]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - stand/libsa/zfs/zfsimpl.c
MFV r357163:
[FreeBSD/FreeBSD.git] / stand / libsa / zfs / zfsimpl.c
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  *      Stand-alone ZFS file reader.
32  */
33
34 #include <sys/endian.h>
35 #include <sys/stat.h>
36 #include <sys/stdint.h>
37 #include <sys/list.h>
38 #include <machine/_inttypes.h>
39
40 #include "zfsimpl.h"
41 #include "zfssubr.c"
42
43
44 struct zfsmount {
45         const spa_t     *spa;
46         objset_phys_t   objset;
47         uint64_t        rootobj;
48 };
49 static struct zfsmount zfsmount __unused;
50
51 /*
52  * The indirect_child_t represents the vdev that we will read from, when we
53  * need to read all copies of the data (e.g. for scrub or reconstruction).
54  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
55  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
56  * ic_vdev is a child of the mirror.
57  */
58 typedef struct indirect_child {
59         void *ic_data;
60         vdev_t *ic_vdev;
61 } indirect_child_t;
62
63 /*
64  * The indirect_split_t represents one mapped segment of an i/o to the
65  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
66  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
67  * For split blocks, there will be several of these.
68  */
69 typedef struct indirect_split {
70         list_node_t is_node; /* link on iv_splits */
71
72         /*
73          * is_split_offset is the offset into the i/o.
74          * This is the sum of the previous splits' is_size's.
75          */
76         uint64_t is_split_offset;
77
78         vdev_t *is_vdev; /* top-level vdev */
79         uint64_t is_target_offset; /* offset on is_vdev */
80         uint64_t is_size;
81         int is_children; /* number of entries in is_child[] */
82
83         /*
84          * is_good_child is the child that we are currently using to
85          * attempt reconstruction.
86          */
87         int is_good_child;
88
89         indirect_child_t is_child[1]; /* variable-length */
90 } indirect_split_t;
91
92 /*
93  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
94  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
95  */
96 typedef struct indirect_vsd {
97         boolean_t iv_split_block;
98         boolean_t iv_reconstruct;
99
100         list_t iv_splits; /* list of indirect_split_t's */
101 } indirect_vsd_t;
102
103 /*
104  * List of all vdevs, chained through v_alllink.
105  */
106 static vdev_list_t zfs_vdevs;
107
108 /*
109  * List of ZFS features supported for read
110  */
111 static const char *features_for_read[] = {
112         "org.illumos:lz4_compress",
113         "com.delphix:hole_birth",
114         "com.delphix:extensible_dataset",
115         "com.delphix:embedded_data",
116         "org.open-zfs:large_blocks",
117         "org.illumos:sha512",
118         "org.illumos:skein",
119         "org.zfsonlinux:large_dnode",
120         "com.joyent:multi_vdev_crash_dump",
121         "com.delphix:spacemap_histogram",
122         "com.delphix:zpool_checkpoint",
123         "com.delphix:spacemap_v2",
124         "com.datto:encryption",
125         "org.zfsonlinux:allocation_classes",
126         "com.datto:resilver_defer",
127         "com.delphix:device_removal",
128         "com.delphix:obsolete_counts",
129         "com.intel:allocation_classes",
130         NULL
131 };
132
133 /*
134  * List of all pools, chained through spa_link.
