]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - stand/libsa/zfs/zfsimpl.c
Merge diff elimination updates from r355953 into vendor/llvm-project.
[FreeBSD/FreeBSD.git] / stand / libsa / zfs / zfsimpl.c
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  *      Stand-alone ZFS file reader.
32  */
33
34 #include <sys/endian.h>
35 #include <sys/stat.h>
36 #include <sys/stdint.h>
37 #include <sys/list.h>
38 #include <machine/_inttypes.h>
39
40 #include "zfsimpl.h"
41 #include "zfssubr.c"
42
43
44 struct zfsmount {
45         const spa_t     *spa;
46         objset_phys_t   objset;
47         uint64_t        rootobj;
48 };
49 static struct zfsmount zfsmount __unused;
50
51 /*
52  * The indirect_child_t represents the vdev that we will read from, when we
53  * need to read all copies of the data (e.g. for scrub or reconstruction).
54  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
55  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
56  * ic_vdev is a child of the mirror.
57  */
58 typedef struct indirect_child {
59         void *ic_data;
60         vdev_t *ic_vdev;
61 } indirect_child_t;
62
63 /*
64  * The indirect_split_t represents one mapped segment of an i/o to the
65  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
66  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
67  * For split blocks, there will be several of these.
68  */
69 typedef struct indirect_split {
70         list_node_t is_node; /* link on iv_splits */
71
72         /*
73          * is_split_offset is the offset into the i/o.
74          * This is the sum of the previous splits' is_size's.
75          */
76         uint64_t is_split_offset;
77
78         vdev_t *is_vdev; /* top-level vdev */
79         uint64_t is_target_offset; /* offset on is_vdev */
80         uint64_t is_size;
81         int is_children; /* number of entries in is_child[] */
82
83         /*
84          * is_good_child is the child that we are currently using to
85          * attempt reconstruction.
86          */
87         int is_good_child;
88
89         indirect_child_t is_child[1]; /* variable-length */
90 } indirect_split_t;
91
92 /*
93  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
94  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
95  */
96 typedef struct indirect_vsd {
97         boolean_t iv_split_block;
98         boolean_t iv_reconstruct;
99
100         list_t iv_splits; /* list of indirect_split_t's */
101 } indirect_vsd_t;
102
103 /*
104  * List of all vdevs, chained through v_alllink.
105  */
106 static vdev_list_t zfs_vdevs;
107
108 /*
109  * List of ZFS features supported for read
110  */
111 static const char *features_for_read[] = {
112         "org.illumos:lz4_compress",
113         "com.delphix:hole_birth",
114         "com.delphix:extensible_dataset",
115         "com.delphix:embedded_data",
116         "org.open-zfs:large_blocks",
117         "org.illumos:sha512",
118         "org.illumos:skein",
119         "org.zfsonlinux:large_dnode",
120         "com.joyent:multi_vdev_crash_dump",
121         "com.delphix:spacemap_histogram",
122         "com.delphix:zpool_checkpoint",
123         "com.delphix:spacemap_v2",
124         "com.datto:encryption",
125         "org.zfsonlinux:allocation_classes",
126         "com.datto:resilver_defer",
127         "com.delphix:device_removal",
128         "com.delphix:obsolete_counts",
129         "com.intel:allocation_classes",
130         NULL
131 };
132
133 /*
134  * List of all pools, chained through spa_link.
135  */
136 static spa_list_t zfs_pools;
137
138 static const dnode_phys_t *dnode_cache_obj;
139 static uint64_t dnode_cache_bn;
140 static char *dnode_cache_buf;
141 static char *zap_scratch;
142 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
143
144 #define TEMP_SIZE       (1024 * 1024)
145
146 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
147 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
148 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
149 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
150     const char *name, uint64_t integer_size, uint64_t num_integers,
151     void *value);
152 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
153     dnode_phys_t *);
154 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
155     size_t);
156 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
157     size_t);
158 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
159 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
160     uint64_t);
161 vdev_indirect_mapping_entry_phys_t *
162     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
163     uint64_t, uint64_t *);
164
165 static void
166 zfs_init(void)
167 {
168         STAILQ_INIT(&zfs_vdevs);
169         STAILQ_INIT(&zfs_pools);
170
171         zfs_temp_buf = malloc(TEMP_SIZE);
172         zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
173         zfs_temp_ptr = zfs_temp_buf;
174         dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
175         zap_scratch = malloc(SPA_MAXBLOCKSIZE);
176
177         zfs_init_crc();
178 }
179
180 static void *
181 zfs_alloc(size_t size)
182 {
183         char *ptr;
184
185         if (zfs_temp_ptr + size > zfs_temp_end) {
186                 panic("ZFS: out of temporary buffer space");
187         }
188         ptr = zfs_temp_ptr;
189         zfs_temp_ptr += size;
190
191         return (ptr);
192 }
193
194 static void
195 zfs_free(void *ptr, size_t size)
196 {
197
198         zfs_temp_ptr -= size;
199         if (zfs_temp_ptr != ptr) {
200                 panic("ZFS: zfs_alloc()/zfs_free() mismatch");
201         }
202 }
203
204 static int
205 xdr_int(const unsigned char **xdr, int *ip)
206 {
207         *ip = be32dec(*xdr);
208         (*xdr) += 4;
209         return (0);
210 }
211
212 static int
213 xdr_u_int(const unsigned char **xdr, u_int *ip)
214 {
215         *ip = be32dec(*xdr);
216         (*xdr) += 4;
217         return (0);
218 }
219
220 static int
221 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
222 {
223         u_int hi, lo;
224
225         xdr_u_int(xdr, &hi);
226         xdr_u_int(xdr, &lo);
227         *lp = (((uint64_t)hi) << 32) | lo;
228         return (0);
229 }
230
231 static int
232 nvlist_find(const unsigned char *nvlist, const char *name, int type,
233     int *elementsp, void *valuep)
234 {
235         const unsigned char *p, *pair;
236         int junk;
237         int encoded_size, decoded_size;
238
239         p = nvlist;
240         xdr_int(&p, &junk);
241         xdr_int(&p, &junk);
242
243         pair = p;
244         xdr_int(&p, &encoded_size);
245         xdr_int(&p, &decoded_size);
246         while (encoded_size && decoded_size) {
247                 int namelen, pairtype, elements;
248                 const char *pairname;
249
250                 xdr_int(&p, &namelen);
251                 pairname = (const char *)p;
252                 p += roundup(namelen, 4);
253                 xdr_int(&p, &pairtype);
254
255                 if (memcmp(name, pairname, namelen) == 0 && type == pairtype) {
256                         xdr_int(&p, &elements);
257                         if (elementsp)
258                                 *elementsp = elements;
259                         if (type == DATA_TYPE_UINT64) {
260                                 xdr_uint64_t(&p, (uint64_t *)valuep);
261                                 return (0);
262                         } else if (type == DATA_TYPE_STRING) {
263                                 int len;
264                                 xdr_int(&p, &len);
265                                 (*(const char **)valuep) = (const char *)p;
266                                 return (0);
267                         } else if (type == DATA_TYPE_NVLIST ||
268                             type == DATA_TYPE_NVLIST_ARRAY) {
269                                 (*(const unsigned char **)valuep) =
270                                     (const unsigned char *)p;
271                                 return (0);
272                         } else {
273                                 return (EIO);
274                         }
275                 } else {
276                         /*
277                          * Not the pair we are looking for, skip to the
278                          * next one.
279                          */
280                         p = pair + encoded_size;
281                 }
282
283                 pair = p;
284                 xdr_int(&p, &encoded_size);
285                 xdr_int(&p, &decoded_size);
286         }
287
288         return (EIO);
289 }
290
291 static int
292 nvlist_check_features_for_read(const unsigned char *nvlist)
293 {
294         const unsigned char *p, *pair;
295         int junk;
296         int encoded_size, decoded_size;
297         int rc;
298
299         rc = 0;
300
301         p = nvlist;
302         xdr_int(&p, &junk);
303         xdr_int(&p, &junk);
304
305         pair = p;
306         xdr_int(&p, &encoded_size);
307         xdr_int(&p, &decoded_size);
308         while (encoded_size && decoded_size) {
309                 int namelen, pairtype;
310                 const char *pairname;
311                 int i, found;
312
313                 found = 0;
314
315                 xdr_int(&p, &namelen);
316                 pairname = (const char *)p;
317                 p += roundup(namelen, 4);
318                 xdr_int(&p, &pairtype);
319
320                 for (i = 0; features_for_read[i] != NULL; i++) {
321                         if (memcmp(pairname, features_for_read[i],
322                             namelen) == 0) {
323                                 found = 1;
324                                 break;
325                         }
326                 }
327
328                 if (!found) {
329                         printf("ZFS: unsupported feature: %s\n", pairname);
330                         rc = EIO;
331                 }
332
333                 p = pair + encoded_size;
334
335                 pair = p;
336                 xdr_int(&p, &encoded_size);
337                 xdr_int(&p, &decoded_size);
338         }
339
340         return (rc);
341 }
342
343 /*
344  * Return the next nvlist in an nvlist array.
345  */
346 static const unsigned char *
347 nvlist_next(const unsigned char *nvlist)
348 {
349         const unsigned char *p, *pair;
350         int junk;
351         int encoded_size, decoded_size;
352
353         p = nvlist;
354         xdr_int(&p, &junk);
355         xdr_int(&p, &junk);
356
357         pair = p;
358         xdr_int(&p, &encoded_size);
359         xdr_int(&p, &decoded_size);
360         while (encoded_size && decoded_size) {
361                 p = pair + encoded_size;
362
363                 pair = p;
364                 xdr_int(&p, &encoded_size);
365                 xdr_int(&p, &decoded_size);
366         }
367
368         return (p);
369 }
370
371 #ifdef TEST
372
373 static const unsigned char *
374 nvlist_print(const unsigned char *nvlist, unsigned int indent)
375 {
376         static const char *typenames[] = {
377                 "DATA_TYPE_UNKNOWN",
378                 "DATA_TYPE_BOOLEAN",
379                 "DATA_TYPE_BYTE",
380                 "DATA_TYPE_INT16",
381                 "DATA_TYPE_UINT16",
382                 "DATA_TYPE_INT32",
383                 "DATA_TYPE_UINT32",
384                 "DATA_TYPE_INT64",
385                 "DATA_TYPE_UINT64",
386                 "DATA_TYPE_STRING",
387                 "DATA_TYPE_BYTE_ARRAY",
388                 "DATA_TYPE_INT16_ARRAY",
389                 "DATA_TYPE_UINT16_ARRAY",
390                 "DATA_TYPE_INT32_ARRAY",
391                 "DATA_TYPE_UINT32_ARRAY",
392                 "DATA_TYPE_INT64_ARRAY",
393                 "DATA_TYPE_UINT64_ARRAY",
394                 "DATA_TYPE_STRING_ARRAY",
395                 "DATA_TYPE_HRTIME",
396                 "DATA_TYPE_NVLIST",
397                 "DATA_TYPE_NVLIST_ARRAY",
398                 "DATA_TYPE_BOOLEAN_VALUE",
399                 "DATA_TYPE_INT8",
400                 "DATA_TYPE_UINT8",
401                 "DATA_TYPE_BOOLEAN_ARRAY",
402                 "DATA_TYPE_INT8_ARRAY",
403                 "DATA_TYPE_UINT8_ARRAY"
404         };
405
406         unsigned int i, j;
407         const unsigned char *p, *pair;
408         int junk;
409         int encoded_size, decoded_size;
410
411         p = nvlist;
412         xdr_int(&p, &junk);
413         xdr_int(&p, &junk);
414
415         pair = p;
416         xdr_int(&p, &encoded_size);
417         xdr_int(&p, &decoded_size);
418         while (encoded_size && decoded_size) {
419                 int namelen, pairtype, elements;
420                 const char *pairname;
421
422                 xdr_int(&p, &namelen);
423                 pairname = (const char *)p;
424                 p += roundup(namelen, 4);
425                 xdr_int(&p, &pairtype);
426
427                 for (i = 0; i < indent; i++)
428                         printf(" ");
429                 printf("%s %s", typenames[pairtype], pairname);
430
431                 xdr_int(&p, &elements);
432                 switch (pairtype) {
433                 case DATA_TYPE_UINT64: {
434                         uint64_t val;
435                         xdr_uint64_t(&p, &val);
436                         printf(" = 0x%jx\n", (uintmax_t)val);
437                         break;
438                 }
439
440                 case DATA_TYPE_STRING: {
441                         int len;
442                         xdr_int(&p, &len);
443                         printf(" = \"%s\"\n", p);
444                         break;
445                 }
446
447                 case DATA_TYPE_NVLIST:
448                         printf("\n");
449                         nvlist_print(p, indent + 1);
450                         break;
451
452                 case DATA_TYPE_NVLIST_ARRAY:
453                         for (j = 0; j < elements; j++) {
454                                 printf("[%d]\n", j);
455                                 p = nvlist_print(p, indent + 1);
456                                 if (j != elements - 1) {
457                                         for (i = 0; i < indent; i++)
458                                                 printf(" ");
459                                         printf("%s %s", typenames[pairtype],
460                                             pairname);
461                                 }
462                         }
463                         break;
464
465                 default:
466                         printf("\n");
467                 }
468
469                 p = pair + encoded_size;
470
471                 pair = p;
472                 xdr_int(&p, &encoded_size);
473                 xdr_int(&p, &decoded_size);
474         }
475
476         return (p);
477 }
478
479 #endif
480
481 static int
482 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
483     off_t offset, size_t size)
484 {
485         size_t psize;
486         int rc;
487
488         if (!vdev->v_phys_read)
489                 return (EIO);
490
491         if (bp) {
492                 psize = BP_GET_PSIZE(bp);
493         } else {
494                 psize = size;
495         }
496
497         rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
498         if (rc == 0) {
499                 if (bp != NULL)
500                         rc = zio_checksum_verify(vdev->v_spa, bp, buf);
501         }
502
503         return (rc);
504 }
505
506 typedef struct remap_segment {
507         vdev_t *rs_vd;
508         uint64_t rs_offset;
509         uint64_t rs_asize;
510         uint64_t rs_split_offset;
511         list_node_t rs_node;
512 } remap_segment_t;
513
514 static remap_segment_t *
515 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
516 {
517         remap_segment_t *rs = malloc(sizeof (remap_segment_t));
518
519         if (rs != NULL) {
520                 rs->rs_vd = vd;
521                 rs->rs_offset = offset;
522                 rs->rs_asize = asize;
523                 rs->rs_split_offset = split_offset;
524         }
525
526         return (rs);
527 }
528
529 vdev_indirect_mapping_t *
530 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
531     uint64_t mapping_object)
532 {
533         vdev_indirect_mapping_t *vim;
534         vdev_indirect_mapping_phys_t *vim_phys;
535         int rc;
536
537         vim = calloc(1, sizeof (*vim));
538         if (vim == NULL)
539                 return (NULL);
540
541         vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
542         if (vim->vim_dn == NULL) {
543                 free(vim);
544                 return (NULL);
545         }
546
547         rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
548         if (rc != 0) {
549                 free(vim->vim_dn);
550                 free(vim);
551                 return (NULL);
552         }
553
554         vim->vim_spa = spa;
555         vim->vim_phys = malloc(sizeof (*vim->vim_phys));
556         if (vim->vim_phys == NULL) {
557                 free(vim->vim_dn);
558                 free(vim);
559                 return (NULL);
560         }
561
562         vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
563         *vim->vim_phys = *vim_phys;
564
565         vim->vim_objset = os;
566         vim->vim_object = mapping_object;
567         vim->vim_entries = NULL;
568
569         vim->vim_havecounts =
570             (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
571
572         return (vim);
573 }
574
575 /*
576  * Compare an offset with an indirect mapping entry; there are three
577  * possible scenarios:
578  *
579  *     1. The offset is "less than" the mapping entry; meaning the
580  *        offset is less than the source offset of the mapping entry. In
581  *        this case, there is no overlap between the offset and the
582  *        mapping entry and -1 will be returned.
