->dd_child_dir_zapobj;
3111         err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3112             &child_dir_zap);
3113         if (err != 0) {
3114                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3115                 return (err);
3116         }
3117
3118         size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3119         zap = malloc(size);
3120         if (zap != NULL) {
3121                 err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3122                 if (err != 0)
3123                         goto done;
3124
3125                 if (zap->zap_block_type == ZBT_MICRO)
3126                         err = mzap_list((const mzap_phys_t *)zap, size,
3127                             callback);
3128                 else
3129                         err = fzap_list(spa, &child_dir_zap, zap, callback);
3130         } else {
3131                 err = ENOMEM;
3132         }
3133 done:
3134         free(zap);
3135         return (err);
3136 }
3137 #endif
3138
3139 /*
3140  * Find the object set given the object number of its dataset object
3141  * and return its details in *objset
3142  */
3143 static int
3144 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3145 {
3146         dnode_phys_t dataset;
3147         dsl_dataset_phys_t *ds;
3148
3149         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3150                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3151                 return (EIO);
3152         }
3153
3154         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3155         if (zio_read(spa, &ds->ds_bp, objset)) {
3156                 printf("ZFS: can't read object set for dataset %ju\n",
3157                     (uintmax_t)objnum);
3158                 return (EIO);
3159         }
3160
3161         return (0);
3162 }
3163
3164 /*
3165  * Find the object set pointed to by the BOOTFS property or the root
3166  * dataset if there is none and return its details in *objset
3167  */
3168 static int
3169 zfs_get_root(const spa_t *spa, uint64_t *objid)
3170 {
3171         dnode_phys_t dir, propdir;
3172         uint64_t props, bootfs, root;
3173
3174         *objid = 0;
3175
3176         /*
3177          * Start with the MOS directory object.
3178          */
3179         if (objset_get_dnode(spa, &spa->spa_mos,
3180             DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3181                 printf("ZFS: can't read MOS object directory\n");
3182                 return (EIO);
3183         }
3184
3185         /*
3186          * Lookup the pool_props and see if we can find a bootfs.
3187          */
3188         if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3189             sizeof(props), 1, &props) == 0 &&
3190             objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 &&
3191             zap_lookup(spa, &propdir, "bootfs",
3192             sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3193                 *objid = bootfs;
3194                 return (0);
3195         }
3196         /*
3197          * Lookup the root dataset directory
3198          */
3199         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3200             sizeof(root), 1, &root) ||
3201             objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
3202                 printf("ZFS: can't find root dsl_dir\n");
3203                 return (EIO);
3204         }
3205
3206         /*
3207          * Use the information from the dataset directory's bonus buffer
3208          * to find the dataset object and from that the object set itself.
3209          */
3210         dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3211         *objid = dd->dd_head_dataset_obj;
3212         return (0);
3213 }
3214
3215 static int
3216 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3217 {
3218
3219         mount->spa = spa;
3220
3221         /*
3222          * Find the root object set if not explicitly provided
3223          */
3224         if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3225                 printf("ZFS: can't find root filesystem\n");
3226                 return (EIO);
3227         }
3228
3229         if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3230                 printf("ZFS: can't open root filesystem\n");
3231                 return (EIO);
3232         }
3233
3234         mount->rootobj = rootobj;
3235
3236         return (0);
3237 }
3238
3239 /*
3240  * callback function for feature name checks.
3241  */
3242 static int
3243 check_feature(const char *name, uint64_t value)
3244 {
3245         int i;
3246
3247         if (value == 0)
3248                 return (0);
3249         if (name[0] == '\0')
3250                 return (0);
3251
3252         for (i = 0; features_for_read[i] != NULL; i++) {
3253                 if (strcmp(name, features_for_read[i]) == 0)
3254                         return (0);
3255         }
3256         printf("ZFS: unsupported feature: %s\n", name);
3257         return (EIO);
3258 }
3259
3260 /*
3261  * Checks whether the MOS features that are active are supported.
3262  */
3263 static int
3264 check_mos_features(const spa_t *spa)
3265 {
3266         dnode_phys_t dir;
3267         zap_phys_t *zap;
3268         uint64_t objnum;
3269         size_t size;
3270         int rc;
3271
3272         if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3273             &dir)) != 0)
3274                 return (rc);
3275         if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3276             sizeof (objnum), 1, &objnum)) != 0) {
3277                 /*
3278                  * It is older pool without features. As we have already
3279                  * tested the label, just return without raising the error.