135  */
136 static spa_list_t zfs_pools;
137
138 static const dnode_phys_t *dnode_cache_obj;
139 static uint64_t dnode_cache_bn;
140 static char *dnode_cache_buf;
141 static char *zap_scratch;
142 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
143
144 #define TEMP_SIZE       (1024 * 1024)
145
146 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
147 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
148 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
149 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
150     const char *name, uint64_t integer_size, uint64_t num_integers,
151     void *value);
152 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
153     dnode_phys_t *);
154 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
155     size_t);
156 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
157     size_t);
158 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
159 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
160     uint64_t);
161 vdev_indirect_mapping_entry_phys_t *
162     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
163     uint64_t, uint64_t *);
164
165 static void
166 zfs_init(void)
167 {
168         STAILQ_INIT(&zfs_vdevs);
169         STAILQ_INIT(&zfs_pools);
170
171         zfs_temp_buf = malloc(TEMP_SIZE);
172         zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
173         zfs_temp_ptr = zfs_temp_buf;
174         dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
175         zap_scratch = malloc(SPA_MAXBLOCKSIZE);
176
177         zfs_init_crc();
178 }
179
180 static void *
181 zfs_alloc(size_t size)
182 {
183         char *ptr;
184
185         if (zfs_temp_ptr + size > zfs_temp_end) {
186                 panic("ZFS: out of temporary buffer space");
187         }
188         ptr = zfs_temp_ptr;
189         zfs_temp_ptr += size;
190
191         return (ptr);
192 }
193
194 static void
195 zfs_free(void *ptr, size_t size)
196 {
197
198         zfs_temp_ptr -= size;
199         if (zfs_temp_ptr != ptr) {
200                 panic("ZFS: zfs_alloc()/zfs_free() mismatch");
201         }
202 }
203
204 static int
205 xdr_int(const unsigned char **xdr, int *ip)
206 {
207         *ip = be32dec(*xdr);
208         (*xdr) += 4;
209         return (0);
210 }
211
212 static int
213 xdr_u_int(const unsigned char **xdr, u_int *ip)
214 {
215         *ip = be32dec(*xdr);
216         (*xdr) += 4;
217         return (0);
218 }
219
220 static int
221 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
222 {
223         u_int hi, lo;
224
225         xdr_u_int(xdr, &hi);
226         xdr_u_int(xdr, &lo);
227         *lp = (((uint64_t)hi) << 32) | lo;
228         return (0);
229 }
230
231 static int
232 nvlist_find(const unsigned char *nvlist, const char *name, int type,
233     int *elementsp, void *valuep)
234 {
235         const unsigned char *p, *pair;
236         int junk;
237         int encoded_size, decoded_size;
238
239         p = nvlist;
240         xdr_int(&p, &junk);
241         xdr_int(&p, &junk);
242
243         pair = p;
244         xdr_int(&p, &encoded_size);
245         xdr_int(&p, &decoded_size);
246         while (encoded_size && decoded_size) {
247                 int namelen, pairtype, elements;
248                 const char *pairname;
249
250                 xdr_int(&p, &namelen);
251                 pairname = (const char *)p;
252                 p += roundup(namelen, 4);
253                 xdr_int(&p, &pairtype);
254
255                 if (memcmp(name, pairname, namelen) == 0 && type == pairtype) {
256                         xdr_int(&p, &elements);
257                         if (elementsp)
258                                 *elementsp = elements;
259                         if (type == DATA_TYPE_UINT64) {
260                                 xdr_uint64_t(&p, (uint64_t *)valuep);
261                                 return (0);
262                         } else if (type == DATA_TYPE_STRING) {
263                                 int len;
264                                 xdr_int(&p, &len);
265                                 (*(const char **)valuep) = (const char *)p;
266                                 return (0);
267                         } else if (type == DATA_TYPE_NVLIST ||
268                             type == DATA_TYPE_NVLIST_ARRAY) {
269                                 (*(const unsigned char **)valuep) =
270                                     (const unsigned char *)p;
271                                 return (0);
272                         } else {
273                                 return (EIO);
274                         }
275                 } else {
276                         /*
277                          * Not the pair we are looking for, skip to the
278                          * next one.
279                          */
280                         p = pair + encoded_size;
281                 }
282
283                 pair = p;
284                 xdr_int(&p, &encoded_size);
285                 xdr_int(&p, &decoded_size);
286         }
287
288         return (EIO);
289 }
290
291 static int
292 nvlist_check_features_for_read(const unsigned char *nvlist)
293 {
294         const unsigned char *p, *pair;
295         int junk;
296         int encoded_size, decoded_size;
297         int rc;
298
299         rc = 0;
300
301         p = nvlist;
302         xdr_int(&p, &junk);
303         xdr_int(&p, &junk);
304
305         pair = p;
306         xdr_int(&p, &encoded_size);
307         xdr_int(&p, &decoded_size);
308         while (encoded_size && decoded_size) {
309                 int namelen, pairtype;
310                 const char *pairname;
311                 int i, found;
312
313                 found = 0;
314
315                 xdr_int(&p, &namelen);
316                 pairname = (const char *)p;
317                 p += roundup(namelen, 4);
318                 xdr_int(&p, &pairtype);
319
320                 for (i = 0; features_for_read[i] != NULL; i++) {
321                         if (memcmp(pairname, features_for_read[i],
322                             namelen) == 0) {
323                                 found = 1;
324                                 break;
325                         }
326                 }
327
328                 if (!found) {
329                         printf("ZFS: unsupported feature: %s\n", pairname);
330                         rc = EIO;
331                 }
332
333                 p = pair + encoded_size;
334
335                 pair = p;
336                 xdr_int(&p, &encoded_size);
337                 xdr_int(&p, &decoded_size);
338         }
339
340         return (rc);
341 }
342
343 /*
344  * Return the next nvlist in an nvlist array.
