]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - stand/libsa/zfs/zfsimpl.c
loader: allow loader to accept zfs feature com.delphix:bookmark_written
[FreeBSD/FreeBSD.git] / stand / libsa / zfs / zfsimpl.c
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  *      Stand-alone ZFS file reader.
32  */
33
34 #include <stdbool.h>
35 #include <sys/endian.h>
36 #include <sys/stat.h>
37 #include <sys/stdint.h>
38 #include <sys/list.h>
39 #include <sys/zfs_bootenv.h>
40 #include <machine/_inttypes.h>
41
42 #include "zfsimpl.h"
43 #include "zfssubr.c"
44
45 #ifdef HAS_ZSTD_ZFS
46 extern int zstd_init(void);
47 #endif
48
49 struct zfsmount {
50         const spa_t     *spa;
51         objset_phys_t   objset;
52         uint64_t        rootobj;
53 };
54 static struct zfsmount zfsmount __unused;
55
56 /*
57  * The indirect_child_t represents the vdev that we will read from, when we
58  * need to read all copies of the data (e.g. for scrub or reconstruction).
59  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
60  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
61  * ic_vdev is a child of the mirror.
62  */
63 typedef struct indirect_child {
64         void *ic_data;
65         vdev_t *ic_vdev;
66 } indirect_child_t;
67
68 /*
69  * The indirect_split_t represents one mapped segment of an i/o to the
70  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
71  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
72  * For split blocks, there will be several of these.
73  */
74 typedef struct indirect_split {
75         list_node_t is_node; /* link on iv_splits */
76
77         /*
78          * is_split_offset is the offset into the i/o.
79          * This is the sum of the previous splits' is_size's.
80          */
81         uint64_t is_split_offset;
82
83         vdev_t *is_vdev; /* top-level vdev */
84         uint64_t is_target_offset; /* offset on is_vdev */
85         uint64_t is_size;
86         int is_children; /* number of entries in is_child[] */
87
88         /*
89          * is_good_child is the child that we are currently using to
90          * attempt reconstruction.
91          */
92         int is_good_child;
93
94         indirect_child_t is_child[1]; /* variable-length */
95 } indirect_split_t;
96
97 /*
98  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
99  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
100  */
101 typedef struct indirect_vsd {
102         boolean_t iv_split_block;
103         boolean_t iv_reconstruct;
104
105         list_t iv_splits; /* list of indirect_split_t's */
106 } indirect_vsd_t;
107
108 /*
109  * List of all vdevs, chained through v_alllink.
110  */
111 static vdev_list_t zfs_vdevs;
112
113 /*
114  * List of ZFS features supported for read
115  */
116 static const char *features_for_read[] = {
117         "org.illumos:lz4_compress",
118         "com.delphix:hole_birth",
119         "com.delphix:extensible_dataset",
120         "com.delphix:embedded_data",
121         "org.open-zfs:large_blocks",
122         "org.illumos:sha512",
123         "org.illumos:skein",
124         "org.zfsonlinux:large_dnode",
125         "com.joyent:multi_vdev_crash_dump",
126         "com.delphix:spacemap_histogram",
127         "com.delphix:zpool_checkpoint",
128         "com.delphix:spacemap_v2",
129         "com.datto:encryption",
130         "com.datto:bookmark_v2",
131         "org.zfsonlinux:allocation_classes",
132         "com.datto:resilver_defer",
133         "com.delphix:device_removal",
134         "com.delphix:obsolete_counts",
135         "com.intel:allocation_classes",
136         "org.freebsd:zstd_compress",
137         "com.delphix:bookmark_written",
138         NULL
139 };
140
141 /*
142  * List of all pools, chained through spa_link.
143  */
144 static spa_list_t zfs_pools;
145
146 static const dnode_phys_t *dnode_cache_obj;
147 static uint64_t dnode_cache_bn;
148 static char *dnode_cache_buf;
149
150 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
151 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
152 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
153 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
154     const char *name, uint64_t integer_size, uint64_t num_integers,
155     void *value);
156 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
157     dnode_phys_t *);
158 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
159     size_t);
160 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
161     size_t);
162 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
163 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
164     uint64_t);
165 vdev_indirect_mapping_entry_phys_t *
166     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
167     uint64_t, uint64_t *);
168
169 static void
170 zfs_init(void)
171 {
172         STAILQ_INIT(&zfs_vdevs);
173         STAILQ_INIT(&zfs_pools);
174
175         dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
176
177         zfs_init_crc();
178 #ifdef HAS_ZSTD_ZFS
179         zstd_init();
180 #endif
181 }
182
183 static int
184 nvlist_check_features_for_read(nvlist_t *nvl)
185 {
186         nvlist_t *features = NULL;
187         nvs_data_t *data;
188         nvp_header_t *nvp;
189         nv_string_t *nvp_name;
190         int rc;
191
192         rc = nvlist_find(nvl, ZPOOL_CONFIG_FEATURES_FOR_READ,
193             DATA_TYPE_NVLIST, NULL, &features, NULL);
194         if (rc != 0)
195                 return (rc);
196
197         data = (nvs_data_t *)features->nv_data;
198         nvp = &data->nvl_pair;  /* first pair in nvlist */
199
200         while (nvp->encoded_size != 0 && nvp->decoded_size != 0) {
201                 int i, found;
202
203                 nvp_name = (nv_string_t *)((uintptr_t)nvp + sizeof(*nvp));
204                 found = 0;
205
206                 for (i = 0; features_for_read[i] != NULL; i++) {
207                         if (memcmp(nvp_name->nv_data, features_for_read[i],
208                             nvp_name->nv_size) == 0) {
209                                 found = 1;
210                                 break;
211                         }
212                 }
213
214                 if (!found) {
215                         printf("ZFS: unsupported feature: %.*s\n",
216                             nvp_name->nv_size, nvp_name->nv_data);
217                         rc = EIO;
218                 }
219                 nvp = (nvp_header_t *)((uint8_t *)nvp + nvp->encoded_size);
220         }
221         nvlist_destroy(features);
222
223         return (rc);
224 }
225
226 static int
227 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
228     off_t offset, size_t size)
229 {
230         size_t psize;
231         int rc;
232
233         if (vdev->v_phys_read == NULL)
234                 return (ENOTSUP);
235
236         if (bp) {
237                 psize = BP_GET_PSIZE(bp);
238         } else {
239                 psize = size;
240         }
241
242         rc = vdev->v_phys_read(vdev, vdev->v_priv, offset, buf, psize);
243         if (rc == 0) {
244                 if (bp != NULL)
245                         rc = zio_checksum_verify(vdev->v_spa, bp, buf);
246         }
247
248         return (rc);
249 }
250
251 static int
252 vdev_write_phys(vdev_t *vdev, void *buf, off_t offset, size_t size)
253 {
254         if (vdev->v_phys_write == NULL)
255                 return (ENOTSUP);
256
257         return (vdev->v_phys_write(vdev, offset, buf, size));
258 }
259
260 typedef struct remap_segment {
261         vdev_t *rs_vd;
262         uint64_t rs_offset;
263         uint64_t rs_asize;
264         uint64_t rs_split_offset;
265         list_node_t rs_node;
266 } remap_segment_t;
267
268 static remap_segment_t *
269 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
270 {
271         remap_segment_t *rs = malloc(sizeof (remap_segment_t));
272
273         if (rs != NULL) {
274                 rs->rs_vd = vd;
275                 rs->rs_offset = offset;
276                 rs->rs_asize = asize;
277                 rs->rs_split_offset = split_offset;
278         }
279
280         return (rs);
281 }
282
283 vdev_indirect_mapping_t *
284 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
285     uint64_t mapping_object)
286 {
287         vdev_indirect_mapping_t *vim;
288         vdev_indirect_mapping_phys_t *vim_phys;
289         int rc;
290
291         vim = calloc(1, sizeof (*vim));
292         if (vim == NULL)
293                 return (NULL);
294
295         vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
296         if (vim->vim_dn == NULL) {
297                 free(vim);
298                 return (NULL);
299         }
300
301         rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
302         if (rc != 0) {
303                 free(vim->vim_dn);
304                 free(vim);
305                 return (NULL);
306         }
307
308         vim->vim_spa = spa;
309         vim->vim_phys = malloc(sizeof (*vim->vim_phys));
310         if (vim->vim_phys == NULL) {
311                 free(vim->vim_dn);
312                 free(vim);
313                 return (NULL);
314         }
315
316         vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
317         *vim->vim_phys = *vim_phys;
318
319         vim->vim_objset = os;
320         vim->vim_object = mapping_object;
321         vim->vim_entries = NULL;
322
323         vim->vim_havecounts =
324             (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
325
326         return (vim);
327 }
328
329 /*
330  * Compare an offset with an indirect mapping entry; there are three
331  * possible scenarios:
332  *
333  *     1. The offset is "less than" the mapping entry; meaning the
334  *        offset is less than the source offset of the mapping entry. In
335  *        this case, there is no overlap between the offset and the
336  *        mapping entry and -1 will be returned.
337  *
338  *     2. The offset is "greater than" the mapping entry; meaning the
339  *        offset is greater than the mapping entry's source offset plus
340  *        the entry's size. In this case, there is no overlap between
341  *        the offset and the mapping entry and 1 will be returned.
342  *
343  *        NOTE: If the offset is actually equal to the entry's offset
344  *        plus size, this is considered to be "greater" than the entry,
345  *        and this case applies (i.e. 1 will be returned). Thus, the
346  *        entry's "range" can be considered to be inclusive at its
347  *        start, but exclusive at its end: e.g. [src, src + size).
348  *
349  *     3. The last case to consider is if the offset actually falls
350  *        within the mapping entry's range. If this is the case, the
351  *        offset is considered to be "equal to" the mapping entry and
352  *        0 will be returned.
353  *
354  *        NOTE: If the offset is equal to the entry's source offset,
355  *        this case applies and 0 will be returned. If the offset is
356  *        equal to the entry's source plus its size, this case does
357  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
358  *        returned.
359  */
360 static int
361 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
362 {
363         const uint64_t *key = v_key;
364         const vdev_indirect_mapping_entry_phys_t *array_elem =
365             v_array_elem;
366         uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
367
368         if (*key < src_offset) {
369                 return (-1);
370         } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
371                 return (0);
372         } else {
373                 return (1);
374         }
375 }
376
377 /*
378  * Return array entry.
379  */
380 static vdev_indirect_mapping_entry_phys_t *
381 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
382 {
383         uint64_t size;
384         off_t offset = 0;
385         int rc;
386
387         if (vim->vim_phys->vimp_num_entries == 0)
388                 return (NULL);
389
390         if (vim->vim_entries == NULL) {
391                 uint64_t bsize;
392
393                 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
394                 size = vim->vim_phys->vimp_num_entries *
395                     sizeof (*vim->vim_entries);
396                 if (size > bsize) {
397                         size = bsize / sizeof (*vim->vim_entries);
398                         size *= sizeof (*vim->vim_entries);
399                 }
400                 vim->vim_entries = malloc(size);
401                 if (vim->vim_entries == NULL)
402                         return (NULL);
403                 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
404                 offset = index * sizeof (*vim->vim_entries);
405         }
406
407         /* We have data in vim_entries */
408         if (offset == 0) {
409                 if (index >= vim->vim_entry_offset &&
410                     index <= vim->vim_entry_offset + vim->vim_num_entries) {
411                         index -= vim->vim_entry_offset;
412                         return (&vim->vim_entries[index]);
413                 }
414                 offset = index * sizeof (*vim->vim_entries);
415         }
416
417         vim->vim_entry_offset = index;
418         size = vim->vim_num_entries * sizeof (*vim->vim_entries);
419         rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
420             size);
421         if (rc != 0) {
422                 /* Read error, invalidate vim_entries. */
423                 free(vim->vim_entries);
424                 vim->vim_entries = NULL;
425                 return (NULL);
426         }
427         index -= vim->vim_entry_offset;
428         return (&vim->vim_entries[index]);
429 }
430
431 /*
432  * Returns the mapping entry for the given offset.
433  *
434  * It's possible that the given offset will not be in the mapping table
435  * (i.e. no mapping entries contain this offset), in which case, the
436  * return value value depends on the "next_if_missing" parameter.
437  *
438  * If the offset is not found in the table and "next_if_missing" is
439  * B_FALSE, then NULL will always be returned. The behavior is intended
440  * to allow consumers to get the entry corresponding to the offset
441  * parameter, iff the offset overlaps with an entry in the table.
442  *
443  * If the offset is not found in the table and "next_if_missing" is
444  * B_TRUE, then the entry nearest to the given offset will be returned,
445  * such that the entry's source offset is greater than the offset
446  * passed in (i.e. the "next" mapping entry in the table is returned, if
447  * the offset is missing from the table). If there are no entries whose
448  * source offset is greater than the passed in offset, NULL is returned.
449  */
450 static vdev_indirect_mapping_entry_phys_t *
451 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
452     uint64_t offset)
453 {
454         ASSERT(vim->vim_phys->vimp_num_entries > 0);
455
456         vdev_indirect_mapping_entry_phys_t *entry;
457
458         uint64_t last = vim->vim_phys->vimp_num_entries - 1;
459         uint64_t base = 0;
460
461         /*
462          * We don't define these inside of the while loop because we use
463          * their value in the case that offset isn't in the mapping.
464          */
465         uint64_t mid;
466         int result;
467
468         while (last >= base) {
469                 mid = base + ((last - base) >> 1);
470
471                 entry = vdev_indirect_mapping_entry(vim, mid);
472                 if (entry == NULL)
473                         break;
474                 result = dva_mapping_overlap_compare(&offset, entry);
475
476                 if (result == 0) {
477                         break;
478                 } else if (result < 0) {
479                         last = mid - 1;
480                 } else {
481                         base = mid + 1;
482                 }
483         }
484         return (entry);
485 }
486
487 /*
488  * Given an indirect vdev and an extent on that vdev, it duplicates the
489  * physical entries of the indirect mapping that correspond to the extent
490  * to a new array and returns a pointer to it. In addition, copied_entries
491  * is populated with the number of mapping entries that were duplicated.