3280                  */
3281                 return (0);
3282         }
3283
3284         if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
3285                 return (rc);
3286
3287         if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3288                 return (EIO);
3289
3290         size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3291         zap = malloc(size);
3292         if (zap == NULL)
3293                 return (ENOMEM);
3294
3295         if (dnode_read(spa, &dir, 0, zap, size)) {
3296                 free(zap);
3297                 return (EIO);
3298         }
3299
3300         if (zap->zap_block_type == ZBT_MICRO)
3301                 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3302         else
3303                 rc = fzap_list(spa, &dir, zap, check_feature);
3304
3305         free(zap);
3306         return (rc);
3307 }
3308
3309 static int
3310 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value)
3311 {
3312         dnode_phys_t dir;
3313         size_t size;
3314         int rc;
3315         unsigned char *nv;
3316
3317         *value = NULL;
3318         if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
3319                 return (rc);
3320         if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3321             dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3322                 return (EIO);
3323         }
3324
3325         if (dir.dn_bonuslen != sizeof (uint64_t))
3326                 return (EIO);
3327
3328         size = *(uint64_t *)DN_BONUS(&dir);
3329         nv = malloc(size);
3330         if (nv == NULL)
3331                 return (ENOMEM);
3332
3333         rc = dnode_read(spa, &dir, 0, nv, size);
3334         if (rc != 0) {
3335                 free(nv);
3336                 nv = NULL;
3337                 return (rc);
3338         }
3339         *value = nv;
3340         return (rc);
3341 }
3342
3343 static int
3344 zfs_spa_init(spa_t *spa)
3345 {
3346         dnode_phys_t dir;
3347         uint64_t config_object;
3348         unsigned char *nvlist;
3349         int rc;
3350
3351         if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
3352                 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3353                 return (EIO);
3354         }
3355         if (spa->spa_mos.os_type != DMU_OST_META) {
3356                 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3357                 return (EIO);
3358         }
3359
3360         if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
3361             &dir)) {
3362                 printf("ZFS: failed to read pool %s directory object\n",
3363                     spa->spa_name);
3364                 return (EIO);
3365         }
3366         /* this is allowed to fail, older pools do not have salt */
3367         rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3368             sizeof (spa->spa_cksum_salt.zcs_bytes),
3369             spa->spa_cksum_salt.zcs_bytes);
3370
3371         rc = check_mos_features(spa);
3372         if (rc != 0) {
3373                 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3374                 return (rc);
3375         }
3376
3377         rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3378             sizeof (config_object), 1, &config_object);
3379         if (rc != 0) {
3380                 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3381                 return (EIO);
3382         }
3383         rc = load_nvlist(spa, config_object, &nvlist);
3384         if (rc != 0)
3385                 return (rc);
3386
3387         /*
3388          * Update vdevs from MOS config. Note, we do skip encoding bytes
3389          * here. See also vdev_label_read_config().
3390          */
3391         rc = vdev_init_from_nvlist(spa, nvlist + 4);
3392         free(nvlist);
3393         return (rc);
3394 }
3395
3396 static int
3397 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3398 {
3399
3400         if (dn->dn_bonustype != DMU_OT_SA) {
3401                 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3402
3403                 sb->st_mode = zp->zp_mode;
3404                 sb->st_uid = zp->zp_uid;
3405                 sb->st_gid = zp->zp_gid;
3406                 sb->st_size = zp->zp_size;
3407         } else {
3408                 sa_hdr_phys_t *sahdrp;
3409                 int hdrsize;
3410                 size_t size = 0;
3411                 void *buf = NULL;
3412
3413                 if (dn->dn_bonuslen != 0)
3414                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3415                 else {
3416                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3417                                 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3418                                 int error;
3419
3420                                 size = BP_GET_LSIZE(bp);
3421                                 buf = malloc(size);
3422                                 if (buf == NULL)
3423                                         error = ENOMEM;
3424                                 else
3425                                         error = zio_read(spa, bp, buf);
3426
3427                                 if (error != 0) {
3428                                         free(buf);
3429                                         return (error);
3430                                 }
3431                                 sahdrp = buf;
3432                         } else {
3433                                 return (EIO);
3434                         }
3435                 }
3436                 hdrsize = SA_HDR_SIZE(sahdrp);
3437                 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3438                     SA_MODE_OFFSET);
3439                 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3440                     SA_UID_OFFSET);
3441                 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3442                     SA_GID_OFFSET);
3443                 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3444                     SA_SIZE_OFFSET);
3445                 free(buf);
3446         }
3447
3448         return (0);
3449 }
3450
3451 static int
3452 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3453 {
3454         int rc = 0;
3455
3456         if (dn->dn_bonustype == DMU_OT_SA) {
3457                 sa_hdr_phys_t *sahdrp = NULL;
3458                 size_t size = 0;
3459                 void *buf = NULL;
3460                 int hdrsize;
3461                 char *p;
3462
3463                 if (dn->dn_bonuslen != 0) {
3464                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3465                 } else {
3466                         blkptr_t *bp;
3467
3468                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3469                                 return (EIO);
3470                         bp = DN_SPILL_BLKPTR(dn);
3471
3472                         size = BP_GET_LSIZE(bp);
3473                         buf = malloc(size);
3474                         if (buf == NULL)
3475                                 rc = ENOMEM;
3476                         else
3477                                 rc = zio_read(spa, bp, buf);
3478                         if (rc != 0) {
3479                                 free(buf);
3480                                 return (rc);
3481                         }
3482                         sahdrp = buf;
3483                 }
3484                 hdrsize = SA_HDR_SIZE(sahdrp);
3485                 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3486                 memcpy(path, p, psize);
3487                 free(buf);
3488                 return (0);
3489         }
3490         /*
3491          * Second test is purely to silence bogus compiler
3492          * warning about accessing past the end of dn_bonus.
