]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - stand/libsa/zfs/zfsimpl.c
MFV r357687: Import NFS fix for O_SEARCH tests
[FreeBSD/FreeBSD.git] / stand / libsa / zfs / zfsimpl.c
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  *      Stand-alone ZFS file reader.
32  */
33
34 #include <sys/endian.h>
35 #include <sys/stat.h>
36 #include <sys/stdint.h>
37 #include <sys/list.h>
38 #include <machine/_inttypes.h>
39
40 #include "zfsimpl.h"
41 #include "zfssubr.c"
42
43
44 struct zfsmount {
45         const spa_t     *spa;
46         objset_phys_t   objset;
47         uint64_t        rootobj;
48 };
49 static struct zfsmount zfsmount __unused;
50
51 /*
52  * The indirect_child_t represents the vdev that we will read from, when we
53  * need to read all copies of the data (e.g. for scrub or reconstruction).
54  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
55  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
56  * ic_vdev is a child of the mirror.
57  */
58 typedef struct indirect_child {
59         void *ic_data;
60         vdev_t *ic_vdev;
61 } indirect_child_t;
62
63 /*
64  * The indirect_split_t represents one mapped segment of an i/o to the
65  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
66  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
67  * For split blocks, there will be several of these.
68  */
69 typedef struct indirect_split {
70         list_node_t is_node; /* link on iv_splits */
71
72         /*
73          * is_split_offset is the offset into the i/o.
74          * This is the sum of the previous splits' is_size's.
75          */
76         uint64_t is_split_offset;
77
78         vdev_t *is_vdev; /* top-level vdev */
79         uint64_t is_target_offset; /* offset on is_vdev */
80         uint64_t is_size;
81         int is_children; /* number of entries in is_child[] */
82
83         /*
84          * is_good_child is the child that we are currently using to
85          * attempt reconstruction.
86          */
87         int is_good_child;
88
89         indirect_child_t is_child[1]; /* variable-length */
90 } indirect_split_t;
91
92 /*
93  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
94  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
95  */
96 typedef struct indirect_vsd {
97         boolean_t iv_split_block;
98         boolean_t iv_reconstruct;
99
100         list_t iv_splits; /* list of indirect_split_t's */
101 } indirect_vsd_t;
102
103 /*
104  * List of all vdevs, chained through v_alllink.
105  */
106 static vdev_list_t zfs_vdevs;
107
108 /*
109  * List of ZFS features supported for read
110  */
111 static const char *features_for_read[] = {
112         "org.illumos:lz4_compress",
113         "com.delphix:hole_birth",
114         "com.delphix:extensible_dataset",
115         "com.delphix:embedded_data",
116         "org.open-zfs:large_blocks",
117         "org.illumos:sha512",
118         "org.illumos:skein",
119         "org.zfsonlinux:large_dnode",
120         "com.joyent:multi_vdev_crash_dump",
121         "com.delphix:spacemap_histogram",
122         "com.delphix:zpool_checkpoint",
123         "com.delphix:spacemap_v2",
124         "com.datto:encryption",
125         "org.zfsonlinux:allocation_classes",
126         "com.datto:resilver_defer",
127         "com.delphix:device_removal",
128         "com.delphix:obsolete_counts",
129         "com.intel:allocation_classes",
130         NULL
131 };
132
133 /*
134  * List of all pools, chained through spa_link.
135  */
136 static spa_list_t zfs_pools;
137
138 static const dnode_phys_t *dnode_cache_obj;
139 static uint64_t dnode_cache_bn;
140 static char *dnode_cache_buf;
141 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
142
143 #define TEMP_SIZE       (1024 * 1024)
144
145 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
146 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
147 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
148 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
149     const char *name, uint64_t integer_size, uint64_t num_integers,
150     void *value);
151 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
152     dnode_phys_t *);
153 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
154     size_t);
155 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
156     size_t);
157 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
158 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
159     uint64_t);
160 vdev_indirect_mapping_entry_phys_t *
161     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
162     uint64_t, uint64_t *);
163
164 static void
165 zfs_init(void)
166 {
167         STAILQ_INIT(&zfs_vdevs);
168         STAILQ_INIT(&zfs_pools);
169
170         zfs_temp_buf = malloc(TEMP_SIZE);
171         zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
172         zfs_temp_ptr = zfs_temp_buf;
173         dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
174
175         zfs_init_crc();
176 }
177
178 static void *
179 zfs_alloc(size_t size)
180 {
181         char *ptr;
182
183         if (zfs_temp_ptr + size > zfs_temp_end) {
184                 panic("ZFS: out of temporary buffer space");
185         }
186         ptr = zfs_temp_ptr;
187         zfs_temp_ptr += size;
188
189         return (ptr);
190 }
191
192 static void
193 zfs_free(void *ptr, size_t size)
194 {
195
196         zfs_temp_ptr -= size;
197         if (zfs_temp_ptr != ptr) {
198                 panic("ZFS: zfs_alloc()/zfs_free() mismatch");
199         }
200 }
201
202 static int
203 xdr_int(const unsigned char **xdr, int *ip)
204 {
205         *ip = be32dec(*xdr);
206         (*xdr) += 4;
207         return (0);
208 }
209
210 static int
211 xdr_u_int(const unsigned char **xdr, u_int *ip)
212 {
213         *ip = be32dec(*xdr);
214         (*xdr) += 4;
215         return (0);
216 }
217
218 static int
219 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
220 {
221         u_int hi, lo;
222
223         xdr_u_int(xdr, &hi);
224         xdr_u_int(xdr, &lo);
225         *lp = (((uint64_t)hi) << 32) | lo;
226         return (0);
227 }
228
229 static int
230 nvlist_find(const unsigned char *nvlist, const char *name, int type,
231     int *elementsp, void *valuep)
232 {
233         const unsigned char *p, *pair;
234         int junk;
235         int encoded_size, decoded_size;
236
237         p = nvlist;
238         xdr_int(&p, &junk);
239         xdr_int(&p, &junk);
240
241         pair = p;
242         xdr_int(&p, &encoded_size);
243         xdr_int(&p, &decoded_size);
244         while (encoded_size && decoded_size) {
245                 int namelen, pairtype, elements;
246                 const char *pairname;
247
248                 xdr_int(&p, &namelen);
249                 pairname = (const char *)p;
250                 p += roundup(namelen, 4);
251                 xdr_int(&p, &pairtype);
252
253                 if (memcmp(name, pairname, namelen) == 0 && type == pairtype) {
254                         xdr_int(&p, &elements);
255                         if (elementsp)
256                                 *elementsp = elements;
257                         if (type == DATA_TYPE_UINT64) {
258                                 xdr_uint64_t(&p, (uint64_t *)valuep);
259                                 return (0);
260                         } else if (type == DATA_TYPE_STRING) {
261                                 int len;
262                                 xdr_int(&p, &len);
263                                 (*(const char **)valuep) = (const char *)p;
264                                 return (0);
265                         } else if (type == DATA_TYPE_NVLIST ||
266                             type == DATA_TYPE_NVLIST_ARRAY) {
267                                 (*(const unsigned char **)valuep) =
268                                     (const unsigned char *)p;
269                                 return (0);
270                         } else {
271                                 return (EIO);
272                         }
273                 } else {
274                         /*
275                          * Not the pair we are looking for, skip to the
276                          * next one.
277                          */
278                         p = pair + encoded_size;
279                 }
280
281                 pair = p;
282                 xdr_int(&p, &encoded_size);
283                 xdr_int(&p, &decoded_size);
284         }
285
286         return (EIO);
287 }
288
289 static int
290 nvlist_check_features_for_read(const unsigned char *nvlist)
291 {
292         const unsigned char *p, *pair;
293         int junk;
294         int encoded_size, decoded_size;
295         int rc;
296
297         rc = 0;
298
299         p = nvlist;
300         xdr_int(&p, &junk);
301         xdr_int(&p, &junk);
302
303         pair = p;
304         xdr_int(&p, &encoded_size);
305         xdr_int(&p, &decoded_size);
306         while (encoded_size && decoded_size) {
307                 int namelen, pairtype;
308                 const char *pairname;
309                 int i, found;
310
311                 found = 0;
312
313                 xdr_int(&p, &namelen);
314                 pairname = (const char *)p;
315                 p += roundup(namelen, 4);
316                 xdr_int(&p, &pairtype);
317
318                 for (i = 0; features_for_read[i] != NULL; i++) {
319                         if (memcmp(pairname, features_for_read[i],
320                             namelen) == 0) {
321                                 found = 1;
322                                 break;
323                         }
324                 }
325
326                 if (!found) {
327                         printf("ZFS: unsupported feature: %s\n", pairname);
328                         rc = EIO;
329                 }
330
331                 p = pair + encoded_size;
332
333                 pair = p;
334                 xdr_int(&p, &encoded_size);
335                 xdr_int(&p, &decoded_size);
336         }
337
338         return (rc);
339 }
340
341 /*
342  * Return the next nvlist in an nvlist array.
343  */
344 static const unsigned char *
345 nvlist_next(const unsigned char *nvlist)
346 {
347         const unsigned char *p, *pair;
348         int junk;
349         int encoded_size, decoded_size;
350
351         p = nvlist;
352         xdr_int(&p, &junk);
353         xdr_int(&p, &junk);
354
355         pair = p;
356         xdr_int(&p, &encoded_size);
357         xdr_int(&p, &decoded_size);
358         while (encoded_size && decoded_size) {
359                 p = pair + encoded_size;
360
361                 pair = p;
362                 xdr_int(&p, &encoded_size);
363                 xdr_int(&p, &decoded_size);
364         }
365
366         return (p);
367 }
368
369 #ifdef TEST
370
371 static const unsigned char *
372 nvlist_print(const unsigned char *nvlist, unsigned int indent)
373 {
374         static const char *typenames[] = {
375                 "DATA_TYPE_UNKNOWN",
376                 "DATA_TYPE_BOOLEAN",
377                 "DATA_TYPE_BYTE",
378                 "DATA_TYPE_INT16",
379                 "DATA_TYPE_UINT16",
380                 "DATA_TYPE_INT32",
381                 "DATA_TYPE_UINT32",
382                 "DATA_TYPE_INT64",
383                 "DATA_TYPE_UINT64",
384                 "DATA_TYPE_STRING",
385                 "DATA_TYPE_BYTE_ARRAY",
386                 "DATA_TYPE_INT16_ARRAY",
387                 "DATA_TYPE_UINT16_ARRAY",
388                 "DATA_TYPE_INT32_ARRAY",
389                 "DATA_TYPE_UINT32_ARRAY",
390                 "DATA_TYPE_INT64_ARRAY",
391                 "DATA_TYPE_UINT64_ARRAY",
392                 "DATA_TYPE_STRING_ARRAY",
393                 "DATA_TYPE_HRTIME",
394                 "DATA_TYPE_NVLIST",
395                 "DATA_TYPE_NVLIST_ARRAY",
396                 "DATA_TYPE_BOOLEAN_VALUE",
397                 "DATA_TYPE_INT8",
398                 "DATA_TYPE_UINT8",
399                 "DATA_TYPE_BOOLEAN_ARRAY",
400                 "DATA_TYPE_INT8_ARRAY",
401                 "DATA_TYPE_UINT8_ARRAY"
402         };
403
404         unsigned int i, j;
405         const unsigned char *p, *pair;
406         int junk;
407         int encoded_size, decoded_size;
408
409         p = nvlist;
410         xdr_int(&p, &junk);
411         xdr_int(&p, &junk);
412
413         pair = p;
414         xdr_int(&p, &encoded_size);
415         xdr_int(&p, &decoded_size);
416         while (encoded_size && decoded_size) {
417                 int namelen, pairtype, elements;
418                 const char *pairname;
419
420                 xdr_int(&p, &namelen);
421                 pairname = (const char *)p;
422                 p += roundup(namelen, 4);
423                 xdr_int(&p, &pairtype);
424
425                 for (i = 0; i < indent; i++)
426                         printf(" ");
427                 printf("%s %s", typenames[pairtype], pairname);
428
429                 xdr_int(&p, &elements);
430                 switch (pairtype) {
431                 case DATA_TYPE_UINT64: {
432                         uint64_t val;
433                         xdr_uint64_t(&p, &val);
434                         printf(" = 0x%jx\n", (uintmax_t)val);
435                         break;
436                 }
437
438                 case DATA_TYPE_STRING: {
439                         int len;
440                         xdr_int(&p, &len);
441                         printf(" = \"%s\"\n", p);
442                         break;
443                 }
444
445                 case DATA_TYPE_NVLIST:
446                         printf("\n");
447                         nvlist_print(p, indent + 1);
448                         break;
449
450                 case DATA_TYPE_NVLIST_ARRAY:
451                         for (j = 0; j < elements; j++) {
452                                 printf("[%d]\n", j);
453                                 p = nvlist_print(p, indent + 1);
454                                 if (j != elements - 1) {
455                                         for (i = 0; i < indent; i++)
456                                                 printf(" ");
457                                         printf("%s %s", typenames[pairtype],
458                                             pairname);
459                                 }
460                         }
461                         break;
462
463                 default:
464                         printf("\n");
465                 }
466
467                 p = pair + encoded_size;
468
469                 pair = p;
470                 xdr_int(&p, &encoded_size);
471                 xdr_int(&p, &decoded_size);
472         }
473
474         return (p);
475 }
476
477 #endif
478
479 static int
480 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
481     off_t offset, size_t size)
482 {
483         size_t psize;
484         int rc;
485
486         if (!vdev->v_phys_read)
487                 return (EIO);
488
489         if (bp) {
490                 psize = BP_GET_PSIZE(bp);
491         } else {
492                 psize = size;
493         }
494
495         rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
496         if (rc == 0) {
497                 if (bp != NULL)
498                         rc = zio_checksum_verify(vdev->v_spa, bp, buf);
499         }
500
501         return (rc);
502 }
503
504 typedef struct remap_segment {
505         vdev_t *rs_vd;
506         uint64_t rs_offset;
507         uint64_t rs_asize;
508         uint64_t rs_split_offset;
509         list_node_t rs_node;
510 } remap_segment_t;
511
512 static remap_segment_t *
513 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
514 {
515         remap_segment_t *rs = malloc(sizeof (remap_segment_t));
516
517         if (rs != NULL) {
518                 rs->rs_vd = vd;
519                 rs->rs_offset = offset;
520                 rs->rs_asize = asize;
521                 rs->rs_split_offset = split_offset;
522         }
523
524         return (rs);
525 }
526
527 vdev_indirect_mapping_t *
528 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
529     uint64_t mapping_object)
530 {
531         vdev_indirect_mapping_t *vim;
532         vdev_indirect_mapping_phys_t *vim_phys;
533         int rc;
534
535         vim = calloc(1, sizeof (*vim));
536         if (vim == NULL)
537                 return (NULL);
538
539         vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
540         if (vim->vim_dn == NULL) {
541                 free(vim);
542                 return (NULL);
543         }
544
545         rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
546         if (rc != 0) {
547                 free(vim->vim_dn);
548                 free(vim);
549                 return (NULL);
550         }
551
552         vim->vim_spa = spa;
553         vim->vim_phys = malloc(sizeof (*vim->vim_phys));
554         if (vim->vim_phys == NULL) {
555                 free(vim->vim_dn);
556                 free(vim);
557                 return (NULL);
558         }
559
560         vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
561         *vim->vim_phys = *vim_phys;
562
563         vim->vim_objset = os;
564         vim->vim_object = mapping_object;
565         vim->vim_entries = NULL;
566
567         vim->vim_havecounts =
568             (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
569
570         return (vim);
571 }
572
573 /*
574  * Compare an offset with an indirect mapping entry; there are three
575  * possible scenarios:
576  *
577  *     1. The offset is "less than" the mapping entry; meaning the
578  *        offset is less than the source offset of the mapping entry. In
579  *        this case, there is no overlap between the offset and the
580  *        mapping entry and -1 will be returned.