345  */
346 static const unsigned char *
347 nvlist_next(const unsigned char *nvlist)
348 {
349         const unsigned char *p, *pair;
350         int junk;
351         int encoded_size, decoded_size;
352
353         p = nvlist;
354         xdr_int(&p, &junk);
355         xdr_int(&p, &junk);
356
357         pair = p;
358         xdr_int(&p, &encoded_size);
359         xdr_int(&p, &decoded_size);
360         while (encoded_size && decoded_size) {
361                 p = pair + encoded_size;
362
363                 pair = p;
364                 xdr_int(&p, &encoded_size);
365                 xdr_int(&p, &decoded_size);
366         }
367
368         return (p);
369 }
370
371 #ifdef TEST
372
373 static const unsigned char *
374 nvlist_print(const unsigned char *nvlist, unsigned int indent)
375 {
376         static const char *typenames[] = {
377                 "DATA_TYPE_UNKNOWN",
378                 "DATA_TYPE_BOOLEAN",
379                 "DATA_TYPE_BYTE",
380                 "DATA_TYPE_INT16",
381                 "DATA_TYPE_UINT16",
382                 "DATA_TYPE_INT32",
383                 "DATA_TYPE_UINT32",
384                 "DATA_TYPE_INT64",
385                 "DATA_TYPE_UINT64",
386                 "DATA_TYPE_STRING",
387                 "DATA_TYPE_BYTE_ARRAY",
388                 "DATA_TYPE_INT16_ARRAY",
389                 "DATA_TYPE_UINT16_ARRAY",
390                 "DATA_TYPE_INT32_ARRAY",
391                 "DATA_TYPE_UINT32_ARRAY",
392                 "DATA_TYPE_INT64_ARRAY",
393                 "DATA_TYPE_UINT64_ARRAY",
394                 "DATA_TYPE_STRING_ARRAY",
395                 "DATA_TYPE_HRTIME",
396                 "DATA_TYPE_NVLIST",
397                 "DATA_TYPE_NVLIST_ARRAY",
398                 "DATA_TYPE_BOOLEAN_VALUE",
399                 "DATA_TYPE_INT8",
400                 "DATA_TYPE_UINT8",
401                 "DATA_TYPE_BOOLEAN_ARRAY",
402                 "DATA_TYPE_INT8_ARRAY",
403                 "DATA_TYPE_UINT8_ARRAY"
404         };
405
406         unsigned int i, j;
407         const unsigned char *p, *pair;
408         int junk;
409         int encoded_size, decoded_size;
410
411         p = nvlist;
412         xdr_int(&p, &junk);
413         xdr_int(&p, &junk);
414
415         pair = p;
416         xdr_int(&p, &encoded_size);
417         xdr_int(&p, &decoded_size);
418         while (encoded_size && decoded_size) {
419                 int namelen, pairtype, elements;
420                 const char *pairname;
421
422                 xdr_int(&p, &namelen);
423                 pairname = (const char *)p;
424                 p += roundup(namelen, 4);
425                 xdr_int(&p, &pairtype);
426
427                 for (i = 0; i < indent; i++)
428                         printf(" ");
429                 printf("%s %s", typenames[pairtype], pairname);
430
431                 xdr_int(&p, &elements);
432                 switch (pairtype) {
433                 case DATA_TYPE_UINT64: {
434                         uint64_t val;
435                         xdr_uint64_t(&p, &val);
436                         printf(" = 0x%jx\n", (uintmax_t)val);
437                         break;
438                 }
439
440                 case DATA_TYPE_STRING: {
441                         int len;
442                         xdr_int(&p, &len);
443                         printf(" = \"%s\"\n", p);
444                         break;
445                 }
446
447                 case DATA_TYPE_NVLIST:
448                         printf("\n");
449                         nvlist_print(p, indent + 1);
450                         break;
451
452                 case DATA_TYPE_NVLIST_ARRAY:
453                         for (j = 0; j < elements; j++) {
454                                 printf("[%d]\n", j);
455                                 p = nvlist_print(p, indent + 1);
456                                 if (j != elements - 1) {
457                                         for (i = 0; i < indent; i++)
458                                                 printf(" ");
459                                         printf("%s %s", typenames[pairtype],
460                                             pairname);
461                                 }
462                         }
463                         break;
464
465                 default:
466                         printf("\n");
467                 }
468
469                 p = pair + encoded_size;
470
471                 pair = p;
472                 xdr_int(&p, &encoded_size);
473                 xdr_int(&p, &decoded_size);
474         }
475
476         return (p);
477 }
478
479 #endif
480
481 static int
482 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
483     off_t offset, size_t size)
484 {