492  *
493  * Finally, since we are doing an allocation, it is up to the caller to
494  * free the array allocated in this function.
495  */
496 vdev_indirect_mapping_entry_phys_t *
497 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
498     uint64_t asize, uint64_t *copied_entries)
499 {
500         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
501         vdev_indirect_mapping_t *vim = vd->v_mapping;
502         uint64_t entries = 0;
503
504         vdev_indirect_mapping_entry_phys_t *first_mapping =
505             vdev_indirect_mapping_entry_for_offset(vim, offset);
506         ASSERT3P(first_mapping, !=, NULL);
507
508         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
509         while (asize > 0) {
510                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
511                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
512                 uint64_t inner_size = MIN(asize, size - inner_offset);
513
514                 offset += inner_size;
515                 asize -= inner_size;
516                 entries++;
517                 m++;
518         }
519
520         size_t copy_length = entries * sizeof (*first_mapping);
521         duplicate_mappings = malloc(copy_length);
522         if (duplicate_mappings != NULL)
523                 bcopy(first_mapping, duplicate_mappings, copy_length);
524         else
525                 entries = 0;
526
527         *copied_entries = entries;
528
529         return (duplicate_mappings);
530 }
531
532 static vdev_t *
533 vdev_lookup_top(spa_t *spa, uint64_t vdev)
534 {
535         vdev_t *rvd;
536         vdev_list_t *vlist;
537
538         vlist = &spa->spa_root_vdev->v_children;
539         STAILQ_FOREACH(rvd, vlist, v_childlink)
540                 if (rvd->v_id == vdev)
541                         break;
542
543         return (rvd);
544 }
545
546 /*
547  * This is a callback for vdev_indirect_remap() which allocates an
548  * indirect_split_t for each split segment and adds it to iv_splits.
549  */
550 static void
551 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
552     uint64_t size, void *arg)
553 {
554         int n = 1;
555         zio_t *zio = arg;
556         indirect_vsd_t *iv = zio->io_vsd;
557
558         if (vd->v_read == vdev_indirect_read)
559                 return;
560
561         if (vd->v_read == vdev_mirror_read)
562                 n = vd->v_nchildren;
563
564         indirect_split_t *is =
565             malloc(offsetof(indirect_split_t, is_child[n]));
566         if (is == NULL) {
567                 zio->io_error = ENOMEM;
568                 return;
569         }
570         bzero(is, offsetof(indirect_split_t, is_child[n]));
571
572         is->is_children = n;
573         is->is_size = size;
574         is->is_split_offset = split_offset;
575         is->is_target_offset = offset;
576         is->is_vdev = vd;
577
578         /*
579          * Note that we only consider multiple copies of the data for
580          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
581          * though they use the same ops as mirror, because there's only one
582          * "good" copy under the replacing/spare.
583          */
584         if (vd->v_read == vdev_mirror_read) {
585                 int i = 0;
586                 vdev_t *kid;
587
588                 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
589                         is->is_child[i++].ic_vdev = kid;
590                 }
591         } else {
592                 is->is_child[0].ic_vdev = vd;
593         }
594
595         list_insert_tail(&iv->iv_splits, is);
596 }
597
598 static void
599 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
600 {
601         list_t stack;
602         spa_t *spa = vd->v_spa;
603         zio_t *zio = arg;
604         remap_segment_t *rs;
605
606         list_create(&stack, sizeof (remap_segment_t),
607             offsetof(remap_segment_t, rs_node));
608
609         rs = rs_alloc(vd, offset, asize, 0);
610         if (rs == NULL) {
611                 printf("vdev_indirect_remap: out of memory.\n");
612                 zio->io_error = ENOMEM;
613         }
614         for (; rs != NULL; rs = list_remove_head(&stack)) {
615                 vdev_t *v = rs->rs_vd;
616                 uint64_t num_entries = 0;
617                 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
618                 vdev_indirect_mapping_entry_phys_t *mapping =
619                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
620                     rs->rs_offset, rs->rs_asize, &num_entries);
621
622                 if (num_entries == 0)
623                         zio->io_error = ENOMEM;
624
625                 for (uint64_t i = 0; i < num_entries; i++) {
626                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
627                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
628                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
629                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
630                         uint64_t inner_offset = rs->rs_offset -
631                             DVA_MAPPING_GET_SRC_OFFSET(m);
632                         uint64_t inner_size =
633                             MIN(rs->rs_asize, size - inner_offset);
634                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
635
636                         if (dst_v->v_read == vdev_indirect_read) {
637                                 remap_segment_t *o;
638
639                                 o = rs_alloc(dst_v, dst_offset + inner_offset,
640                                     inner_size, rs->rs_split_offset);
641                                 if (o == NULL) {
642                                         printf("vdev_indirect_remap: "
643                                             "out of memory.\n");
644                                         zio->io_error = ENOMEM;
645                                         break;
646                                 }
647
648                                 list_insert_head(&stack, o);
649                         }
650                         vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
651                             dst_offset + inner_offset,
652                             inner_size, arg);
653
654                         /*
655                          * vdev_indirect_gather_splits can have memory
656                          * allocation error, we can not recover from it.
657                          */
658                         if (zio->io_error != 0)
659                                 break;
660                         rs->rs_offset += inner_size;
661                         rs->rs_asize -= inner_size;
662                         rs->rs_split_offset += inner_size;
663                 }
664
665                 free(mapping);
666                 free(rs);
667                 if (zio->io_error != 0)
668                         break;
669         }
670
671         list_destroy(&stack);
672 }
673
674 static void
675 vdev_indirect_map_free(zio_t *zio)
676 {
677         indirect_vsd_t *iv = zio->io_vsd;
678         indirect_split_t *is;
679
680         while ((is = list_head(&iv->iv_splits)) != NULL) {
681                 for (int c = 0; c < is->is_children; c++) {
682                         indirect_child_t *ic = &is->is_child[c];
683                         free(ic->ic_data);
684                 }
685                 list_remove(&iv->iv_splits, is);
686                 free(is);
687         }
688         free(iv);
689 }
690
691 static int
692 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
693     off_t offset, size_t bytes)
694 {
695         zio_t zio;
696         spa_t *spa = vdev->v_spa;
697         indirect_vsd_t *iv;
698         indirect_split_t *first;
699         int rc = EIO;
700
701         iv = calloc(1, sizeof(*iv));
702         if (iv == NULL)
703                 return (ENOMEM);
704
705         list_create(&iv->iv_splits,
706             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
707
708         bzero(&zio, sizeof(zio));
709         zio.io_spa = spa;
710         zio.io_bp = (blkptr_t *)bp;
711         zio.io_data = buf;
712         zio.io_size = bytes;
713         zio.io_offset = offset;
714         zio.io_vd = vdev;
715         zio.io_vsd = iv;
716
717         if (vdev->v_mapping == NULL) {
718                 vdev_indirect_config_t *vic;
719
720                 vic = &vdev->vdev_indirect_config;
721                 vdev->v_mapping = vdev_indirect_mapping_open(spa,
722                     spa->spa_mos, vic->vic_mapping_object);
723         }
724
725         vdev_indirect_remap(vdev, offset, bytes, &zio);
726         if (zio.io_error != 0)
727                 return (zio.io_error);
728
729         first = list_head(&iv->iv_splits);
730         if (first->is_size == zio.io_size) {
731                 /*
732                  * This is not a split block; we are pointing to the entire
733                  * data, which will checksum the same as the original data.
734                  * Pass the BP down so that the child i/o can verify the
735                  * checksum, and try a different location if available
736                  * (e.g. on a mirror).
737                  *
738                  * While this special case could be handled the same as the
739                  * general (split block) case, doing it this way ensures
740                  * that the vast majority of blocks on indirect vdevs
741                  * (which are not split) are handled identically to blocks
742                  * on non-indirect vdevs.  This allows us to be less strict
743                  * about performance in the general (but rare) case.
744                  */
745                 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
746                     zio.io_data, first->is_target_offset, bytes);
747         } else {
748                 iv->iv_split_block = B_TRUE;
749                 /*
750                  * Read one copy of each split segment, from the
751                  * top-level vdev.  Since we don't know the
752                  * checksum of each split individually, the child
753                  * zio can't ensure that we get the right data.
754                  * E.g. if it's a mirror, it will just read from a
755                  * random (healthy) leaf vdev.  We have to verify
756                  * the checksum in vdev_indirect_io_done().
757                  */
758                 for (indirect_split_t *is = list_head(&iv->iv_splits);
759                     is != NULL; is = list_next(&iv->iv_splits, is)) {
760                         char *ptr = zio.io_data;
761
762                         rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
763                             ptr + is->is_split_offset, is->is_target_offset,
764                             is->is_size);
765                 }
766                 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
767                         rc = ECKSUM;
768                 else
769                         rc = 0;
770         }
771
772         vdev_indirect_map_free(&zio);
773         if (rc == 0)
774                 rc = zio.io_error;
775
776         return (rc);
777 }
778
779 static int
780 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
781     off_t offset, size_t bytes)
782 {
783
784         return (vdev_read_phys(vdev, bp, buf,
785             offset + VDEV_LABEL_START_SIZE, bytes));
786 }
787
788 static int
789 vdev_missing_read(vdev_t *vdev __unused, const blkptr_t *bp __unused,
790     void *buf __unused, off_t offset __unused, size_t bytes __unused)
791 {
792
793         return (ENOTSUP);
794 }
795
796 static int
797 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
798     off_t offset, size_t bytes)
799 {
800         vdev_t *kid;
801         int rc;
802
803         rc = EIO;
804         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
805                 if (kid->v_state != VDEV_STATE_HEALTHY)
806                         continue;
807                 rc = kid->v_read(kid, bp, buf, offset, bytes);
808                 if (!rc)
809                         return (0);
810         }
811
812         return (rc);
813 }
814
815 static int
816 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
817     off_t offset, size_t bytes)
818 {
819         vdev_t *kid;
820
821         /*
822          * Here we should have two kids:
823          * First one which is the one we are replacing and we can trust
824          * only this one to have valid data, but it might not be present.
825          * Second one is that one we are replacing with. It is most likely
826          * healthy, but we can't trust it has needed data, so we won't use it.
827          */
828         kid = STAILQ_FIRST(&vdev->v_children);
829         if (kid == NULL)
830                 return (EIO);
831         if (kid->v_state != VDEV_STATE_HEALTHY)
832                 return (EIO);
833         return (kid->v_read(kid, bp, buf, offset, bytes));
834 }
835
836 static vdev_t *
837 vdev_find(uint64_t guid)
838 {
839         vdev_t *vdev;
840
841         STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
842                 if (vdev->v_guid == guid)
843                         return (vdev);
844
845         return (0);
846 }
847
848 static vdev_t *
849 vdev_create(uint64_t guid, vdev_read_t *_read)
850 {
851         vdev_t *vdev;
852         vdev_indirect_config_t *vic;
853
854         vdev = calloc(1, sizeof(vdev_t));
855         if (vdev != NULL) {
856                 STAILQ_INIT(&vdev->v_children);
857                 vdev->v_guid = guid;
858                 vdev->v_read = _read;
859
860                 /*
861                  * root vdev has no read function, we use this fact to
862                  * skip setting up data we do not need for root vdev.
863                  * We only point root vdev from spa.