3493          */
3494         if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3495             sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3496                 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3497         } else {
3498                 rc = dnode_read(spa, dn, 0, path, psize);
3499         }
3500         return (rc);
3501 }
3502
3503 struct obj_list {
3504         uint64_t                objnum;
3505         STAILQ_ENTRY(obj_list)  entry;
3506 };
3507
3508 /*
3509  * Lookup a file and return its dnode.
3510  */
3511 static int
3512 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3513 {
3514         int rc;
3515         uint64_t objnum;
3516         const spa_t *spa;
3517         dnode_phys_t dn;
3518         const char *p, *q;
3519         char element[256];
3520         char path[1024];
3521         int symlinks_followed = 0;
3522         struct stat sb;
3523         struct obj_list *entry, *tentry;
3524         STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3525
3526         spa = mount->spa;
3527         if (mount->objset.os_type != DMU_OST_ZFS) {
3528                 printf("ZFS: unexpected object set type %ju\n",
3529                     (uintmax_t)mount->objset.os_type);
3530                 return (EIO);
3531         }
3532
3533         if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3534                 return (ENOMEM);
3535
3536         /*
3537          * Get the root directory dnode.
3538          */
3539         rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3540         if (rc) {
3541                 free(entry);
3542                 return (rc);
3543         }
3544
3545         rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3546         if (rc) {
3547                 free(entry);
3548                 return (rc);
3549         }
3550         entry->objnum = objnum;
3551         STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3552
3553         rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3554         if (rc != 0)
3555                 goto done;
3556
3557         p = upath;
3558         while (p && *p) {
3559                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3560                 if (rc != 0)
3561                         goto done;
3562
3563                 while (*p == '/')
3564                         p++;
3565                 if (*p == '\0')
3566                         break;
3567                 q = p;
3568                 while (*q != '\0' && *q != '/')
3569                         q++;
3570
3571                 /* skip dot */
3572                 if (p + 1 == q && p[0] == '.') {
3573                         p++;
3574                         continue;
3575                 }
3576                 /* double dot */
3577                 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3578                         p += 2;
3579                         if (STAILQ_FIRST(&on_cache) ==
3580                             STAILQ_LAST(&on_cache, obj_list, entry)) {
3581                                 rc = ENOENT;
3582                                 goto done;
3583                         }
3584                         entry = STAILQ_FIRST(&on_cache);
3585                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3586                         free(entry);
3587                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3588                         continue;
3589                 }
3590                 if (q - p + 1 > sizeof(element)) {
3591                         rc = ENAMETOOLONG;
3592                         goto done;
3593                 }
3594                 memcpy(element, p, q - p);
3595                 element[q - p] = 0;
3596                 p = q;
3597
3598                 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3599                         goto done;
3600                 if (!S_ISDIR(sb.st_mode)) {
3601                         rc = ENOTDIR;
3602                         goto done;
3603                 }
3604
3605                 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3606                 if (rc)
3607                         goto done;
3608                 objnum = ZFS_DIRENT_OBJ(objnum);
3609
3610                 if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3611                         rc = ENOMEM;
3612                         goto done;
3613                 }
3614                 entry->objnum = objnum;
3615                 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3616                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3617                 if (rc)
3618                         goto done;
3619
3620                 /*
3621                  * Check for symlink.
3622                  */
3623                 rc = zfs_dnode_stat(spa, &dn, &sb);
3624                 if (rc)
3625                         goto done;
3626                 if (S_ISLNK(sb.st_mode)) {
3627                         if (symlinks_followed > 10) {
3628                                 rc = EMLINK;
3629                                 goto done;
3630                         }
3631                         symlinks_followed++;
3632
3633                         /*
3634                          * Read the link value and copy the tail of our
3635                          * current path onto the end.
3636                          */
3637                         if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3638                                 rc = ENAMETOOLONG;
3639                                 goto done;
3640                         }
3641                         strcpy(&path[sb.st_size], p);
3642
3643                         rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3644                         if (rc != 0)
3645                                 goto done;
3646
3647                         /*
3648                          * Restart with the new path, starting either at
3649                          * the root or at the parent depending whether or
3650                          * not the link is relative.
3651                          */
3652                         p = path;
3653                         if (*p == '/') {
3654                                 while (STAILQ_FIRST(&on_cache) !=
3655                                     STAILQ_LAST(&on_cache, obj_list, entry)) {
3656                                         entry = STAILQ_FIRST(&on_cache);
3657                                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3658                                         free(entry);
3659                                 }
3660                         } else {
3661                                 entry = STAILQ_FIRST(&on_cache);
3662                                 STAILQ_REMOVE_HEAD(&on_cache, entry);
3663                                 free(entry);
3664                         }
3665                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3666                 }
3667         }
3668
3669         *dnode = dn;
3670 done:
3671         STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3672                 free(entry);
3673         return (rc);
3674 }