583  *
584  *     2. The offset is "greater than" the mapping entry; meaning the
585  *        offset is greater than the mapping entry's source offset plus
586  *        the entry's size. In this case, there is no overlap between
587  *        the offset and the mapping entry and 1 will be returned.
588  *
589  *        NOTE: If the offset is actually equal to the entry's offset
590  *        plus size, this is considered to be "greater" than the entry,
591  *        and this case applies (i.e. 1 will be returned). Thus, the
592  *        entry's "range" can be considered to be inclusive at its
593  *        start, but exclusive at its end: e.g. [src, src + size).
594  *
595  *     3. The last case to consider is if the offset actually falls
596  *        within the mapping entry's range. If this is the case, the
597  *        offset is considered to be "equal to" the mapping entry and
598  *        0 will be returned.
599  *
600  *        NOTE: If the offset is equal to the entry's source offset,
601  *        this case applies and 0 will be returned. If the offset is
602  *        equal to the entry's source plus its size, this case does
603  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
604  *        returned.
605  */
606 static int
607 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
608 {
609         const uint64_t *key = v_key;
610         const vdev_indirect_mapping_entry_phys_t *array_elem =
611             v_array_elem;
612         uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
613
614         if (*key < src_offset) {
615                 return (-1);
616         } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
617                 return (0);
618         } else {
619                 return (1);
620         }
621 }
622
623 /*
624  * Return array entry.
625  */
626 static vdev_indirect_mapping_entry_phys_t *
627 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
628 {
629         uint64_t size;
630         off_t offset = 0;
631         int rc;
632
633         if (vim->vim_phys->vimp_num_entries == 0)
634                 return (NULL);
635
636         if (vim->vim_entries == NULL) {
637                 uint64_t bsize;
638
639                 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
640                 size = vim->vim_phys->vimp_num_entries *
641                     sizeof (*vim->vim_entries);
642                 if (size > bsize) {
643                         size = bsize / sizeof (*vim->vim_entries);
644                         size *= sizeof (*vim->vim_entries);
645                 }
646                 vim->vim_entries = malloc(size);
647                 if (vim->vim_entries == NULL)
648                         return (NULL);
649                 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
650                 offset = index * sizeof (*vim->vim_entries);
651         }
652
653         /* We have data in vim_entries */
654         if (offset == 0) {
655                 if (index >= vim->vim_entry_offset &&
656                     index <= vim->vim_entry_offset + vim->vim_num_entries) {
657                         index -= vim->vim_entry_offset;
658                         return (&vim->vim_entries[index]);
659                 }
660                 offset = index * sizeof (*vim->vim_entries);
661         }
662
663         vim->vim_entry_offset = index;
664         size = vim->vim_num_entries * sizeof (*vim->vim_entries);
665         rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
666             size);
667         if (rc != 0) {
668                 /* Read error, invalidate vim_entries. */
669                 free(vim->vim_entries);
670                 vim->vim_entries = NULL;
671                 return (NULL);
672         }
673         index -= vim->vim_entry_offset;
674         return (&vim->vim_entries[index]);
675 }
676
677 /*
678  * Returns the mapping entry for the given offset.
679  *
680  * It's possible that the given offset will not be in the mapping table
681  * (i.e. no mapping entries contain this offset), in which case, the
682  * return value value depends on the "next_if_missing" parameter.
683  *
684  * If the offset is not found in the table and "next_if_missing" is
685  * B_FALSE, then NULL will always be returned. The behavior is intended
686  * to allow consumers to get the entry corresponding to the offset
687  * parameter, iff the offset overlaps with an entry in the table.
688  *
689  * If the offset is not found in the table and "next_if_missing" is
690  * B_TRUE, then the entry nearest to the given offset will be returned,
691  * such that the entry's source offset is greater than the offset
692  * passed in (i.e. the "next" mapping entry in the table is returned, if
693  * the offset is missing from the table). If there are no entries whose
694  * source offset is greater than the passed in offset, NULL is returned.
695  */
696 static vdev_indirect_mapping_entry_phys_t *
697 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
698     uint64_t offset)
699 {
700         ASSERT(vim->vim_phys->vimp_num_entries > 0);
701
702         vdev_indirect_mapping_entry_phys_t *entry;
703
704         uint64_t last = vim->vim_phys->vimp_num_entries - 1;
705         uint64_t base = 0;
706
707         /*
708          * We don't define these inside of the while loop because we use
709          * their value in the case that offset isn't in the mapping.
710          */
711         uint64_t mid;
712         int result;
713
714         while (last >= base) {
715                 mid = base + ((last - base) >> 1);
716
717                 entry = vdev_indirect_mapping_entry(vim, mid);
718                 if (entry == NULL)
719                         break;
720                 result = dva_mapping_overlap_compare(&offset, entry);
721
722                 if (result == 0) {
723                         break;
724                 } else if (result < 0) {
725                         last = mid - 1;
726                 } else {
727                         base = mid + 1;
728                 }
729         }
730         return (entry);
731 }
732
733 /*
734  * Given an indirect vdev and an extent on that vdev, it duplicates the
735  * physical entries of the indirect mapping that correspond to the extent
736  * to a new array and returns a pointer to it. In addition, copied_entries
737  * is populated with the number of mapping entries that were duplicated.
738  *
739  * Finally, since we are doing an allocation, it is up to the caller to
740  * free the array allocated in this function.
741  */
742 vdev_indirect_mapping_entry_phys_t *
743 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
744     uint64_t asize, uint64_t *copied_entries)
745 {
746         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
747         vdev_indirect_mapping_t *vim = vd->v_mapping;
748         uint64_t entries = 0;
749
750         vdev_indirect_mapping_entry_phys_t *first_mapping =
751             vdev_indirect_mapping_entry_for_offset(vim, offset);
752         ASSERT3P(first_mapping, !=, NULL);
753
754         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
755         while (asize > 0) {
756                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
757                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
758                 uint64_t inner_size = MIN(asize, size - inner_offset);
759
760                 offset += inner_size;
761                 asize -= inner_size;
762                 entries++;
763                 m++;
764         }
765
766         size_t copy_length = entries * sizeof (*first_mapping);
767         duplicate_mappings = malloc(copy_length);
768         if (duplicate_mappings != NULL)
769                 bcopy(first_mapping, duplicate_mappings, copy_length);
770         else
771                 entries = 0;
772
773         *copied_entries = entries;
774
775         return (duplicate_mappings);
776 }
777
778 static vdev_t *
779 vdev_lookup_top(spa_t *spa, uint64_t vdev)
780 {
781         vdev_t *rvd;
782         vdev_list_t *vlist;
783
784         vlist = &spa->spa_root_vdev->v_children;
785         STAILQ_FOREACH(rvd, vlist, v_childlink)
786                 if (rvd->v_id == vdev)
787                         break;
788
789         return (rvd);
790 }
791
792 /*
793  * This is a callback for vdev_indirect_remap() which allocates an
794  * indirect_split_t for each split segment and adds it to iv_splits.
795  */
796 static void
797 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
798     uint64_t size, void *arg)
799 {
800         int n = 1;
801         zio_t *zio = arg;
802         indirect_vsd_t *iv = zio->io_vsd;
803
804         if (vd->v_read == vdev_indirect_read)
805                 return;
806
807         if (vd->v_read == vdev_mirror_read)
808                 n = vd->v_nchildren;
809
810         indirect_split_t *is =
811             malloc(offsetof(indirect_split_t, is_child[n]));
812         if (is == NULL) {
813                 zio->io_error = ENOMEM;
814                 return;
815         }
816         bzero(is, offsetof(indirect_split_t, is_child[n]));
817
818         is->is_children = n;
819         is->is_size = size;
820         is->is_split_offset = split_offset;
821         is->is_target_offset = offset;
822         is->is_vdev = vd;
823
824         /*
825          * Note that we only consider multiple copies of the data for
826          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
827          * though they use the same ops as mirror, because there's only one
828          * "good" copy under the replacing/spare.
829          */
830         if (vd->v_read == vdev_mirror_read) {
831                 int i = 0;
832                 vdev_t *kid;
833
834                 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
835                         is->is_child[i++].ic_vdev = kid;
836                 }
837         } else {
838                 is->is_child[0].ic_vdev = vd;
839         }
840
841         list_insert_tail(&iv->iv_splits, is);
842 }
843
844 static void
845 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
846 {
847         list_t stack;
848         spa_t *spa = vd->v_spa;
849         zio_t *zio = arg;
850         remap_segment_t *rs;
851
852         list_create(&stack, sizeof (remap_segment_t),
853             offsetof(remap_segment_t, rs_node));
854
855         rs = rs_alloc(vd, offset, asize, 0);
856         if (rs == NULL) {
857                 printf("vdev_indirect_remap: out of memory.\n");
858                 zio->io_error = ENOMEM;
859         }
860         for (; rs != NULL; rs = list_remove_head(&stack)) {
861                 vdev_t *v = rs->rs_vd;
862                 uint64_t num_entries = 0;
863                 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
864                 vdev_indirect_mapping_entry_phys_t *mapping =
865                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
866                     rs->rs_offset, rs->rs_asize, &num_entries);
867
868                 if (num_entries == 0)
869                         zio->io_error = ENOMEM;
870
871                 for (uint64_t i = 0; i < num_entries; i++) {
872                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
873                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
874                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
875                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
876                         uint64_t inner_offset = rs->rs_offset -
877                             DVA_MAPPING_GET_SRC_OFFSET(m);
878                         uint64_t inner_size =
879                             MIN(rs->rs_asize, size - inner_offset);
880                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
881
882                         if (dst_v->v_read == vdev_indirect_read) {
883                                 remap_segment_t *o;
884
885                                 o = rs_alloc(dst_v, dst_offset + inner_offset,
886                                     inner_size, rs->rs_split_offset);
887                                 if (o == NULL) {
888                                         printf("vdev_indirect_remap: "
889                                             "out of memory.\n");
890                                         zio->io_error = ENOMEM;
891                                         break;
892                                 }
893
894                                 list_insert_head(&stack, o);
895                         }
896                         vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
897                             dst_offset + inner_offset,
898                             inner_size, arg);
899
900                         /*
901                          * vdev_indirect_gather_splits can have memory
902                          * allocation error, we can not recover from it.