581  *
582  *     2. The offset is "greater than" the mapping entry; meaning the
583  *        offset is greater than the mapping entry's source offset plus
584  *        the entry's size. In this case, there is no overlap between
585  *        the offset and the mapping entry and 1 will be returned.
586  *
587  *        NOTE: If the offset is actually equal to the entry's offset
588  *        plus size, this is considered to be "greater" than the entry,
589  *        and this case applies (i.e. 1 will be returned). Thus, the
590  *        entry's "range" can be considered to be inclusive at its
591  *        start, but exclusive at its end: e.g. [src, src + size).
592  *
593  *     3. The last case to consider is if the offset actually falls
594  *        within the mapping entry's range. If this is the case, the
595  *        offset is considered to be "equal to" the mapping entry and
596  *        0 will be returned.
597  *
598  *        NOTE: If the offset is equal to the entry's source offset,
599  *        this case applies and 0 will be returned. If the offset is
600  *        equal to the entry's source plus its size, this case does
601  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
602  *        returned.
603  */
604 static int
605 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
606 {
607         const uint64_t *key = v_key;
608         const vdev_indirect_mapping_entry_phys_t *array_elem =
609             v_array_elem;
610         uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
611
612         if (*key < src_offset) {
613                 return (-1);
614         } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
615                 return (0);
616         } else {
617                 return (1);
618         }
619 }
620
621 /*
622  * Return array entry.
623  */
624 static vdev_indirect_mapping_entry_phys_t *
625 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
626 {
627         uint64_t size;
628         off_t offset = 0;
629         int rc;
630
631         if (vim->vim_phys->vimp_num_entries == 0)
632                 return (NULL);
633
634         if (vim->vim_entries == NULL) {
635                 uint64_t bsize;
636
637                 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
638                 size = vim->vim_phys->vimp_num_entries *
639                     sizeof (*vim->vim_entries);
640                 if (size > bsize) {
641                         size = bsize / sizeof (*vim->vim_entries);
642                         size *= sizeof (*vim->vim_entries);
643                 }
644                 vim->vim_entries = malloc(size);
645                 if (vim->vim_entries == NULL)
646                         return (NULL);
647                 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
648                 offset = index * sizeof (*vim->vim_entries);
649         }
650
651         /* We have data in vim_entries */
652         if (offset == 0) {
653                 if (index >= vim->vim_entry_offset &&
654                     index <= vim->vim_entry_offset + vim->vim_num_entries) {
655                         index -= vim->vim_entry_offset;
656                         return (&vim->vim_entries[index]);
657                 }
658                 offset = index * sizeof (*vim->vim_entries);
659         }
660
661         vim->vim_entry_offset = index;
662         size = vim->vim_num_entries * sizeof (*vim->vim_entries);
663         rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
664             size);
665         if (rc != 0) {
666                 /* Read error, invalidate vim_entries. */
667                 free(vim->vim_entries);
668                 vim->vim_entries = NULL;
669                 return (NULL);
670         }
671         index -= vim->vim_entry_offset;
672         return (&vim->vim_entries[index]);
673 }
674
675 /*
676  * Returns the mapping entry for the given offset.
677  *
678  * It's possible that the given offset will not be in the mapping table
679  * (i.e. no mapping entries contain this offset), in which case, the
680  * return value value depends on the "next_if_missing" parameter.
681  *
682  * If the offset is not found in the table and "next_if_missing" is
683  * B_FALSE, then NULL will always be returned. The behavior is intended
684  * to allow consumers to get the entry corresponding to the offset
685  * parameter, iff the offset overlaps with an entry in the table.
686  *
687  * If the offset is not found in the table and "next_if_missing" is
688  * B_TRUE, then the entry nearest to the given offset will be returned,
689  * such that the entry's source offset is greater than the offset
690  * passed in (i.e. the "next" mapping entry in the table is returned, if
691  * the offset is missing from the table). If there are no entries whose
692  * source offset is greater than the passed in offset, NULL is returned.
693  */
694 static vdev_indirect_mapping_entry_phys_t *
695 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
696     uint64_t offset)
697 {
698         ASSERT(vim->vim_phys->vimp_num_entries > 0);
699
700         vdev_indirect_mapping_entry_phys_t *entry;
701
702         uint64_t last = vim->vim_phys->vimp_num_entries - 1;
703         uint64_t base = 0;
704
705         /*
706          * We don't define these inside of the while loop because we use
707          * their value in the case that offset isn't in the mapping.
708          */
709         uint64_t mid;
710         int result;
711
712         while (last >= base) {
713                 mid = base + ((last - base) >> 1);
714
715                 entry = vdev_indirect_mapping_entry(vim, mid);
716                 if (entry == NULL)
717                         break;
718                 result = dva_mapping_overlap_compare(&offset, entry);
719
720                 if (result == 0) {
721                         break;
722                 } else if (result < 0) {
723                         last = mid - 1;
724                 } else {
725                         base = mid + 1;
726                 }
727         }
728         return (entry);
729 }
730
731 /*
732  * Given an indirect vdev and an extent on that vdev, it duplicates the
733  * physical entries of the indirect mapping that correspond to the extent
734  * to a new array and returns a pointer to it. In addition, copied_entries
735  * is populated with the number of mapping entries that were duplicated.
736  *
737  * Finally, since we are doing an allocation, it is up to the caller to
738  * free the array allocated in this function.
739  */
740 vdev_indirect_mapping_entry_phys_t *
741 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
742     uint64_t asize, uint64_t *copied_entries)
743 {
744         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
745         vdev_indirect_mapping_t *vim = vd->v_mapping;
746         uint64_t entries = 0;
747
748         vdev_indirect_mapping_entry_phys_t *first_mapping =
749             vdev_indirect_mapping_entry_for_offset(vim, offset);
750         ASSERT3P(first_mapping, !=, NULL);
751
752         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
753         while (asize > 0) {
754                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
755                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
756                 uint64_t inner_size = MIN(asize, size - inner_offset);
757
758                 offset += inner_size;
759                 asize -= inner_size;
760                 entries++;
761                 m++;
762         }
763
764         size_t copy_length = entries * sizeof (*first_mapping);
765         duplicate_mappings = malloc(copy_length);
766         if (duplicate_mappings != NULL)
767                 bcopy(first_mapping, duplicate_mappings, copy_length);
768         else
769                 entries = 0;
770
771         *copied_entries = entries;
772
773         return (duplicate_mappings);
774 }
775
776 static vdev_t *
777 vdev_lookup_top(spa_t *spa, uint64_t vdev)
778 {
779         vdev_t *rvd;
780         vdev_list_t *vlist;
781
782         vlist = &spa->spa_root_vdev->v_children;
783         STAILQ_FOREACH(rvd, vlist, v_childlink)
784                 if (rvd->v_id == vdev)
785                         break;
786
787         return (rvd);
788 }
789
790 /*
791  * This is a callback for vdev_indirect_remap() which allocates an
792  * indirect_split_t for each split segment and adds it to iv_splits.
793  */
794 static void
795 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
796     uint64_t size, void *arg)
797 {
798         int n = 1;
799         zio_t *zio = arg;
800         indirect_vsd_t *iv = zio->io_vsd;
801
802         if (vd->v_read == vdev_indirect_read)
803                 return;
804
805         if (vd->v_read == vdev_mirror_read)
806                 n = vd->v_nchildren;
807
808         indirect_split_t *is =
809             malloc(offsetof(indirect_split_t, is_child[n]));
810         if (is == NULL) {
811                 zio->io_error = ENOMEM;
812                 return;
813         }
814         bzero(is, offsetof(indirect_split_t, is_child[n]));
815
816         is->is_children = n;
817         is->is_size = size;
818         is->is_split_offset = split_offset;
819         is->is_target_offset = offset;
820         is->is_vdev = vd;
821
822         /*
823          * Note that we only consider multiple copies of the data for
824          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
825          * though they use the same ops as mirror, because there's only one
826          * "good" copy under the replacing/spare.
827          */
828         if (vd->v_read == vdev_mirror_read) {
829                 int i = 0;
830                 vdev_t *kid;
831
832                 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
833                         is->is_child[i++].ic_vdev = kid;
834                 }
835         } else {
836                 is->is_child[0].ic_vdev = vd;
837         }
838
839         list_insert_tail(&iv->iv_splits, is);
840 }
841
842 static void
843 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
844 {
845         list_t stack;
846         spa_t *spa = vd->v_spa;
847         zio_t *zio = arg;
848         remap_segment_t *rs;
849
850         list_create(&stack, sizeof (remap_segment_t),
851             offsetof(remap_segment_t, rs_node));
852
853         rs = rs_alloc(vd, offset, asize, 0);
854         if (rs == NULL) {
855                 printf("vdev_indirect_remap: out of memory.\n");
856                 zio->io_error = ENOMEM;
857         }
858         for (; rs != NULL; rs = list_remove_head(&stack)) {
859                 vdev_t *v = rs->rs_vd;
860                 uint64_t num_entries = 0;
861                 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
862                 vdev_indirect_mapping_entry_phys_t *mapping =
863                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
864                     rs->rs_offset, rs->rs_asize, &num_entries);
865
866                 if (num_entries == 0)
867                         zio->io_error = ENOMEM;
868
869                 for (uint64_t i = 0; i < num_entries; i++) {
870                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
871                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
872                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
873                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
874                         uint64_t inner_offset = rs->rs_offset -
875                             DVA_MAPPING_GET_SRC_OFFSET(m);
876                         uint64_t inner_size =
877                             MIN(rs->rs_asize, size - inner_offset);
878                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
879
880                         if (dst_v->v_read == vdev_indirect_read) {
881                                 remap_segment_t *o;
882
883                                 o = rs_alloc(dst_v, dst_offset + inner_offset,
884                                     inner_size, rs->rs_split_offset);
885                                 if (o == NULL) {
886                                         printf("vdev_indirect_remap: "
887                                             "out of memory.\n");
888                                         zio->io_error = ENOMEM;
889                                         break;
890                                 }
891
892                                 list_insert_head(&stack, o);
893                         }
894                         vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
895                             dst_offset + inner_offset,
896                             inner_size, arg);
897
898                         /*
899                          * vdev_indirect_gather_splits can have memory
900                          * allocation error, we can not recover from it.