485         size_t psize;
486         int rc;
487
488         if (!vdev->v_phys_read)
489                 return (EIO);
490
491         if (bp) {
492                 psize = BP_GET_PSIZE(bp);
493         } else {
494                 psize = size;
495         }
496
497         rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
498         if (rc == 0) {
499                 if (bp != NULL)
500                         rc = zio_checksum_verify(vdev->v_spa, bp, buf);
501         }
502
503         return (rc);
504 }
505
506 typedef struct remap_segment {
507         vdev_t *rs_vd;
508         uint64_t rs_offset;
509         uint64_t rs_asize;
510         uint64_t rs_split_offset;
511         list_node_t rs_node;
512 } remap_segment_t;
513
514 static remap_segment_t *
515 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
516 {
517         remap_segment_t *rs = malloc(sizeof (remap_segment_t));
518
519         if (rs != NULL) {
520                 rs->rs_vd = vd;
521                 rs->rs_offset = offset;
522                 rs->rs_asize = asize;
523                 rs->rs_split_offset = split_offset;
524         }
525
526         return (rs);
527 }
528
529 vdev_indirect_mapping_t *
530 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
531     uint64_t mapping_object)
532 {
533         vdev_indirect_mapping_t *vim;
534         vdev_indirect_mapping_phys_t *vim_phys;
535         int rc;
536
537         vim = calloc(1, sizeof (*vim));
538         if (vim == NULL)
539                 return (NULL);
540
541         vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
542         if (vim->vim_dn == NULL) {
543                 free(vim);
544                 return (NULL);
545         }
546
547         rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
548         if (rc != 0) {
549                 free(vim->vim_dn);
550                 free(vim);
551                 return (NULL);
552         }
553
554         vim->vim_spa = spa;
555         vim->vim_phys = malloc(sizeof (*vim->vim_phys));
556         if (vim->vim_phys == NULL) {
557                 free(vim->vim_dn);
558                 free(vim);
559                 return (NULL);
560         }
561
562         vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
563         *vim->vim_phys = *vim_phys;
564
565         vim->vim_objset = os;
566         vim->vim_object = mapping_object;
567         vim->vim_entries = NULL;
568
569         vim->vim_havecounts =
570             (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
571
572         return (vim);
573 }
574
575 /*
576  * Compare an offset with an indirect mapping entry; there are three
577  * possible scenarios:
578  *
579  *     1. The offset is "less than" the mapping entry; meaning the
580  *        offset is less than the source offset of the mapping entry. In
581  *        this case, there is no overlap between the offset and the
582  *        mapping entry and -1 will be returned.
583  *
584  *     2. The offset is "greater than" the mapping entry; meaning the
585  *        offset is greater than the mapping entry's source offset plus
586  *        the entry's size. In this case, there is no overlap between
587  *        the offset and the mapping entry and 1 will be returned.
588  *
589  *        NOTE: If the offset is actually equal to the entry's offset
590  *        plus size, this is considered to be "greater" than the entry,
591  *        and this case applies (i.e. 1 will be returned). Thus, the
592  *        entry's "range" can be considered to be inclusive at its
593  *        start, but exclusive at its end: e.g. [src, src + size).
594  *
595  *     3. The last case to consider is if the offset actually falls
596  *        within the mapping entry's range. If this is the case, the
597  *        offset is considered to be "equal to" the mapping entry and
598  *        0 will be returned.
599  *
600  *        NOTE: If the offset is equal to the entry's source offset,
601  *        this case applies and 0 will be returned. If the offset is
602  *        equal to the entry's source plus its size, this case does
603  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
604  *        returned.
605  */
606 static int
607 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
608 {
609         const uint64_t *key = v_key;
610         const vdev_indirect_mapping_entry_phys_t *array_elem =
611             v_array_elem;
612         uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
613
614         if (*key < src_offset) {
615                 return (-1);
616         } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
617                 return (0);
618         } else {
619                 return (1);
620         }
621 }
622
623 /*
624  * Return array entry.