903                          */
904                         if (zio->io_error != 0)
905                                 break;
906                         rs->rs_offset += inner_size;
907                         rs->rs_asize -= inner_size;
908                         rs->rs_split_offset += inner_size;
909                 }
910
911                 free(mapping);
912                 free(rs);
913                 if (zio->io_error != 0)
914                         break;
915         }
916
917         list_destroy(&stack);
918 }
919
920 static void
921 vdev_indirect_map_free(zio_t *zio)
922 {
923         indirect_vsd_t *iv = zio->io_vsd;
924         indirect_split_t *is;
925
926         while ((is = list_head(&iv->iv_splits)) != NULL) {
927                 for (int c = 0; c < is->is_children; c++) {
928                         indirect_child_t *ic = &is->is_child[c];
929                         free(ic->ic_data);
930                 }
931                 list_remove(&iv->iv_splits, is);
932                 free(is);
933         }
934         free(iv);
935 }
936
937 static int
938 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
939     off_t offset, size_t bytes)
940 {
941         zio_t zio;
942         spa_t *spa = vdev->v_spa;
943         indirect_vsd_t *iv;
944         indirect_split_t *first;
945         int rc = EIO;
946
947         iv = calloc(1, sizeof(*iv));
948         if (iv == NULL)
949                 return (ENOMEM);
950
951         list_create(&iv->iv_splits,
952             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
953
954         bzero(&zio, sizeof(zio));
955         zio.io_spa = spa;
956         zio.io_bp = (blkptr_t *)bp;
957         zio.io_data = buf;
958         zio.io_size = bytes;
959         zio.io_offset = offset;
960         zio.io_vd = vdev;
961         zio.io_vsd = iv;
962
963         if (vdev->v_mapping == NULL) {
964                 vdev_indirect_config_t *vic;
965
966                 vic = &vdev->vdev_indirect_config;
967                 vdev->v_mapping = vdev_indirect_mapping_open(spa,
968                     &spa->spa_mos, vic->vic_mapping_object);
969         }
970
971         vdev_indirect_remap(vdev, offset, bytes, &zio);
972         if (zio.io_error != 0)
973                 return (zio.io_error);
974
975         first = list_head(&iv->iv_splits);
976         if (first->is_size == zio.io_size) {
977                 /*
978                  * This is not a split block; we are pointing to the entire
979                  * data, which will checksum the same as the original data.
980                  * Pass the BP down so that the child i/o can verify the
981                  * checksum, and try a different location if available
982                  * (e.g. on a mirror).
983                  *
984                  * While this special case could be handled the same as the
985                  * general (split block) case, doing it this way ensures
986                  * that the vast majority of blocks on indirect vdevs
987                  * (which are not split) are handled identically to blocks
988                  * on non-indirect vdevs.  This allows us to be less strict
989                  * about performance in the general (but rare) case.
990                  */
991                 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
992                     zio.io_data, first->is_target_offset, bytes);
993         } else {
994                 iv->iv_split_block = B_TRUE;
995                 /*
996                  * Read one copy of each split segment, from the
997                  * top-level vdev.  Since we don't know the
998                  * checksum of each split individually, the child
999                  * zio can't ensure that we get the right data.
1000                  * E.g. if it's a mirror, it will just read from a
1001                  * random (healthy) leaf vdev.  We have to verify
1002                  * the checksum in vdev_indirect_io_done().
1003                  */
1004                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1005                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1006                         char *ptr = zio.io_data;
1007
1008                         rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
1009                             ptr + is->is_split_offset, is->is_target_offset,
1010                             is->is_size);
1011                 }
1012                 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
1013                         rc = ECKSUM;
1014                 else
1015                         rc = 0;
1016         }
1017
1018         vdev_indirect_map_free(&zio);
1019         if (rc == 0)
1020                 rc = zio.io_error;
1021
1022         return (rc);
1023 }
1024
1025 static int
1026 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1027     off_t offset, size_t bytes)
1028 {
1029
1030         return (vdev_read_phys(vdev, bp, buf,
1031             offset + VDEV_LABEL_START_SIZE, bytes));
1032 }
1033
1034
1035 static int
1036 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1037     off_t offset, size_t bytes)
1038 {
1039         vdev_t *kid;
1040         int rc;
1041
1042         rc = EIO;
1043         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1044                 if (kid->v_state != VDEV_STATE_HEALTHY)
1045                         continue;
1046                 rc = kid->v_read(kid, bp, buf, offset, bytes);
1047                 if (!rc)
1048                         return (0);
1049         }
1050
1051         return (rc);
1052 }
1053
1054 static int
1055 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1056     off_t offset, size_t bytes)
1057 {
1058         vdev_t *kid;
1059
1060         /*
1061          * Here we should have two kids:
1062          * First one which is the one we are replacing and we can trust
1063          * only this one to have valid data, but it might not be present.
1064          * Second one is that one we are replacing with. It is most likely
1065          * healthy, but we can't trust it has needed data, so we won't use it.
1066          */
1067         kid = STAILQ_FIRST(&vdev->v_children);
1068         if (kid == NULL)
1069                 return (EIO);
1070         if (kid->v_state != VDEV_STATE_HEALTHY)
1071                 return (EIO);
1072         return (kid->v_read(kid, bp, buf, offset, bytes));
1073 }
1074
1075 static vdev_t *
1076 vdev_find(uint64_t guid)
1077 {
1078         vdev_t *vdev;
1079
1080         STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
1081                 if (vdev->v_guid == guid)
1082                         return (vdev);
1083
1084         return (0);
1085 }
1086
1087 static vdev_t *
1088 vdev_create(uint64_t guid, vdev_read_t *_read)
1089 {
1090         vdev_t *vdev;
1091         vdev_indirect_config_t *vic;
1092
1093         vdev = calloc(1, sizeof(vdev_t));
1094         if (vdev != NULL) {
1095                 STAILQ_INIT(&vdev->v_children);
1096                 vdev->v_guid = guid;
1097                 vdev->v_read = _read;
1098
1099                 /*
1100                  * root vdev has no read function.
1101                  * We only point root vdev from spa.
1102                  */
1103                 if (_read != NULL) {
1104                         vic = &vdev->vdev_indirect_config;
1105                         vic->vic_prev_indirect_vdev = UINT64_MAX;
1106                         STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
1107                 }
1108         }
1109
1110         return (vdev);
1111 }
1112
1113 static void
1114 vdev_set_initial_state(vdev_t *vdev, const unsigned char *nvlist)
1115 {
1116         uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
1117         uint64_t is_log;
1118
1119         is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
1120         is_log = 0;
1121         (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
1122             &is_offline);
1123         (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
1124             &is_removed);
1125         (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
1126             &is_faulted);
1127         (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
1128             NULL, &is_degraded);
1129         (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
1130             NULL, &isnt_present);
1131         (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
1132             &is_log);
1133
1134         if (is_offline != 0)
1135                 vdev->v_state = VDEV_STATE_OFFLINE;
1136         else if (is_removed != 0)
1137                 vdev->v_state = VDEV_STATE_REMOVED;
1138         else if (is_faulted != 0)
1139                 vdev->v_state = VDEV_STATE_FAULTED;
1140         else if (is_degraded != 0)
1141                 vdev->v_state = VDEV_STATE_DEGRADED;
1142         else if (isnt_present != 0)
1143                 vdev->v_state = VDEV_STATE_CANT_OPEN;
1144
1145         vdev->v_islog = is_log == 1;
1146 }
1147
1148 static int
1149 vdev_init(uint64_t guid, const unsigned char *nvlist, vdev_t **vdevp)
1150 {
1151         uint64_t id, ashift, asize, nparity;
1152         const char *path;
1153         const char *type;
1154         vdev_t *vdev;
1155
1156         if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) ||
1157             nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1158             NULL, &type)) {
1159                 return (ENOENT);
1160         }
1161
1162         if (strcmp(type, VDEV_TYPE_MIRROR) != 0 &&
1163             strcmp(type, VDEV_TYPE_DISK) != 0 &&
1164 #ifdef ZFS_TEST
1165             strcmp(type, VDEV_TYPE_FILE) != 0 &&
1166 #endif
1167             strcmp(type, VDEV_TYPE_RAIDZ) != 0 &&
1168             strcmp(type, VDEV_TYPE_INDIRECT) != 0 &&
1169             strcmp(type, VDEV_TYPE_REPLACING) != 0) {
1170                 printf("ZFS: can only boot from disk, mirror, raidz1, "
1171                     "raidz2 and raidz3 vdevs\n");
1172                 return (EIO);
1173         }
1174
1175         if (strcmp(type, VDEV_TYPE_MIRROR) == 0)
1176                 vdev = vdev_create(guid, vdev_mirror_read);
1177         else if (strcmp(type, VDEV_TYPE_RAIDZ) == 0)
1178                 vdev = vdev_create(guid, vdev_raidz_read);
1179         else if (strcmp(type, VDEV_TYPE_REPLACING) == 0)
1180                 vdev = vdev_create(guid, vdev_replacing_read);
1181         else if (strcmp(type, VDEV_TYPE_INDIRECT) == 0) {
1182                 vdev_indirect_config_t *vic;
1183
1184                 vdev = vdev_create(guid, vdev_indirect_read);
1185                 if (vdev != NULL) {
1186                         vdev->v_state = VDEV_STATE_HEALTHY;
1187                         vic = &vdev->vdev_indirect_config;
1188
1189                         nvlist_find(nvlist,
1190                             ZPOOL_CONFIG_INDIRECT_OBJECT,
1191                             DATA_TYPE_UINT64,
1192                             NULL, &vic->vic_mapping_object);
1193                         nvlist_find(nvlist,
1194                             ZPOOL_CONFIG_INDIRECT_BIRTHS,
1195                             DATA_TYPE_UINT64,
1196                             NULL, &vic->vic_births_object);
1197                         nvlist_find(nvlist,
1198                             ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
1199                             DATA_TYPE_UINT64,
1200                             NULL, &vic->vic_prev_indirect_vdev);
1201                 }
1202         } else {
1203                 vdev = vdev_create(guid, vdev_disk_read);
1204         }
1205
1206         if (vdev == NULL)
1207                 return (ENOMEM);
1208
1209         vdev_set_initial_state(vdev, nvlist);
1210         vdev->v_id = id;
1211         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
1212             DATA_TYPE_UINT64, NULL, &ashift) == 0)
1213                 vdev->v_ashift = ashift;
1214
1215         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1216             DATA_TYPE_UINT64, NULL, &asize) == 0) {
1217                 vdev->v_psize = asize +
1218                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1219         }
1220
1221         if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1222             DATA_TYPE_UINT64, NULL, &nparity) == 0)
1223                 vdev->v_nparity = nparity;
1224
1225         if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1226             DATA_TYPE_STRING, NULL, &path) == 0) {
1227                 if (strncmp(path, "/dev/", 5) == 0)
1228                         path += 5;
1229                 vdev->v_name = strdup(path);
1230         } else {
1231                 char *name;
1232
1233                 name = NULL;
1234                 if (strcmp(type, "raidz") == 0) {
1235                         if (vdev->v_nparity < 1 ||
1236                             vdev->v_nparity > 3) {
1237                                 printf("ZFS: can only boot from disk, "
1238                                     "mirror, raidz1, raidz2 and raidz3 "
1239                                     "vdevs\n");
1240                                 return (EIO);
1241                         }
1242                         (void) asprintf(&name, "%s%d-%" PRIu64, type,
1243                             vdev->v_nparity, id);
1244                 } else {
1245                         (void) asprintf(&name, "%s-%" PRIu64, type, id);
1246                 }
1247                 vdev->v_name = name;
1248         }
1249         *vdevp = vdev;
1250         return (0);
1251 }
1252
1253 /*
1254  * Find slot for vdev. We return either NULL to signal to use
1255  * STAILQ_INSERT_HEAD, or we return link element to be used with
1256  * STAILQ_INSERT_AFTER.
1257  */
1258 static vdev_t *
1259 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1260 {
1261         vdev_t *v, *previous;
1262
1263         if (STAILQ_EMPTY(&top_vdev->v_children))
1264                 return (NULL);
1265
1266         previous = NULL;
1267         STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1268                 if (v->v_id > vdev->v_id)
1269                         return (previous);
1270
1271                 if (v->v_id == vdev->v_id)
1272                         return (v);
1273
1274                 if (v->v_id < vdev->v_id)
1275                         previous = v;
1276         }
1277         return (previous);
1278 }
1279
1280 static size_t
1281 vdev_child_count(vdev_t *vdev)
1282 {
1283         vdev_t *v;
1284         size_t count;
1285
1286         count = 0;
1287         STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1288                 count++;
1289         }
1290         return (count);
1291 }
1292
1293 /*
1294  * Insert vdev into top_vdev children list. List is ordered by v_id.