864                  */
865                 if (_read != NULL) {
866                         vic = &vdev->vdev_indirect_config;
867                         vic->vic_prev_indirect_vdev = UINT64_MAX;
868                         STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
869                 }
870         }
871
872         return (vdev);
873 }
874
875 static void
876 vdev_set_initial_state(vdev_t *vdev, const nvlist_t *nvlist)
877 {
878         uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
879         uint64_t is_log;
880
881         is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
882         is_log = 0;
883         (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
884             &is_offline, NULL);
885         (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
886             &is_removed, NULL);
887         (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
888             &is_faulted, NULL);
889         (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
890             NULL, &is_degraded, NULL);
891         (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
892             NULL, &isnt_present, NULL);
893         (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
894             &is_log, NULL);
895
896         if (is_offline != 0)
897                 vdev->v_state = VDEV_STATE_OFFLINE;
898         else if (is_removed != 0)
899                 vdev->v_state = VDEV_STATE_REMOVED;
900         else if (is_faulted != 0)
901                 vdev->v_state = VDEV_STATE_FAULTED;
902         else if (is_degraded != 0)
903                 vdev->v_state = VDEV_STATE_DEGRADED;
904         else if (isnt_present != 0)
905                 vdev->v_state = VDEV_STATE_CANT_OPEN;
906
907         vdev->v_islog = is_log != 0;
908 }
909
910 static int
911 vdev_init(uint64_t guid, const nvlist_t *nvlist, vdev_t **vdevp)
912 {
913         uint64_t id, ashift, asize, nparity;
914         const char *path;
915         const char *type;
916         int len, pathlen;
917         char *name;
918         vdev_t *vdev;
919
920         if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id,
921             NULL) ||
922             nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING, NULL,
923             &type, &len)) {
924                 return (ENOENT);
925         }
926
927         if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
928             memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
929 #ifdef ZFS_TEST
930             memcmp(type, VDEV_TYPE_FILE, len) != 0 &&
931 #endif
932             memcmp(type, VDEV_TYPE_RAIDZ, len) != 0 &&
933             memcmp(type, VDEV_TYPE_INDIRECT, len) != 0 &&
934             memcmp(type, VDEV_TYPE_REPLACING, len) != 0 &&
935             memcmp(type, VDEV_TYPE_HOLE, len) != 0) {
936                 printf("ZFS: can only boot from disk, mirror, raidz1, "
937                     "raidz2 and raidz3 vdevs, got: %.*s\n", len, type);
938                 return (EIO);
939         }
940
941         if (memcmp(type, VDEV_TYPE_MIRROR, len) == 0)
942                 vdev = vdev_create(guid, vdev_mirror_read);
943         else if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0)
944                 vdev = vdev_create(guid, vdev_raidz_read);
945         else if (memcmp(type, VDEV_TYPE_REPLACING, len) == 0)
946                 vdev = vdev_create(guid, vdev_replacing_read);
947         else if (memcmp(type, VDEV_TYPE_INDIRECT, len) == 0) {
948                 vdev_indirect_config_t *vic;
949
950                 vdev = vdev_create(guid, vdev_indirect_read);
951                 if (vdev != NULL) {
952                         vdev->v_state = VDEV_STATE_HEALTHY;
953                         vic = &vdev->vdev_indirect_config;
954
955                         nvlist_find(nvlist,
956                             ZPOOL_CONFIG_INDIRECT_OBJECT,
957                             DATA_TYPE_UINT64,
958                             NULL, &vic->vic_mapping_object, NULL);
959                         nvlist_find(nvlist,
960                             ZPOOL_CONFIG_INDIRECT_BIRTHS,
961                             DATA_TYPE_UINT64,
962                             NULL, &vic->vic_births_object, NULL);
963                         nvlist_find(nvlist,
964                             ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
965                             DATA_TYPE_UINT64,
966                             NULL, &vic->vic_prev_indirect_vdev, NULL);
967                 }
968         } else if (memcmp(type, VDEV_TYPE_HOLE, len) == 0) {
969                 vdev = vdev_create(guid, vdev_missing_read);
970         } else {
971                 vdev = vdev_create(guid, vdev_disk_read);
972         }
973
974         if (vdev == NULL)
975                 return (ENOMEM);
976
977         vdev_set_initial_state(vdev, nvlist);
978         vdev->v_id = id;
979         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
980             DATA_TYPE_UINT64, NULL, &ashift, NULL) == 0)
981                 vdev->v_ashift = ashift;
982
983         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
984             DATA_TYPE_UINT64, NULL, &asize, NULL) == 0) {
985                 vdev->v_psize = asize +
986                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
987         }
988
989         if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
990             DATA_TYPE_UINT64, NULL, &nparity, NULL) == 0)
991                 vdev->v_nparity = nparity;
992
993         if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
994             DATA_TYPE_STRING, NULL, &path, &pathlen) == 0) {
995                 char prefix[] = "/dev/";
996
997                 len = strlen(prefix);
998                 if (len < pathlen && memcmp(path, prefix, len) == 0) {
999                         path += len;
1000                         pathlen -= len;
1001                 }
1002                 name = malloc(pathlen + 1);
1003                 bcopy(path, name, pathlen);
1004                 name[pathlen] = '\0';
1005                 vdev->v_name = name;
1006         } else {
1007                 name = NULL;
1008                 if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1009                         if (vdev->v_nparity < 1 ||
1010                             vdev->v_nparity > 3) {
1011                                 printf("ZFS: invalid raidz parity: %d\n",
1012                                     vdev->v_nparity);
1013                                 return (EIO);
1014                         }
1015                         (void) asprintf(&name, "%.*s%d-%" PRIu64, len, type,
1016                             vdev->v_nparity, id);
1017                 } else {
1018                         (void) asprintf(&name, "%.*s-%" PRIu64, len, type, id);
1019                 }
1020                 vdev->v_name = name;
1021         }
1022         *vdevp = vdev;
1023         return (0);
1024 }
1025
1026 /*
1027  * Find slot for vdev. We return either NULL to signal to use
1028  * STAILQ_INSERT_HEAD, or we return link element to be used with
1029  * STAILQ_INSERT_AFTER.
1030  */
1031 static vdev_t *
1032 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1033 {
1034         vdev_t *v, *previous;
1035
1036         if (STAILQ_EMPTY(&top_vdev->v_children))
1037                 return (NULL);
1038
1039         previous = NULL;
1040         STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1041                 if (v->v_id > vdev->v_id)
1042                         return (previous);
1043
1044                 if (v->v_id == vdev->v_id)
1045                         return (v);
1046
1047                 if (v->v_id < vdev->v_id)
1048                         previous = v;
1049         }
1050         return (previous);
1051 }
1052
1053 static size_t
1054 vdev_child_count(vdev_t *vdev)
1055 {
1056         vdev_t *v;
1057         size_t count;
1058
1059         count = 0;
1060         STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1061                 count++;
1062         }
1063         return (count);
1064 }
1065
1066 /*
1067  * Insert vdev into top_vdev children list. List is ordered by v_id.
1068  */
1069 static void
1070 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1071 {
1072         vdev_t *previous;
1073         size_t count;
1074
1075         /*
1076          * The top level vdev can appear in random order, depending how
1077          * the firmware is presenting the disk devices.
1078          * However, we will insert vdev to create list ordered by v_id,
1079          * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1080          * as STAILQ does not have insert before.
1081          */
1082         previous = vdev_find_previous(top_vdev, vdev);
1083
1084         if (previous == NULL) {
1085                 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1086         } else if (previous->v_id == vdev->v_id) {
1087                 /*
1088                  * This vdev was configured from label config,
1089                  * do not insert duplicate.
1090                  */
1091                 return;
1092         } else {
1093                 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1094                     v_childlink);
1095         }
1096
1097         count = vdev_child_count(top_vdev);
1098         if (top_vdev->v_nchildren < count)
1099                 top_vdev->v_nchildren = count;
1100 }
1101
1102 static int
1103 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const nvlist_t *nvlist)
1104 {
1105         vdev_t *top_vdev, *vdev;
1106         nvlist_t **kids = NULL;
1107         int rc, nkids;
1108
1109         /* Get top vdev. */
1110         top_vdev = vdev_find(top_guid);
1111         if (top_vdev == NULL) {
1112                 rc = vdev_init(top_guid, nvlist, &top_vdev);
1113                 if (rc != 0)
1114                         return (rc);
1115                 top_vdev->v_spa = spa;
1116                 top_vdev->v_top = top_vdev;
1117                 vdev_insert(spa->spa_root_vdev, top_vdev);
1118         }
1119
1120         /* Add children if there are any. */
1121         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1122             &nkids, &kids, NULL);
1123         if (rc == 0) {
1124                 for (int i = 0; i < nkids; i++) {
1125                         uint64_t guid;
1126
1127                         rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1128                             DATA_TYPE_UINT64, NULL, &guid, NULL);
1129                         if (rc != 0)
1130                                 goto done;
1131
1132                         rc = vdev_init(guid, kids[i], &vdev);
1133                         if (rc != 0)
1134                                 goto done;
1135
1136                         vdev->v_spa = spa;
1137                         vdev->v_top = top_vdev;
1138                         vdev_insert(top_vdev, vdev);
1139                 }
1140         } else {
1141                 /*
1142                  * When there are no children, nvlist_find() does return
1143                  * error, reset it because leaf devices have no children.
1144                  */
1145                 rc = 0;
1146         }
1147 done:
1148         if (kids != NULL) {
1149                 for (int i = 0; i < nkids; i++)
1150                         nvlist_destroy(kids[i]);
1151                 free(kids);
1152         }
1153
1154         return (rc);
1155 }
1156
1157 static int
1158 vdev_init_from_label(spa_t *spa, const nvlist_t *nvlist)
1159 {
1160         uint64_t pool_guid, top_guid;
1161         nvlist_t *vdevs;
1162         int rc;
1163
1164         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1165             NULL, &pool_guid, NULL) ||
1166             nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1167             NULL, &top_guid, NULL) ||
1168             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1169             NULL, &vdevs, NULL)) {
1170                 printf("ZFS: can't find vdev details\n");
1171                 return (ENOENT);
1172         }
1173
1174         rc = vdev_from_nvlist(spa, top_guid, vdevs);
1175         nvlist_destroy(vdevs);
1176         return (rc);
1177 }
1178
1179 static void
1180 vdev_set_state(vdev_t *vdev)
1181 {
1182         vdev_t *kid;
1183         int good_kids;
1184         int bad_kids;
1185
1186         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1187                 vdev_set_state(kid);
1188         }
1189
1190         /*
1191          * A mirror or raidz is healthy if all its kids are healthy. A
1192          * mirror is degraded if any of its kids is healthy; a raidz
1193          * is degraded if at most nparity kids are offline.
1194          */
1195         if (STAILQ_FIRST(&vdev->v_children)) {
1196                 good_kids = 0;
1197                 bad_kids = 0;
1198                 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1199                         if (kid->v_state == VDEV_STATE_HEALTHY)
1200                                 good_kids++;
1201                         else
1202                                 bad_kids++;
1203                 }
1204                 if (bad_kids == 0) {
1205                         vdev->v_state = VDEV_STATE_HEALTHY;
1206                 } else {
1207                         if (vdev->v_read == vdev_mirror_read) {
1208                                 if (good_kids) {
1209                                         vdev->v_state = VDEV_STATE_DEGRADED;
1210                                 } else {
1211                                         vdev->v_state = VDEV_STATE_OFFLINE;
1212                                 }
1213                         } else if (vdev->v_read == vdev_raidz_read) {
1214                                 if (bad_kids > vdev->v_nparity) {
1215                                         vdev->v_state = VDEV_STATE_OFFLINE;
1216                                 } else {
1217                                         vdev->v_state = VDEV_STATE_DEGRADED;
1218                                 }
1219                         }
1220                 }
1221         }
1222 }
1223
1224 static int
1225 vdev_update_from_nvlist(uint64_t top_guid, const nvlist_t *nvlist)
1226 {
1227         vdev_t *vdev;
1228         nvlist_t **kids = NULL;
1229         int rc, nkids;
1230
1231         /* Update top vdev. */
1232         vdev = vdev_find(top_guid);
1233         if (vdev != NULL)
1234                 vdev_set_initial_state(vdev, nvlist);
1235
1236         /* Update children if there are any. */
1237         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1238             &nkids, &kids, NULL);
1239         if (rc == 0) {
1240                 for (int i = 0; i < nkids; i++) {
1241                         uint64_t guid;
1242
1243                         rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID,
1244                             DATA_TYPE_UINT64, NULL, &guid, NULL);
1245                         if (rc != 0)
1246                                 break;
1247
1248                         vdev = vdev_find(guid);
1249                         if (vdev != NULL)
1250                                 vdev_set_initial_state(vdev, kids[i]);
1251                 }
1252         } else {
1253                 rc = 0;
1254         }
1255         if (kids != NULL) {
1256                 for (int i = 0; i < nkids; i++)
1257                         nvlist_destroy(kids[i]);
1258                 free(kids);
1259         }
1260
1261         return (rc);
1262 }
1263
1264 static int
1265 vdev_init_from_nvlist(spa_t *spa, const nvlist_t *nvlist)
1266 {
1267         uint64_t pool_guid, vdev_children;
1268         nvlist_t *vdevs = NULL, **kids = NULL;
1269         int rc, nkids;
1270
1271         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1272             NULL, &pool_guid, NULL) ||
1273             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1274             NULL, &vdev_children, NULL) ||
1275             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1276             NULL, &vdevs, NULL)) {
1277                 printf("ZFS: can't find vdev details\n");
1278                 return (ENOENT);
1279         }
1280
1281         /* Wrong guid?! */
1282         if (spa->spa_guid != pool_guid) {
1283                 nvlist_destroy(vdevs);
1284                 return (EINVAL);
1285         }
1286
1287         spa->spa_root_vdev->v_nchildren = vdev_children;
1288
1289         rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1290             &nkids, &kids, NULL);
1291         nvlist_destroy(vdevs);
1292
1293         /*
1294          * MOS config has at least one child for root vdev.
1295          */
1296         if (rc != 0)
1297                 return (rc);
1298
1299         for (int i = 0; i < nkids; i++) {
1300                 uint64_t guid;
1301                 vdev_t *vdev;
1302
1303                 rc = nvlist_find(kids[i], ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1304                     NULL, &guid, NULL);
1305                 if (rc != 0)
1306                         break;
1307                 vdev = vdev_find(guid);
1308                 /*
1309                  * Top level vdev is missing, create it.
1310                  */
1311                 if (vdev == NULL)
1312                         rc = vdev_from_nvlist(spa, guid, kids[i]);
1313                 else
1314                         rc = vdev_update_from_nvlist(guid, kids[i]);
1315                 if (rc != 0)
1316                         break;
1317         }
1318         if (kids != NULL) {
1319                 for (int i = 0; i < nkids; i++)
1320                         nvlist_destroy(kids[i]);
1321                 free(kids);
1322         }
1323
1324         /*
1325          * Re-evaluate top-level vdev state.
1326          */
1327         vdev_set_state(spa->spa_root_vdev);
1328
1329         return (rc);
1330 }
1331
1332 static spa_t *
1333 spa_find_by_guid(uint64_t guid)
1334 {
1335         spa_t *spa;
1336
1337         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1338                 if (spa->spa_guid == guid)
1339                         return (spa);
1340
1341         return (NULL);
1342 }
1343
1344 static spa_t *
1345 spa_find_by_name(const char *name)
1346 {
1347         spa_t *spa;
1348
1349         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1350                 if (strcmp(spa->spa_name, name) == 0)
1351                         return (spa);
1352
1353         return (NULL);
1354 }
1355
1356 static spa_t *
1357 spa_find_by_dev(struct zfs_devdesc *dev)
1358 {
1359
1360         if (dev->dd.d_dev->dv_type != DEVT_ZFS)
1361                 return (NULL);
1362
1363         if (dev->pool_guid == 0)
1364                 return (STAILQ_FIRST(&zfs_pools));
1365
1366         return (spa_find_by_guid(dev->pool_guid));
1367 }
1368
1369 static spa_t *
1370 spa_create(uint64_t guid, const char *name)
1371 {
1372         spa_t *spa;
1373
1374         if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1375                 return (NULL);
1376         if ((spa->spa_name = strdup(name)) == NULL) {
1377                 free(spa);
1378                 return (NULL);
1379         }
1380         spa->spa_uberblock = &spa->spa_uberblock_master;
1381         spa->spa_mos = &spa->spa_mos_master;
1382         spa->spa_guid = guid;
1383         spa->spa_root_vdev = vdev_create(guid, NULL);
1384         if (spa->spa_root_vdev == NULL) {
1385                 free(spa->spa_name);
1386                 free(spa);
1387                 return (NULL);
1388         }
1389         spa->spa_root_vdev->v_name = strdup("root");
1390         STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1391
1392         return (spa);
1393 }
1394
1395 static const char *
1396 state_name(vdev_state_t state)
1397 {
1398         static const char *names[] = {
1399                 "UNKNOWN",
1400                 "CLOSED",
1401                 "OFFLINE",
1402                 "REMOVED",
1403                 "CANT_OPEN",
1404                 "FAULTED",
1405                 "DEGRADED",
1406                 "ONLINE"
1407         };
1408         return (names[state]);
1409 }
1410
1411 #ifdef BOOT2
1412
1413 #define pager_printf printf
1414
1415 #else
1416
1417 static int
1418 pager_printf(const char *fmt, ...)