901                          */
902                         if (zio->io_error != 0)
903                                 break;
904                         rs->rs_offset += inner_size;
905                         rs->rs_asize -= inner_size;
906                         rs->rs_split_offset += inner_size;
907                 }
908
909                 free(mapping);
910                 free(rs);
911                 if (zio->io_error != 0)
912                         break;
913         }
914
915         list_destroy(&stack);
916 }
917
918 static void
919 vdev_indirect_map_free(zio_t *zio)
920 {
921         indirect_vsd_t *iv = zio->io_vsd;
922         indirect_split_t *is;
923
924         while ((is = list_head(&iv->iv_splits)) != NULL) {
925                 for (int c = 0; c < is->is_children; c++) {
926                         indirect_child_t *ic = &is->is_child[c];
927                         free(ic->ic_data);
928                 }
929                 list_remove(&iv->iv_splits, is);
930                 free(is);
931         }
932         free(iv);
933 }
934
935 static int
936 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
937     off_t offset, size_t bytes)
938 {
939         zio_t zio;
940         spa_t *spa = vdev->v_spa;
941         indirect_vsd_t *iv;
942         indirect_split_t *first;
943         int rc = EIO;
944
945         iv = calloc(1, sizeof(*iv));
946         if (iv == NULL)
947                 return (ENOMEM);
948
949         list_create(&iv->iv_splits,
950             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
951
952         bzero(&zio, sizeof(zio));
953         zio.io_spa = spa;
954         zio.io_bp = (blkptr_t *)bp;
955         zio.io_data = buf;
956         zio.io_size = bytes;
957         zio.io_offset = offset;
958         zio.io_vd = vdev;
959         zio.io_vsd = iv;
960
961         if (vdev->v_mapping == NULL) {
962                 vdev_indirect_config_t *vic;
963
964                 vic = &vdev->vdev_indirect_config;
965                 vdev->v_mapping = vdev_indirect_mapping_open(spa,
966                     &spa->spa_mos, vic->vic_mapping_object);
967         }
968
969         vdev_indirect_remap(vdev, offset, bytes, &zio);
970         if (zio.io_error != 0)
971                 return (zio.io_error);
972
973         first = list_head(&iv->iv_splits);
974         if (first->is_size == zio.io_size) {
975                 /*
976                  * This is not a split block; we are pointing to the entire
977                  * data, which will checksum the same as the original data.
978                  * Pass the BP down so that the child i/o can verify the
979                  * checksum, and try a different location if available
980                  * (e.g. on a mirror).
981                  *
982                  * While this special case could be handled the same as the
983                  * general (split block) case, doing it this way ensures
984                  * that the vast majority of blocks on indirect vdevs
985                  * (which are not split) are handled identically to blocks
986                  * on non-indirect vdevs.  This allows us to be less strict
987                  * about performance in the general (but rare) case.
988                  */
989                 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
990                     zio.io_data, first->is_target_offset, bytes);
991         } else {
992                 iv->iv_split_block = B_TRUE;
993                 /*
994                  * Read one copy of each split segment, from the
995                  * top-level vdev.  Since we don't know the
996                  * checksum of each split individually, the child
997                  * zio can't ensure that we get the right data.
998                  * E.g. if it's a mirror, it will just read from a
999                  * random (healthy) leaf vdev.  We have to verify
1000                  * the checksum in vdev_indirect_io_done().
1001                  */
1002                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1003                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1004                         char *ptr = zio.io_data;
1005
1006                         rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
1007                             ptr + is->is_split_offset, is->is_target_offset,
1008                             is->is_size);
1009                 }
1010                 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
1011                         rc = ECKSUM;
1012                 else
1013                         rc = 0;
1014         }
1015
1016         vdev_indirect_map_free(&zio);
1017         if (rc == 0)
1018                 rc = zio.io_error;
1019
1020         return (rc);
1021 }
1022
1023 static int
1024 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1025     off_t offset, size_t bytes)
1026 {
1027
1028         return (vdev_read_phys(vdev, bp, buf,
1029             offset + VDEV_LABEL_START_SIZE, bytes));
1030 }
1031
1032
1033 static int
1034 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1035     off_t offset, size_t bytes)
1036 {
1037         vdev_t *kid;
1038         int rc;
1039
1040         rc = EIO;
1041         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1042                 if (kid->v_state != VDEV_STATE_HEALTHY)
1043                         continue;
1044                 rc = kid->v_read(kid, bp, buf, offset, bytes);
1045                 if (!rc)
1046                         return (0);
1047         }
1048
1049         return (rc);
1050 }
1051
1052 static int
1053 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1054     off_t offset, size_t bytes)
1055 {
1056         vdev_t *kid;
1057
1058         /*
1059          * Here we should have two kids:
1060          * First one which is the one we are replacing and we can trust
1061          * only this one to have valid data, but it might not be present.
1062          * Second one is that one we are replacing with. It is most likely
1063          * healthy, but we can't trust it has needed data, so we won't use it.
1064          */
1065         kid = STAILQ_FIRST(&vdev->v_children);
1066         if (kid == NULL)
1067                 return (EIO);
1068         if (kid->v_state != VDEV_STATE_HEALTHY)
1069                 return (EIO);
1070         return (kid->v_read(kid, bp, buf, offset, bytes));
1071 }
1072
1073 static vdev_t *
1074 vdev_find(uint64_t guid)
1075 {
1076         vdev_t *vdev;
1077
1078         STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
1079                 if (vdev->v_guid == guid)
1080                         return (vdev);
1081
1082         return (0);
1083 }
1084
1085 static vdev_t *
1086 vdev_create(uint64_t guid, vdev_read_t *_read)
1087 {
1088         vdev_t *vdev;
1089         vdev_indirect_config_t *vic;
1090
1091         vdev = calloc(1, sizeof(vdev_t));
1092         if (vdev != NULL) {
1093                 STAILQ_INIT(&vdev->v_children);
1094                 vdev->v_guid = guid;
1095                 vdev->v_read = _read;
1096
1097                 /*
1098                  * root vdev has no read function, we use this fact to
1099                  * skip setting up data we do not need for root vdev.
1100                  * We only point root vdev from spa.
1101                  */
1102                 if (_read != NULL) {
1103                         vic = &vdev->vdev_indirect_config;
1104                         vic->vic_prev_indirect_vdev = UINT64_MAX;
1105                         STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
1106                 }
1107         }
1108
1109         return (vdev);
1110 }
1111
1112 static void
1113 vdev_set_initial_state(vdev_t *vdev, const unsigned char *nvlist)
1114 {
1115         uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
1116         uint64_t is_log;
1117
1118         is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
1119         is_log = 0;
1120         (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
1121             &is_offline);
1122         (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
1123             &is_removed);
1124         (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
1125             &is_faulted);
1126         (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
1127             NULL, &is_degraded);
1128         (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
1129             NULL, &isnt_present);
1130         (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
1131             &is_log);
1132
1133         if (is_offline != 0)
1134                 vdev->v_state = VDEV_STATE_OFFLINE;
1135         else if (is_removed != 0)
1136                 vdev->v_state = VDEV_STATE_REMOVED;
1137         else if (is_faulted != 0)
1138                 vdev->v_state = VDEV_STATE_FAULTED;
1139         else if (is_degraded != 0)
1140                 vdev->v_state = VDEV_STATE_DEGRADED;
1141         else if (isnt_present != 0)
1142                 vdev->v_state = VDEV_STATE_CANT_OPEN;
1143
1144         vdev->v_islog = is_log != 0;
1145 }
1146
1147 static int
1148 vdev_init(uint64_t guid, const unsigned char *nvlist, vdev_t **vdevp)
1149 {
1150         uint64_t id, ashift, asize, nparity;
1151         const char *path;
1152         const char *type;
1153         vdev_t *vdev;
1154
1155         if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) ||
1156             nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1157             NULL, &type)) {
1158                 return (ENOENT);
1159         }
1160
1161         if (strcmp(type, VDEV_TYPE_MIRROR) != 0 &&
1162             strcmp(type, VDEV_TYPE_DISK) != 0 &&
1163 #ifdef ZFS_TEST
1164             strcmp(type, VDEV_TYPE_FILE) != 0 &&
1165 #endif
1166             strcmp(type, VDEV_TYPE_RAIDZ) != 0 &&
1167             strcmp(type, VDEV_TYPE_INDIRECT) != 0 &&
1168             strcmp(type, VDEV_TYPE_REPLACING) != 0) {
1169                 printf("ZFS: can only boot from disk, mirror, raidz1, "
1170                     "raidz2 and raidz3 vdevs\n");
1171                 return (EIO);
1172         }
1173
1174         if (strcmp(type, VDEV_TYPE_MIRROR) == 0)
1175                 vdev = vdev_create(guid, vdev_mirror_read);
1176         else if (strcmp(type, VDEV_TYPE_RAIDZ) == 0)
1177                 vdev = vdev_create(guid, vdev_raidz_read);
1178         else if (strcmp(type, VDEV_TYPE_REPLACING) == 0)
1179                 vdev = vdev_create(guid, vdev_replacing_read);
1180         else if (strcmp(type, VDEV_TYPE_INDIRECT) == 0) {
1181                 vdev_indirect_config_t *vic;
1182
1183                 vdev = vdev_create(guid, vdev_indirect_read);
1184                 if (vdev != NULL) {
1185                         vdev->v_state = VDEV_STATE_HEALTHY;
1186                         vic = &vdev->vdev_indirect_config;
1187
1188                         nvlist_find(nvlist,
1189                             ZPOOL_CONFIG_INDIRECT_OBJECT,
1190                             DATA_TYPE_UINT64,
1191                             NULL, &vic->vic_mapping_object);
1192                         nvlist_find(nvlist,
1193                             ZPOOL_CONFIG_INDIRECT_BIRTHS,
1194                             DATA_TYPE_UINT64,
1195                             NULL, &vic->vic_births_object);
1196                         nvlist_find(nvlist,
1197                             ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
1198                             DATA_TYPE_UINT64,
1199                             NULL, &vic->vic_prev_indirect_vdev);
1200                 }
1201         } else {
1202                 vdev = vdev_create(guid, vdev_disk_read);
1203         }
1204
1205         if (vdev == NULL)
1206                 return (ENOMEM);
1207
1208         vdev_set_initial_state(vdev, nvlist);
1209         vdev->v_id = id;
1210         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
1211             DATA_TYPE_UINT64, NULL, &ashift) == 0)
1212                 vdev->v_ashift = ashift;
1213
1214         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1215             DATA_TYPE_UINT64, NULL, &asize) == 0) {
1216                 vdev->v_psize = asize +
1217                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1218         }
1219
1220         if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1221             DATA_TYPE_UINT64, NULL, &nparity) == 0)
1222                 vdev->v_nparity = nparity;
1223
1224         if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1225             DATA_TYPE_STRING, NULL, &path) == 0) {
1226                 if (strncmp(path, "/dev/", 5) == 0)
1227                         path += 5;
1228                 vdev->v_name = strdup(path);
1229         } else {
1230                 char *name;
1231
1232                 name = NULL;
1233                 if (strcmp(type, "raidz") == 0) {
1234                         if (vdev->v_nparity < 1 ||
1235                             vdev->v_nparity > 3) {
1236                                 printf("ZFS: invalid raidz parity: %d\n",
1237                                     vdev->v_nparity);
1238                                 return (EIO);
1239                         }
1240                         (void) asprintf(&name, "%s%d-%" PRIu64, type,
1241                             vdev->v_nparity, id);
1242                 } else {
1243                         (void) asprintf(&name, "%s-%" PRIu64, type, id);
1244                 }
1245                 vdev->v_name = name;
1246         }
1247         *vdevp = vdev;
1248         return (0);
1249 }
1250
1251 /*
1252  * Find slot for vdev. We return either NULL to signal to use
1253  * STAILQ_INSERT_HEAD, or we return link element to be used with
1254  * STAILQ_INSERT_AFTER.
1255  */
1256 static vdev_t *
1257 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1258 {
1259         vdev_t *v, *previous;
1260
1261         if (STAILQ_EMPTY(&top_vdev->v_children))
1262                 return (NULL);
1263
1264         previous = NULL;
1265         STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1266                 if (v->v_id > vdev->v_id)
1267                         return (previous);
1268
1269                 if (v->v_id == vdev->v_id)
1270                         return (v);
1271
1272                 if (v->v_id < vdev->v_id)
1273                         previous = v;
1274         }
1275         return (previous);
1276 }
1277
1278 static size_t
1279 vdev_child_count(vdev_t *vdev)
1280 {
1281         vdev_t *v;
1282         size_t count;
1283
1284         count = 0;
1285         STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1286                 count++;
1287         }
1288         return (count);
1289 }
1290
1291 /*
1292  * Insert vdev into top_vdev children list. List is ordered by v_id.
1293  */
1294 static void
1295 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1296 {
1297         vdev_t *previous;
1298         size_t count;
1299
1300         /*
1301          * The top level vdev can appear in random order, depending how
1302          * the firmware is presenting the disk devices.
1303          * However, we will insert vdev to create list ordered by v_id,
1304          * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1305          * as STAILQ does not have insert before.