1295  */
1296 static void
1297 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1298 {
1299         vdev_t *previous;
1300         size_t count;
1301
1302         /*
1303          * The top level vdev can appear in random order, depending how
1304          * the firmware is presenting the disk devices.
1305          * However, we will insert vdev to create list ordered by v_id,
1306          * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1307          * as STAILQ does not have insert before.
1308          */
1309         previous = vdev_find_previous(top_vdev, vdev);
1310
1311         if (previous == NULL) {
1312                 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1313                 count = vdev_child_count(top_vdev);
1314                 if (top_vdev->v_nchildren < count)
1315                         top_vdev->v_nchildren = count;
1316                 return;
1317         }
1318
1319         if (previous->v_id == vdev->v_id)
1320                 return;
1321
1322         STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev, v_childlink);
1323         count = vdev_child_count(top_vdev);
1324         if (top_vdev->v_nchildren < count)
1325                 top_vdev->v_nchildren = count;
1326 }
1327
1328 static int
1329 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const unsigned char *nvlist)
1330 {
1331         vdev_t *top_vdev, *vdev;
1332         const unsigned char *kids;
1333         int rc, nkids;
1334
1335         /* Get top vdev. */
1336         top_vdev = vdev_find(top_guid);
1337         if (top_vdev == NULL) {
1338                 rc = vdev_init(top_guid, nvlist, &top_vdev);
1339                 if (rc != 0)
1340                         return (rc);
1341                 top_vdev->v_spa = spa;
1342                 top_vdev->v_top = top_vdev;
1343                 vdev_insert(spa->spa_root_vdev, top_vdev);
1344         }
1345
1346         /* Add children if there are any. */
1347         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1348             &nkids, &kids);
1349         if (rc == 0) {
1350                 for (int i = 0; i < nkids; i++) {
1351                         uint64_t guid;
1352
1353                         rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
1354                             DATA_TYPE_UINT64, NULL, &guid);
1355                         if (rc != 0)
1356                                 return (rc);
1357                         rc = vdev_init(guid, kids, &vdev);
1358                         if (rc != 0)
1359                                 return (rc);
1360
1361                         vdev->v_spa = spa;
1362                         vdev->v_top = top_vdev;
1363                         vdev_insert(top_vdev, vdev);
1364
1365                         kids = nvlist_next(kids);
1366                 }
1367         } else {
1368                 rc = 0;
1369         }
1370
1371         return (rc);
1372 }
1373
1374 static int
1375 vdev_init_from_label(spa_t *spa, const unsigned char *nvlist)
1376 {
1377         uint64_t pool_guid, top_guid;
1378         const unsigned char *vdevs;
1379
1380         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1381             NULL, &pool_guid) ||
1382             nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1383             NULL, &top_guid) ||
1384             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1385             NULL, &vdevs)) {
1386                 printf("ZFS: can't find vdev details\n");
1387                 return (ENOENT);
1388         }
1389
1390         return (vdev_from_nvlist(spa, top_guid, vdevs));
1391 }
1392
1393 static void
1394 vdev_set_state(vdev_t *vdev)
1395 {
1396         vdev_t *kid;
1397         int good_kids;
1398         int bad_kids;
1399
1400         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1401                 vdev_set_state(kid);
1402         }
1403
1404         /*
1405          * A mirror or raidz is healthy if all its kids are healthy. A
1406          * mirror is degraded if any of its kids is healthy; a raidz
1407          * is degraded if at most nparity kids are offline.
1408          */
1409         if (STAILQ_FIRST(&vdev->v_children)) {
1410                 good_kids = 0;
1411                 bad_kids = 0;
1412                 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1413                         if (kid->v_state == VDEV_STATE_HEALTHY)
1414                                 good_kids++;
1415                         else
1416                                 bad_kids++;
1417                 }
1418                 if (bad_kids == 0) {
1419                         vdev->v_state = VDEV_STATE_HEALTHY;
1420                 } else {
1421                         if (vdev->v_read == vdev_mirror_read) {
1422                                 if (good_kids) {
1423                                         vdev->v_state = VDEV_STATE_DEGRADED;
1424                                 } else {
1425                                         vdev->v_state = VDEV_STATE_OFFLINE;
1426                                 }
1427                         } else if (vdev->v_read == vdev_raidz_read) {
1428                                 if (bad_kids > vdev->v_nparity) {
1429                                         vdev->v_state = VDEV_STATE_OFFLINE;
1430                                 } else {
1431                                         vdev->v_state = VDEV_STATE_DEGRADED;
1432                                 }
1433                         }
1434                 }
1435         }
1436 }
1437
1438 static int
1439 vdev_update_from_nvlist(uint64_t top_guid, const unsigned char *nvlist)
1440 {
1441         vdev_t *vdev;
1442         const unsigned char *kids;
1443         int rc, nkids;
1444
1445         /* Update top vdev. */
1446         vdev = vdev_find(top_guid);
1447         if (vdev != NULL)
1448                 vdev_set_initial_state(vdev, nvlist);
1449
1450         /* Update children if there are any. */
1451         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1452             &nkids, &kids);
1453         if (rc == 0) {
1454                 for (int i = 0; i < nkids; i++) {
1455                         uint64_t guid;
1456
1457                         rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
1458                             DATA_TYPE_UINT64, NULL, &guid);
1459                         if (rc != 0)
1460                                 break;
1461
1462                         vdev = vdev_find(guid);
1463                         if (vdev != NULL)
1464                                 vdev_set_initial_state(vdev, kids);
1465
1466                         kids = nvlist_next(kids);
1467                 }
1468         } else {
1469                 rc = 0;
1470         }
1471
1472         return (rc);
1473 }
1474
1475 static int
1476 vdev_init_from_nvlist(spa_t *spa, const unsigned char *nvlist)
1477 {
1478         uint64_t pool_guid, vdev_children;
1479         const unsigned char *vdevs, *kids;
1480         int rc, nkids;
1481
1482         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1483             NULL, &pool_guid) ||
1484             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1485             NULL, &vdev_children) ||
1486             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1487             NULL, &vdevs)) {
1488                 printf("ZFS: can't find vdev details\n");
1489                 return (ENOENT);
1490         }
1491
1492         /* Wrong guid?! */
1493         if (spa->spa_guid != pool_guid)
1494                 return (EIO);
1495
1496         spa->spa_root_vdev->v_nchildren = vdev_children;
1497
1498         rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1499             &nkids, &kids);
1500
1501         /*
1502          * MOS config has at least one child for root vdev.
1503          */
1504         if (rc != 0)
1505                 return (EIO);
1506
1507         for (int i = 0; i < nkids; i++) {
1508                 uint64_t guid;
1509                 vdev_t *vdev;
1510
1511                 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1512                     NULL, &guid);
1513                 if (rc != 0)
1514                         break;
1515                 vdev = vdev_find(guid);
1516                 /*
1517                  * Top level vdev is missing, create it.
1518                  */
1519                 if (vdev == NULL)
1520                         rc = vdev_from_nvlist(spa, guid, kids);
1521                 else
1522                         rc = vdev_update_from_nvlist(guid, kids);
1523                 if (rc != 0)
1524                         break;
1525                 kids = nvlist_next(kids);
1526         }
1527
1528         /*
1529          * Re-evaluate top-level vdev state.
1530          */
1531         vdev_set_state(spa->spa_root_vdev);
1532
1533         return (rc);
1534 }
1535
1536 static spa_t *
1537 spa_find_by_guid(uint64_t guid)
1538 {
1539         spa_t *spa;
1540
1541         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1542                 if (spa->spa_guid == guid)
1543                         return (spa);
1544
1545         return (NULL);
1546 }
1547
1548 static spa_t *
1549 spa_find_by_name(const char *name)
1550 {
1551         spa_t *spa;
1552
1553         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1554                 if (strcmp(spa->spa_name, name) == 0)
1555                         return (spa);
1556
1557         return (NULL);
1558 }
1559
1560 #ifdef BOOT2
1561 static spa_t *
1562 spa_get_primary(void)
1563 {
1564
1565         return (STAILQ_FIRST(&zfs_pools));
1566 }
1567
1568 static vdev_t *
1569 spa_get_primary_vdev(const spa_t *spa)
1570 {
1571         vdev_t *vdev;
1572         vdev_t *kid;
1573
1574         if (spa == NULL)
1575                 spa = spa_get_primary();
1576         if (spa == NULL)
1577                 return (NULL);
1578         vdev = spa->spa_root_vdev;
1579         if (vdev == NULL)
1580                 return (NULL);
1581         for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
1582             kid = STAILQ_FIRST(&vdev->v_children))
1583                 vdev = kid;
1584         return (vdev);
1585 }
1586 #endif
1587
1588 static spa_t *
1589 spa_create(uint64_t guid, const char *name)
1590 {
1591         spa_t *spa;
1592
1593         if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1594                 return (NULL);
1595         if ((spa->spa_name = strdup(name)) == NULL) {
1596                 free(spa);
1597                 return (NULL);
1598         }
1599         spa->spa_guid = guid;
1600         spa->spa_root_vdev = vdev_create(guid, NULL);
1601         if (spa->spa_root_vdev == NULL) {
1602                 free(spa->spa_name);
1603                 free(spa);
1604                 return (NULL);
1605         }
1606         spa->spa_root_vdev->v_name = strdup("root");
1607         STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1608
1609         return (spa);
1610 }
1611
1612 static const char *
1613 state_name(vdev_state_t state)
1614 {
1615         static const char *names[] = {
1616                 "UNKNOWN",
1617                 "CLOSED",
1618                 "OFFLINE",
1619                 "REMOVED",
1620                 "CANT_OPEN",
1621                 "FAULTED",
1622                 "DEGRADED",
1623                 "ONLINE"
1624         };
1625         return (names[state]);
1626 }
1627
1628 #ifdef BOOT2
1629
1630 #define pager_printf printf
1631
1632 #else
1633
1634 static int
1635 pager_printf(const char *fmt, ...)