1419 {
1420         char line[80];
1421         va_list args;
1422
1423         va_start(args, fmt);
1424         vsnprintf(line, sizeof(line), fmt, args);
1425         va_end(args);
1426         return (pager_output(line));
1427 }
1428
1429 #endif
1430
1431 #define STATUS_FORMAT   "        %s %s\n"
1432
1433 static int
1434 print_state(int indent, const char *name, vdev_state_t state)
1435 {
1436         int i;
1437         char buf[512];
1438
1439         buf[0] = 0;
1440         for (i = 0; i < indent; i++)
1441                 strcat(buf, "  ");
1442         strcat(buf, name);
1443         return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1444 }
1445
1446 static int
1447 vdev_status(vdev_t *vdev, int indent)
1448 {
1449         vdev_t *kid;
1450         int ret;
1451
1452         if (vdev->v_islog) {
1453                 (void) pager_output("        logs\n");
1454                 indent++;
1455         }
1456
1457         ret = print_state(indent, vdev->v_name, vdev->v_state);
1458         if (ret != 0)
1459                 return (ret);
1460
1461         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1462                 ret = vdev_status(kid, indent + 1);
1463                 if (ret != 0)
1464                         return (ret);
1465         }
1466         return (ret);
1467 }
1468
1469 static int
1470 spa_status(spa_t *spa)
1471 {
1472         static char bootfs[ZFS_MAXNAMELEN];
1473         uint64_t rootid;
1474         vdev_list_t *vlist;
1475         vdev_t *vdev;
1476         int good_kids, bad_kids, degraded_kids, ret;
1477         vdev_state_t state;
1478
1479         ret = pager_printf("  pool: %s\n", spa->spa_name);
1480         if (ret != 0)
1481                 return (ret);
1482
1483         if (zfs_get_root(spa, &rootid) == 0 &&
1484             zfs_rlookup(spa, rootid, bootfs) == 0) {
1485                 if (bootfs[0] == '\0')
1486                         ret = pager_printf("bootfs: %s\n", spa->spa_name);
1487                 else
1488                         ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1489                             bootfs);
1490                 if (ret != 0)
1491                         return (ret);
1492         }
1493         ret = pager_printf("config:\n\n");
1494         if (ret != 0)
1495                 return (ret);
1496         ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1497         if (ret != 0)
1498                 return (ret);
1499
1500         good_kids = 0;
1501         degraded_kids = 0;
1502         bad_kids = 0;
1503         vlist = &spa->spa_root_vdev->v_children;
1504         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1505                 if (vdev->v_state == VDEV_STATE_HEALTHY)
1506                         good_kids++;
1507                 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1508                         degraded_kids++;
1509                 else
1510                         bad_kids++;
1511         }
1512
1513         state = VDEV_STATE_CLOSED;
1514         if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1515                 state = VDEV_STATE_HEALTHY;
1516         else if ((good_kids + degraded_kids) > 0)
1517                 state = VDEV_STATE_DEGRADED;
1518
1519         ret = print_state(0, spa->spa_name, state);
1520         if (ret != 0)
1521                 return (ret);
1522
1523         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1524                 ret = vdev_status(vdev, 1);
1525                 if (ret != 0)
1526                         return (ret);
1527         }
1528         return (ret);
1529 }
1530
1531 static int
1532 spa_all_status(void)
1533 {
1534         spa_t *spa;
1535         int first = 1, ret = 0;
1536
1537         STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1538                 if (!first) {
1539                         ret = pager_printf("\n");
1540                         if (ret != 0)
1541                                 return (ret);
1542                 }
1543                 first = 0;
1544                 ret = spa_status(spa);
1545                 if (ret != 0)
1546                         return (ret);
1547         }
1548         return (ret);
1549 }
1550
1551 static uint64_t
1552 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1553 {
1554         uint64_t label_offset;
1555
1556         if (l < VDEV_LABELS / 2)
1557                 label_offset = 0;
1558         else
1559                 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1560
1561         return (offset + l * sizeof (vdev_label_t) + label_offset);
1562 }
1563
1564 static int
1565 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1566 {
1567         unsigned int seq1 = 0;
1568         unsigned int seq2 = 0;
1569         int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1570
1571         if (cmp != 0)
1572                 return (cmp);
1573
1574         cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1575         if (cmp != 0)
1576                 return (cmp);
1577
1578         if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1579                 seq1 = MMP_SEQ(ub1);
1580
1581         if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1582                 seq2 = MMP_SEQ(ub2);
1583
1584         return (AVL_CMP(seq1, seq2));
1585 }
1586
1587 static int
1588 uberblock_verify(uberblock_t *ub)
1589 {
1590         if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1591                 byteswap_uint64_array(ub, sizeof (uberblock_t));
1592         }
1593
1594         if (ub->ub_magic != UBERBLOCK_MAGIC ||
1595             !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1596                 return (EINVAL);
1597
1598         return (0);
1599 }
1600
1601 static int
1602 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1603     size_t size)
1604 {
1605         blkptr_t bp;
1606         off_t off;
1607
1608         off = vdev_label_offset(vd->v_psize, l, offset);
1609
1610         BP_ZERO(&bp);
1611         BP_SET_LSIZE(&bp, size);
1612         BP_SET_PSIZE(&bp, size);
1613         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1614         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1615         DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1616         ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1617
1618         return (vdev_read_phys(vd, &bp, buf, off, size));
1619 }
1620
1621 /*
1622  * We do need to be sure we write to correct location.
1623  * Our vdev label does consist of 4 fields:
1624  * pad1 (8k), reserved.
1625  * bootenv (8k), checksummed, previously reserved, may contian garbage.
1626  * vdev_phys (112k), checksummed
1627  * uberblock ring (128k), checksummed.
1628  *
1629  * Since bootenv area may contain garbage, we can not reliably read it, as
1630  * we can get checksum errors.
1631  * Next best thing is vdev_phys - it is just after bootenv. It still may
1632  * be corrupted, but in such case we will miss this one write.
1633  */
1634 static int
1635 vdev_label_write_validate(vdev_t *vd, int l, uint64_t offset)
1636 {
1637         uint64_t off, o_phys;
1638         void *buf;
1639         size_t size = VDEV_PHYS_SIZE;
1640         int rc;
1641
1642         o_phys = offsetof(vdev_label_t, vl_vdev_phys);
1643         off = vdev_label_offset(vd->v_psize, l, o_phys);
1644
1645         /* off should be 8K from bootenv */
1646         if (vdev_label_offset(vd->v_psize, l, offset) + VDEV_PAD_SIZE != off)
1647                 return (EINVAL);
1648
1649         buf = malloc(size);
1650         if (buf == NULL)
1651                 return (ENOMEM);
1652
1653         /* Read vdev_phys */
1654         rc = vdev_label_read(vd, l, buf, o_phys, size);
1655         free(buf);
1656         return (rc);
1657 }
1658
1659 static int
1660 vdev_label_write(vdev_t *vd, int l, vdev_boot_envblock_t *be, uint64_t offset)
1661 {
1662         zio_checksum_info_t *ci;
1663         zio_cksum_t cksum;
1664         off_t off;
1665         size_t size = VDEV_PAD_SIZE;
1666         int rc;
1667
1668         if (vd->v_phys_write == NULL)
1669                 return (ENOTSUP);
1670
1671         off = vdev_label_offset(vd->v_psize, l, offset);
1672
1673         rc = vdev_label_write_validate(vd, l, offset);
1674         if (rc != 0) {
1675                 return (rc);
1676         }
1677
1678         ci = &zio_checksum_table[ZIO_CHECKSUM_LABEL];
1679         be->vbe_zbt.zec_magic = ZEC_MAGIC;
1680         zio_checksum_label_verifier(&be->vbe_zbt.zec_cksum, off);
1681         ci->ci_func[0](be, size, NULL, &cksum);
1682         be->vbe_zbt.zec_cksum = cksum;
1683
1684         return (vdev_write_phys(vd, be, off, size));
1685 }
1686
1687 static int
1688 vdev_write_bootenv_impl(vdev_t *vdev, vdev_boot_envblock_t *be)
1689 {
1690         vdev_t *kid;
1691         int rv = 0, rc;
1692
1693         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1694                 if (kid->v_state != VDEV_STATE_HEALTHY)
1695                         continue;
1696                 rc = vdev_write_bootenv_impl(kid, be);
1697                 if (rv == 0)
1698                         rv = rc;
1699         }
1700
1701         /*
1702          * Non-leaf vdevs do not have v_phys_write.
1703          */
1704         if (vdev->v_phys_write == NULL)
1705                 return (rv);
1706
1707         for (int l = 0; l < VDEV_LABELS; l++) {
1708                 rc = vdev_label_write(vdev, l, be,
1709                     offsetof(vdev_label_t, vl_be));
1710                 if (rc != 0) {
1711                         printf("failed to write bootenv to %s label %d: %d\n",
1712                             vdev->v_name ? vdev->v_name : "unknown", l, rc);
1713                         rv = rc;
1714                 }
1715         }
1716         return (rv);
1717 }
1718
1719 int
1720 vdev_write_bootenv(vdev_t *vdev, nvlist_t *nvl)
1721 {
1722         vdev_boot_envblock_t *be;
1723         nvlist_t nv, *nvp;
1724         uint64_t version;
1725         int rv;
1726
1727         if (nvl->nv_size > sizeof(be->vbe_bootenv))
1728                 return (E2BIG);
1729
1730         version = VB_RAW;
1731         nvp = vdev_read_bootenv(vdev);
1732         if (nvp != NULL) {
1733                 nvlist_find(nvp, BOOTENV_VERSION, DATA_TYPE_UINT64, NULL,
1734                     &version, NULL);
1735                 nvlist_destroy(nvp);
1736         }
1737
1738         be = calloc(1, sizeof(*be));
1739         if (be == NULL)
1740                 return (ENOMEM);
1741
1742         be->vbe_version = version;
1743         switch (version) {
1744         case VB_RAW:
1745                 /*
1746                  * If there is no envmap, we will just wipe bootenv.
1747                  */
1748                 nvlist_find(nvl, GRUB_ENVMAP, DATA_TYPE_STRING, NULL,
1749                     be->vbe_bootenv, NULL);
1750                 rv = 0;
1751                 break;
1752
1753         case VB_NVLIST:
1754                 nv.nv_header = nvl->nv_header;
1755                 nv.nv_asize = nvl->nv_asize;
1756                 nv.nv_size = nvl->nv_size;
1757
1758                 bcopy(&nv.nv_header, be->vbe_bootenv, sizeof(nv.nv_header));
1759                 nv.nv_data = be->vbe_bootenv + sizeof(nvs_header_t);
1760                 bcopy(nvl->nv_data, nv.nv_data, nv.nv_size);
1761                 rv = nvlist_export(&nv);
1762                 break;
1763
1764         default:
1765                 rv = EINVAL;
1766                 break;
1767         }
1768
1769         if (rv == 0) {
1770                 be->vbe_version = htobe64(be->vbe_version);
1771                 rv = vdev_write_bootenv_impl(vdev, be);
1772         }
1773         free(be);
1774         return (rv);
1775 }
1776
1777 /*
1778  * Read the bootenv area from pool label, return the nvlist from it.
1779  * We return from first successful read.
1780  */
1781 nvlist_t *
1782 vdev_read_bootenv(vdev_t *vdev)
1783 {
1784         vdev_t *kid;
1785         nvlist_t *benv;
1786         vdev_boot_envblock_t *be;
1787         char *command;
1788         bool ok;
1789         int rv;
1790
1791         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1792                 if (kid->v_state != VDEV_STATE_HEALTHY)
1793                         continue;
1794
1795                 benv = vdev_read_bootenv(kid);
1796                 if (benv != NULL)
1797                         return (benv);
1798         }
1799
1800         be = malloc(sizeof (*be));
1801         if (be == NULL)
1802                 return (NULL);
1803
1804         rv = 0;
1805         for (int l = 0; l < VDEV_LABELS; l++) {
1806                 rv = vdev_label_read(vdev, l, be,
1807                     offsetof(vdev_label_t, vl_be),
1808                     sizeof (*be));
1809                 if (rv == 0)
1810                         break;
1811         }
1812         if (rv != 0) {
1813                 free(be);
1814                 return (NULL);
1815         }
1816
1817         be->vbe_version = be64toh(be->vbe_version);
1818         switch (be->vbe_version) {
1819         case VB_RAW:
1820                 /*
1821                  * we have textual data in vbe_bootenv, create nvlist
1822                  * with key "envmap".