625  */
626 static vdev_indirect_mapping_entry_phys_t *
627 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
628 {
629         uint64_t size;
630         off_t offset = 0;
631         int rc;
632
633         if (vim->vim_phys->vimp_num_entries == 0)
634                 return (NULL);
635
636         if (vim->vim_entries == NULL) {
637                 uint64_t bsize;
638
639                 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
640                 size = vim->vim_phys->vimp_num_entries *
641                     sizeof (*vim->vim_entries);
642                 if (size > bsize) {
643                         size = bsize / sizeof (*vim->vim_entries);
644                         size *= sizeof (*vim->vim_entries);
645                 }
646                 vim->vim_entries = malloc(size);
647                 if (vim->vim_entries == NULL)
648                         return (NULL);
649                 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
650                 offset = index * sizeof (*vim->vim_entries);
651         }
652
653         /* We have data in vim_entries */
654         if (offset == 0) {
655                 if (index >= vim->vim_entry_offset &&
656                     index <= vim->vim_entry_offset + vim->vim_num_entries) {
657                         index -= vim->vim_entry_offset;
658                         return (&vim->vim_entries[index]);
659                 }
660                 offset = index * sizeof (*vim->vim_entries);
661         }
662
663         vim->vim_entry_offset = index;
664         size = vim->vim_num_entries * sizeof (*vim->vim_entries);
665         rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
666             size);
667         if (rc != 0) {
668                 /* Read error, invalidate vim_entries. */
669                 free(vim->vim_entries);
670                 vim->vim_entries = NULL;
671                 return (NULL);
672         }
673         index -= vim->vim_entry_offset;
674         return (&vim->vim_entries[index]);
675 }
676
677 /*
678  * Returns the mapping entry for the given offset.
679  *
680  * It's possible that the given offset will not be in the mapping table
681  * (i.e. no mapping entries contain this offset), in which case, the
682  * return value value depends on the "next_if_missing" parameter.
683  *
684  * If the offset is not found in the table and "next_if_missing" is
685  * B_FALSE, then NULL will always be returned. The behavior is intended
686  * to allow consumers to get the entry corresponding to the offset
687  * parameter, iff the offset overlaps with an entry in the table.
688  *
689  * If the offset is not found in the table and "next_if_missing" is
690  * B_TRUE, then the entry nearest to the given offset will be returned,
691  * such that the entry's source offset is greater than the offset
692  * passed in (i.e. the "next" mapping entry in the table is returned, if
693  * the offset is missing from the table). If there are no entries whose
694  * source offset is greater than the passed in offset, NULL is returned.
695  */
696 static vdev_indirect_mapping_entry_phys_t *
697 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
698     uint64_t offset)
699 {
700         ASSERT(vim->vim_phys->vimp_num_entries > 0);
701
702         vdev_indirect_mapping_entry_phys_t *entry;
703
704         uint64_t last = vim->vim_phys->vimp_num_entries - 1;
705         uint64_t base = 0;
706
707         /*
708          * We don't define these inside of the while loop because we use
709          * their value in the case that offset isn't in the mapping.
710          */
711         uint64_t mid;
712         int result;
713
714         while (last >= base) {
715                 mid = base + ((last - base) >> 1);
716
717                 entry = vdev_indirect_mapping_entry(vim, mid);
718                 if (entry == NULL)
719                         break;
720                 result = dva_mapping_overlap_compare(&offset, entry);
721
722                 if (result == 0) {
723                         break;
724                 } else if (result < 0) {
725                         last = mid - 1;
726                 } else {
727                         base = mid + 1;
728                 }
729         }
730         return (entry);
731 }
732
733 /*
734  * Given an indirect vdev and an extent on that vdev, it duplicates the
735  * physical entries of the indirect mapping that correspond to the extent
736  * to a new array and returns a pointer to it. In addition, copied_entries
737  * is populated with the number of mapping entries that were duplicated.
738  *
739  * Finally, since we are doing an allocation, it is up to the caller to
740  * free the array allocated in this function.