1636 {
1637         char line[80];
1638         va_list args;
1639
1640         va_start(args, fmt);
1641         vsnprintf(line, sizeof(line), fmt, args);
1642         va_end(args);
1643         return (pager_output(line));
1644 }
1645
1646 #endif
1647
1648 #define STATUS_FORMAT   "        %s %s\n"
1649
1650 static int
1651 print_state(int indent, const char *name, vdev_state_t state)
1652 {
1653         int i;
1654         char buf[512];
1655
1656         buf[0] = 0;
1657         for (i = 0; i < indent; i++)
1658                 strcat(buf, "  ");
1659         strcat(buf, name);
1660         return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1661 }
1662
1663 static int
1664 vdev_status(vdev_t *vdev, int indent)
1665 {
1666         vdev_t *kid;
1667         int ret;
1668
1669         if (vdev->v_islog) {
1670                 (void) pager_output("        logs\n");
1671                 indent++;
1672         }
1673
1674         ret = print_state(indent, vdev->v_name, vdev->v_state);
1675         if (ret != 0)
1676                 return (ret);
1677
1678         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1679                 ret = vdev_status(kid, indent + 1);
1680                 if (ret != 0)
1681                         return (ret);
1682         }
1683         return (ret);
1684 }
1685
1686 static int
1687 spa_status(spa_t *spa)
1688 {
1689         static char bootfs[ZFS_MAXNAMELEN];
1690         uint64_t rootid;
1691         vdev_list_t *vlist;
1692         vdev_t *vdev;
1693         int good_kids, bad_kids, degraded_kids, ret;
1694         vdev_state_t state;
1695
1696         ret = pager_printf("  pool: %s\n", spa->spa_name);
1697         if (ret != 0)
1698                 return (ret);
1699
1700         if (zfs_get_root(spa, &rootid) == 0 &&
1701             zfs_rlookup(spa, rootid, bootfs) == 0) {
1702                 if (bootfs[0] == '\0')
1703                         ret = pager_printf("bootfs: %s\n", spa->spa_name);
1704                 else
1705                         ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1706                             bootfs);
1707                 if (ret != 0)
1708                         return (ret);
1709         }
1710         ret = pager_printf("config:\n\n");
1711         if (ret != 0)
1712                 return (ret);
1713         ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1714         if (ret != 0)
1715                 return (ret);
1716
1717         good_kids = 0;
1718         degraded_kids = 0;
1719         bad_kids = 0;
1720         vlist = &spa->spa_root_vdev->v_children;
1721         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1722                 if (vdev->v_state == VDEV_STATE_HEALTHY)
1723                         good_kids++;
1724                 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1725                         degraded_kids++;
1726                 else
1727                         bad_kids++;
1728         }
1729
1730         state = VDEV_STATE_CLOSED;
1731         if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1732                 state = VDEV_STATE_HEALTHY;
1733         else if ((good_kids + degraded_kids) > 0)
1734                 state = VDEV_STATE_DEGRADED;
1735
1736         ret = print_state(0, spa->spa_name, state);
1737         if (ret != 0)
1738                 return (ret);
1739
1740         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1741                 ret = vdev_status(vdev, 1);
1742                 if (ret != 0)
1743                         return (ret);
1744         }
1745         return (ret);
1746 }
1747
1748 static int
1749 spa_all_status(void)
1750 {
1751         spa_t *spa;
1752         int first = 1, ret = 0;
1753
1754         STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1755                 if (!first) {
1756                         ret = pager_printf("\n");
1757                         if (ret != 0)
1758                                 return (ret);
1759                 }
1760                 first = 0;
1761                 ret = spa_status(spa);
1762                 if (ret != 0)
1763                         return (ret);
1764         }
1765         return (ret);
1766 }
1767
1768 static uint64_t
1769 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1770 {
1771         uint64_t label_offset;
1772
1773         if (l < VDEV_LABELS / 2)
1774                 label_offset = 0;
1775         else
1776                 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1777
1778         return (offset + l * sizeof (vdev_label_t) + label_offset);
1779 }
1780
1781 static int
1782 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1783 {
1784         unsigned int seq1 = 0;
1785         unsigned int seq2 = 0;
1786         int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1787
1788         if (cmp != 0)
1789                 return (cmp);
1790
1791         cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1792         if (cmp != 0)
1793                 return (cmp);
1794
1795         if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1796                 seq1 = MMP_SEQ(ub1);
1797
1798         if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1799                 seq2 = MMP_SEQ(ub2);
1800
1801         return (AVL_CMP(seq1, seq2));
1802 }
1803
1804 static int
1805 uberblock_verify(uberblock_t *ub)
1806 {
1807         if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1808                 byteswap_uint64_array(ub, sizeof (uberblock_t));
1809         }
1810
1811         if (ub->ub_magic != UBERBLOCK_MAGIC ||
1812             !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1813                 return (EINVAL);
1814
1815         return (0);
1816 }
1817
1818 static int
1819 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1820     size_t size)
1821 {
1822         blkptr_t bp;
1823         off_t off;
1824
1825         off = vdev_label_offset(vd->v_psize, l, offset);
1826
1827         BP_ZERO(&bp);
1828         BP_SET_LSIZE(&bp, size);
1829         BP_SET_PSIZE(&bp, size);
1830         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1831         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1832         DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1833         ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1834
1835         return (vdev_read_phys(vd, &bp, buf, off, size));
1836 }
1837
1838 static unsigned char *
1839 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1840 {
1841         vdev_phys_t *label;
1842         uint64_t best_txg = 0;
1843         uint64_t label_txg = 0;
1844         uint64_t asize;
1845         unsigned char *nvl;
1846         size_t nvl_size;
1847         int error;
1848
1849         label = malloc(sizeof (vdev_phys_t));
1850         if (label == NULL)
1851                 return (NULL);
1852
1853         nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4;
1854         nvl = malloc(nvl_size);
1855         if (nvl == NULL)
1856                 goto done;
1857
1858         for (int l = 0; l < VDEV_LABELS; l++) {
1859                 const unsigned char *nvlist;
1860
1861                 if (vdev_label_read(vd, l, label,
1862                     offsetof(vdev_label_t, vl_vdev_phys),
1863                     sizeof (vdev_phys_t)))
1864                         continue;
1865
1866                 if (label->vp_nvlist[0] != NV_ENCODE_XDR)
1867                         continue;
1868
1869                 nvlist = (const unsigned char *) label->vp_nvlist + 4;
1870                 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG,
1871                     DATA_TYPE_UINT64, NULL, &label_txg);
1872                 if (error != 0 || label_txg == 0) {
1873                         memcpy(nvl, nvlist, nvl_size);
1874                         goto done;
1875                 }
1876
1877                 if (label_txg <= txg && label_txg > best_txg) {
1878                         best_txg = label_txg;
1879                         memcpy(nvl, nvlist, nvl_size);
1880
1881                         /*
1882                          * Use asize from pool config. We need this
1883                          * because we can get bad value from BIOS.
1884                          */
1885                         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1886                             DATA_TYPE_UINT64, NULL, &asize) == 0) {
1887                                 vd->v_psize = asize +
1888                                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1889                         }
1890                 }
1891         }
1892
1893         if (best_txg == 0) {
1894                 free(nvl);
1895                 nvl = NULL;
1896         }
1897 done:
1898         free(label);
1899         return (nvl);
1900 }
1901
1902 static void
1903 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1904 {
1905         uberblock_t *buf;
1906
1907         buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1908         if (buf == NULL)
1909                 return;
1910
1911         for (int l = 0; l < VDEV_LABELS; l++) {
1912                 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1913                         if (vdev_label_read(vd, l, buf,
1914                             VDEV_UBERBLOCK_OFFSET(vd, n),
1915                             VDEV_UBERBLOCK_SIZE(vd)))
1916                                 continue;
1917                         if (uberblock_verify(buf) != 0)
1918                                 continue;
1919
1920                         if (vdev_uberblock_compare(buf, ub) > 0)
1921                                 *ub = *buf;
1922                 }
1923         }
1924         free(buf);
1925 }
1926
1927 static int
1928 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap)
1929 {
1930         vdev_t vtmp;
1931         spa_t *spa;
1932         vdev_t *vdev;
1933         unsigned char *nvlist;
1934         uint64_t val;
1935         uint64_t guid, vdev_children;
1936         uint64_t pool_txg, pool_guid;
1937         const char *pool_name;
1938         const unsigned char *features;
1939         int rc;
1940
1941         /*
1942          * Load the vdev label and figure out which
1943          * uberblock is most current.
1944          */
1945         memset(&vtmp, 0, sizeof(vtmp));
1946         vtmp.v_phys_read = _read;
1947         vtmp.v_read_priv = read_priv;
1948         vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv),
1949             (uint64_t)sizeof (vdev_label_t));
1950
1951         /* Test for minimum device size. */
1952         if (vtmp.v_psize < SPA_MINDEVSIZE)
1953                 return (EIO);
1954
1955         nvlist = vdev_label_read_config(&vtmp, UINT64_MAX);
1956         if (nvlist == NULL)
1957                 return (EIO);
1958
1959         if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
1960             NULL, &val) != 0) {
1961                 free(nvlist);
1962                 return (EIO);
1963         }
1964
1965         if (!SPA_VERSION_IS_SUPPORTED(val)) {
1966                 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
1967                     (unsigned)val, (unsigned)SPA_VERSION);
1968                 free(nvlist);
1969                 return (EIO);
1970         }
1971
1972         /* Check ZFS features for read */
1973         if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1974             DATA_TYPE_NVLIST, NULL, &features) == 0 &&
1975             nvlist_check_features_for_read(features) != 0) {
1976                 free(nvlist);
1977                 return (EIO);
1978         }
1979
1980         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
1981             NULL, &val) != 0) {
1982                 free(nvlist);
1983                 return (EIO);
1984         }
1985
1986         if (val == POOL_STATE_DESTROYED) {
1987                 /* We don't boot only from destroyed pools. */
1988                 free(nvlist);
1989                 return (EIO);
1990         }
1991
1992         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
1993             NULL, &pool_txg) != 0 ||
1994             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1995             NULL, &pool_guid) != 0 ||
1996             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
1997             NULL, &pool_name) != 0) {
1998                 /*
1999                  * Cache and spare devices end up here - just ignore
2000                  * them.
2001                  */
2002                 free(nvlist);
2003                 return (EIO);
2004         }
2005
2006         /*
2007          * Create the pool if this is the first time we've seen it.
2008          */
2009         spa = spa_find_by_guid(pool_guid);
2010         if (spa == NULL) {
2011                 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN,
2012                     DATA_TYPE_UINT64, NULL, &vdev_children);
2013                 spa = spa_create(pool_guid, pool_name);
2014                 if (spa == NULL) {
2015                         free(nvlist);
2016                         return (ENOMEM);
2017                 }
2018                 spa->spa_root_vdev->v_nchildren = vdev_children;
2019         }
2020         if (pool_txg > spa->spa_txg)
2021                 spa->spa_txg = pool_txg;
2022
2023         /*
2024          * Get the vdev tree and create our in-core copy of it.
2025          * If we already have a vdev with this guid, this must
2026          * be some kind of alias (overlapping slices, dangerously dedicated
2027          * disks etc).
2028          */
2029         if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2030             NULL, &guid) != 0) {
2031                 free(nvlist);
2032                 return (EIO);
2033         }
2034         vdev = vdev_find(guid);
2035         /* Has this vdev already been inited? */
2036         if (vdev && vdev->v_phys_read) {
2037                 free(nvlist);
2038                 return (EIO);
2039         }
2040
2041         rc = vdev_init_from_label(spa, nvlist);
2042         free(nvlist);
2043         if (rc != 0)
2044                 return (rc);
2045
2046         /*
2047          * We should already have created an incomplete vdev for this
2048          * vdev. Find it and initialise it with our read proc.
2049          */
2050         vdev = vdev_find(guid);
2051         if (vdev != NULL) {
2052                 vdev->v_phys_read = _read;
2053                 vdev->v_read_priv = read_priv;
2054                 vdev->v_psize = vtmp.v_psize;
2055                 /*
2056                  * If no other state is set, mark vdev healthy.
2057                  */
2058                 if (vdev->v_state == VDEV_STATE_UNKNOWN)
2059                         vdev->v_state = VDEV_STATE_HEALTHY;
2060         } else {
2061                 printf("ZFS: inconsistent nvlist contents\n");
2062                 return (EIO);
2063         }
2064
2065         if (vdev->v_islog)
2066                 spa->spa_with_log = vdev->v_islog;
2067
2068         /*
2069          * Re-evaluate top-level vdev state.
2070          */
2071         vdev_set_state(vdev->v_top);
2072
2073         /*
2074          * Ok, we are happy with the pool so far. Lets find
2075          * the best uberblock and then we can actually access
2076          * the contents of the pool.
2077          */
2078         vdev_uberblock_load(vdev, &spa->spa_uberblock);
2079
2080         if (spap != NULL)
2081                 *spap = spa;
2082         return (0);
2083 }
2084
2085 static int
2086 ilog2(int n)
2087 {
2088         int v;
2089
2090         for (v = 0; v < 32; v++)
2091                 if (n == (1 << v))
2092                         return (v);
2093         return (-1);
2094 }
2095
2096 static int
2097 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2098 {
2099         blkptr_t gbh_bp;
2100         zio_gbh_phys_t zio_gb;
2101         char *pbuf;
2102         int i;
2103
2104         /* Artificial BP for gang block header. */
2105         gbh_bp = *bp;
2106         BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2107         BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2108         BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2109         BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2110         for (i = 0; i < SPA_DVAS_PER_BP; i++)
2111                 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2112
2113         /* Read gang header block using the artificial BP. */
2114         if (zio_read(spa, &gbh_bp, &zio_gb))
2115                 return (EIO);
2116
2117         pbuf = buf;
2118         for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2119                 blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2120
2121                 if (BP_IS_HOLE(gbp))
2122                         continue;
2123                 if (zio_read(spa, gbp, pbuf))
2124                         return (EIO);
2125                 pbuf += BP_GET_PSIZE(gbp);
2126         }
2127
2128         if (zio_checksum_verify(spa, bp, buf))
2129                 return (EIO);
2130         return (0);
2131 }
2132
2133 static int
2134 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2135 {
2136         int cpfunc = BP_GET_COMPRESS(bp);
2137         uint64_t align, size;
2138         void *pbuf;
2139         int i, error;
2140
2141         /*
2142          * Process data embedded in block pointer
2143          */
2144         if (BP_IS_EMBEDDED(bp)) {
2145                 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2146
2147                 size = BPE_GET_PSIZE(bp);
2148                 ASSERT(size <= BPE_PAYLOAD_SIZE);
2149
2150                 if (cpfunc != ZIO_COMPRESS_OFF)
2151                         pbuf = zfs_alloc(size);
2152                 else
2153                         pbuf = buf;
2154
2155                 decode_embedded_bp_compressed(bp, pbuf);
2156                 error = 0;
2157
2158                 if (cpfunc != ZIO_COMPRESS_OFF) {
2159                         error = zio_decompress_data(cpfunc, pbuf,
2160                             size, buf, BP_GET_LSIZE(bp));
2161                         zfs_free(pbuf, size);
2162                 }
2163                 if (error != 0)
2164                         printf("ZFS: i/o error - unable to decompress "
2165                             "block pointer data, error %d\n", error);
2166                 return (error);
2167         }
2168
2169         error = EIO;
2170
2171         for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2172                 const dva_t *dva = &bp->blk_dva[i];
2173                 vdev_t *vdev;
2174                 vdev_list_t *vlist;
2175                 uint64_t vdevid;
2176                 off_t offset;
2177
2178                 if (!dva->dva_word[0] && !dva->dva_word[1])
2179                         continue;
2180
2181                 vdevid = DVA_GET_VDEV(dva);
2182                 offset = DVA_GET_OFFSET(dva);
2183                 vlist = &spa->spa_root_vdev->v_children;
2184                 STAILQ_FOREACH(vdev, vlist, v_childlink) {
2185                         if (vdev->v_id == vdevid)
2186                                 break;
2187                 }
2188                 if (!vdev || !vdev->v_read)
2189                         continue;
2190
2191                 size = BP_GET_PSIZE(bp);
2192                 if (vdev->v_read == vdev_raidz_read) {
2193                         align = 1ULL << vdev->v_ashift;
2194                         if (P2PHASE(size, align) != 0)
2195                                 size = P2ROUNDUP(size, align);
2196                 }
2197                 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2198                         pbuf = zfs_alloc(size);
2199                 else
2200                         pbuf = buf;
2201
2202                 if (DVA_GET_GANG(dva))
2203                         error = zio_read_gang(spa, bp, pbuf);
2204                 else
2205                         error = vdev->v_read(vdev, bp, pbuf, offset, size);
2206                 if (error == 0) {
2207                         if (cpfunc != ZIO_COMPRESS_OFF)
2208                                 error = zio_decompress_data(cpfunc, pbuf,
2209                                     BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2210                         else if (size != BP_GET_PSIZE(bp))
2211                                 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2212                 }
2213                 if (buf != pbuf)
2214                         zfs_free(pbuf, size);
2215                 if (error == 0)
2216                         break;
2217         }
2218         if (error != 0)
2219                 printf("ZFS: i/o error - all block copies unavailable\n");
2220         return (error);
2221 }
2222
2223 static int
2224 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2225     void *buf, size_t buflen)
2226 {
2227         int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2228         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2229         int nlevels = dnode->dn_nlevels;
2230         int i, rc;
2231
2232         if (bsize > SPA_MAXBLOCKSIZE) {
2233                 printf("ZFS: I/O error - blocks larger than %llu are not "
2234                     "supported\n", SPA_MAXBLOCKSIZE);
2235                 return (EIO);
2236         }
2237
2238         /*
2239          * Note: bsize may not be a power of two here so we need to do an
2240          * actual divide rather than a bitshift.