1306          */
1307         previous = vdev_find_previous(top_vdev, vdev);
1308
1309         if (previous == NULL) {
1310                 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1311         } else if (previous->v_id == vdev->v_id) {
1312                 /*
1313                  * This vdev was configured from label config,
1314                  * do not insert duplicate.
1315                  */
1316                 return;
1317         } else {
1318                 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1319                     v_childlink);
1320         }
1321
1322         count = vdev_child_count(top_vdev);
1323         if (top_vdev->v_nchildren < count)
1324                 top_vdev->v_nchildren = count;
1325 }
1326
1327 static int
1328 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const unsigned char *nvlist)
1329 {
1330         vdev_t *top_vdev, *vdev;
1331         const unsigned char *kids;
1332         int rc, nkids;
1333
1334         /* Get top vdev. */
1335         top_vdev = vdev_find(top_guid);
1336         if (top_vdev == NULL) {
1337                 rc = vdev_init(top_guid, nvlist, &top_vdev);
1338                 if (rc != 0)
1339                         return (rc);
1340                 top_vdev->v_spa = spa;
1341                 top_vdev->v_top = top_vdev;
1342                 vdev_insert(spa->spa_root_vdev, top_vdev);
1343         }
1344
1345         /* Add children if there are any. */
1346         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1347             &nkids, &kids);
1348         if (rc == 0) {
1349                 for (int i = 0; i < nkids; i++) {
1350                         uint64_t guid;
1351
1352                         rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
1353                             DATA_TYPE_UINT64, NULL, &guid);
1354                         if (rc != 0)
1355                                 return (rc);
1356                         rc = vdev_init(guid, kids, &vdev);
1357                         if (rc != 0)
1358                                 return (rc);
1359
1360                         vdev->v_spa = spa;
1361                         vdev->v_top = top_vdev;
1362                         vdev_insert(top_vdev, vdev);
1363
1364                         kids = nvlist_next(kids);
1365                 }
1366         } else {
1367                 /*
1368                  * When there are no children, nvlist_find() does return
1369                  * error, reset it because leaf devices have no children.
1370                  */
1371                 rc = 0;
1372         }
1373
1374         return (rc);
1375 }
1376
1377 static int
1378 vdev_init_from_label(spa_t *spa, const unsigned char *nvlist)
1379 {
1380         uint64_t pool_guid, top_guid;
1381         const unsigned char *vdevs;
1382
1383         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1384             NULL, &pool_guid) ||
1385             nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1386             NULL, &top_guid) ||
1387             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1388             NULL, &vdevs)) {
1389                 printf("ZFS: can't find vdev details\n");
1390                 return (ENOENT);
1391         }
1392
1393         return (vdev_from_nvlist(spa, top_guid, vdevs));
1394 }
1395
1396 static void
1397 vdev_set_state(vdev_t *vdev)
1398 {
1399         vdev_t *kid;
1400         int good_kids;
1401         int bad_kids;
1402
1403         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1404                 vdev_set_state(kid);
1405         }
1406
1407         /*
1408          * A mirror or raidz is healthy if all its kids are healthy. A
1409          * mirror is degraded if any of its kids is healthy; a raidz
1410          * is degraded if at most nparity kids are offline.
1411          */
1412         if (STAILQ_FIRST(&vdev->v_children)) {
1413                 good_kids = 0;
1414                 bad_kids = 0;
1415                 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1416                         if (kid->v_state == VDEV_STATE_HEALTHY)
1417                                 good_kids++;
1418                         else
1419                                 bad_kids++;
1420                 }
1421                 if (bad_kids == 0) {
1422                         vdev->v_state = VDEV_STATE_HEALTHY;
1423                 } else {
1424                         if (vdev->v_read == vdev_mirror_read) {
1425                                 if (good_kids) {
1426                                         vdev->v_state = VDEV_STATE_DEGRADED;
1427                                 } else {
1428                                         vdev->v_state = VDEV_STATE_OFFLINE;
1429                                 }
1430                         } else if (vdev->v_read == vdev_raidz_read) {
1431                                 if (bad_kids > vdev->v_nparity) {
1432                                         vdev->v_state = VDEV_STATE_OFFLINE;
1433                                 } else {
1434                                         vdev->v_state = VDEV_STATE_DEGRADED;
1435                                 }
1436                         }
1437                 }
1438         }
1439 }
1440
1441 static int
1442 vdev_update_from_nvlist(uint64_t top_guid, const unsigned char *nvlist)
1443 {
1444         vdev_t *vdev;
1445         const unsigned char *kids;
1446         int rc, nkids;
1447
1448         /* Update top vdev. */
1449         vdev = vdev_find(top_guid);
1450         if (vdev != NULL)
1451                 vdev_set_initial_state(vdev, nvlist);
1452
1453         /* Update children if there are any. */
1454         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1455             &nkids, &kids);
1456         if (rc == 0) {
1457                 for (int i = 0; i < nkids; i++) {
1458                         uint64_t guid;
1459
1460                         rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
1461                             DATA_TYPE_UINT64, NULL, &guid);
1462                         if (rc != 0)
1463                                 break;
1464
1465                         vdev = vdev_find(guid);
1466                         if (vdev != NULL)
1467                                 vdev_set_initial_state(vdev, kids);
1468
1469                         kids = nvlist_next(kids);
1470                 }
1471         } else {
1472                 rc = 0;
1473         }
1474
1475         return (rc);
1476 }
1477
1478 static int
1479 vdev_init_from_nvlist(spa_t *spa, const unsigned char *nvlist)
1480 {
1481         uint64_t pool_guid, vdev_children;
1482         const unsigned char *vdevs, *kids;
1483         int rc, nkids;
1484
1485         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1486             NULL, &pool_guid) ||
1487             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1488             NULL, &vdev_children) ||
1489             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1490             NULL, &vdevs)) {
1491                 printf("ZFS: can't find vdev details\n");
1492                 return (ENOENT);
1493         }
1494
1495         /* Wrong guid?! */
1496         if (spa->spa_guid != pool_guid)
1497                 return (EINVAL);
1498
1499         spa->spa_root_vdev->v_nchildren = vdev_children;
1500
1501         rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1502             &nkids, &kids);
1503
1504         /*
1505          * MOS config has at least one child for root vdev.
1506          */
1507         if (rc != 0)
1508                 return (rc);
1509
1510         for (int i = 0; i < nkids; i++) {
1511                 uint64_t guid;
1512                 vdev_t *vdev;
1513
1514                 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1515                     NULL, &guid);
1516                 if (rc != 0)
1517                         break;
1518                 vdev = vdev_find(guid);
1519                 /*
1520                  * Top level vdev is missing, create it.
1521                  */
1522                 if (vdev == NULL)
1523                         rc = vdev_from_nvlist(spa, guid, kids);
1524                 else
1525                         rc = vdev_update_from_nvlist(guid, kids);
1526                 if (rc != 0)
1527                         break;
1528                 kids = nvlist_next(kids);
1529         }
1530
1531         /*
1532          * Re-evaluate top-level vdev state.
1533          */
1534         vdev_set_state(spa->spa_root_vdev);
1535
1536         return (rc);
1537 }
1538
1539 static spa_t *
1540 spa_find_by_guid(uint64_t guid)
1541 {
1542         spa_t *spa;
1543
1544         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1545                 if (spa->spa_guid == guid)
1546                         return (spa);
1547
1548         return (NULL);
1549 }
1550
1551 static spa_t *
1552 spa_find_by_name(const char *name)
1553 {
1554         spa_t *spa;
1555
1556         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1557                 if (strcmp(spa->spa_name, name) == 0)
1558                         return (spa);
1559
1560         return (NULL);
1561 }
1562
1563 #ifdef BOOT2
1564 static spa_t *
1565 spa_get_primary(void)
1566 {
1567
1568         return (STAILQ_FIRST(&zfs_pools));
1569 }
1570
1571 static vdev_t *
1572 spa_get_primary_vdev(const spa_t *spa)
1573 {
1574         vdev_t *vdev;
1575         vdev_t *kid;
1576
1577         if (spa == NULL)
1578                 spa = spa_get_primary();
1579         if (spa == NULL)
1580                 return (NULL);
1581         vdev = spa->spa_root_vdev;
1582         if (vdev == NULL)
1583                 return (NULL);
1584         for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
1585             kid = STAILQ_FIRST(&vdev->v_children))
1586                 vdev = kid;
1587         return (vdev);
1588 }
1589 #endif
1590
1591 static spa_t *
1592 spa_create(uint64_t guid, const char *name)
1593 {
1594         spa_t *spa;
1595
1596         if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1597                 return (NULL);
1598         if ((spa->spa_name = strdup(name)) == NULL) {
1599                 free(spa);
1600                 return (NULL);
1601         }
1602         spa->spa_guid = guid;
1603         spa->spa_root_vdev = vdev_create(guid, NULL);
1604         if (spa->spa_root_vdev == NULL) {
1605                 free(spa->spa_name);
1606                 free(spa);
1607                 return (NULL);
1608         }
1609         spa->spa_root_vdev->v_name = strdup("root");
1610         STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1611
1612         return (spa);
1613 }
1614
1615 static const char *
1616 state_name(vdev_state_t state)
1617 {
1618         static const char *names[] = {
1619                 "UNKNOWN",
1620                 "CLOSED",
1621                 "OFFLINE",
1622                 "REMOVED",
1623                 "CANT_OPEN",
1624                 "FAULTED",
1625                 "DEGRADED",
1626                 "ONLINE"
1627         };
1628         return (names[state]);
1629 }
1630
1631 #ifdef BOOT2
1632
1633 #define pager_printf printf
1634
1635 #else
1636
1637 static int
1638 pager_printf(const char *fmt, ...)
1639 {
1640         char line[80];
1641         va_list args;
1642
1643         va_start(args, fmt);
1644         vsnprintf(line, sizeof(line), fmt, args);
1645         va_end(args);
1646         return (pager_output(line));
1647 }
1648
1649 #endif
1650
1651 #define STATUS_FORMAT   "        %s %s\n"
1652
1653 static int
1654 print_state(int indent, const char *name, vdev_state_t state)
1655 {
1656         int i;
1657         char buf[512];
1658
1659         buf[0] = 0;
1660         for (i = 0; i < indent; i++)
1661                 strcat(buf, "  ");
1662         strcat(buf, name);
1663         return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1664 }
1665
1666 static int
1667 vdev_status(vdev_t *vdev, int indent)
1668 {
1669         vdev_t *kid;
1670         int ret;
1671
1672         if (vdev->v_islog) {
1673                 (void) pager_output("        logs\n");
1674                 indent++;
1675         }
1676
1677         ret = print_state(indent, vdev->v_name, vdev->v_state);
1678         if (ret != 0)
1679                 return (ret);
1680
1681         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1682                 ret = vdev_status(kid, indent + 1);
1683                 if (ret != 0)
1684                         return (ret);
1685         }
1686         return (ret);
1687 }
1688
1689 static int
1690 spa_status(spa_t *spa)
1691 {
1692         static char bootfs[ZFS_MAXNAMELEN];
1693         uint64_t rootid;
1694         vdev_list_t *vlist;
1695         vdev_t *vdev;
1696         int good_kids, bad_kids, degraded_kids, ret;
1697         vdev_state_t state;
1698
1699         ret = pager_printf("  pool: %s\n", spa->spa_name);
1700         if (ret != 0)
1701                 return (ret);
1702
1703         if (zfs_get_root(spa, &rootid) == 0 &&
1704             zfs_rlookup(spa, rootid, bootfs) == 0) {
1705                 if (bootfs[0] == '\0')
1706                         ret = pager_printf("bootfs: %s\n", spa->spa_name);
1707                 else
1708                         ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1709                             bootfs);
1710                 if (ret != 0)
1711                         return (ret);
1712         }
1713         ret = pager_printf("config:\n\n");
1714         if (ret != 0)
1715                 return (ret);
1716         ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1717         if (ret != 0)
1718                 return (ret);
1719
1720         good_kids = 0;
1721         degraded_kids = 0;
1722         bad_kids = 0;
1723         vlist = &spa->spa_root_vdev->v_children;
1724         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1725                 if (vdev->v_state == VDEV_STATE_HEALTHY)
1726                         good_kids++;
1727                 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1728                         degraded_kids++;
1729                 else
1730                         bad_kids++;
1731         }
1732
1733         state = VDEV_STATE_CLOSED;
1734         if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1735                 state = VDEV_STATE_HEALTHY;
1736         else if ((good_kids + degraded_kids) > 0)
1737                 state = VDEV_STATE_DEGRADED;
1738
1739         ret = print_state(0, spa->spa_name, state);
1740         if (ret != 0)
1741                 return (ret);
1742
1743         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1744                 ret = vdev_status(vdev, 1);
1745                 if (ret != 0)
1746                         return (ret);
1747         }
1748         return (ret);
1749 }
1750
1751 static int
1752 spa_all_status(void)
1753 {
1754         spa_t *spa;
1755         int first = 1, ret = 0;
1756
1757         STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1758                 if (!first) {
1759                         ret = pager_printf("\n");
1760                         if (ret != 0)
1761                                 return (ret);
1762                 }
1763                 first = 0;
1764                 ret = spa_status(spa);
1765                 if (ret != 0)
1766                         return (ret);
1767         }
1768         return (ret);
1769 }
1770
1771 static uint64_t
1772 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1773 {
1774         uint64_t label_offset;
1775
1776         if (l < VDEV_LABELS / 2)
1777                 label_offset = 0;
1778         else
1779                 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1780
1781         return (offset + l * sizeof (vdev_label_t) + label_offset);
1782 }
1783
1784 static int
1785 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1786 {
1787         unsigned int seq1 = 0;
1788         unsigned int seq2 = 0;
1789         int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1790
1791         if (cmp != 0)
1792                 return (cmp);
1793
1794         cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1795         if (cmp != 0)
1796                 return (cmp);
1797
1798         if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1799                 seq1 = MMP_SEQ(ub1);
1800
1801         if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1802                 seq2 = MMP_SEQ(ub2);
1803
1804         return (AVL_CMP(seq1, seq2));
1805 }
1806
1807 static int
1808 uberblock_verify(uberblock_t *ub)
1809 {
1810         if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1811                 byteswap_uint64_array(ub, sizeof (uberblock_t));
1812         }
1813
1814         if (ub->ub_magic != UBERBLOCK_MAGIC ||
1815             !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1816                 return (EINVAL);
1817
1818         return (0);
1819 }
1820
1821 static int
1822 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1823     size_t size)
1824 {
1825         blkptr_t bp;
1826         off_t off;
1827
1828         off = vdev_label_offset(vd->v_psize, l, offset);
1829
1830         BP_ZERO(&bp);
1831         BP_SET_LSIZE(&bp, size);
1832         BP_SET_PSIZE(&bp, size);
1833         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1834         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1835         DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1836         ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1837
1838         return (vdev_read_phys(vd, &bp, buf, off, size));
1839 }
1840
1841 static unsigned char *
1842 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1843 {
1844         vdev_phys_t *label;
1845         uint64_t best_txg = 0;
1846         uint64_t label_txg = 0;
1847         uint64_t asize;
1848         unsigned char *nvl;
1849         size_t nvl_size;
1850         int error;
1851
1852         label = malloc(sizeof (vdev_phys_t));
1853         if (label == NULL)
1854                 return (NULL);
1855
1856         nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4;
1857         nvl = malloc(nvl_size);
1858         if (nvl == NULL)
1859                 goto done;
1860
1861         for (int l = 0; l < VDEV_LABELS; l++) {
1862                 const unsigned char *nvlist;
1863
1864                 if (vdev_label_read(vd, l, label,
1865                     offsetof(vdev_label_t, vl_vdev_phys),
1866                     sizeof (vdev_phys_t)))
1867                         continue;
1868
1869                 if (label->vp_nvlist[0] != NV_ENCODE_XDR)
1870                         continue;
1871
1872                 nvlist = (const unsigned char *) label->vp_nvlist + 4;
1873                 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG,
1874                     DATA_TYPE_UINT64, NULL, &label_txg);
1875                 if (error != 0 || label_txg == 0) {
1876                         memcpy(nvl, nvlist, nvl_size);
1877                         goto done;
1878                 }
1879
1880                 if (label_txg <= txg && label_txg > best_txg) {
1881                         best_txg = label_txg;
1882                         memcpy(nvl, nvlist, nvl_size);
1883
1884                         /*
1885                          * Use asize from pool config. We need this
1886                          * because we can get bad value from BIOS.