741  */
742 vdev_indirect_mapping_entry_phys_t *
743 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
744     uint64_t asize, uint64_t *copied_entries)
745 {
746         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
747         vdev_indirect_mapping_t *vim = vd->v_mapping;
748         uint64_t entries = 0;
749
750         vdev_indirect_mapping_entry_phys_t *first_mapping =
751             vdev_indirect_mapping_entry_for_offset(vim, offset);
752         ASSERT3P(first_mapping, !=, NULL);
753
754         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
755         while (asize > 0) {
756                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
757                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
758                 uint64_t inner_size = MIN(asize, size - inner_offset);
759
760                 offset += inner_size;
761                 asize -= inner_size;
762                 entries++;
763                 m++;
764         }
765
766         size_t copy_length = entries * sizeof (*first_mapping);
767         duplicate_mappings = malloc(copy_length);
768         if (duplicate_mappings != NULL)
769                 bcopy(first_mapping, duplicate_mappings, copy_length);
770         else
771                 entries = 0;
772
773         *copied_entries = entries;
774
775         return (duplicate_mappings);
776 }
777
778 static vdev_t *
779 vdev_lookup_top(spa_t *spa, uint64_t vdev)
780 {
781         vdev_t *rvd;
782         vdev_list_t *vlist;
783
784         vlist = &spa->spa_root_vdev->v_children;
785         STAILQ_FOREACH(rvd, vlist, v_childlink)
786                 if (rvd->v_id == vdev)
787                         break;
788
789         return (rvd);
790 }
791
792 /*
793  * This is a callback for vdev_indirect_remap() which allocates an
794  * indirect_split_t for each split segment and adds it to iv_splits.
795  */
796 static void
797 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
798     uint64_t size, void *arg)
799 {
800         int n = 1;
801         zio_t *zio = arg;
802         indirect_vsd_t *iv = zio->io_vsd;
803
804         if (vd->v_read == vdev_indirect_read)
805                 return;
806
807         if (vd->v_read == vdev_mirror_read)
808                 n = vd->v_nchildren;
809
810         indirect_split_t *is =
811             malloc(offsetof(indirect_split_t, is_child[n]));
812         if (is == NULL) {
813                 zio->io_error = ENOMEM;
814                 return;
815         }
816         bzero(is, offsetof(indirect_split_t, is_child[n]));
817
818         is->is_children = n;
819         is->is_size = size;
820         is->is_split_offset = split_offset;
821         is->is_target_offset = offset;
822         is->is_vdev = vd;
823
824         /*
825          * Note that we only consider multiple copies of the data for
826          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
827          * though they use the same ops as mirror, because there's only one
828          * "good" copy under the replacing/spare.
829          */
830         if (vd->v_read == vdev_mirror_read) {
831                 int i = 0;
832                 vdev_t *kid;
833
834                 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
835                         is->is_child[i++].ic_vdev = kid;
836                 }
837         } else {
838                 is->is_child[0].ic_vdev = vd;
839         }
840
841         list_insert_tail(&iv->iv_splits, is);
842 }
843
844 static void
845 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
846 {
847         list_t stack;
848         spa_t *spa = vd->v_spa;
849         zio_t *zio = arg;
850         remap_segment_t *rs;
851
852         list_create(&stack, sizeof (remap_segment_t),
853             offsetof(remap_segment_t, rs_node));
854
855         rs = rs_alloc(vd, offset, asize, 0);
856         if (rs == NULL) {
857                 printf("vdev_indirect_remap: out of memory.\n");
858                 zio->io_error = ENOMEM;
859         }
860         for (; rs != NULL; rs = list_remove_head(&stack)) {
861                 vdev_t *v = rs->rs_vd;
862                 uint64_t num_entries = 0;
863                 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
864                 vdev_indirect_mapping_entry_phys_t *mapping =
865                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
866                     rs->rs_offset, rs->rs_asize, &num_entries);
867
868                 if (num_entries == 0)
869                         zio->io_error = ENOMEM;
870
871                 for (uint64_t i = 0; i < num_entries; i++) {
872                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
873                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
874                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
875                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
876                         uint64_t inner_offset = rs->rs_offset -
877                             DVA_MAPPING_GET_SRC_OFFSET(m);
878                         uint64_t inner_size =
879                             MIN(rs->rs_asize, size - inner_offset);
880                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
881
882                         if (dst_v->v_read == vdev_indirect_read) {
883                                 remap_segment_t *o;
884
885                                 o = rs_alloc(dst_v, dst_offset + inner_offset,
886                                     inner_size, rs->rs_split_offset);
887                                 if (o == NULL) {
888                                         printf("vdev_indirect_remap: "
889                                             "out of memory.\n");
890                                         zio->io_error = ENOMEM;
891                                         break;
892                                 }
893
894                                 list_insert_head(&stack, o);
895                         }
896                         vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
897                             dst_offset + inner_offset,
898                             inner_size, arg);
899
900                         /*
901                          * vdev_indirect_gather_splits can have memory
902                          * allocation error, we can not recover from it.