2241          */
2242         while (buflen > 0) {
2243                 uint64_t bn = offset / bsize;
2244                 int boff = offset % bsize;
2245                 int ibn;
2246                 const blkptr_t *indbp;
2247                 blkptr_t bp;
2248
2249                 if (bn > dnode->dn_maxblkid)
2250                         return (EIO);
2251
2252                 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2253                         goto cached;
2254
2255                 indbp = dnode->dn_blkptr;
2256                 for (i = 0; i < nlevels; i++) {
2257                         /*
2258                          * Copy the bp from the indirect array so that
2259                          * we can re-use the scratch buffer for multi-level
2260                          * objects.
2261                          */
2262                         ibn = bn >> ((nlevels - i - 1) * ibshift);
2263                         ibn &= ((1 << ibshift) - 1);
2264                         bp = indbp[ibn];
2265                         if (BP_IS_HOLE(&bp)) {
2266                                 memset(dnode_cache_buf, 0, bsize);
2267                                 break;
2268                         }
2269                         rc = zio_read(spa, &bp, dnode_cache_buf);
2270                         if (rc)
2271                                 return (rc);
2272                         indbp = (const blkptr_t *) dnode_cache_buf;
2273                 }
2274                 dnode_cache_obj = dnode;
2275                 dnode_cache_bn = bn;
2276         cached:
2277
2278                 /*
2279                  * The buffer contains our data block. Copy what we
2280                  * need from it and loop.
2281                  */
2282                 i = bsize - boff;
2283                 if (i > buflen) i = buflen;
2284                 memcpy(buf, &dnode_cache_buf[boff], i);
2285                 buf = ((char *)buf) + i;
2286                 offset += i;
2287                 buflen -= i;
2288         }
2289
2290         return (0);
2291 }
2292
2293 /*
2294  * Lookup a value in a microzap directory. Assumes that the zap
2295  * scratch buffer contains the directory contents.
2296  */
2297 static int
2298 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value)
2299 {
2300         const mzap_phys_t *mz;
2301         const mzap_ent_phys_t *mze;
2302         size_t size;
2303         int chunks, i;
2304
2305         /*
2306          * Microzap objects use exactly one block. Read the whole
2307          * thing.
2308          */
2309         size = dnode->dn_datablkszsec * 512;
2310
2311         mz = (const mzap_phys_t *) zap_scratch;
2312         chunks = size / MZAP_ENT_LEN - 1;
2313
2314         for (i = 0; i < chunks; i++) {
2315                 mze = &mz->mz_chunk[i];
2316                 if (strcmp(mze->mze_name, name) == 0) {
2317                         *value = mze->mze_value;
2318                         return (0);
2319                 }
2320         }
2321
2322         return (ENOENT);
2323 }
2324
2325 /*
2326  * Compare a name with a zap leaf entry. Return non-zero if the name
2327  * matches.
2328  */
2329 static int
2330 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2331     const char *name)
2332 {
2333         size_t namelen;
2334         const zap_leaf_chunk_t *nc;
2335         const char *p;
2336
2337         namelen = zc->l_entry.le_name_numints;
2338
2339         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2340         p = name;
2341         while (namelen > 0) {
2342                 size_t len;
2343
2344                 len = namelen;
2345                 if (len > ZAP_LEAF_ARRAY_BYTES)
2346                         len = ZAP_LEAF_ARRAY_BYTES;
2347                 if (memcmp(p, nc->l_array.la_array, len))
2348                         return (0);
2349                 p += len;
2350                 namelen -= len;
2351                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2352         }
2353
2354         return (1);
2355 }
2356
2357 /*
2358  * Extract a uint64_t value from a zap leaf entry.
2359  */
2360 static uint64_t
2361 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2362 {
2363         const zap_leaf_chunk_t *vc;
2364         int i;
2365         uint64_t value;
2366         const uint8_t *p;
2367
2368         vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2369         for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2370                 value = (value << 8) | p[i];
2371         }
2372
2373         return (value);
2374 }
2375
2376 static void
2377 stv(int len, void *addr, uint64_t value)
2378 {
2379         switch (len) {
2380         case 1:
2381                 *(uint8_t *)addr = value;
2382                 return;
2383         case 2:
2384                 *(uint16_t *)addr = value;
2385                 return;
2386         case 4:
2387                 *(uint32_t *)addr = value;
2388                 return;
2389         case 8:
2390                 *(uint64_t *)addr = value;
2391                 return;
2392         }
2393 }
2394
2395 /*
2396  * Extract a array from a zap leaf entry.
2397  */
2398 static void
2399 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2400     uint64_t integer_size, uint64_t num_integers, void *buf)
2401 {
2402         uint64_t array_int_len = zc->l_entry.le_value_intlen;
2403         uint64_t value = 0;
2404         uint64_t *u64 = buf;
2405         char *p = buf;
2406         int len = MIN(zc->l_entry.le_value_numints, num_integers);
2407         int chunk = zc->l_entry.le_value_chunk;
2408         int byten = 0;
2409
2410         if (integer_size == 8 && len == 1) {
2411                 *u64 = fzap_leaf_value(zl, zc);
2412                 return;
2413         }
2414
2415         while (len > 0) {
2416                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2417                 int i;
2418
2419                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2420                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2421                         value = (value << 8) | la->la_array[i];
2422                         byten++;
2423                         if (byten == array_int_len) {
2424                                 stv(integer_size, p, value);
2425                                 byten = 0;
2426                                 len--;
2427                                 if (len == 0)
2428                                         return;
2429                                 p += integer_size;
2430                         }
2431                 }
2432                 chunk = la->la_next;
2433         }
2434 }
2435
2436 static int
2437 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2438 {
2439
2440         switch (integer_size) {
2441         case 1:
2442         case 2:
2443         case 4:
2444         case 8:
2445                 break;
2446         default:
2447                 return (EINVAL);
2448         }
2449
2450         if (integer_size * num_integers > ZAP_MAXVALUELEN)
2451                 return (E2BIG);
2452
2453         return (0);
2454 }
2455
2456 /*
2457  * Lookup a value in a fatzap directory. Assumes that the zap scratch
2458  * buffer contains the directory header.
2459  */
2460 static int
2461 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2462     uint64_t integer_size, uint64_t num_integers, void *value)
2463 {
2464         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2465         zap_phys_t zh = *(zap_phys_t *)zap_scratch;
2466         fat_zap_t z;
2467         uint64_t *ptrtbl;
2468         uint64_t hash;
2469         int rc;
2470
2471         if (zh.zap_magic != ZAP_MAGIC)
2472                 return (EIO);
2473
2474         if ((rc = fzap_check_size(integer_size, num_integers)) != 0)
2475                 return (rc);
2476
2477         z.zap_block_shift = ilog2(bsize);
2478         z.zap_phys = (zap_phys_t *)zap_scratch;
2479
2480         /*
2481          * Figure out where the pointer table is and read it in if necessary.
2482          */
2483         if (zh.zap_ptrtbl.zt_blk) {
2484                 rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
2485                     zap_scratch, bsize);
2486                 if (rc)
2487                         return (rc);
2488                 ptrtbl = (uint64_t *)zap_scratch;
2489         } else {
2490                 ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
2491         }
2492
2493         hash = zap_hash(zh.zap_salt, name);
2494
2495         zap_leaf_t zl;
2496         zl.l_bs = z.zap_block_shift;
2497
2498         off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
2499         zap_leaf_chunk_t *zc;
2500
2501         rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
2502         if (rc)
2503                 return (rc);
2504
2505         zl.l_phys = (zap_leaf_phys_t *)zap_scratch;
2506
2507         /*
2508          * Make sure this chunk matches our hash.
2509          */
2510         if (zl.l_phys->l_hdr.lh_prefix_len > 0 &&
2511             zl.l_phys->l_hdr.lh_prefix !=
2512             hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
2513                 return (ENOENT);
2514
2515         /*
2516          * Hash within the chunk to find our entry.
2517          */
2518         int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) -
2519             zl.l_phys->l_hdr.lh_prefix_len);
2520         int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
2521         h = zl.l_phys->l_hash[h];
2522         if (h == 0xffff)
2523                 return (ENOENT);
2524         zc = &ZAP_LEAF_CHUNK(&zl, h);
2525         while (zc->l_entry.le_hash != hash) {
2526                 if (zc->l_entry.le_next == 0xffff)
2527                         return (ENOENT);
2528                 zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
2529         }
2530         if (fzap_name_equal(&zl, zc, name)) {
2531                 if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints >
2532                     integer_size * num_integers)
2533                         return (E2BIG);
2534                 fzap_leaf_array(&zl, zc, integer_size, num_integers, value);
2535                 return (0);
2536         }
2537
2538         return (ENOENT);
2539 }
2540
2541 /*
2542  * Lookup a name in a zap object and return its value as a uint64_t.
2543  */
2544 static int
2545 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2546     uint64_t integer_size, uint64_t num_integers, void *value)
2547 {
2548         int rc;
2549         uint64_t zap_type;
2550         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2551
2552         rc = dnode_read(spa, dnode, 0, zap_scratch, size);
2553         if (rc)
2554                 return (rc);
2555
2556         zap_type = *(uint64_t *)zap_scratch;
2557         if (zap_type == ZBT_MICRO)
2558                 return (mzap_lookup(dnode, name, value));
2559         else if (zap_type == ZBT_HEADER) {
2560                 return (fzap_lookup(spa, dnode, name, integer_size,
2561                     num_integers, value));
2562         }
2563         printf("ZFS: invalid zap_type=%d\n", (int)zap_type);
2564         return (EIO);
2565 }
2566
2567 /*
2568  * List a microzap directory. Assumes that the zap scratch buffer contains
2569  * the directory contents.
2570  */
2571 static int
2572 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
2573 {
2574         const mzap_phys_t *mz;
2575         const mzap_ent_phys_t *mze;
2576         size_t size;
2577         int chunks, i, rc;
2578
2579         /*
2580          * Microzap objects use exactly one block. Read the whole
2581          * thing.
2582          */
2583         size = dnode->dn_datablkszsec * 512;
2584         mz = (const mzap_phys_t *) zap_scratch;
2585         chunks = size / MZAP_ENT_LEN - 1;
2586
2587         for (i = 0; i < chunks; i++) {
2588                 mze = &mz->mz_chunk[i];
2589                 if (mze->mze_name[0]) {
2590                         rc = callback(mze->mze_name, mze->mze_value);
2591                         if (rc != 0)
2592                                 return (rc);
2593                 }
2594         }
2595
2596         return (0);
2597 }
2598
2599 /*
2600  * List a fatzap directory. Assumes that the zap scratch buffer contains
2601  * the directory header.