1887                          */
1888                         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1889                             DATA_TYPE_UINT64, NULL, &asize) == 0) {
1890                                 vd->v_psize = asize +
1891                                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1892                         }
1893                 }
1894         }
1895
1896         if (best_txg == 0) {
1897                 free(nvl);
1898                 nvl = NULL;
1899         }
1900 done:
1901         free(label);
1902         return (nvl);
1903 }
1904
1905 static void
1906 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1907 {
1908         uberblock_t *buf;
1909
1910         buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1911         if (buf == NULL)
1912                 return;
1913
1914         for (int l = 0; l < VDEV_LABELS; l++) {
1915                 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1916                         if (vdev_label_read(vd, l, buf,
1917                             VDEV_UBERBLOCK_OFFSET(vd, n),
1918                             VDEV_UBERBLOCK_SIZE(vd)))
1919                                 continue;
1920                         if (uberblock_verify(buf) != 0)
1921                                 continue;
1922
1923                         if (vdev_uberblock_compare(buf, ub) > 0)
1924                                 *ub = *buf;
1925                 }
1926         }
1927         free(buf);
1928 }
1929
1930 static int
1931 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap)
1932 {
1933         vdev_t vtmp;
1934         spa_t *spa;
1935         vdev_t *vdev;
1936         unsigned char *nvlist;
1937         uint64_t val;
1938         uint64_t guid, vdev_children;
1939         uint64_t pool_txg, pool_guid;
1940         const char *pool_name;
1941         const unsigned char *features;
1942         int rc;
1943
1944         /*
1945          * Load the vdev label and figure out which
1946          * uberblock is most current.
1947          */
1948         memset(&vtmp, 0, sizeof(vtmp));
1949         vtmp.v_phys_read = _read;
1950         vtmp.v_read_priv = read_priv;
1951         vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv),
1952             (uint64_t)sizeof (vdev_label_t));
1953
1954         /* Test for minimum device size. */
1955         if (vtmp.v_psize < SPA_MINDEVSIZE)
1956                 return (EIO);
1957
1958         nvlist = vdev_label_read_config(&vtmp, UINT64_MAX);
1959         if (nvlist == NULL)
1960                 return (EIO);
1961
1962         if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
1963             NULL, &val) != 0) {
1964                 free(nvlist);
1965                 return (EIO);
1966         }
1967
1968         if (!SPA_VERSION_IS_SUPPORTED(val)) {
1969                 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
1970                     (unsigned)val, (unsigned)SPA_VERSION);
1971                 free(nvlist);
1972                 return (EIO);
1973         }
1974
1975         /* Check ZFS features for read */
1976         if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1977             DATA_TYPE_NVLIST, NULL, &features) == 0 &&
1978             nvlist_check_features_for_read(features) != 0) {
1979                 free(nvlist);
1980                 return (EIO);
1981         }
1982
1983         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
1984             NULL, &val) != 0) {
1985                 free(nvlist);
1986                 return (EIO);
1987         }
1988
1989         if (val == POOL_STATE_DESTROYED) {
1990                 /* We don't boot only from destroyed pools. */
1991                 free(nvlist);
1992                 return (EIO);
1993         }
1994
1995         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
1996             NULL, &pool_txg) != 0 ||
1997             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1998             NULL, &pool_guid) != 0 ||
1999             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2000             NULL, &pool_name) != 0) {
2001                 /*
2002                  * Cache and spare devices end up here - just ignore
2003                  * them.
2004                  */
2005                 free(nvlist);
2006                 return (EIO);
2007         }
2008
2009         /*
2010          * Create the pool if this is the first time we've seen it.
2011          */
2012         spa = spa_find_by_guid(pool_guid);
2013         if (spa == NULL) {
2014                 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN,
2015                     DATA_TYPE_UINT64, NULL, &vdev_children);
2016                 spa = spa_create(pool_guid, pool_name);
2017                 if (spa == NULL) {
2018                         free(nvlist);
2019                         return (ENOMEM);
2020                 }
2021                 spa->spa_root_vdev->v_nchildren = vdev_children;
2022         }
2023         if (pool_txg > spa->spa_txg)
2024                 spa->spa_txg = pool_txg;
2025
2026         /*
2027          * Get the vdev tree and create our in-core copy of it.
2028          * If we already have a vdev with this guid, this must
2029          * be some kind of alias (overlapping slices, dangerously dedicated
2030          * disks etc).
2031          */
2032         if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2033             NULL, &guid) != 0) {
2034                 free(nvlist);
2035                 return (EIO);
2036         }
2037         vdev = vdev_find(guid);
2038         /* Has this vdev already been inited? */
2039         if (vdev && vdev->v_phys_read) {
2040                 free(nvlist);
2041                 return (EIO);
2042         }
2043
2044         rc = vdev_init_from_label(spa, nvlist);
2045         free(nvlist);
2046         if (rc != 0)
2047                 return (rc);
2048
2049         /*
2050          * We should already have created an incomplete vdev for this
2051          * vdev. Find it and initialise it with our read proc.
2052          */
2053         vdev = vdev_find(guid);
2054         if (vdev != NULL) {
2055                 vdev->v_phys_read = _read;
2056                 vdev->v_read_priv = read_priv;
2057                 vdev->v_psize = vtmp.v_psize;
2058                 /*
2059                  * If no other state is set, mark vdev healthy.
2060                  */
2061                 if (vdev->v_state == VDEV_STATE_UNKNOWN)
2062                         vdev->v_state = VDEV_STATE_HEALTHY;
2063         } else {
2064                 printf("ZFS: inconsistent nvlist contents\n");
2065                 return (EIO);
2066         }
2067
2068         if (vdev->v_islog)
2069                 spa->spa_with_log = vdev->v_islog;
2070
2071         /*
2072          * Re-evaluate top-level vdev state.
2073          */
2074         vdev_set_state(vdev->v_top);
2075
2076         /*
2077          * Ok, we are happy with the pool so far. Lets find
2078          * the best uberblock and then we can actually access
2079          * the contents of the pool.
2080          */
2081         vdev_uberblock_load(vdev, &spa->spa_uberblock);
2082
2083         if (spap != NULL)
2084                 *spap = spa;
2085         return (0);
2086 }
2087
2088 static int
2089 ilog2(int n)
2090 {
2091         int v;
2092
2093         for (v = 0; v < 32; v++)
2094                 if (n == (1 << v))
2095                         return (v);
2096         return (-1);
2097 }
2098
2099 static int
2100 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2101 {
2102         blkptr_t gbh_bp;
2103         zio_gbh_phys_t zio_gb;
2104         char *pbuf;
2105         int i;
2106
2107         /* Artificial BP for gang block header. */
2108         gbh_bp = *bp;
2109         BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2110         BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2111         BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2112         BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2113         for (i = 0; i < SPA_DVAS_PER_BP; i++)
2114                 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2115
2116         /* Read gang header block using the artificial BP. */
2117         if (zio_read(spa, &gbh_bp, &zio_gb))
2118                 return (EIO);
2119
2120         pbuf = buf;
2121         for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2122                 blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2123
2124                 if (BP_IS_HOLE(gbp))
2125                         continue;
2126                 if (zio_read(spa, gbp, pbuf))
2127                         return (EIO);
2128                 pbuf += BP_GET_PSIZE(gbp);
2129         }
2130
2131         if (zio_checksum_verify(spa, bp, buf))
2132                 return (EIO);
2133         return (0);
2134 }
2135
2136 static int
2137 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2138 {
2139         int cpfunc = BP_GET_COMPRESS(bp);
2140         uint64_t align, size;
2141         void *pbuf;
2142         int i, error;
2143
2144         /*
2145          * Process data embedded in block pointer
2146          */
2147         if (BP_IS_EMBEDDED(bp)) {
2148                 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2149
2150                 size = BPE_GET_PSIZE(bp);
2151                 ASSERT(size <= BPE_PAYLOAD_SIZE);
2152
2153                 if (cpfunc != ZIO_COMPRESS_OFF)
2154                         pbuf = zfs_alloc(size);
2155                 else
2156                         pbuf = buf;
2157
2158                 decode_embedded_bp_compressed(bp, pbuf);
2159                 error = 0;
2160
2161                 if (cpfunc != ZIO_COMPRESS_OFF) {
2162                         error = zio_decompress_data(cpfunc, pbuf,
2163                             size, buf, BP_GET_LSIZE(bp));
2164                         zfs_free(pbuf, size);
2165                 }
2166                 if (error != 0)
2167                         printf("ZFS: i/o error - unable to decompress "
2168                             "block pointer data, error %d\n", error);
2169                 return (error);
2170         }
2171
2172         error = EIO;
2173
2174         for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2175                 const dva_t *dva = &bp->blk_dva[i];
2176                 vdev_t *vdev;
2177                 vdev_list_t *vlist;
2178                 uint64_t vdevid;
2179                 off_t offset;
2180
2181                 if (!dva->dva_word[0] && !dva->dva_word[1])
2182                         continue;
2183
2184                 vdevid = DVA_GET_VDEV(dva);
2185                 offset = DVA_GET_OFFSET(dva);
2186                 vlist = &spa->spa_root_vdev->v_children;
2187                 STAILQ_FOREACH(vdev, vlist, v_childlink) {
2188                         if (vdev->v_id == vdevid)
2189                                 break;
2190                 }
2191                 if (!vdev || !vdev->v_read)
2192                         continue;
2193
2194                 size = BP_GET_PSIZE(bp);
2195                 if (vdev->v_read == vdev_raidz_read) {
2196                         align = 1ULL << vdev->v_ashift;
2197                         if (P2PHASE(size, align) != 0)
2198                                 size = P2ROUNDUP(size, align);
2199                 }
2200                 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2201                         pbuf = zfs_alloc(size);
2202                 else
2203                         pbuf = buf;
2204
2205                 if (DVA_GET_GANG(dva))
2206                         error = zio_read_gang(spa, bp, pbuf);
2207                 else
2208                         error = vdev->v_read(vdev, bp, pbuf, offset, size);
2209                 if (error == 0) {
2210                         if (cpfunc != ZIO_COMPRESS_OFF)
2211                                 error = zio_decompress_data(cpfunc, pbuf,
2212                                     BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2213                         else if (size != BP_GET_PSIZE(bp))
2214                                 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2215                 }
2216                 if (buf != pbuf)
2217                         zfs_free(pbuf, size);
2218                 if (error == 0)
2219                         break;
2220         }
2221         if (error != 0)
2222                 printf("ZFS: i/o error - all block copies unavailable\n");
2223         return (error);
2224 }
2225
2226 static int
2227 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2228     void *buf, size_t buflen)
2229 {
2230         int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2231         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2232         int nlevels = dnode->dn_nlevels;
2233         int i, rc;
2234
2235         if (bsize > SPA_MAXBLOCKSIZE) {
2236                 printf("ZFS: I/O error - blocks larger than %llu are not "
2237                     "supported\n", SPA_MAXBLOCKSIZE);
2238                 return (EIO);
2239         }
2240
2241         /*
2242          * Note: bsize may not be a power of two here so we need to do an
2243          * actual divide rather than a bitshift.