903                          */
904                         if (zio->io_error != 0)
905                                 break;
906                         rs->rs_offset += inner_size;
907                         rs->rs_asize -= inner_size;
908                         rs->rs_split_offset += inner_size;
909                 }
910
911                 free(mapping);
912                 free(rs);
913                 if (zio->io_error != 0)
914                         break;
915         }
916
917         list_destroy(&stack);
918 }
919
920 static void
921 vdev_indirect_map_free(zio_t *zio)
922 {
923         indirect_vsd_t *iv = zio->io_vsd;
924         indirect_split_t *is;
925
926         while ((is = list_head(&iv->iv_splits)) != NULL) {
927                 for (int c = 0; c < is->is_children; c++) {
928                         indirect_child_t *ic = &is->is_child[c];
929                         free(ic->ic_data);
930                 }
931                 list_remove(&iv->iv_splits, is);
932                 free(is);
933         }
934         free(iv);
935 }
936
937 static int
938 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
939     off_t offset, size_t bytes)
940 {
941         zio_t zio;
942         spa_t *spa = vdev->v_spa;
943         indirect_vsd_t *iv;
944         indirect_split_t *first;
945         int rc = EIO;
946
947         iv = calloc(1, sizeof(*iv));
948         if (iv == NULL)
949                 return (ENOMEM);
950
951         list_create(&iv->iv_splits,
952             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
953
954         bzero(&zio, sizeof(zio));
955         zio.io_spa = spa;
956         zio.io_bp = (blkptr_t *)bp;
957         zio.io_data = buf;
958         zio.io_size = bytes;
959         zio.io_offset = offset;
960         zio.io_vd = vdev;
961         zio.io_vsd = iv;
962
963         if (vdev->v_mapping == NULL) {
964                 vdev_indirect_config_t *vic;
965
966                 vic = &vdev->vdev_indirect_config;
967                 vdev->v_mapping = vdev_indirect_mapping_open(spa,
968                     &spa->spa_mos, vic->vic_mapping_object);
969         }
970
971         vdev_indirect_remap(vdev, offset, bytes, &zio);
972         if (zio.io_error != 0)
973                 return (zio.io_error);
974
975         first = list_head(&iv->iv_splits);
976         if (first->is_size == zio.io_size) {
977                 /*
978                  * This is not a split block; we are pointing to the entire
979                  * data, which will checksum the same as the original data.
980                  * Pass the BP down so that the child i/o can verify the
981                  * checksum, and try a different location if available
982                  * (e.g. on a mirror).
983                  *
984                  * While this special case could be handled the same as the
985                  * general (split block) case, doing it this way ensures
986                  * that the vast majority of blocks on indirect vdevs
987                  * (which are not split) are handled identically to blocks
988                  * on non-indirect vdevs.  This allows us to be less strict
989                  * about performance in the general (but rare) case.
990                  */
991                 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
992                     zio.io_data, first->is_target_offset, bytes);
993         } else {
994                 iv->iv_split_block = B_TRUE;
995                 /*
996                  * Read one copy of each split segment, from the
997                  * top-level vdev.  Since we don't know the
998                  * checksum of each split individually, the child
999                  * zio can't ensure that we get the right data.
1000                  * E.g. if it's a mirror, it will just read from a
1001                  * random (healthy) leaf vdev.  We have to verify
1002                  * the checksum in vdev_indirect_io_done().
1003                  */
1004                 for (indirect_split_t *is = list_head(&iv->iv_splits);
1005                     is != NULL; is = list_next(&iv->iv_splits, is)) {
1006                         char *ptr = zio.io_data;
1007
1008                         rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
1009                             ptr + is->is_split_offset, is->is_target_offset,
1010                             is->is_size);
1011                 }
1012                 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
1013                         rc = ECKSUM;
1014                 else
1015                         rc = 0;
1016         }
1017
1018         vdev_indirect_map_free(&zio);
1019         if (rc == 0)
1020                 rc = zio.io_error;
1021
1022         return (rc);
1023 }
1024
1025 static int
1026 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1027     off_t offset, size_t bytes)
1028 {
1029
1030         return (vdev_read_phys(vdev, bp, buf,
1031             offset + VDEV_LABEL_START_SIZE, bytes));
1032 }
1033
1034
1035 static int
1036 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1037     off_t offset, size_t bytes)
1038 {
1039         vdev_t *kid;
1040         int rc;
1041
1042         rc = EIO;
1043         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1044                 if (kid->v_state != VDEV_STATE_HEALTHY)
1045                         continue;
1046                 rc = kid->v_read(kid, bp, buf, offset, bytes);
1047                 if (!rc)
1048                         return (0);
1049         }
1050
1051         return (rc);
1052 }
1053
1054 static int
1055 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1056     off_t offset, size_t bytes)
1057 {
1058         vdev_t *kid;
1059
1060         /*
1061          * Here we should have two kids:
1062          * First one which is the one we are replacing and we can trust
1063          * only this one to have valid data, but it might not be present.