1823                  */
1824                 benv = nvlist_create(NV_UNIQUE_NAME);
1825                 if (benv != NULL) {
1826                         if (*be->vbe_bootenv == '\0') {
1827                                 nvlist_add_uint64(benv, BOOTENV_VERSION,
1828                                     VB_NVLIST);
1829                                 break;
1830                         }
1831                         nvlist_add_uint64(benv, BOOTENV_VERSION, VB_RAW);
1832                         be->vbe_bootenv[sizeof (be->vbe_bootenv) - 1] = '\0';
1833                         nvlist_add_string(benv, GRUB_ENVMAP, be->vbe_bootenv);
1834                 }
1835                 break;
1836
1837         case VB_NVLIST:
1838                 benv = nvlist_import(be->vbe_bootenv, sizeof(be->vbe_bootenv));
1839                 break;
1840
1841         default:
1842                 command = (char *)be;
1843                 ok = false;
1844
1845                 /* Check for legacy zfsbootcfg command string */
1846                 for (int i = 0; command[i] != '\0'; i++) {
1847                         if (iscntrl(command[i])) {
1848                                 ok = false;
1849                                 break;
1850                         } else {
1851                                 ok = true;
1852                         }
1853                 }
1854                 benv = nvlist_create(NV_UNIQUE_NAME);
1855                 if (benv != NULL) {
1856                         if (ok)
1857                                 nvlist_add_string(benv, FREEBSD_BOOTONCE,
1858                                     command);
1859                         else
1860                                 nvlist_add_uint64(benv, BOOTENV_VERSION,
1861                                     VB_NVLIST);
1862                 }
1863                 break;
1864         }
1865         free(be);
1866         return (benv);
1867 }
1868
1869 static uint64_t
1870 vdev_get_label_asize(nvlist_t *nvl)
1871 {
1872         nvlist_t *vdevs;
1873         uint64_t asize;
1874         const char *type;
1875         int len;
1876
1877         asize = 0;
1878         /* Get vdev tree */
1879         if (nvlist_find(nvl, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1880             NULL, &vdevs, NULL) != 0)
1881                 return (asize);
1882
1883         /*
1884          * Get vdev type. We will calculate asize for raidz, mirror and disk.
1885          * For raidz, the asize is raw size of all children.
1886          */
1887         if (nvlist_find(vdevs, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1888             NULL, &type, &len) != 0)
1889                 goto done;
1890
1891         if (memcmp(type, VDEV_TYPE_MIRROR, len) != 0 &&
1892             memcmp(type, VDEV_TYPE_DISK, len) != 0 &&
1893             memcmp(type, VDEV_TYPE_RAIDZ, len) != 0)
1894                 goto done;
1895
1896         if (nvlist_find(vdevs, ZPOOL_CONFIG_ASIZE, DATA_TYPE_UINT64,
1897             NULL, &asize, NULL) != 0)
1898                 goto done;
1899
1900         if (memcmp(type, VDEV_TYPE_RAIDZ, len) == 0) {
1901                 nvlist_t **kids;
1902                 int nkids;
1903
1904                 if (nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN,
1905                     DATA_TYPE_NVLIST_ARRAY, &nkids, &kids, NULL) != 0) {
1906                         asize = 0;
1907                         goto done;
1908                 }
1909
1910                 asize /= nkids;
1911                 for (int i = 0; i < nkids; i++)
1912                         nvlist_destroy(kids[i]);
1913                 free(kids);
1914         }
1915
1916         asize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1917 done:
1918         nvlist_destroy(vdevs);
1919         return (asize);
1920 }
1921
1922 static nvlist_t *
1923 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1924 {
1925         vdev_phys_t *label;
1926         uint64_t best_txg = 0;
1927         uint64_t label_txg = 0;
1928         uint64_t asize;
1929         nvlist_t *nvl = NULL, *tmp;
1930         int error;
1931
1932         label = malloc(sizeof (vdev_phys_t));
1933         if (label == NULL)
1934                 return (NULL);
1935
1936         for (int l = 0; l < VDEV_LABELS; l++) {
1937                 if (vdev_label_read(vd, l, label,
1938                     offsetof(vdev_label_t, vl_vdev_phys),
1939                     sizeof (vdev_phys_t)))
1940                         continue;
1941
1942                 tmp = nvlist_import(label->vp_nvlist,
1943                     sizeof(label->vp_nvlist));
1944                 if (tmp == NULL)
1945                         continue;
1946
1947                 error = nvlist_find(tmp, ZPOOL_CONFIG_POOL_TXG,
1948                     DATA_TYPE_UINT64, NULL, &label_txg, NULL);
1949                 if (error != 0 || label_txg == 0) {
1950                         nvlist_destroy(nvl);
1951                         nvl = tmp;
1952                         goto done;
1953                 }
1954
1955                 if (label_txg <= txg && label_txg > best_txg) {
1956                         best_txg = label_txg;
1957                         nvlist_destroy(nvl);
1958                         nvl = tmp;
1959                         tmp = NULL;
1960
1961                         /*
1962                          * Use asize from pool config. We need this
1963                          * because we can get bad value from BIOS.
1964                          */
1965                         asize = vdev_get_label_asize(nvl);
1966                         if (asize != 0) {
1967                                 vd->v_psize = asize;
1968                         }
1969                 }
1970                 nvlist_destroy(tmp);
1971         }
1972
1973         if (best_txg == 0) {
1974                 nvlist_destroy(nvl);
1975                 nvl = NULL;
1976         }
1977 done:
1978         free(label);
1979         return (nvl);
1980 }
1981
1982 static void
1983 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1984 {
1985         uberblock_t *buf;
1986
1987         buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1988         if (buf == NULL)
1989                 return;
1990
1991         for (int l = 0; l < VDEV_LABELS; l++) {
1992                 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1993                         if (vdev_label_read(vd, l, buf,
1994                             VDEV_UBERBLOCK_OFFSET(vd, n),
1995                             VDEV_UBERBLOCK_SIZE(vd)))
1996                                 continue;
1997                         if (uberblock_verify(buf) != 0)
1998                                 continue;
1999
2000                         if (vdev_uberblock_compare(buf, ub) > 0)
2001                                 *ub = *buf;
2002                 }
2003         }
2004         free(buf);
2005 }
2006
2007 static int
2008 vdev_probe(vdev_phys_read_t *_read, vdev_phys_write_t *_write, void *priv,
2009     spa_t **spap)
2010 {
2011         vdev_t vtmp;
2012         spa_t *spa;
2013         vdev_t *vdev;
2014         nvlist_t *nvl;
2015         uint64_t val;
2016         uint64_t guid, vdev_children;
2017         uint64_t pool_txg, pool_guid;
2018         const char *pool_name;
2019         int rc, namelen;
2020
2021         /*
2022          * Load the vdev label and figure out which
2023          * uberblock is most current.
2024          */
2025         memset(&vtmp, 0, sizeof(vtmp));
2026         vtmp.v_phys_read = _read;
2027         vtmp.v_phys_write = _write;
2028         vtmp.v_priv = priv;
2029         vtmp.v_psize = P2ALIGN(ldi_get_size(priv),
2030             (uint64_t)sizeof (vdev_label_t));
2031
2032         /* Test for minimum device size. */
2033         if (vtmp.v_psize < SPA_MINDEVSIZE)
2034                 return (EIO);
2035
2036         nvl = vdev_label_read_config(&vtmp, UINT64_MAX);
2037         if (nvl == NULL)
2038                 return (EIO);
2039
2040         if (nvlist_find(nvl, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
2041             NULL, &val, NULL) != 0) {
2042                 nvlist_destroy(nvl);
2043                 return (EIO);
2044         }
2045
2046         if (!SPA_VERSION_IS_SUPPORTED(val)) {
2047                 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
2048                     (unsigned)val, (unsigned)SPA_VERSION);
2049                 nvlist_destroy(nvl);
2050                 return (EIO);
2051         }
2052
2053         /* Check ZFS features for read */
2054         rc = nvlist_check_features_for_read(nvl);
2055         if (rc != 0) {
2056                 nvlist_destroy(nvl);
2057                 return (EIO);
2058         }
2059
2060         if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
2061             NULL, &val, NULL) != 0) {
2062                 nvlist_destroy(nvl);
2063                 return (EIO);
2064         }
2065
2066         if (val == POOL_STATE_DESTROYED) {
2067                 /* We don't boot only from destroyed pools. */
2068                 nvlist_destroy(nvl);
2069                 return (EIO);
2070         }
2071
2072         if (nvlist_find(nvl, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
2073             NULL, &pool_txg, NULL) != 0 ||
2074             nvlist_find(nvl, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2075             NULL, &pool_guid, NULL) != 0 ||
2076             nvlist_find(nvl, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2077             NULL, &pool_name, &namelen) != 0) {
2078                 /*
2079                  * Cache and spare devices end up here - just ignore
2080                  * them.
2081                  */
2082                 nvlist_destroy(nvl);
2083                 return (EIO);
2084         }
2085
2086         /*
2087          * Create the pool if this is the first time we've seen it.
2088          */
2089         spa = spa_find_by_guid(pool_guid);
2090         if (spa == NULL) {
2091                 char *name;
2092
2093                 nvlist_find(nvl, ZPOOL_CONFIG_VDEV_CHILDREN,
2094                     DATA_TYPE_UINT64, NULL, &vdev_children, NULL);
2095                 name = malloc(namelen + 1);
2096                 if (name == NULL) {
2097                         nvlist_destroy(nvl);
2098                         return (ENOMEM);
2099                 }
2100                 bcopy(pool_name, name, namelen);
2101                 name[namelen] = '\0';
2102                 spa = spa_create(pool_guid, name);
2103                 free(name);
2104                 if (spa == NULL) {
2105                         nvlist_destroy(nvl);
2106                         return (ENOMEM);
2107                 }
2108                 spa->spa_root_vdev->v_nchildren = vdev_children;
2109         }
2110         if (pool_txg > spa->spa_txg)
2111                 spa->spa_txg = pool_txg;
2112
2113         /*
2114          * Get the vdev tree and create our in-core copy of it.
2115          * If we already have a vdev with this guid, this must
2116          * be some kind of alias (overlapping slices, dangerously dedicated
2117          * disks etc).
2118          */
2119         if (nvlist_find(nvl, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2120             NULL, &guid, NULL) != 0) {
2121                 nvlist_destroy(nvl);
2122                 return (EIO);
2123         }
2124         vdev = vdev_find(guid);
2125         /* Has this vdev already been inited? */
2126         if (vdev && vdev->v_phys_read) {
2127                 nvlist_destroy(nvl);
2128                 return (EIO);
2129         }
2130
2131         rc = vdev_init_from_label(spa, nvl);
2132         nvlist_destroy(nvl);
2133         if (rc != 0)
2134                 return (rc);
2135
2136         /*
2137          * We should already have created an incomplete vdev for this
2138          * vdev. Find it and initialise it with our read proc.
2139          */
2140         vdev = vdev_find(guid);
2141         if (vdev != NULL) {
2142                 vdev->v_phys_read = _read;
2143                 vdev->v_phys_write = _write;
2144                 vdev->v_priv = priv;
2145                 vdev->v_psize = vtmp.v_psize;
2146                 /*
2147                  * If no other state is set, mark vdev healthy.
2148                  */
2149                 if (vdev->v_state == VDEV_STATE_UNKNOWN)
2150                         vdev->v_state = VDEV_STATE_HEALTHY;
2151         } else {
2152                 printf("ZFS: inconsistent nvlist contents\n");
2153                 return (EIO);
2154         }
2155
2156         if (vdev->v_islog)
2157                 spa->spa_with_log = vdev->v_islog;
2158
2159         /*
2160          * Re-evaluate top-level vdev state.
2161          */
2162         vdev_set_state(vdev->v_top);
2163
2164         /*
2165          * Ok, we are happy with the pool so far. Lets find
2166          * the best uberblock and then we can actually access
2167          * the contents of the pool.
2168          */
2169         vdev_uberblock_load(vdev, spa->spa_uberblock);
2170
2171         if (spap != NULL)
2172                 *spap = spa;
2173         return (0);
2174 }
2175
2176 static int
2177 ilog2(int n)
2178 {
2179         int v;
2180
2181         for (v = 0; v < 32; v++)
2182                 if (n == (1 << v))
2183                         return (v);
2184         return (-1);
2185 }
2186
2187 static int
2188 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2189 {
2190         blkptr_t gbh_bp;
2191         zio_gbh_phys_t zio_gb;
2192         char *pbuf;
2193         int i;
2194
2195         /* Artificial BP for gang block header. */
2196         gbh_bp = *bp;
2197         BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2198         BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2199         BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2200         BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2201         for (i = 0; i < SPA_DVAS_PER_BP; i++)
2202                 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2203
2204         /* Read gang header block using the artificial BP. */
2205         if (zio_read(spa, &gbh_bp, &zio_gb))
2206                 return (EIO);
2207
2208         pbuf = buf;
2209         for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2210                 blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2211
2212                 if (BP_IS_HOLE(gbp))
2213                         continue;
2214                 if (zio_read(spa, gbp, pbuf))
2215                         return (EIO);
2216                 pbuf += BP_GET_PSIZE(gbp);
2217         }
2218
2219         if (zio_checksum_verify(spa, bp, buf))
2220                 return (EIO);
2221         return (0);
2222 }
2223
2224 static int
2225 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2226 {
2227         int cpfunc = BP_GET_COMPRESS(bp);
2228         uint64_t align, size;
2229         void *pbuf;
2230         int i, error;
2231
2232         /*
2233          * Process data embedded in block pointer
2234          */
2235         if (BP_IS_EMBEDDED(bp)) {
2236                 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2237
2238                 size = BPE_GET_PSIZE(bp);
2239                 ASSERT(size <= BPE_PAYLOAD_SIZE);
2240
2241                 if (cpfunc != ZIO_COMPRESS_OFF)
2242                         pbuf = malloc(size);
2243                 else
2244                         pbuf = buf;
2245
2246                 if (pbuf == NULL)
2247                         return (ENOMEM);
2248
2249                 decode_embedded_bp_compressed(bp, pbuf);
2250                 error = 0;
2251
2252                 if (cpfunc != ZIO_COMPRESS_OFF) {
2253                         error = zio_decompress_data(cpfunc, pbuf,
2254                             size, buf, BP_GET_LSIZE(bp));
2255                         free(pbuf);
2256                 }
2257                 if (error != 0)
2258                         printf("ZFS: i/o error - unable to decompress "
2259                             "block pointer data, error %d\n", error);
2260                 return (error);
2261         }
2262
2263         error = EIO;
2264
2265         for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2266                 const dva_t *dva = &bp->blk_dva[i];
2267                 vdev_t *vdev;
2268                 vdev_list_t *vlist;
2269                 uint64_t vdevid;
2270                 off_t offset;
2271
2272                 if (!dva->dva_word[0] && !dva->dva_word[1])
2273                         continue;
2274
2275                 vdevid = DVA_GET_VDEV(dva);
2276                 offset = DVA_GET_OFFSET(dva);
2277                 vlist = &spa->spa_root_vdev->v_children;
2278                 STAILQ_FOREACH(vdev, vlist, v_childlink) {
2279                         if (vdev->v_id == vdevid)
2280                                 break;
2281                 }
2282                 if (!vdev || !vdev->v_read)
2283                         continue;
2284
2285                 size = BP_GET_PSIZE(bp);
2286                 if (vdev->v_read == vdev_raidz_read) {
2287                         align = 1ULL << vdev->v_ashift;
2288                         if (P2PHASE(size, align) != 0)
2289                                 size = P2ROUNDUP(size, align);
2290                 }
2291                 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2292                         pbuf = malloc(size);
2293                 else
2294                         pbuf = buf;
2295
2296                 if (pbuf == NULL) {
2297                         error = ENOMEM;
2298                         break;
2299                 }
2300
2301                 if (DVA_GET_GANG(dva))
2302                         error = zio_read_gang(spa, bp, pbuf);
2303                 else
2304                         error = vdev->v_read(vdev, bp, pbuf, offset, size);
2305                 if (error == 0) {
2306                         if (cpfunc != ZIO_COMPRESS_OFF)
2307                                 error = zio_decompress_data(cpfunc, pbuf,
2308                                     BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2309                         else if (size != BP_GET_PSIZE(bp))
2310                                 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2311                 } else {
2312                         printf("zio_read error: %d\n", error);
2313                 }
2314                 if (buf != pbuf)
2315                         free(pbuf);
2316                 if (error == 0)
2317                         break;
2318         }
2319         if (error != 0)
2320                 printf("ZFS: i/o error - all block copies unavailable\n");
2321
2322         return (error);
2323 }
2324
2325 static int
2326 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2327     void *buf, size_t buflen)
2328 {
2329         int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2330         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2331         int nlevels = dnode->dn_nlevels;
2332         int i, rc;
2333
2334         if (bsize > SPA_MAXBLOCKSIZE) {
2335                 printf("ZFS: I/O error - blocks larger than %llu are not "
2336                     "supported\n", SPA_MAXBLOCKSIZE);
2337                 return (EIO);
2338         }
2339
2340         /*
2341          * Note: bsize may not be a power of two here so we need to do an
2342          * actual divide rather than a bitshift.