2602  */
2603 static int
2604 fzap_list(const spa_t *spa, const dnode_phys_t *dnode,
2605     int (*callback)(const char *, uint64_t))
2606 {
2607         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2608         zap_phys_t zh = *(zap_phys_t *)zap_scratch;
2609         fat_zap_t z;
2610         int i, j, rc;
2611
2612         if (zh.zap_magic != ZAP_MAGIC)
2613                 return (EIO);
2614
2615         z.zap_block_shift = ilog2(bsize);
2616         z.zap_phys = (zap_phys_t *)zap_scratch;
2617
2618         /*
2619          * This assumes that the leaf blocks start at block 1. The
2620          * documentation isn't exactly clear on this.
2621          */
2622         zap_leaf_t zl;
2623         zl.l_bs = z.zap_block_shift;
2624         for (i = 0; i < zh.zap_num_leafs; i++) {
2625                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2626                 char name[256], *p;
2627                 uint64_t value;
2628
2629                 if (dnode_read(spa, dnode, off, zap_scratch, bsize))
2630                         return (EIO);
2631
2632                 zl.l_phys = (zap_leaf_phys_t *)zap_scratch;
2633
2634                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2635                         zap_leaf_chunk_t *zc, *nc;
2636                         int namelen;
2637
2638                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2639                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2640                                 continue;
2641                         namelen = zc->l_entry.le_name_numints;
2642                         if (namelen > sizeof(name))
2643                                 namelen = sizeof(name);
2644
2645                         /*
2646                          * Paste the name back together.
2647                          */
2648                         nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2649                         p = name;
2650                         while (namelen > 0) {
2651                                 int len;
2652                                 len = namelen;
2653                                 if (len > ZAP_LEAF_ARRAY_BYTES)
2654                                         len = ZAP_LEAF_ARRAY_BYTES;
2655                                 memcpy(p, nc->l_array.la_array, len);
2656                                 p += len;
2657                                 namelen -= len;
2658                                 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2659                         }
2660
2661                         /*
2662                          * Assume the first eight bytes of the value are
2663                          * a uint64_t.
2664                          */
2665                         value = fzap_leaf_value(&zl, zc);
2666
2667                         /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2668                         rc = callback((const char *)name, value);
2669                         if (rc != 0)
2670                                 return (rc);
2671                 }
2672         }
2673
2674         return (0);
2675 }
2676
2677 static int zfs_printf(const char *name, uint64_t value __unused)
2678 {
2679
2680         printf("%s\n", name);
2681
2682         return (0);
2683 }
2684
2685 /*
2686  * List a zap directory.
2687  */
2688 static int
2689 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2690 {
2691         uint64_t zap_type;
2692         size_t size = dnode->dn_datablkszsec * 512;
2693
2694         if (dnode_read(spa, dnode, 0, zap_scratch, size))
2695                 return (EIO);
2696
2697         zap_type = *(uint64_t *)zap_scratch;
2698         if (zap_type == ZBT_MICRO)
2699                 return (mzap_list(dnode, zfs_printf));
2700         else
2701                 return (fzap_list(spa, dnode, zfs_printf));
2702 }
2703
2704 static int
2705 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2706     dnode_phys_t *dnode)
2707 {
2708         off_t offset;
2709
2710         offset = objnum * sizeof(dnode_phys_t);
2711         return dnode_read(spa, &os->os_meta_dnode, offset,
2712                 dnode, sizeof(dnode_phys_t));
2713 }
2714
2715 static int
2716 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
2717     uint64_t value)
2718 {
2719         const mzap_phys_t *mz;
2720         const mzap_ent_phys_t *mze;
2721         size_t size;
2722         int chunks, i;
2723
2724         /*
2725          * Microzap objects use exactly one block. Read the whole
2726          * thing.
2727          */
2728         size = dnode->dn_datablkszsec * 512;
2729
2730         mz = (const mzap_phys_t *)zap_scratch;
2731         chunks = size / MZAP_ENT_LEN - 1;
2732
2733         for (i = 0; i < chunks; i++) {
2734                 mze = &mz->mz_chunk[i];
2735                 if (value == mze->mze_value) {
2736                         strcpy(name, mze->mze_name);
2737                         return (0);
2738                 }
2739         }
2740
2741         return (ENOENT);
2742 }
2743
2744 static void
2745 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2746 {
2747         size_t namelen;
2748         const zap_leaf_chunk_t *nc;
2749         char *p;
2750
2751         namelen = zc->l_entry.le_name_numints;
2752
2753         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2754         p = name;
2755         while (namelen > 0) {
2756                 size_t len;
2757                 len = namelen;
2758                 if (len > ZAP_LEAF_ARRAY_BYTES)
2759                         len = ZAP_LEAF_ARRAY_BYTES;
2760                 memcpy(p, nc->l_array.la_array, len);
2761                 p += len;
2762                 namelen -= len;
2763                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2764         }
2765
2766         *p = '\0';
2767 }
2768
2769 static int
2770 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
2771     uint64_t value)
2772 {
2773         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2774         zap_phys_t zh = *(zap_phys_t *)zap_scratch;
2775         fat_zap_t z;
2776         int i, j;
2777
2778         if (zh.zap_magic != ZAP_MAGIC)
2779                 return (EIO);
2780
2781         z.zap_block_shift = ilog2(bsize);
2782         z.zap_phys = (zap_phys_t *)zap_scratch;
2783
2784         /*
2785          * This assumes that the leaf blocks start at block 1. The
2786          * documentation isn't exactly clear on this.
2787          */
2788         zap_leaf_t zl;
2789         zl.l_bs = z.zap_block_shift;
2790         for (i = 0; i < zh.zap_num_leafs; i++) {
2791                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2792
2793                 if (dnode_read(spa, dnode, off, zap_scratch, bsize))
2794                         return (EIO);
2795
2796                 zl.l_phys = (zap_leaf_phys_t *)zap_scratch;
2797
2798                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2799                         zap_leaf_chunk_t *zc;
2800
2801                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2802                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2803                                 continue;
2804                         if (zc->l_entry.le_value_intlen != 8 ||
2805                             zc->l_entry.le_value_numints != 1)
2806                                 continue;
2807
2808                         if (fzap_leaf_value(&zl, zc) == value) {
2809                                 fzap_name_copy(&zl, zc, name);
2810                                 return (0);
2811                         }
2812                 }
2813         }
2814
2815         return (ENOENT);
2816 }
2817
2818 static int
2819 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
2820     uint64_t value)
2821 {
2822         int rc;
2823         uint64_t zap_type;
2824         size_t size = dnode->dn_datablkszsec * 512;
2825
2826         rc = dnode_read(spa, dnode, 0, zap_scratch, size);
2827         if (rc)
2828                 return (rc);
2829
2830         zap_type = *(uint64_t *)zap_scratch;
2831         if (zap_type == ZBT_MICRO)
2832                 return (mzap_rlookup(spa, dnode, name, value));
2833         else
2834                 return (fzap_rlookup(spa, dnode, name, value));
2835 }
2836
2837 static int
2838 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
2839 {
2840         char name[256];
2841         char component[256];
2842         uint64_t dir_obj, parent_obj, child_dir_zapobj;
2843         dnode_phys_t child_dir_zap, dataset, dir, parent;
2844         dsl_dir_phys_t *dd;
2845         dsl_dataset_phys_t *ds;
2846         char *p;
2847         int len;
2848
2849         p = &name[sizeof(name) - 1];
2850         *p = '\0';
2851
2852         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2853                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2854                 return (EIO);
2855         }
2856         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2857         dir_obj = ds->ds_dir_obj;
2858
2859         for (;;) {
2860                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
2861                         return (EIO);
2862                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2863
2864                 /* Actual loop condition. */
2865                 parent_obj = dd->dd_parent_obj;
2866                 if (parent_obj == 0)
2867                         break;
2868
2869                 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj,
2870                     &parent) != 0)
2871                         return (EIO);
2872                 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
2873                 child_dir_zapobj = dd->dd_child_dir_zapobj;
2874                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
2875                     &child_dir_zap) != 0)
2876                         return (EIO);
2877                 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
2878                         return (EIO);
2879
2880                 len = strlen(component);
2881                 p -= len;
2882                 memcpy(p, component, len);
2883                 --p;
2884                 *p = '/';
2885
2886                 /* Actual loop iteration. */
2887                 dir_obj = parent_obj;
2888         }
2889
2890         if (*p != '\0')
2891                 ++p;
2892         strcpy(result, p);
2893
2894         return (0);
2895 }
2896
2897 static int
2898 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
2899 {
2900         char element[256];
2901         uint64_t dir_obj, child_dir_zapobj;
2902         dnode_phys_t child_dir_zap, dir;
2903         dsl_dir_phys_t *dd;
2904         const char *p, *q;
2905
2906         if (objset_get_dnode(spa, &spa->spa_mos,
2907             DMU_POOL_DIRECTORY_OBJECT, &dir))
2908                 return (EIO);
2909         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
2910             1, &dir_obj))
2911                 return (EIO);
2912
2913         p = name;
2914         for (;;) {
2915                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
2916                         return (EIO);
2917                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2918
2919                 while (*p == '/')
2920                         p++;
2921                 /* Actual loop condition #1. */
2922                 if (*p == '\0')
2923                         break;
2924
2925                 q = strchr(p, '/');
2926                 if (q) {
2927                         memcpy(element, p, q - p);
2928                         element[q - p] = '\0';
2929                         p = q + 1;
2930                 } else {
2931                         strcpy(element, p);
2932                         p += strlen(p);
2933                 }
2934
2935                 child_dir_zapobj = dd->dd_child_dir_zapobj;
2936                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
2937                     &child_dir_zap) != 0)
2938                         return (EIO);
2939
2940                 /* Actual loop condition #2. */
2941                 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
2942                     1, &dir_obj) != 0)
2943                         return (ENOENT);
2944         }
2945
2946         *objnum = dd->dd_head_dataset_obj;
2947         return (0);
2948 }
2949
2950 #ifndef BOOT2
2951 static int
2952 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
2953 {
2954         uint64_t dir_obj, child_dir_zapobj;
2955         dnode_phys_t child_dir_zap, dir, dataset;
2956         dsl_dataset_phys_t *ds;
2957         dsl_dir_phys_t *dd;
2958
2959         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2960                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2961                 return (EIO);
2962         }
2963         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2964         dir_obj = ds->ds_dir_obj;
2965
2966         if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
2967                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
2968                 return (EIO);
2969         }
2970         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2971
2972         child_dir_zapobj = dd->dd_child_dir_zapobj;
2973         if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
2974             &child_dir_zap) != 0) {
2975                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
2976                 return (EIO);
2977         }
2978
2979         return (zap_list(spa, &child_dir_zap) != 0);
2980 }
2981
2982 int
2983 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
2984     int (*callback)(const char *, uint64_t))
2985 {
2986         uint64_t dir_obj, child_dir_zapobj, zap_type;
2987         dnode_phys_t child_dir_zap, dir, dataset;
2988         dsl_dataset_phys_t *ds;
2989         dsl_dir_phys_t *dd;
2990         int err;
2991
2992         err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
2993         if (err != 0) {
2994                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2995                 return (err);
2996         }
2997         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2998         dir_obj = ds->ds_dir_obj;
2999
3000         err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
3001         if (err != 0) {
3002                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3003                 return (err);
3004         }
3005         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3006
3007         child_dir_zapobj = dd->dd_child_dir_zapobj;
3008         err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3009             &child_dir_zap);
3010         if (err != 0) {
3011                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3012                 return (err);
3013         }
3014
3015         err = dnode_read(spa, &child_dir_zap, 0, zap_scratch,
3016             child_dir_zap.dn_datablkszsec * 512);
3017         if (err != 0)
3018                 return (err);
3019
3020         zap_type = *(uint64_t *)zap_scratch;
3021         if (zap_type == ZBT_MICRO)
3022                 return (mzap_list(&child_dir_zap, callback));
3023         else
3024                 return (fzap_list(spa, &child_dir_zap, callback));
3025 }
3026 #endif
3027
3028 /*
3029  * Find the object set given the object number of its dataset object
3030  * and return its details in *objset
3031  */
3032 static int
3033 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3034 {
3035         dnode_phys_t dataset;
3036         dsl_dataset_phys_t *ds;
3037
3038         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3039                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3040                 return (EIO);
3041         }
3042
3043         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3044         if (zio_read(spa, &ds->ds_bp, objset)) {
3045                 printf("ZFS: can't read object set for dataset %ju\n",
3046                     (uintmax_t)objnum);
3047                 return (EIO);
3048         }
3049
3050         return (0);
3051 }
3052
3053 /*
3054  * Find the object set pointed to by the BOOTFS property or the root
3055  * dataset if there is none and return its details in *objset
3056  */
3057 static int
3058 zfs_get_root(const spa_t *spa, uint64_t *objid)
3059 {
3060         dnode_phys_t dir, propdir;
3061         uint64_t props, bootfs, root;
3062
3063         *objid = 0;
3064
3065         /*
3066          * Start with the MOS directory object.