2244          */
2245         while (buflen > 0) {
2246                 uint64_t bn = offset / bsize;
2247                 int boff = offset % bsize;
2248                 int ibn;
2249                 const blkptr_t *indbp;
2250                 blkptr_t bp;
2251
2252                 if (bn > dnode->dn_maxblkid)
2253                         return (EIO);
2254
2255                 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2256                         goto cached;
2257
2258                 indbp = dnode->dn_blkptr;
2259                 for (i = 0; i < nlevels; i++) {
2260                         /*
2261                          * Copy the bp from the indirect array so that
2262                          * we can re-use the scratch buffer for multi-level
2263                          * objects.
2264                          */
2265                         ibn = bn >> ((nlevels - i - 1) * ibshift);
2266                         ibn &= ((1 << ibshift) - 1);
2267                         bp = indbp[ibn];
2268                         if (BP_IS_HOLE(&bp)) {
2269                                 memset(dnode_cache_buf, 0, bsize);
2270                                 break;
2271                         }
2272                         rc = zio_read(spa, &bp, dnode_cache_buf);
2273                         if (rc)
2274                                 return (rc);
2275                         indbp = (const blkptr_t *) dnode_cache_buf;
2276                 }
2277                 dnode_cache_obj = dnode;
2278                 dnode_cache_bn = bn;
2279         cached:
2280
2281                 /*
2282                  * The buffer contains our data block. Copy what we
2283                  * need from it and loop.
2284                  */
2285                 i = bsize - boff;
2286                 if (i > buflen) i = buflen;
2287                 memcpy(buf, &dnode_cache_buf[boff], i);
2288                 buf = ((char *)buf) + i;
2289                 offset += i;
2290                 buflen -= i;
2291         }
2292
2293         return (0);
2294 }
2295
2296 /*
2297  * Lookup a value in a microzap directory.
2298  */
2299 static int
2300 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2301     uint64_t *value)
2302 {
2303         const mzap_ent_phys_t *mze;
2304         int chunks, i;
2305
2306         /*
2307          * Microzap objects use exactly one block. Read the whole
2308          * thing.
2309          */
2310         chunks = size / MZAP_ENT_LEN - 1;
2311         for (i = 0; i < chunks; i++) {
2312                 mze = &mz->mz_chunk[i];
2313                 if (strcmp(mze->mze_name, name) == 0) {
2314                         *value = mze->mze_value;
2315                         return (0);
2316                 }
2317         }
2318
2319         return (ENOENT);
2320 }
2321
2322 /*
2323  * Compare a name with a zap leaf entry. Return non-zero if the name
2324  * matches.
2325  */
2326 static int
2327 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2328     const char *name)
2329 {
2330         size_t namelen;
2331         const zap_leaf_chunk_t *nc;
2332         const char *p;
2333
2334         namelen = zc->l_entry.le_name_numints;
2335
2336         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2337         p = name;
2338         while (namelen > 0) {
2339                 size_t len;
2340
2341                 len = namelen;
2342                 if (len > ZAP_LEAF_ARRAY_BYTES)
2343                         len = ZAP_LEAF_ARRAY_BYTES;
2344                 if (memcmp(p, nc->l_array.la_array, len))
2345                         return (0);
2346                 p += len;
2347                 namelen -= len;
2348                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2349         }
2350
2351         return (1);
2352 }
2353
2354 /*
2355  * Extract a uint64_t value from a zap leaf entry.
2356  */
2357 static uint64_t
2358 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2359 {
2360         const zap_leaf_chunk_t *vc;
2361         int i;
2362         uint64_t value;
2363         const uint8_t *p;
2364
2365         vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2366         for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2367                 value = (value << 8) | p[i];
2368         }
2369
2370         return (value);
2371 }
2372
2373 static void
2374 stv(int len, void *addr, uint64_t value)
2375 {
2376         switch (len) {
2377         case 1:
2378                 *(uint8_t *)addr = value;
2379                 return;
2380         case 2:
2381                 *(uint16_t *)addr = value;
2382                 return;
2383         case 4:
2384                 *(uint32_t *)addr = value;
2385                 return;
2386         case 8:
2387                 *(uint64_t *)addr = value;
2388                 return;
2389         }
2390 }
2391
2392 /*
2393  * Extract a array from a zap leaf entry.
2394  */
2395 static void
2396 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2397     uint64_t integer_size, uint64_t num_integers, void *buf)
2398 {
2399         uint64_t array_int_len = zc->l_entry.le_value_intlen;
2400         uint64_t value = 0;
2401         uint64_t *u64 = buf;
2402         char *p = buf;
2403         int len = MIN(zc->l_entry.le_value_numints, num_integers);
2404         int chunk = zc->l_entry.le_value_chunk;
2405         int byten = 0;
2406
2407         if (integer_size == 8 && len == 1) {
2408                 *u64 = fzap_leaf_value(zl, zc);
2409                 return;
2410         }
2411
2412         while (len > 0) {
2413                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2414                 int i;
2415
2416                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2417                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2418                         value = (value << 8) | la->la_array[i];
2419                         byten++;
2420                         if (byten == array_int_len) {
2421                                 stv(integer_size, p, value);
2422                                 byten = 0;
2423                                 len--;
2424                                 if (len == 0)
2425                                         return;
2426                                 p += integer_size;
2427                         }
2428                 }
2429                 chunk = la->la_next;
2430         }
2431 }
2432
2433 static int
2434 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2435 {
2436
2437         switch (integer_size) {
2438         case 1:
2439         case 2:
2440         case 4:
2441         case 8:
2442                 break;
2443         default:
2444                 return (EINVAL);
2445         }
2446
2447         if (integer_size * num_integers > ZAP_MAXVALUELEN)
2448                 return (E2BIG);
2449
2450         return (0);
2451 }
2452
2453 static void
2454 zap_leaf_free(zap_leaf_t *leaf)
2455 {
2456         free(leaf->l_phys);
2457         free(leaf);
2458 }
2459
2460 static int
2461 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2462 {
2463         int bs = FZAP_BLOCK_SHIFT(zap);
2464         int err;
2465
2466         *lp = malloc(sizeof(**lp));
2467         if (*lp == NULL)
2468                 return (ENOMEM);
2469
2470         (*lp)->l_bs = bs;
2471         (*lp)->l_phys = malloc(1 << bs);
2472
2473         if ((*lp)->l_phys == NULL) {
2474                 free(*lp);
2475                 return (ENOMEM);
2476         }
2477         err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2478             1 << bs);
2479         if (err != 0) {
2480                 zap_leaf_free(*lp);
2481         }
2482         return (err);
2483 }
2484
2485 static int
2486 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2487     uint64_t *valp)
2488 {
2489         int bs = FZAP_BLOCK_SHIFT(zap);
2490         uint64_t blk = idx >> (bs - 3);
2491         uint64_t off = idx & ((1 << (bs - 3)) - 1);
2492         uint64_t *buf;
2493         int rc;
2494
2495         buf = malloc(1 << zap->zap_block_shift);
2496         if (buf == NULL)
2497                 return (ENOMEM);
2498         rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2499             buf, 1 << zap->zap_block_shift);
2500         if (rc == 0)
2501                 *valp = buf[off];
2502         free(buf);
2503         return (rc);
2504 }
2505
2506 static int
2507 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2508 {
2509         if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2510                 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2511                 return (0);
2512         } else {
2513                 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2514                     idx, valp));
2515         }
2516 }
2517
2518 #define ZAP_HASH_IDX(hash, n)   (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2519 static int
2520 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2521 {
2522         uint64_t idx, blk;
2523         int err;
2524
2525         idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2526         err = zap_idx_to_blk(zap, idx, &blk);
2527         if (err != 0)
2528                 return (err);
2529         return (zap_get_leaf_byblk(zap, blk, lp));
2530 }
2531
2532 #define CHAIN_END       0xffff  /* end of the chunk chain */
2533 #define LEAF_HASH(l, h) \
2534         ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2535         ((h) >> \
2536         (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2537 #define LEAF_HASH_ENTPTR(l, h)  (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2538
2539 static int
2540 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2541     uint64_t integer_size, uint64_t num_integers, void *value)
2542 {
2543         int rc;
2544         uint16_t *chunkp;
2545         struct zap_leaf_entry *le;
2546
2547         /*
2548          * Make sure this chunk matches our hash.
2549          */
2550         if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2551             zl->l_phys->l_hdr.lh_prefix !=
2552             hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2553                 return (EIO);
2554
2555         rc = ENOENT;
2556         for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2557             *chunkp != CHAIN_END; chunkp = &le->le_next) {
2558                 zap_leaf_chunk_t *zc;
2559                 uint16_t chunk = *chunkp;
2560
2561                 le = ZAP_LEAF_ENTRY(zl, chunk);
2562                 if (le->le_hash != hash)
2563                         continue;
2564                 zc = &ZAP_LEAF_CHUNK(zl, chunk);
2565                 if (fzap_name_equal(zl, zc, name)) {
2566                         if (zc->l_entry.le_value_intlen > integer_size) {
2567                                 rc = EINVAL;
2568                         } else {
2569                                 fzap_leaf_array(zl, zc, integer_size,
2570                                     num_integers, value);
2571                                 rc = 0;
2572                         }
2573                         break;
2574                 }
2575         }
2576         return (rc);
2577 }
2578
2579 /*
2580  * Lookup a value in a fatzap directory.
2581  */
2582 static int
2583 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2584     const char *name, uint64_t integer_size, uint64_t num_integers,
2585     void *value)
2586 {
2587         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2588         fat_zap_t z;
2589         zap_leaf_t *zl;
2590         uint64_t hash;
2591         int rc;
2592
2593         if (zh->zap_magic != ZAP_MAGIC)
2594                 return (EIO);
2595
2596         if ((rc = fzap_check_size(integer_size, num_integers)) != 0)
2597                 return (rc);
2598
2599         z.zap_block_shift = ilog2(bsize);
2600         z.zap_phys = zh;
2601         z.zap_spa = spa;
2602         z.zap_dnode = dnode;
2603
2604         hash = zap_hash(zh->zap_salt, name);
2605         rc = zap_deref_leaf(&z, hash, &zl);
2606         if (rc != 0)
2607                 return (rc);
2608
2609         rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2610
2611         zap_leaf_free(zl);
2612         return (rc);
2613 }
2614
2615 /*
2616  * Lookup a name in a zap object and return its value as a uint64_t.
2617  */
2618 static int
2619 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2620     uint64_t integer_size, uint64_t num_integers, void *value)
2621 {
2622         int rc;
2623         zap_phys_t *zap;
2624         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2625
2626         zap = malloc(size);
2627         if (zap == NULL)
2628                 return (ENOMEM);
2629
2630         rc = dnode_read(spa, dnode, 0, zap, size);
2631         if (rc)
2632                 goto done;
2633
2634         switch (zap->zap_block_type) {
2635         case ZBT_MICRO:
2636                 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2637                 break;
2638         case ZBT_HEADER:
2639                 rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2640                     num_integers, value);
2641                 break;
2642         default:
2643                 printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2644                     zap->zap_block_type);
2645                 rc = EIO;
2646         }
2647 done:
2648         free(zap);
2649         return (rc);
2650 }
2651
2652 /*
2653  * List a microzap directory.
2654  */
2655 static int
2656 mzap_list(const mzap_phys_t *mz, size_t size,
2657     int (*callback)(const char *, uint64_t))
2658 {
2659         const mzap_ent_phys_t *mze;
2660         int chunks, i, rc;
2661
2662         /*
2663          * Microzap objects use exactly one block. Read the whole
2664          * thing.
2665          */
2666         rc = 0;
2667         chunks = size / MZAP_ENT_LEN - 1;
2668         for (i = 0; i < chunks; i++) {
2669                 mze = &mz->mz_chunk[i];
2670                 if (mze->mze_name[0]) {
2671                         rc = callback(mze->mze_name, mze->mze_value);
2672                         if (rc != 0)
2673                                 break;
2674                 }
2675         }
2676
2677         return (rc);
2678 }
2679
2680 /*
2681  * List a fatzap directory.