2343          */
2344         while (buflen > 0) {
2345                 uint64_t bn = offset / bsize;
2346                 int boff = offset % bsize;
2347                 int ibn;
2348                 const blkptr_t *indbp;
2349                 blkptr_t bp;
2350
2351                 if (bn > dnode->dn_maxblkid)
2352                         return (EIO);
2353
2354                 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2355                         goto cached;
2356
2357                 indbp = dnode->dn_blkptr;
2358                 for (i = 0; i < nlevels; i++) {
2359                         /*
2360                          * Copy the bp from the indirect array so that
2361                          * we can re-use the scratch buffer for multi-level
2362                          * objects.
2363                          */
2364                         ibn = bn >> ((nlevels - i - 1) * ibshift);
2365                         ibn &= ((1 << ibshift) - 1);
2366                         bp = indbp[ibn];
2367                         if (BP_IS_HOLE(&bp)) {
2368                                 memset(dnode_cache_buf, 0, bsize);
2369                                 break;
2370                         }
2371                         rc = zio_read(spa, &bp, dnode_cache_buf);
2372                         if (rc)
2373                                 return (rc);
2374                         indbp = (const blkptr_t *) dnode_cache_buf;
2375                 }
2376                 dnode_cache_obj = dnode;
2377                 dnode_cache_bn = bn;
2378         cached:
2379
2380                 /*
2381                  * The buffer contains our data block. Copy what we
2382                  * need from it and loop.
2383                  */
2384                 i = bsize - boff;
2385                 if (i > buflen) i = buflen;
2386                 memcpy(buf, &dnode_cache_buf[boff], i);
2387                 buf = ((char *)buf) + i;
2388                 offset += i;
2389                 buflen -= i;
2390         }
2391
2392         return (0);
2393 }
2394
2395 /*
2396  * Lookup a value in a microzap directory.
2397  */
2398 static int
2399 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2400     uint64_t *value)
2401 {
2402         const mzap_ent_phys_t *mze;
2403         int chunks, i;
2404
2405         /*
2406          * Microzap objects use exactly one block. Read the whole
2407          * thing.
2408          */
2409         chunks = size / MZAP_ENT_LEN - 1;
2410         for (i = 0; i < chunks; i++) {
2411                 mze = &mz->mz_chunk[i];
2412                 if (strcmp(mze->mze_name, name) == 0) {
2413                         *value = mze->mze_value;
2414                         return (0);
2415                 }
2416         }
2417
2418         return (ENOENT);
2419 }
2420
2421 /*
2422  * Compare a name with a zap leaf entry. Return non-zero if the name
2423  * matches.
2424  */
2425 static int
2426 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2427     const char *name)
2428 {
2429         size_t namelen;
2430         const zap_leaf_chunk_t *nc;
2431         const char *p;
2432
2433         namelen = zc->l_entry.le_name_numints;
2434
2435         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2436         p = name;
2437         while (namelen > 0) {
2438                 size_t len;
2439
2440                 len = namelen;
2441                 if (len > ZAP_LEAF_ARRAY_BYTES)
2442                         len = ZAP_LEAF_ARRAY_BYTES;
2443                 if (memcmp(p, nc->l_array.la_array, len))
2444                         return (0);
2445                 p += len;
2446                 namelen -= len;
2447                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2448         }
2449
2450         return (1);
2451 }
2452
2453 /*
2454  * Extract a uint64_t value from a zap leaf entry.
2455  */
2456 static uint64_t
2457 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2458 {
2459         const zap_leaf_chunk_t *vc;
2460         int i;
2461         uint64_t value;
2462         const uint8_t *p;
2463
2464         vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2465         for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2466                 value = (value << 8) | p[i];
2467         }
2468
2469         return (value);
2470 }
2471
2472 static void
2473 stv(int len, void *addr, uint64_t value)
2474 {
2475         switch (len) {
2476         case 1:
2477                 *(uint8_t *)addr = value;
2478                 return;
2479         case 2:
2480                 *(uint16_t *)addr = value;
2481                 return;
2482         case 4:
2483                 *(uint32_t *)addr = value;
2484                 return;
2485         case 8:
2486                 *(uint64_t *)addr = value;
2487                 return;
2488         }
2489 }
2490
2491 /*
2492  * Extract a array from a zap leaf entry.
2493  */
2494 static void
2495 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2496     uint64_t integer_size, uint64_t num_integers, void *buf)
2497 {
2498         uint64_t array_int_len = zc->l_entry.le_value_intlen;
2499         uint64_t value = 0;
2500         uint64_t *u64 = buf;
2501         char *p = buf;
2502         int len = MIN(zc->l_entry.le_value_numints, num_integers);
2503         int chunk = zc->l_entry.le_value_chunk;
2504         int byten = 0;
2505
2506         if (integer_size == 8 && len == 1) {
2507                 *u64 = fzap_leaf_value(zl, zc);
2508                 return;
2509         }
2510
2511         while (len > 0) {
2512                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2513                 int i;
2514
2515                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2516                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2517                         value = (value << 8) | la->la_array[i];
2518                         byten++;
2519                         if (byten == array_int_len) {
2520                                 stv(integer_size, p, value);
2521                                 byten = 0;
2522                                 len--;
2523                                 if (len == 0)
2524                                         return;
2525                                 p += integer_size;
2526                         }
2527                 }
2528                 chunk = la->la_next;
2529         }
2530 }
2531
2532 static int
2533 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2534 {
2535
2536         switch (integer_size) {
2537         case 1:
2538         case 2:
2539         case 4:
2540         case 8:
2541                 break;
2542         default:
2543                 return (EINVAL);
2544         }
2545
2546         if (integer_size * num_integers > ZAP_MAXVALUELEN)
2547                 return (E2BIG);
2548
2549         return (0);
2550 }
2551
2552 static void
2553 zap_leaf_free(zap_leaf_t *leaf)
2554 {
2555         free(leaf->l_phys);
2556         free(leaf);
2557 }
2558
2559 static int
2560 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2561 {
2562         int bs = FZAP_BLOCK_SHIFT(zap);
2563         int err;
2564
2565         *lp = malloc(sizeof(**lp));
2566         if (*lp == NULL)
2567                 return (ENOMEM);
2568
2569         (*lp)->l_bs = bs;
2570         (*lp)->l_phys = malloc(1 << bs);
2571
2572         if ((*lp)->l_phys == NULL) {
2573                 free(*lp);
2574                 return (ENOMEM);
2575         }
2576         err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2577             1 << bs);
2578         if (err != 0) {
2579                 zap_leaf_free(*lp);
2580         }
2581         return (err);
2582 }
2583
2584 static int
2585 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2586     uint64_t *valp)
2587 {
2588         int bs = FZAP_BLOCK_SHIFT(zap);
2589         uint64_t blk = idx >> (bs - 3);
2590         uint64_t off = idx & ((1 << (bs - 3)) - 1);
2591         uint64_t *buf;
2592         int rc;
2593
2594         buf = malloc(1 << zap->zap_block_shift);
2595         if (buf == NULL)
2596                 return (ENOMEM);
2597         rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2598             buf, 1 << zap->zap_block_shift);
2599         if (rc == 0)
2600                 *valp = buf[off];
2601         free(buf);
2602         return (rc);
2603 }
2604
2605 static int
2606 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2607 {
2608         if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2609                 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2610                 return (0);
2611         } else {
2612                 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2613                     idx, valp));
2614         }
2615 }
2616
2617 #define ZAP_HASH_IDX(hash, n)   (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2618 static int
2619 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2620 {
2621         uint64_t idx, blk;
2622         int err;
2623
2624         idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2625         err = zap_idx_to_blk(zap, idx, &blk);
2626         if (err != 0)
2627                 return (err);
2628         return (zap_get_leaf_byblk(zap, blk, lp));
2629 }
2630
2631 #define CHAIN_END       0xffff  /* end of the chunk chain */
2632 #define LEAF_HASH(l, h) \
2633         ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2634         ((h) >> \
2635         (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2636 #define LEAF_HASH_ENTPTR(l, h)  (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2637
2638 static int
2639 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2640     uint64_t integer_size, uint64_t num_integers, void *value)
2641 {
2642         int rc;
2643         uint16_t *chunkp;
2644         struct zap_leaf_entry *le;
2645
2646         /*
2647          * Make sure this chunk matches our hash.
2648          */
2649         if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2650             zl->l_phys->l_hdr.lh_prefix !=
2651             hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2652                 return (EIO);
2653
2654         rc = ENOENT;
2655         for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2656             *chunkp != CHAIN_END; chunkp = &le->le_next) {
2657                 zap_leaf_chunk_t *zc;
2658                 uint16_t chunk = *chunkp;
2659
2660                 le = ZAP_LEAF_ENTRY(zl, chunk);
2661                 if (le->le_hash != hash)
2662                         continue;
2663                 zc = &ZAP_LEAF_CHUNK(zl, chunk);
2664                 if (fzap_name_equal(zl, zc, name)) {
2665                         if (zc->l_entry.le_value_intlen > integer_size) {
2666                                 rc = EINVAL;
2667                         } else {
2668                                 fzap_leaf_array(zl, zc, integer_size,
2669                                     num_integers, value);
2670                                 rc = 0;
2671                         }
2672                         break;
2673                 }
2674         }
2675         return (rc);
2676 }
2677
2678 /*
2679  * Lookup a value in a fatzap directory.
2680  */
2681 static int
2682 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2683     const char *name, uint64_t integer_size, uint64_t num_integers,
2684     void *value)
2685 {
2686         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2687         fat_zap_t z;
2688         zap_leaf_t *zl;
2689         uint64_t hash;
2690         int rc;
2691
2692         if (zh->zap_magic != ZAP_MAGIC)
2693                 return (EIO);
2694
2695         if ((rc = fzap_check_size(integer_size, num_integers)) != 0) {
2696                 return (rc);
2697         }
2698
2699         z.zap_block_shift = ilog2(bsize);
2700         z.zap_phys = zh;
2701         z.zap_spa = spa;
2702         z.zap_dnode = dnode;
2703
2704         hash = zap_hash(zh->zap_salt, name);
2705         rc = zap_deref_leaf(&z, hash, &zl);
2706         if (rc != 0)
2707                 return (rc);
2708
2709         rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2710
2711         zap_leaf_free(zl);
2712         return (rc);
2713 }
2714
2715 /*
2716  * Lookup a name in a zap object and return its value as a uint64_t.
2717  */
2718 static int
2719 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2720     uint64_t integer_size, uint64_t num_integers, void *value)
2721 {
2722         int rc;
2723         zap_phys_t *zap;
2724         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2725
2726         zap = malloc(size);
2727         if (zap == NULL)
2728                 return (ENOMEM);
2729
2730         rc = dnode_read(spa, dnode, 0, zap, size);
2731         if (rc)
2732                 goto done;
2733
2734         switch (zap->zap_block_type) {
2735         case ZBT_MICRO:
2736                 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2737                 break;
2738         case ZBT_HEADER:
2739                 rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2740                     num_integers, value);
2741                 break;
2742         default:
2743                 printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2744                     zap->zap_block_type);
2745                 rc = EIO;
2746         }
2747 done:
2748         free(zap);
2749         return (rc);
2750 }
2751
2752 /*
2753  * List a microzap directory.
2754  */
2755 static int
2756 mzap_list(const mzap_phys_t *mz, size_t size,
2757     int (*callback)(const char *, uint64_t))
2758 {
2759         const mzap_ent_phys_t *mze;
2760         int chunks, i, rc;
2761
2762         /*
2763          * Microzap objects use exactly one block. Read the whole
2764          * thing.
2765          */
2766         rc = 0;
2767         chunks = size / MZAP_ENT_LEN - 1;
2768         for (i = 0; i < chunks; i++) {
2769                 mze = &mz->mz_chunk[i];
2770                 if (mze->mze_name[0]) {
2771                         rc = callback(mze->mze_name, mze->mze_value);
2772                         if (rc != 0)
2773                                 break;
2774                 }
2775         }
2776
2777         return (rc);
2778 }
2779
2780 /*
2781  * List a fatzap directory.