3067          */
3068         if (objset_get_dnode(spa, &spa->spa_mos,
3069             DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3070                 printf("ZFS: can't read MOS object directory\n");
3071                 return (EIO);
3072         }
3073
3074         /*
3075          * Lookup the pool_props and see if we can find a bootfs.
3076          */
3077         if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3078             sizeof(props), 1, &props) == 0 &&
3079             objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 &&
3080             zap_lookup(spa, &propdir, "bootfs",
3081             sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3082                 *objid = bootfs;
3083                 return (0);
3084         }
3085         /*
3086          * Lookup the root dataset directory
3087          */
3088         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3089             sizeof(root), 1, &root) ||
3090             objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
3091                 printf("ZFS: can't find root dsl_dir\n");
3092                 return (EIO);
3093         }
3094
3095         /*
3096          * Use the information from the dataset directory's bonus buffer
3097          * to find the dataset object and from that the object set itself.
3098          */
3099         dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3100         *objid = dd->dd_head_dataset_obj;
3101         return (0);
3102 }
3103
3104 static int
3105 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3106 {
3107
3108         mount->spa = spa;
3109
3110         /*
3111          * Find the root object set if not explicitly provided
3112          */
3113         if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3114                 printf("ZFS: can't find root filesystem\n");
3115                 return (EIO);
3116         }
3117
3118         if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3119                 printf("ZFS: can't open root filesystem\n");
3120                 return (EIO);
3121         }
3122
3123         mount->rootobj = rootobj;
3124
3125         return (0);
3126 }
3127
3128 /*
3129  * callback function for feature name checks.
3130  */
3131 static int
3132 check_feature(const char *name, uint64_t value)
3133 {
3134         int i;
3135
3136         if (value == 0)
3137                 return (0);
3138         if (name[0] == '\0')
3139                 return (0);
3140
3141         for (i = 0; features_for_read[i] != NULL; i++) {
3142                 if (strcmp(name, features_for_read[i]) == 0)
3143                         return (0);
3144         }
3145         printf("ZFS: unsupported feature: %s\n", name);
3146         return (EIO);
3147 }
3148
3149 /*
3150  * Checks whether the MOS features that are active are supported.
3151  */
3152 static int
3153 check_mos_features(const spa_t *spa)
3154 {
3155         dnode_phys_t dir;
3156         uint64_t objnum, zap_type;
3157         size_t size;
3158         int rc;
3159
3160         if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3161             &dir)) != 0)
3162                 return (rc);
3163         if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3164             sizeof (objnum), 1, &objnum)) != 0) {
3165                 /*
3166                  * It is older pool without features. As we have already
3167                  * tested the label, just return without raising the error.
3168                  */
3169                 return (0);
3170         }
3171
3172         if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
3173                 return (rc);
3174
3175         if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3176                 return (EIO);
3177
3178         size = dir.dn_datablkszsec * 512;
3179         if (dnode_read(spa, &dir, 0, zap_scratch, size))
3180                 return (EIO);
3181
3182         zap_type = *(uint64_t *)zap_scratch;
3183         if (zap_type == ZBT_MICRO)
3184                 rc = mzap_list(&dir, check_feature);
3185         else
3186                 rc = fzap_list(spa, &dir, check_feature);
3187
3188         return (rc);
3189 }
3190
3191 static int
3192 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value)
3193 {
3194         dnode_phys_t dir;
3195         size_t size;
3196         int rc;
3197         unsigned char *nv;
3198
3199         *value = NULL;
3200         if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
3201                 return (rc);
3202         if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3203             dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3204                 return (EIO);
3205         }
3206
3207         if (dir.dn_bonuslen != sizeof (uint64_t))
3208                 return (EIO);
3209
3210         size = *(uint64_t *)DN_BONUS(&dir);
3211         nv = malloc(size);
3212         if (nv == NULL)
3213                 return (ENOMEM);
3214
3215         rc = dnode_read(spa, &dir, 0, nv, size);
3216         if (rc != 0) {
3217                 free(nv);
3218                 nv = NULL;
3219                 return (rc);
3220         }
3221         *value = nv;
3222         return (rc);
3223 }
3224
3225 static int
3226 zfs_spa_init(spa_t *spa)
3227 {
3228         dnode_phys_t dir;
3229         uint64_t config_object;
3230         unsigned char *nvlist;
3231         int rc;
3232
3233         if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
3234                 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3235                 return (EIO);
3236         }
3237         if (spa->spa_mos.os_type != DMU_OST_META) {
3238                 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3239                 return (EIO);
3240         }
3241
3242         if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
3243             &dir)) {
3244                 printf("ZFS: failed to read pool %s directory object\n",
3245                     spa->spa_name);
3246                 return (EIO);
3247         }
3248         /* this is allowed to fail, older pools do not have salt */
3249         rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3250             sizeof (spa->spa_cksum_salt.zcs_bytes),
3251             spa->spa_cksum_salt.zcs_bytes);
3252
3253         rc = check_mos_features(spa);
3254         if (rc != 0) {
3255                 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3256                 return (rc);
3257         }
3258
3259         rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3260             sizeof (config_object), 1, &config_object);
3261         if (rc != 0) {
3262                 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3263                 return (EIO);
3264         }
3265         rc = load_nvlist(spa, config_object, &nvlist);
3266         if (rc != 0)
3267                 return (rc);
3268
3269         /* Update vdevs from MOS config. */
3270         rc = vdev_init_from_nvlist(spa, nvlist + 4);
3271         free(nvlist);
3272         return (rc);
3273 }
3274
3275 static int
3276 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3277 {
3278
3279         if (dn->dn_bonustype != DMU_OT_SA) {
3280                 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3281
3282                 sb->st_mode = zp->zp_mode;
3283                 sb->st_uid = zp->zp_uid;
3284                 sb->st_gid = zp->zp_gid;
3285                 sb->st_size = zp->zp_size;
3286         } else {
3287                 sa_hdr_phys_t *sahdrp;
3288                 int hdrsize;
3289                 size_t size = 0;
3290                 void *buf = NULL;
3291
3292                 if (dn->dn_bonuslen != 0)
3293                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3294                 else {
3295                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3296                                 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3297                                 int error;
3298
3299                                 size = BP_GET_LSIZE(bp);
3300                                 buf = zfs_alloc(size);
3301                                 error = zio_read(spa, bp, buf);
3302                                 if (error != 0) {
3303                                         zfs_free(buf, size);
3304                                         return (error);
3305                                 }
3306                                 sahdrp = buf;
3307                         } else {
3308                                 return (EIO);
3309                         }
3310                 }
3311                 hdrsize = SA_HDR_SIZE(sahdrp);
3312                 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3313                     SA_MODE_OFFSET);
3314                 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3315                     SA_UID_OFFSET);
3316                 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3317                     SA_GID_OFFSET);
3318                 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3319                     SA_SIZE_OFFSET);
3320                 if (buf != NULL)
3321                         zfs_free(buf, size);
3322         }
3323
3324         return (0);
3325 }
3326
3327 static int
3328 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3329 {
3330         int rc = 0;
3331
3332         if (dn->dn_bonustype == DMU_OT_SA) {
3333                 sa_hdr_phys_t *sahdrp = NULL;
3334                 size_t size = 0;
3335                 void *buf = NULL;
3336                 int hdrsize;
3337                 char *p;
3338
3339                 if (dn->dn_bonuslen != 0)
3340                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3341                 else {
3342                         blkptr_t *bp;
3343
3344                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3345                                 return (EIO);
3346                         bp = DN_SPILL_BLKPTR(dn);
3347
3348                         size = BP_GET_LSIZE(bp);
3349                         buf = zfs_alloc(size);
3350                         rc = zio_read(spa, bp, buf);
3351                         if (rc != 0) {
3352                                 zfs_free(buf, size);
3353                                 return (rc);
3354                         }
3355                         sahdrp = buf;
3356                 }
3357                 hdrsize = SA_HDR_SIZE(sahdrp);
3358                 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3359                 memcpy(path, p, psize);
3360                 if (buf != NULL)
3361                         zfs_free(buf, size);
3362                 return (0);
3363         }
3364         /*
3365          * Second test is purely to silence bogus compiler
3366          * warning about accessing past the end of dn_bonus.
3367          */
3368         if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3369             sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3370                 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3371         } else {
3372                 rc = dnode_read(spa, dn, 0, path, psize);
3373         }
3374         return (rc);
3375 }
3376
3377 struct obj_list {
3378         uint64_t                objnum;
3379         STAILQ_ENTRY(obj_list)  entry;
3380 };
3381
3382 /*
3383  * Lookup a file and return its dnode.
3384  */
3385 static int
3386 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3387 {
3388         int rc;
3389         uint64_t objnum;
3390         const spa_t *spa;
3391         dnode_phys_t dn;
3392         const char *p, *q;
3393         char element[256];
3394         char path[1024];
3395         int symlinks_followed = 0;
3396         struct stat sb;
3397         struct obj_list *entry, *tentry;
3398         STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3399
3400         spa = mount->spa;
3401         if (mount->objset.os_type != DMU_OST_ZFS) {
3402                 printf("ZFS: unexpected object set type %ju\n",
3403                     (uintmax_t)mount->objset.os_type);
3404                 return (EIO);
3405         }
3406
3407         if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3408                 return (ENOMEM);
3409
3410         /*
3411          * Get the root directory dnode.
3412          */
3413         rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3414         if (rc) {
3415                 free(entry);
3416                 return (rc);
3417         }
3418
3419         rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3420         if (rc) {
3421                 free(entry);
3422                 return (rc);
3423         }
3424         entry->objnum = objnum;
3425         STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3426
3427         rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3428         if (rc != 0)
3429                 goto done;
3430
3431         p = upath;
3432         while (p && *p) {
3433                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3434                 if (rc != 0)
3435                         goto done;
3436
3437                 while (*p == '/')
3438                         p++;
3439                 if (*p == '\0')
3440                         break;
3441                 q = p;
3442                 while (*q != '\0' && *q != '/')
3443                         q++;
3444
3445                 /* skip dot */
3446                 if (p + 1 == q && p[0] == '.') {
3447                         p++;
3448                         continue;
3449                 }
3450                 /* double dot */
3451                 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3452                         p += 2;
3453                         if (STAILQ_FIRST(&on_cache) ==
3454                             STAILQ_LAST(&on_cache, obj_list, entry)) {
3455                                 rc = ENOENT;
3456                                 goto done;
3457                         }
3458                         entry = STAILQ_FIRST(&on_cache);
3459                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3460                         free(entry);
3461                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3462                         continue;
3463                 }
3464                 if (q - p + 1 > sizeof(element)) {
3465                         rc = ENAMETOOLONG;
3466                         goto done;
3467                 }
3468                 memcpy(element, p, q - p);
3469                 element[q - p] = 0;
3470                 p = q;
3471
3472                 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3473                         goto done;
3474                 if (!S_ISDIR(sb.st_mode)) {
3475                         rc = ENOTDIR;
3476                         goto done;
3477                 }
3478
3479                 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3480                 if (rc)
3481                         goto done;
3482                 objnum = ZFS_DIRENT_OBJ(objnum);
3483
3484                 if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3485                         rc = ENOMEM;
3486                         goto done;
3487                 }
3488                 entry->objnum = objnum;
3489                 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3490                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3491                 if (rc)
3492                         goto done;
3493
3494                 /*
3495                  * Check for symlink.
3496                  */
3497                 rc = zfs_dnode_stat(spa, &dn, &sb);
3498                 if (rc)
3499                         goto done;
3500                 if (S_ISLNK(sb.st_mode)) {
3501                         if (symlinks_followed > 10) {
3502                                 rc = EMLINK;
3503                                 goto done;
3504                         }
3505                         symlinks_followed++;
3506
3507                         /*
3508                          * Read the link value and copy the tail of our
3509                          * current path onto the end.
3510                          */
3511                         if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3512                                 rc = ENAMETOOLONG;
3513                                 goto done;
3514                         }
3515                         strcpy(&path[sb.st_size], p);
3516
3517                         rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3518                         if (rc != 0)
3519                                 goto done;
3520
3521                         /*
3522                          * Restart with the new path, starting either at
3523                          * the root or at the parent depending whether or
3524                          * not the link is relative.
3525                          */
3526                         p = path;
3527                         if (*p == '/') {
3528                                 while (STAILQ_FIRST(&on_cache) !=
3529                                     STAILQ_LAST(&on_cache, obj_list, entry)) {
3530                                         entry = STAILQ_FIRST(&on_cache);
3531                                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3532                                         free(entry);
3533                                 }
3534                         } else {
3535                                 entry = STAILQ_FIRST(&on_cache);
3536                                 STAILQ_REMOVE_HEAD(&on_cache, entry);
3537                                 free(entry);
3538                         }
3539                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3540                 }
3541         }
3542
3543         *dnode = dn;
3544 done:
3545         STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3546                 free(entry);
3547         return (rc);
3548 }