2682  */
2683 static int
2684 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2685     int (*callback)(const char *, uint64_t))
2686 {
2687         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2688         fat_zap_t z;
2689         uint64_t i;
2690         int j, rc;
2691
2692         if (zh->zap_magic != ZAP_MAGIC)
2693                 return (EIO);
2694
2695         z.zap_block_shift = ilog2(bsize);
2696         z.zap_phys = zh;
2697
2698         /*
2699          * This assumes that the leaf blocks start at block 1. The
2700          * documentation isn't exactly clear on this.
2701          */
2702         zap_leaf_t zl;
2703         zl.l_bs = z.zap_block_shift;
2704         zl.l_phys = malloc(bsize);
2705         if (zl.l_phys == NULL)
2706                 return (ENOMEM);
2707
2708         for (i = 0; i < zh->zap_num_leafs; i++) {
2709                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2710                 char name[256], *p;
2711                 uint64_t value;
2712
2713                 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2714                         free(zl.l_phys);
2715                         return (EIO);
2716                 }
2717
2718                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2719                         zap_leaf_chunk_t *zc, *nc;
2720                         int namelen;
2721
2722                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2723                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2724                                 continue;
2725                         namelen = zc->l_entry.le_name_numints;
2726                         if (namelen > sizeof(name))
2727                                 namelen = sizeof(name);
2728
2729                         /*
2730                          * Paste the name back together.
2731                          */
2732                         nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2733                         p = name;
2734                         while (namelen > 0) {
2735                                 int len;
2736                                 len = namelen;
2737                                 if (len > ZAP_LEAF_ARRAY_BYTES)
2738                                         len = ZAP_LEAF_ARRAY_BYTES;
2739                                 memcpy(p, nc->l_array.la_array, len);
2740                                 p += len;
2741                                 namelen -= len;
2742                                 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2743                         }
2744
2745                         /*
2746                          * Assume the first eight bytes of the value are
2747                          * a uint64_t.
2748                          */
2749                         value = fzap_leaf_value(&zl, zc);
2750
2751                         /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2752                         rc = callback((const char *)name, value);
2753                         if (rc != 0) {
2754                                 free(zl.l_phys);
2755                                 return (rc);
2756                         }
2757                 }
2758         }
2759
2760         free(zl.l_phys);
2761         return (0);
2762 }
2763
2764 static int zfs_printf(const char *name, uint64_t value __unused)
2765 {
2766
2767         printf("%s\n", name);
2768
2769         return (0);
2770 }
2771
2772 /*
2773  * List a zap directory.
2774  */
2775 static int
2776 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2777 {
2778         zap_phys_t *zap;
2779         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2780         int rc;
2781
2782         zap = malloc(size);
2783         if (zap == NULL)
2784                 return (ENOMEM);
2785
2786         rc = dnode_read(spa, dnode, 0, zap, size);
2787         if (rc == 0) {
2788                 if (zap->zap_block_type == ZBT_MICRO)
2789                         rc = mzap_list((const mzap_phys_t *)zap, size,
2790                             zfs_printf);
2791                 else
2792                         rc = fzap_list(spa, dnode, zap, zfs_printf);
2793         }
2794         free(zap);
2795         return (rc);
2796 }
2797
2798 static int
2799 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2800     dnode_phys_t *dnode)
2801 {
2802         off_t offset;
2803
2804         offset = objnum * sizeof(dnode_phys_t);
2805         return dnode_read(spa, &os->os_meta_dnode, offset,
2806                 dnode, sizeof(dnode_phys_t));
2807 }
2808
2809 /*
2810  * Lookup a name in a microzap directory.
2811  */
2812 static int
2813 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
2814 {
2815         const mzap_ent_phys_t *mze;
2816         int chunks, i;
2817
2818         /*
2819          * Microzap objects use exactly one block. Read the whole
2820          * thing.
2821          */
2822         chunks = size / MZAP_ENT_LEN - 1;
2823         for (i = 0; i < chunks; i++) {
2824                 mze = &mz->mz_chunk[i];
2825                 if (value == mze->mze_value) {
2826                         strcpy(name, mze->mze_name);
2827                         return (0);
2828                 }
2829         }
2830
2831         return (ENOENT);
2832 }
2833
2834 static void
2835 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2836 {
2837         size_t namelen;
2838         const zap_leaf_chunk_t *nc;
2839         char *p;
2840
2841         namelen = zc->l_entry.le_name_numints;
2842
2843         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2844         p = name;
2845         while (namelen > 0) {
2846                 size_t len;
2847                 len = namelen;
2848                 if (len > ZAP_LEAF_ARRAY_BYTES)
2849                         len = ZAP_LEAF_ARRAY_BYTES;
2850                 memcpy(p, nc->l_array.la_array, len);
2851                 p += len;
2852                 namelen -= len;
2853                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2854         }
2855
2856         *p = '\0';
2857 }
2858
2859 static int
2860 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2861     char *name, uint64_t value)
2862 {
2863         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2864         fat_zap_t z;
2865         uint64_t i;
2866         int j, rc;
2867
2868         if (zh->zap_magic != ZAP_MAGIC)
2869                 return (EIO);
2870
2871         z.zap_block_shift = ilog2(bsize);
2872         z.zap_phys = zh;
2873
2874         /*
2875          * This assumes that the leaf blocks start at block 1. The
2876          * documentation isn't exactly clear on this.
2877          */
2878         zap_leaf_t zl;
2879         zl.l_bs = z.zap_block_shift;
2880         zl.l_phys = malloc(bsize);
2881         if (zl.l_phys == NULL)
2882                 return (ENOMEM);
2883
2884         for (i = 0; i < zh->zap_num_leafs; i++) {
2885                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2886
2887                 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
2888                 if (rc != 0)
2889                         goto done;
2890
2891                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2892                         zap_leaf_chunk_t *zc;
2893
2894                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2895                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2896                                 continue;
2897                         if (zc->l_entry.le_value_intlen != 8 ||
2898                             zc->l_entry.le_value_numints != 1)
2899                                 continue;
2900
2901                         if (fzap_leaf_value(&zl, zc) == value) {
2902                                 fzap_name_copy(&zl, zc, name);
2903                                 goto done;
2904                         }
2905                 }
2906         }
2907
2908         rc = ENOENT;
2909 done:
2910         free(zl.l_phys);
2911         return (rc);
2912 }
2913
2914 static int
2915 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
2916     uint64_t value)
2917 {
2918         zap_phys_t *zap;
2919         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2920         int rc;
2921
2922         zap = malloc(size);
2923         if (zap == NULL)
2924                 return (ENOMEM);
2925
2926         rc = dnode_read(spa, dnode, 0, zap, size);
2927         if (rc == 0) {
2928                 if (zap->zap_block_type == ZBT_MICRO)
2929                         rc = mzap_rlookup((const mzap_phys_t *)zap, size,
2930                             name, value);
2931                 else
2932                         rc = fzap_rlookup(spa, dnode, zap, name, value);
2933         }
2934         free(zap);
2935         return (rc);
2936 }
2937
2938 static int
2939 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
2940 {
2941         char name[256];
2942         char component[256];
2943         uint64_t dir_obj, parent_obj, child_dir_zapobj;
2944         dnode_phys_t child_dir_zap, dataset, dir, parent;
2945         dsl_dir_phys_t *dd;
2946         dsl_dataset_phys_t *ds;
2947         char *p;
2948         int len;
2949
2950         p = &name[sizeof(name) - 1];
2951         *p = '\0';
2952
2953         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2954                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2955                 return (EIO);
2956         }
2957         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2958         dir_obj = ds->ds_dir_obj;
2959
2960         for (;;) {
2961                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
2962                         return (EIO);
2963                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2964
2965                 /* Actual loop condition. */
2966                 parent_obj = dd->dd_parent_obj;
2967                 if (parent_obj == 0)
2968                         break;
2969
2970                 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj,
2971                     &parent) != 0)
2972                         return (EIO);
2973                 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
2974                 child_dir_zapobj = dd->dd_child_dir_zapobj;
2975                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
2976                     &child_dir_zap) != 0)
2977                         return (EIO);
2978                 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
2979                         return (EIO);
2980
2981                 len = strlen(component);
2982                 p -= len;
2983                 memcpy(p, component, len);
2984                 --p;
2985                 *p = '/';
2986
2987                 /* Actual loop iteration. */
2988                 dir_obj = parent_obj;
2989         }
2990
2991         if (*p != '\0')
2992                 ++p;
2993         strcpy(result, p);
2994
2995         return (0);
2996 }
2997
2998 static int
2999 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
3000 {
3001         char element[256];
3002         uint64_t dir_obj, child_dir_zapobj;
3003         dnode_phys_t child_dir_zap, dir;
3004         dsl_dir_phys_t *dd;
3005         const char *p, *q;
3006
3007         if (objset_get_dnode(spa, &spa->spa_mos,
3008             DMU_POOL_DIRECTORY_OBJECT, &dir))
3009                 return (EIO);
3010         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
3011             1, &dir_obj))
3012                 return (EIO);
3013
3014         p = name;
3015         for (;;) {
3016                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
3017                         return (EIO);
3018                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3019
3020                 while (*p == '/')
3021                         p++;
3022                 /* Actual loop condition #1. */
3023                 if (*p == '\0')
3024                         break;
3025
3026                 q = strchr(p, '/');
3027                 if (q) {
3028                         memcpy(element, p, q - p);
3029                         element[q - p] = '\0';
3030                         p = q + 1;
3031                 } else {
3032                         strcpy(element, p);
3033                         p += strlen(p);
3034                 }
3035
3036                 child_dir_zapobj = dd->dd_child_dir_zapobj;
3037                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3038                     &child_dir_zap) != 0)
3039                         return (EIO);
3040
3041                 /* Actual loop condition #2. */
3042                 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3043                     1, &dir_obj) != 0)
3044                         return (ENOENT);
3045         }
3046
3047         *objnum = dd->dd_head_dataset_obj;
3048         return (0);
3049 }
3050
3051 #ifndef BOOT2
3052 static int
3053 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3054 {
3055         uint64_t dir_obj, child_dir_zapobj;
3056         dnode_phys_t child_dir_zap, dir, dataset;
3057         dsl_dataset_phys_t *ds;
3058         dsl_dir_phys_t *dd;
3059
3060         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3061                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3062                 return (EIO);
3063         }
3064         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3065         dir_obj = ds->ds_dir_obj;
3066
3067         if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
3068                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3069                 return (EIO);
3070         }
3071         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3072
3073         child_dir_zapobj = dd->dd_child_dir_zapobj;
3074         if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3075             &child_dir_zap) != 0) {
3076                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3077                 return (EIO);
3078         }
3079
3080         return (zap_list(spa, &child_dir_zap) != 0);
3081 }
3082
3083 int
3084 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3085     int (*callback)(const char *, uint64_t))
3086 {
3087         uint64_t dir_obj, child_dir_zapobj;
3088         dnode_phys_t child_dir_zap, dir, dataset;
3089         dsl_dataset_phys_t *ds;
3090         dsl_dir_phys_t *dd;
3091         zap_phys_t *zap;
3092         size_t size;
3093         int err;
3094
3095         err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
3096         if (err != 0) {
3097                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3098                 return (err);
3099         }
3100         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3101         dir_obj = ds->ds_dir_obj;
3102
3103         err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
3104         if (err != 0) {
3105                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3106                 return (err);
3107         }
3108         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3109
3110         child_dir_zapobj = dd->dd_child_dir_zapobj;
3111         err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3112             &child_dir_zap);
3113         if (err != 0) {
3114                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3115                 return (err);
3116         }
3117
3118         size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3119         zap = malloc(size);
3120         if (zap != NULL) {
3121                 err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3122                 if (err != 0)
3123                         goto done;
3124
3125                 if (zap->zap_block_type == ZBT_MICRO)
3126                         err = mzap_list((const mzap_phys_t *)zap, size,
3127                             callback);
3128                 else
3129                         err = fzap_list(spa, &child_dir_zap, zap, callback);
3130         } else {
3131                 err = ENOMEM;
3132         }
3133 done:
3134         free(zap);
3135         return (err);
3136 }
3137 #endif
3138
3139 /*
3140  * Find the object set given the object number of its dataset object
3141  * and return its details in *objset
3142  */
3143 static int
3144 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3145 {
3146         dnode_phys_t dataset;
3147         dsl_dataset_phys_t *ds;
3148
3149         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3150                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3151                 return (EIO);
3152         }
3153
3154         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3155         if (zio_read(spa, &ds->ds_bp, objset)) {
3156                 printf("ZFS: can't read object set for dataset %ju\n",
3157                     (uintmax_t)objnum);
3158                 return (EIO);
3159         }
3160
3161         return (0);
3162 }
3163
3164 /*
3165  * Find the object set pointed to by the BOOTFS property or the root
3166  * dataset if there is none and return its details in *objset
3167  */
3168 static int
3169 zfs_get_root(const spa_t *spa, uint64_t *objid)
3170 {
3171         dnode_phys_t dir, propdir;
3172         uint64_t props, bootfs, root;
3173
3174         *objid = 0;
3175
3176         /*
3177          * Start with the MOS directory object.