2782  */
2783 static int
2784 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2785     int (*callback)(const char *, uint64_t))
2786 {
2787         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2788         fat_zap_t z;
2789         uint64_t i;
2790         int j, rc;
2791
2792         if (zh->zap_magic != ZAP_MAGIC)
2793                 return (EIO);
2794
2795         z.zap_block_shift = ilog2(bsize);
2796         z.zap_phys = zh;
2797
2798         /*
2799          * This assumes that the leaf blocks start at block 1. The
2800          * documentation isn't exactly clear on this.
2801          */
2802         zap_leaf_t zl;
2803         zl.l_bs = z.zap_block_shift;
2804         zl.l_phys = malloc(bsize);
2805         if (zl.l_phys == NULL)
2806                 return (ENOMEM);
2807
2808         for (i = 0; i < zh->zap_num_leafs; i++) {
2809                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2810                 char name[256], *p;
2811                 uint64_t value;
2812
2813                 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2814                         free(zl.l_phys);
2815                         return (EIO);
2816                 }
2817
2818                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2819                         zap_leaf_chunk_t *zc, *nc;
2820                         int namelen;
2821
2822                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2823                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2824                                 continue;
2825                         namelen = zc->l_entry.le_name_numints;
2826                         if (namelen > sizeof(name))
2827                                 namelen = sizeof(name);
2828
2829                         /*
2830                          * Paste the name back together.
2831                          */
2832                         nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2833                         p = name;
2834                         while (namelen > 0) {
2835                                 int len;
2836                                 len = namelen;
2837                                 if (len > ZAP_LEAF_ARRAY_BYTES)
2838                                         len = ZAP_LEAF_ARRAY_BYTES;
2839                                 memcpy(p, nc->l_array.la_array, len);
2840                                 p += len;
2841                                 namelen -= len;
2842                                 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2843                         }
2844
2845                         /*
2846                          * Assume the first eight bytes of the value are
2847                          * a uint64_t.
2848                          */
2849                         value = fzap_leaf_value(&zl, zc);
2850
2851                         /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2852                         rc = callback((const char *)name, value);
2853                         if (rc != 0) {
2854                                 free(zl.l_phys);
2855                                 return (rc);
2856                         }
2857                 }
2858         }
2859
2860         free(zl.l_phys);
2861         return (0);
2862 }
2863
2864 static int zfs_printf(const char *name, uint64_t value __unused)
2865 {
2866
2867         printf("%s\n", name);
2868
2869         return (0);
2870 }
2871
2872 /*
2873  * List a zap directory.
2874  */
2875 static int
2876 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2877 {
2878         zap_phys_t *zap;
2879         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2880         int rc;
2881
2882         zap = malloc(size);
2883         if (zap == NULL)
2884                 return (ENOMEM);
2885
2886         rc = dnode_read(spa, dnode, 0, zap, size);
2887         if (rc == 0) {
2888                 if (zap->zap_block_type == ZBT_MICRO)
2889                         rc = mzap_list((const mzap_phys_t *)zap, size,
2890                             zfs_printf);
2891                 else
2892                         rc = fzap_list(spa, dnode, zap, zfs_printf);
2893         }
2894         free(zap);
2895         return (rc);
2896 }
2897
2898 static int
2899 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2900     dnode_phys_t *dnode)
2901 {
2902         off_t offset;
2903
2904         offset = objnum * sizeof(dnode_phys_t);
2905         return dnode_read(spa, &os->os_meta_dnode, offset,
2906                 dnode, sizeof(dnode_phys_t));
2907 }
2908
2909 /*
2910  * Lookup a name in a microzap directory.
2911  */
2912 static int
2913 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
2914 {
2915         const mzap_ent_phys_t *mze;
2916         int chunks, i;
2917
2918         /*
2919          * Microzap objects use exactly one block. Read the whole
2920          * thing.
2921          */
2922         chunks = size / MZAP_ENT_LEN - 1;
2923         for (i = 0; i < chunks; i++) {
2924                 mze = &mz->mz_chunk[i];
2925                 if (value == mze->mze_value) {
2926                         strcpy(name, mze->mze_name);
2927                         return (0);
2928                 }
2929         }
2930
2931         return (ENOENT);
2932 }
2933
2934 static void
2935 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2936 {
2937         size_t namelen;
2938         const zap_leaf_chunk_t *nc;
2939         char *p;
2940
2941         namelen = zc->l_entry.le_name_numints;
2942
2943         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2944         p = name;
2945         while (namelen > 0) {
2946                 size_t len;
2947                 len = namelen;
2948                 if (len > ZAP_LEAF_ARRAY_BYTES)
2949                         len = ZAP_LEAF_ARRAY_BYTES;
2950                 memcpy(p, nc->l_array.la_array, len);
2951                 p += len;
2952                 namelen -= len;
2953                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2954         }
2955
2956         *p = '\0';
2957 }
2958
2959 static int
2960 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2961     char *name, uint64_t value)
2962 {
2963         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2964         fat_zap_t z;
2965         uint64_t i;
2966         int j, rc;
2967
2968         if (zh->zap_magic != ZAP_MAGIC)
2969                 return (EIO);
2970
2971         z.zap_block_shift = ilog2(bsize);
2972         z.zap_phys = zh;
2973
2974         /*
2975          * This assumes that the leaf blocks start at block 1. The
2976          * documentation isn't exactly clear on this.
2977          */
2978         zap_leaf_t zl;
2979         zl.l_bs = z.zap_block_shift;
2980         zl.l_phys = malloc(bsize);
2981         if (zl.l_phys == NULL)
2982                 return (ENOMEM);
2983
2984         for (i = 0; i < zh->zap_num_leafs; i++) {
2985                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2986
2987                 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
2988                 if (rc != 0)
2989                         goto done;
2990
2991                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2992                         zap_leaf_chunk_t *zc;
2993
2994                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2995                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2996                                 continue;
2997                         if (zc->l_entry.le_value_intlen != 8 ||
2998                             zc->l_entry.le_value_numints != 1)
2999                                 continue;
3000
3001                         if (fzap_leaf_value(&zl, zc) == value) {
3002                                 fzap_name_copy(&zl, zc, name);
3003                                 goto done;
3004                         }
3005                 }
3006         }
3007
3008         rc = ENOENT;
3009 done:
3010         free(zl.l_phys);
3011         return (rc);
3012 }
3013
3014 static int
3015 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
3016     uint64_t value)
3017 {
3018         zap_phys_t *zap;
3019         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
3020         int rc;
3021
3022         zap = malloc(size);
3023         if (zap == NULL)
3024                 return (ENOMEM);
3025
3026         rc = dnode_read(spa, dnode, 0, zap, size);
3027         if (rc == 0) {
3028                 if (zap->zap_block_type == ZBT_MICRO)
3029                         rc = mzap_rlookup((const mzap_phys_t *)zap, size,
3030                             name, value);
3031                 else
3032                         rc = fzap_rlookup(spa, dnode, zap, name, value);
3033         }
3034         free(zap);
3035         return (rc);
3036 }
3037
3038 static int
3039 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
3040 {
3041         char name[256];
3042         char component[256];
3043         uint64_t dir_obj, parent_obj, child_dir_zapobj;
3044         dnode_phys_t child_dir_zap, dataset, dir, parent;
3045         dsl_dir_phys_t *dd;
3046         dsl_dataset_phys_t *ds;
3047         char *p;
3048         int len;
3049
3050         p = &name[sizeof(name) - 1];
3051         *p = '\0';
3052
3053         if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3054                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3055                 return (EIO);
3056         }
3057         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3058         dir_obj = ds->ds_dir_obj;
3059
3060         for (;;) {
3061                 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir) != 0)
3062                         return (EIO);
3063                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3064
3065                 /* Actual loop condition. */
3066                 parent_obj = dd->dd_parent_obj;
3067                 if (parent_obj == 0)
3068                         break;
3069
3070                 if (objset_get_dnode(spa, spa->spa_mos, parent_obj,
3071                     &parent) != 0)
3072                         return (EIO);
3073                 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
3074                 child_dir_zapobj = dd->dd_child_dir_zapobj;
3075                 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3076                     &child_dir_zap) != 0)
3077                         return (EIO);
3078                 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
3079                         return (EIO);
3080
3081                 len = strlen(component);
3082                 p -= len;
3083                 memcpy(p, component, len);
3084                 --p;
3085                 *p = '/';
3086
3087                 /* Actual loop iteration. */
3088                 dir_obj = parent_obj;
3089         }
3090
3091         if (*p != '\0')
3092                 ++p;
3093         strcpy(result, p);
3094
3095         return (0);
3096 }
3097
3098 static int
3099 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3100 {
3101         char element[256];
3102         uint64_t dir_obj, child_dir_zapobj;
3103         dnode_phys_t child_dir_zap, dir;
3104         dsl_dir_phys_t *dd;
3105         const char *p, *q;
3106
3107         if (objset_get_dnode(spa, spa->spa_mos,
3108             DMU_POOL_DIRECTORY_OBJECT, &dir))
3109                 return (EIO);
3110         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3111             1, &dir_obj))
3112                 return (EIO);
3113
3114         p = name;
3115         for (;;) {
3116                 if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir))
3117                         return (EIO);
3118                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3119
3120                 while (*p == '/')
3121                         p++;
3122                 /* Actual loop condition #1. */
3123                 if (*p == '\0')
3124                         break;
3125
3126                 q = strchr(p, '/');
3127                 if (q) {
3128                         memcpy(element, p, q - p);
3129                         element[q - p] = '\0';
3130                         p = q + 1;
3131                 } else {
3132                         strcpy(element, p);
3133                         p += strlen(p);
3134                 }
3135
3136                 child_dir_zapobj = dd->dd_child_dir_zapobj;
3137                 if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3138                     &child_dir_zap) != 0)
3139                         return (EIO);
3140
3141                 /* Actual loop condition #2. */
3142                 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3143                     1, &dir_obj) != 0)
3144                         return (ENOENT);
3145         }
3146
3147         *objnum = dd->dd_head_dataset_obj;
3148         return (0);
3149 }
3150
3151 #ifndef BOOT2
3152 static int
3153 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3154 {
3155         uint64_t dir_obj, child_dir_zapobj;
3156         dnode_phys_t child_dir_zap, dir, dataset;
3157         dsl_dataset_phys_t *ds;
3158         dsl_dir_phys_t *dd;
3159
3160         if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3161                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3162                 return (EIO);
3163         }
3164         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3165         dir_obj = ds->ds_dir_obj;
3166
3167         if (objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir)) {
3168                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3169                 return (EIO);
3170         }
3171         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3172
3173         child_dir_zapobj = dd->dd_child_dir_zapobj;
3174         if (objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3175             &child_dir_zap) != 0) {
3176                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3177                 return (EIO);
3178         }
3179
3180         return (zap_list(spa, &child_dir_zap) != 0);
3181 }
3182
3183 int
3184 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3185     int (*callback)(const char *, uint64_t))
3186 {
3187         uint64_t dir_obj, child_dir_zapobj;
3188         dnode_phys_t child_dir_zap, dir, dataset;
3189         dsl_dataset_phys_t *ds;
3190         dsl_dir_phys_t *dd;
3191         zap_phys_t *zap;
3192         size_t size;
3193         int err;
3194
3195         err = objset_get_dnode(spa, spa->spa_mos, objnum, &dataset);
3196         if (err != 0) {
3197                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3198                 return (err);
3199         }
3200         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3201         dir_obj = ds->ds_dir_obj;
3202
3203         err = objset_get_dnode(spa, spa->spa_mos, dir_obj, &dir);
3204         if (err != 0) {
3205                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3206                 return (err);
3207         }
3208         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3209
3210         child_dir_zapobj = dd->dd_child_dir_zapobj;
3211         err = objset_get_dnode(spa, spa->spa_mos, child_dir_zapobj,
3212             &child_dir_zap);
3213         if (err != 0) {
3214                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3215                 return (err);
3216         }
3217
3218         size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3219         zap = malloc(size);
3220         if (zap != NULL) {
3221                 err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3222                 if (err != 0)
3223                         goto done;
3224
3225                 if (zap->zap_block_type == ZBT_MICRO)
3226                         err = mzap_list((const mzap_phys_t *)zap, size,
3227                             callback);
3228                 else
3229                         err = fzap_list(spa, &child_dir_zap, zap, callback);
3230         } else {
3231                 err = ENOMEM;
3232         }
3233 done:
3234         free(zap);
3235         return (err);
3236 }
3237 #endif
3238
3239 /*
3240  * Find the object set given the object number of its dataset object
3241  * and return its details in *objset
3242  */
3243 static int
3244 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3245 {
3246         dnode_phys_t dataset;
3247         dsl_dataset_phys_t *ds;
3248
3249         if (objset_get_dnode(spa, spa->spa_mos, objnum, &dataset)) {
3250                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3251                 return (EIO);
3252         }
3253
3254         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3255         if (zio_read(spa, &ds->ds_bp, objset)) {
3256                 printf("ZFS: can't read object set for dataset %ju\n",
3257                     (uintmax_t)objnum);
3258                 return (EIO);
3259         }
3260
3261         return (0);
3262 }
3263
3264 /*
3265  * Find the object set pointed to by the BOOTFS property or the root
3266  * dataset if there is none and return its details in *objset
3267  */
3268 static int
3269 zfs_get_root(const spa_t *spa, uint64_t *objid)
3270 {
3271         dnode_phys_t dir, propdir;
3272         uint64_t props, bootfs, root;
3273
3274         *objid = 0;
3275
3276         /*
3277          * Start with the MOS directory object.
3278          */
3279         if (objset_get_dnode(spa, spa->spa_mos,
3280             DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3281                 printf("ZFS: can't read MOS object directory\n");
3282                 return (EIO);
3283         }
3284
3285         /*
3286          * Lookup the pool_props and see if we can find a bootfs.