3178          */
3179         if (objset_get_dnode(spa, &spa->spa_mos,
3180             DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3181                 printf("ZFS: can't read MOS object directory\n");
3182                 return (EIO);
3183         }
3184
3185         /*
3186          * Lookup the pool_props and see if we can find a bootfs.
3187          */
3188         if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3189             sizeof(props), 1, &props) == 0 &&
3190             objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 &&
3191             zap_lookup(spa, &propdir, "bootfs",
3192             sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3193                 *objid = bootfs;
3194                 return (0);
3195         }
3196         /*
3197          * Lookup the root dataset directory
3198          */
3199         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3200             sizeof(root), 1, &root) ||
3201             objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
3202                 printf("ZFS: can't find root dsl_dir\n");
3203                 return (EIO);
3204         }
3205
3206         /*
3207          * Use the information from the dataset directory's bonus buffer
3208          * to find the dataset object and from that the object set itself.
3209          */
3210         dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3211         *objid = dd->dd_head_dataset_obj;
3212         return (0);
3213 }
3214
3215 static int
3216 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3217 {
3218
3219         mount->spa = spa;
3220
3221         /*
3222          * Find the root object set if not explicitly provided
3223          */
3224         if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3225                 printf("ZFS: can't find root filesystem\n");
3226                 return (EIO);
3227         }
3228
3229         if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3230                 printf("ZFS: can't open root filesystem\n");
3231                 return (EIO);
3232         }
3233
3234         mount->rootobj = rootobj;
3235
3236         return (0);
3237 }
3238
3239 /*
3240  * callback function for feature name checks.
3241  */
3242 static int
3243 check_feature(const char *name, uint64_t value)
3244 {
3245         int i;
3246
3247         if (value == 0)
3248                 return (0);
3249         if (name[0] == '\0')
3250                 return (0);
3251
3252         for (i = 0; features_for_read[i] != NULL; i++) {
3253                 if (strcmp(name, features_for_read[i]) == 0)
3254                         return (0);
3255         }
3256         printf("ZFS: unsupported feature: %s\n", name);
3257         return (EIO);
3258 }
3259
3260 /*
3261  * Checks whether the MOS features that are active are supported.
3262  */
3263 static int
3264 check_mos_features(const spa_t *spa)
3265 {
3266         dnode_phys_t dir;
3267         zap_phys_t *zap;
3268         uint64_t objnum;
3269         size_t size;
3270         int rc;
3271
3272         if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3273             &dir)) != 0)
3274                 return (rc);
3275         if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3276             sizeof (objnum), 1, &objnum)) != 0) {
3277                 /*
3278                  * It is older pool without features. As we have already
3279                  * tested the label, just return without raising the error.
3280                  */
3281                 return (0);
3282         }
3283
3284         if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
3285                 return (rc);
3286
3287         if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3288                 return (EIO);
3289
3290         size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3291         zap = malloc(size);
3292         if (zap == NULL)
3293                 return (ENOMEM);
3294
3295         if (dnode_read(spa, &dir, 0, zap, size)) {
3296                 free(zap);
3297                 return (EIO);
3298         }
3299
3300         if (zap->zap_block_type == ZBT_MICRO)
3301                 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3302         else
3303                 rc = fzap_list(spa, &dir, zap, check_feature);
3304
3305         free(zap);
3306         return (rc);
3307 }
3308
3309 static int
3310 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value)
3311 {
3312         dnode_phys_t dir;
3313         size_t size;
3314         int rc;
3315         unsigned char *nv;
3316
3317         *value = NULL;
3318         if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
3319                 return (rc);
3320         if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3321             dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3322                 return (EIO);
3323         }
3324
3325         if (dir.dn_bonuslen != sizeof (uint64_t))
3326                 return (EIO);
3327
3328         size = *(uint64_t *)DN_BONUS(&dir);
3329         nv = malloc(size);
3330         if (nv == NULL)
3331                 return (ENOMEM);
3332
3333         rc = dnode_read(spa, &dir, 0, nv, size);
3334         if (rc != 0) {
3335                 free(nv);
3336                 nv = NULL;
3337                 return (rc);
3338         }
3339         *value = nv;
3340         return (rc);
3341 }
3342
3343 static int
3344 zfs_spa_init(spa_t *spa)
3345 {
3346         dnode_phys_t dir;
3347         uint64_t config_object;
3348         unsigned char *nvlist;
3349         int rc;
3350
3351         if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
3352                 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3353                 return (EIO);
3354         }
3355         if (spa->spa_mos.os_type != DMU_OST_META) {
3356                 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3357                 return (EIO);
3358         }
3359
3360         if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
3361             &dir)) {
3362                 printf("ZFS: failed to read pool %s directory object\n",
3363                     spa->spa_name);
3364                 return (EIO);
3365         }
3366         /* this is allowed to fail, older pools do not have salt */
3367         rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3368             sizeof (spa->spa_cksum_salt.zcs_bytes),
3369             spa->spa_cksum_salt.zcs_bytes);
3370
3371         rc = check_mos_features(spa);
3372         if (rc != 0) {
3373                 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3374                 return (rc);
3375         }
3376
3377         rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3378             sizeof (config_object), 1, &config_object);
3379         if (rc != 0) {
3380                 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3381                 return (EIO);
3382         }
3383         rc = load_nvlist(spa, config_object, &nvlist);
3384         if (rc != 0)
3385                 return (rc);
3386
3387         /*
3388          * Update vdevs from MOS config. Note, we do skip encoding bytes
3389          * here. See also vdev_label_read_config().
3390          */
3391         rc = vdev_init_from_nvlist(spa, nvlist + 4);
3392         free(nvlist);
3393         return (rc);
3394 }
3395
3396 static int
3397 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3398 {
3399
3400         if (dn->dn_bonustype != DMU_OT_SA) {
3401                 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3402
3403                 sb->st_mode = zp->zp_mode;
3404                 sb->st_uid = zp->zp_uid;
3405                 sb->st_gid = zp->zp_gid;
3406                 sb->st_size = zp->zp_size;
3407         } else {
3408                 sa_hdr_phys_t *sahdrp;
3409                 int hdrsize;
3410                 size_t size = 0;
3411                 void *buf = NULL;
3412
3413                 if (dn->dn_bonuslen != 0)
3414                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3415                 else {
3416                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3417                                 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3418                                 int error;
3419
3420                                 size = BP_GET_LSIZE(bp);
3421                                 buf = zfs_alloc(size);
3422                                 error = zio_read(spa, bp, buf);
3423                                 if (error != 0) {
3424                                         zfs_free(buf, size);
3425                                         return (error);
3426                                 }
3427                                 sahdrp = buf;
3428                         } else {
3429                                 return (EIO);
3430                         }
3431                 }
3432                 hdrsize = SA_HDR_SIZE(sahdrp);
3433                 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3434                     SA_MODE_OFFSET);
3435                 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3436                     SA_UID_OFFSET);
3437                 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3438                     SA_GID_OFFSET);
3439                 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3440                     SA_SIZE_OFFSET);
3441                 if (buf != NULL)
3442                         zfs_free(buf, size);
3443         }
3444
3445         return (0);
3446 }
3447
3448 static int
3449 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3450 {
3451         int rc = 0;
3452
3453         if (dn->dn_bonustype == DMU_OT_SA) {
3454                 sa_hdr_phys_t *sahdrp = NULL;
3455                 size_t size = 0;
3456                 void *buf = NULL;
3457                 int hdrsize;
3458                 char *p;
3459
3460                 if (dn->dn_bonuslen != 0)
3461                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3462                 else {
3463                         blkptr_t *bp;
3464
3465                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3466                                 return (EIO);
3467                         bp = DN_SPILL_BLKPTR(dn);
3468
3469                         size = BP_GET_LSIZE(bp);
3470                         buf = zfs_alloc(size);
3471                         rc = zio_read(spa, bp, buf);
3472                         if (rc != 0) {
3473                                 zfs_free(buf, size);
3474                                 return (rc);
3475                         }
3476                         sahdrp = buf;
3477                 }
3478                 hdrsize = SA_HDR_SIZE(sahdrp);
3479                 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3480                 memcpy(path, p, psize);
3481                 if (buf != NULL)
3482                         zfs_free(buf, size);
3483                 return (0);
3484         }
3485         /*
3486          * Second test is purely to silence bogus compiler
3487          * warning about accessing past the end of dn_bonus.
3488          */
3489         if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3490             sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3491                 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3492         } else {
3493                 rc = dnode_read(spa, dn, 0, path, psize);
3494         }
3495         return (rc);
3496 }
3497
3498 struct obj_list {
3499         uint64_t                objnum;
3500         STAILQ_ENTRY(obj_list)  entry;
3501 };
3502
3503 /*
3504  * Lookup a file and return its dnode.
3505  */
3506 static int
3507 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3508 {
3509         int rc;
3510         uint64_t objnum;
3511         const spa_t *spa;
3512         dnode_phys_t dn;
3513         const char *p, *q;
3514         char element[256];
3515         char path[1024];
3516         int symlinks_followed = 0;
3517         struct stat sb;
3518         struct obj_list *entry, *tentry;
3519         STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3520
3521         spa = mount->spa;
3522         if (mount->objset.os_type != DMU_OST_ZFS) {
3523                 printf("ZFS: unexpected object set type %ju\n",
3524                     (uintmax_t)mount->objset.os_type);
3525                 return (EIO);
3526         }
3527
3528         if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3529                 return (ENOMEM);
3530
3531         /*
3532          * Get the root directory dnode.
3533          */
3534         rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3535         if (rc) {
3536                 free(entry);
3537                 return (rc);
3538         }
3539
3540         rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3541         if (rc) {
3542                 free(entry);
3543                 return (rc);
3544         }
3545         entry->objnum = objnum;
3546         STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3547
3548         rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3549         if (rc != 0)
3550                 goto done;
3551
3552         p = upath;
3553         while (p && *p) {
3554                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3555                 if (rc != 0)
3556                         goto done;
3557
3558                 while (*p == '/')
3559                         p++;
3560                 if (*p == '\0')
3561                         break;
3562                 q = p;
3563                 while (*q != '\0' && *q != '/')
3564                         q++;
3565
3566                 /* skip dot */
3567                 if (p + 1 == q && p[0] == '.') {
3568                         p++;
3569                         continue;
3570                 }
3571                 /* double dot */
3572                 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3573                         p += 2;
3574                         if (STAILQ_FIRST(&on_cache) ==
3575                             STAILQ_LAST(&on_cache, obj_list, entry)) {
3576                                 rc = ENOENT;
3577                                 goto done;
3578                         }
3579                         entry = STAILQ_FIRST(&on_cache);
3580                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3581                         free(entry);
3582                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3583                         continue;
3584                 }
3585                 if (q - p + 1 > sizeof(element)) {
3586                         rc = ENAMETOOLONG;
3587                         goto done;
3588                 }
3589                 memcpy(element, p, q - p);
3590                 element[q - p] = 0;
3591                 p = q;
3592
3593                 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3594                         goto done;
3595                 if (!S_ISDIR(sb.st_mode)) {
3596                         rc = ENOTDIR;
3597                         goto done;
3598                 }
3599
3600                 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3601                 if (rc)
3602                         goto done;
3603                 objnum = ZFS_DIRENT_OBJ(objnum);
3604
3605                 if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3606                         rc = ENOMEM;
3607                         goto done;
3608                 }
3609                 entry->objnum = objnum;
3610                 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3611                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3612                 if (rc)
3613                         goto done;
3614
3615                 /*
3616                  * Check for symlink.
3617                  */
3618                 rc = zfs_dnode_stat(spa, &dn, &sb);
3619                 if (rc)
3620                         goto done;
3621                 if (S_ISLNK(sb.st_mode)) {
3622                         if (symlinks_followed > 10) {
3623                                 rc = EMLINK;
3624                                 goto done;
3625                         }
3626                         symlinks_followed++;
3627
3628                         /*
3629                          * Read the link value and copy the tail of our
3630                          * current path onto the end.
3631                          */
3632                         if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3633                                 rc = ENAMETOOLONG;
3634                                 goto done;
3635                         }
3636                         strcpy(&path[sb.st_size], p);
3637
3638                         rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3639                         if (rc != 0)
3640                                 goto done;
3641
3642                         /*
3643                          * Restart with the new path, starting either at
3644                          * the root or at the parent depending whether or
3645                          * not the link is relative.
3646                          */
3647                         p = path;
3648                         if (*p == '/') {
3649                                 while (STAILQ_FIRST(&on_cache) !=
3650                                     STAILQ_LAST(&on_cache, obj_list, entry)) {
3651                                         entry = STAILQ_FIRST(&on_cache);
3652                                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3653                                         free(entry);
3654                                 }
3655                         } else {
3656                                 entry = STAILQ_FIRST(&on_cache);
3657                                 STAILQ_REMOVE_HEAD(&on_cache, entry);
3658                                 free(entry);
3659                         }
3660                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3661                 }
3662         }
3663
3664         *dnode = dn;
3665 done:
3666         STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3667                 free(entry);
3668         return (rc);
3669 }