3287          */
3288         if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3289             sizeof(props), 1, &props) == 0 &&
3290             objset_get_dnode(spa, spa->spa_mos, props, &propdir) == 0 &&
3291             zap_lookup(spa, &propdir, "bootfs",
3292             sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3293                 *objid = bootfs;
3294                 return (0);
3295         }
3296         /*
3297          * Lookup the root dataset directory
3298          */
3299         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3300             sizeof(root), 1, &root) ||
3301             objset_get_dnode(spa, spa->spa_mos, root, &dir)) {
3302                 printf("ZFS: can't find root dsl_dir\n");
3303                 return (EIO);
3304         }
3305
3306         /*
3307          * Use the information from the dataset directory's bonus buffer
3308          * to find the dataset object and from that the object set itself.
3309          */
3310         dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3311         *objid = dd->dd_head_dataset_obj;
3312         return (0);
3313 }
3314
3315 static int
3316 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3317 {
3318
3319         mount->spa = spa;
3320
3321         /*
3322          * Find the root object set if not explicitly provided
3323          */
3324         if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3325                 printf("ZFS: can't find root filesystem\n");
3326                 return (EIO);
3327         }
3328
3329         if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3330                 printf("ZFS: can't open root filesystem\n");
3331                 return (EIO);
3332         }
3333
3334         mount->rootobj = rootobj;
3335
3336         return (0);
3337 }
3338
3339 /*
3340  * callback function for feature name checks.
3341  */
3342 static int
3343 check_feature(const char *name, uint64_t value)
3344 {
3345         int i;
3346
3347         if (value == 0)
3348                 return (0);
3349         if (name[0] == '\0')
3350                 return (0);
3351
3352         for (i = 0; features_for_read[i] != NULL; i++) {
3353                 if (strcmp(name, features_for_read[i]) == 0)
3354                         return (0);
3355         }
3356         printf("ZFS: unsupported feature: %s\n", name);
3357         return (EIO);
3358 }
3359
3360 /*
3361  * Checks whether the MOS features that are active are supported.
3362  */
3363 static int
3364 check_mos_features(const spa_t *spa)
3365 {
3366         dnode_phys_t dir;
3367         zap_phys_t *zap;
3368         uint64_t objnum;
3369         size_t size;
3370         int rc;
3371
3372         if ((rc = objset_get_dnode(spa, spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3373             &dir)) != 0)
3374                 return (rc);
3375         if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3376             sizeof (objnum), 1, &objnum)) != 0) {
3377                 /*
3378                  * It is older pool without features. As we have already
3379                  * tested the label, just return without raising the error.
3380                  */
3381                 return (0);
3382         }
3383
3384         if ((rc = objset_get_dnode(spa, spa->spa_mos, objnum, &dir)) != 0)
3385                 return (rc);
3386
3387         if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3388                 return (EIO);
3389
3390         size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3391         zap = malloc(size);
3392         if (zap == NULL)
3393                 return (ENOMEM);
3394
3395         if (dnode_read(spa, &dir, 0, zap, size)) {
3396                 free(zap);
3397                 return (EIO);
3398         }
3399
3400         if (zap->zap_block_type == ZBT_MICRO)
3401                 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3402         else
3403                 rc = fzap_list(spa, &dir, zap, check_feature);
3404
3405         free(zap);
3406         return (rc);
3407 }
3408
3409 static int
3410 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
3411 {
3412         dnode_phys_t dir;
3413         size_t size;
3414         int rc;
3415         char *nv;
3416
3417         *value = NULL;
3418         if ((rc = objset_get_dnode(spa, spa->spa_mos, obj, &dir)) != 0)
3419                 return (rc);
3420         if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3421             dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3422                 return (EIO);
3423         }
3424
3425         if (dir.dn_bonuslen != sizeof (uint64_t))
3426                 return (EIO);
3427
3428         size = *(uint64_t *)DN_BONUS(&dir);
3429         nv = malloc(size);
3430         if (nv == NULL)
3431                 return (ENOMEM);
3432
3433         rc = dnode_read(spa, &dir, 0, nv, size);
3434         if (rc != 0) {
3435                 free(nv);
3436                 nv = NULL;
3437                 return (rc);
3438         }
3439         *value = nvlist_import(nv, size);
3440         free(nv);
3441         return (rc);
3442 }
3443
3444 static int
3445 zfs_spa_init(spa_t *spa)
3446 {
3447         struct uberblock checkpoint;
3448         dnode_phys_t dir;
3449         uint64_t config_object;
3450         nvlist_t *nvlist;
3451         int rc;
3452
3453         if (zio_read(spa, &spa->spa_uberblock->ub_rootbp, spa->spa_mos)) {
3454                 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3455                 return (EIO);
3456         }
3457         if (spa->spa_mos->os_type != DMU_OST_META) {
3458                 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3459                 return (EIO);
3460         }
3461
3462         if (objset_get_dnode(spa, &spa->spa_mos_master,
3463             DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3464                 printf("ZFS: failed to read pool %s directory object\n",
3465                     spa->spa_name);
3466                 return (EIO);
3467         }
3468         /* this is allowed to fail, older pools do not have salt */
3469         rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3470             sizeof (spa->spa_cksum_salt.zcs_bytes),
3471             spa->spa_cksum_salt.zcs_bytes);
3472
3473         rc = check_mos_features(spa);
3474         if (rc != 0) {
3475                 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3476                 return (rc);
3477         }
3478
3479         rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3480             sizeof (config_object), 1, &config_object);
3481         if (rc != 0) {
3482                 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3483                 return (EIO);
3484         }
3485         rc = load_nvlist(spa, config_object, &nvlist);
3486         if (rc != 0)
3487                 return (rc);
3488
3489         rc = zap_lookup(spa, &dir, DMU_POOL_ZPOOL_CHECKPOINT,
3490             sizeof(uint64_t), sizeof(checkpoint) / sizeof(uint64_t),
3491             &checkpoint);
3492         if (rc == 0 && checkpoint.ub_checkpoint_txg != 0) {
3493                 memcpy(&spa->spa_uberblock_checkpoint, &checkpoint,
3494                     sizeof(checkpoint));
3495                 if (zio_read(spa, &spa->spa_uberblock_checkpoint.ub_rootbp,
3496                     &spa->spa_mos_checkpoint)) {
3497                         printf("ZFS: can not read checkpoint data.\n");
3498                         return (EIO);
3499                 }
3500         }
3501
3502         /*
3503          * Update vdevs from MOS config. Note, we do skip encoding bytes
3504          * here. See also vdev_label_read_config().
3505          */
3506         rc = vdev_init_from_nvlist(spa, nvlist);
3507         nvlist_destroy(nvlist);
3508         return (rc);
3509 }
3510
3511 static int
3512 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3513 {
3514
3515         if (dn->dn_bonustype != DMU_OT_SA) {
3516                 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3517
3518                 sb->st_mode = zp->zp_mode;
3519                 sb->st_uid = zp->zp_uid;
3520                 sb->st_gid = zp->zp_gid;
3521                 sb->st_size = zp->zp_size;
3522         } else {
3523                 sa_hdr_phys_t *sahdrp;
3524                 int hdrsize;
3525                 size_t size = 0;
3526                 void *buf = NULL;
3527
3528                 if (dn->dn_bonuslen != 0)
3529                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3530                 else {
3531                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3532                                 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3533                                 int error;
3534
3535                                 size = BP_GET_LSIZE(bp);
3536                                 buf = malloc(size);
3537                                 if (buf == NULL)
3538                                         error = ENOMEM;
3539                                 else
3540                                         error = zio_read(spa, bp, buf);
3541
3542                                 if (error != 0) {
3543                                         free(buf);
3544                                         return (error);
3545                                 }
3546                                 sahdrp = buf;
3547                         } else {
3548                                 return (EIO);
3549                         }
3550                 }
3551                 hdrsize = SA_HDR_SIZE(sahdrp);
3552                 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3553                     SA_MODE_OFFSET);
3554                 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3555                     SA_UID_OFFSET);
3556                 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3557                     SA_GID_OFFSET);
3558                 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3559                     SA_SIZE_OFFSET);
3560                 free(buf);
3561         }
3562
3563         return (0);
3564 }
3565
3566 static int
3567 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3568 {
3569         int rc = 0;
3570
3571         if (dn->dn_bonustype == DMU_OT_SA) {
3572                 sa_hdr_phys_t *sahdrp = NULL;
3573                 size_t size = 0;
3574                 void *buf = NULL;
3575                 int hdrsize;
3576                 char *p;
3577
3578                 if (dn->dn_bonuslen != 0) {
3579                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3580                 } else {
3581                         blkptr_t *bp;
3582
3583                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3584                                 return (EIO);
3585                         bp = DN_SPILL_BLKPTR(dn);
3586
3587                         size = BP_GET_LSIZE(bp);
3588                         buf = malloc(size);
3589                         if (buf == NULL)
3590                                 rc = ENOMEM;
3591                         else
3592                                 rc = zio_read(spa, bp, buf);
3593                         if (rc != 0) {
3594                                 free(buf);
3595                                 return (rc);
3596                         }
3597                         sahdrp = buf;
3598                 }
3599                 hdrsize = SA_HDR_SIZE(sahdrp);
3600                 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3601                 memcpy(path, p, psize);
3602                 free(buf);
3603                 return (0);
3604         }
3605         /*
3606          * Second test is purely to silence bogus compiler
3607          * warning about accessing past the end of dn_bonus.
3608          */
3609         if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3610             sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3611                 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3612         } else {
3613                 rc = dnode_read(spa, dn, 0, path, psize);
3614         }
3615         return (rc);
3616 }
3617
3618 struct obj_list {
3619         uint64_t                objnum;
3620         STAILQ_ENTRY(obj_list)  entry;
3621 };
3622
3623 /*
3624  * Lookup a file and return its dnode.
3625  */
3626 static int
3627 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3628 {
3629         int rc;
3630         uint64_t objnum;
3631         const spa_t *spa;
3632         dnode_phys_t dn;
3633         const char *p, *q;
3634         char element[256];
3635         char path[1024];
3636         int symlinks_followed = 0;
3637         struct stat sb;
3638         struct obj_list *entry, *tentry;
3639         STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3640
3641         spa = mount->spa;
3642         if (mount->objset.os_type != DMU_OST_ZFS) {
3643                 printf("ZFS: unexpected object set type %ju\n",
3644                     (uintmax_t)mount->objset.os_type);
3645                 return (EIO);
3646         }
3647
3648         if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3649                 return (ENOMEM);
3650
3651         /*
3652          * Get the root directory dnode.
3653          */
3654         rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3655         if (rc) {
3656                 free(entry);
3657                 return (rc);
3658         }
3659
3660         rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3661         if (rc) {
3662                 free(entry);
3663                 return (rc);
3664         }
3665         entry->objnum = objnum;
3666         STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3667
3668         rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3669         if (rc != 0)
3670                 goto done;
3671
3672         p = upath;
3673         while (p && *p) {
3674                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3675                 if (rc != 0)
3676                         goto done;
3677
3678                 while (*p == '/')
3679                         p++;
3680                 if (*p == '\0')
3681                         break;
3682                 q = p;
3683                 while (*q != '\0' && *q != '/')
3684                         q++;
3685
3686                 /* skip dot */
3687                 if (p + 1 == q && p[0] == '.') {
3688                         p++;
3689                         continue;
3690                 }
3691                 /* double dot */
3692                 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3693                         p += 2;
3694                         if (STAILQ_FIRST(&on_cache) ==
3695                             STAILQ_LAST(&on_cache, obj_list, entry)) {
3696                                 rc = ENOENT;
3697                                 goto done;
3698                         }
3699                         entry = STAILQ_FIRST(&on_cache);
3700                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3701                         free(entry);
3702                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3703                         continue;
3704                 }
3705                 if (q - p + 1 > sizeof(element)) {
3706                         rc = ENAMETOOLONG;
3707                         goto done;
3708                 }
3709                 memcpy(element, p, q - p);
3710                 element[q - p] = 0;
3711                 p = q;
3712
3713                 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3714                         goto done;
3715                 if (!S_ISDIR(sb.st_mode)) {
3716                         rc = ENOTDIR;
3717                         goto done;
3718                 }
3719
3720                 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3721                 if (rc)
3722                         goto done;
3723                 objnum = ZFS_DIRENT_OBJ(objnum);
3724
3725                 if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3726                         rc = ENOMEM;
3727                         goto done;
3728                 }
3729                 entry->objnum = objnum;
3730                 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3731                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3732                 if (rc)
3733                         goto done;
3734
3735                 /*
3736                  * Check for symlink.
3737                  */
3738                 rc = zfs_dnode_stat(spa, &dn, &sb);
3739                 if (rc)
3740                         goto done;
3741                 if (S_ISLNK(sb.st_mode)) {
3742                         if (symlinks_followed > 10) {
3743                                 rc = EMLINK;
3744                                 goto done;
3745                         }
3746                         symlinks_followed++;
3747
3748                         /*
3749                          * Read the link value and copy the tail of our
3750                          * current path onto the end.
3751                          */
3752                         if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3753                                 rc = ENAMETOOLONG;
3754                                 goto done;
3755                         }
3756                         strcpy(&path[sb.st_size], p);
3757
3758                         rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3759                         if (rc != 0)
3760                                 goto done;
3761
3762                         /*
3763                          * Restart with the new path, starting either at
3764                          * the root or at the parent depending whether or
3765                          * not the link is relative.
3766                          */
3767                         p = path;
3768                         if (*p == '/') {
3769                                 while (STAILQ_FIRST(&on_cache) !=
3770                                     STAILQ_LAST(&on_cache, obj_list, entry)) {
3771                                         entry = STAILQ_FIRST(&on_cache);
3772                                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3773                                         free(entry);
3774                                 }
3775                         } else {
3776                                 entry = STAILQ_FIRST(&on_cache);
3777                                 STAILQ_REMOVE_HEAD(&on_cache, entry);
3778                                 free(entry);
3779                         }
3780                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3781                 }
3782         }
3783
3784         *dnode = dn;
3785 done:
3786         STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3787                 free(entry);
3788         return (rc);
3789 }