1064          * Second one is that one we are replacing with. It is most likely
1065          * healthy, but we can't trust it has needed data, so we won't use it.
1066          */
1067         kid = STAILQ_FIRST(&vdev->v_children);
1068         if (kid == NULL)
1069                 return (EIO);
1070         if (kid->v_state != VDEV_STATE_HEALTHY)
1071                 return (EIO);
1072         return (kid->v_read(kid, bp, buf, offset, bytes));
1073 }
1074
1075 static vdev_t *
1076 vdev_find(uint64_t guid)
1077 {
1078         vdev_t *vdev;
1079
1080         STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
1081                 if (vdev->v_guid == guid)
1082                         return (vdev);
1083
1084         return (0);
1085 }
1086
1087 static vdev_t *
1088 vdev_create(uint64_t guid, vdev_read_t *_read)
1089 {
1090         vdev_t *vdev;
1091         vdev_indirect_config_t *vic;
1092
1093         vdev = calloc(1, sizeof(vdev_t));
1094         if (vdev != NULL) {
1095                 STAILQ_INIT(&vdev->v_children);
1096                 vdev->v_guid = guid;
1097                 vdev->v_read = _read;
1098
1099                 /*
1100                  * root vdev has no read function, we use this fact to
1101                  * skip setting up data we do not need for root vdev.
1102                  * We only point root vdev from spa.
1103                  */
1104                 if (_read != NULL) {
1105                         vic = &vdev->vdev_indirect_config;
1106                         vic->vic_prev_indirect_vdev = UINT64_MAX;
1107                         STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
1108                 }
1109         }
1110
1111         return (vdev);
1112 }
1113
1114 static void
1115 vdev_set_initial_state(vdev_t *vdev, const unsigned char *nvlist)
1116 {
1117         uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
1118         uint64_t is_log;
1119
1120         is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
1121         is_log = 0;
1122         (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
1123             &is_offline);
1124         (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
1125             &is_removed);
1126         (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
1127             &is_faulted);
1128         (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
1129             NULL, &is_degraded);
1130         (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
1131             NULL, &isnt_present);
1132         (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
1133             &is_log);
1134
1135         if (is_offline != 0)
1136                 vdev->v_state = VDEV_STATE_OFFLINE;
1137         else if (is_removed != 0)
1138                 vdev->v_state = VDEV_STATE_REMOVED;
1139         else if (is_faulted != 0)
1140                 vdev->v_state = VDEV_STATE_FAULTED;
1141         else if (is_degraded != 0)
1142                 vdev->v_state = VDEV_STATE_DEGRADED;
1143         else if (isnt_present != 0)
1144                 vdev->v_state = VDEV_STATE_CANT_OPEN;
1145
1146         vdev->v_islog = is_log != 0;
1147 }
1148
1149 static int
1150 vdev_init(uint64_t guid, const unsigned char *nvlist, vdev_t **vdevp)
1151 {
1152         uint64_t id, ashift, asize, nparity;
1153         const char *path;
1154         const char *type;
1155         vdev_t *vdev;
1156
1157         if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) ||
1158             nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1159             NULL, &type)) {
1160                 return (ENOENT);
1161         }
1162
1163         if (strcmp(type, VDEV_TYPE_MIRROR) != 0 &&
1164             strcmp(type, VDEV_TYPE_DISK) != 0 &&
1165 #ifdef ZFS_TEST
1166             strcmp(type, VDEV_TYPE_FILE) != 0 &&
1167 #endif
1168             strcmp(type, VDEV_TYPE_RAIDZ) != 0 &&
1169             strcmp(type, VDEV_TYPE_INDIRECT) != 0 &&
1170             strcmp(type, VDEV_TYPE_REPLACING) != 0) {
1171                 printf("ZFS: can only boot from disk, mirror, raidz1, "
1172                     "raidz2 and raidz3 vdevs\n");
1173                 return (EIO);
1174         }
1175
1176         if (strcmp(type, VDEV_TYPE_MIRROR) == 0)
1177                 vdev = vdev_create(guid, vdev_mirror_read);
1178         else if (strcmp(type, VDEV_TYPE_RAIDZ) == 0)
1179                 vdev = vdev_create(guid, vdev_raidz_read);
1180         else if (strcmp(type, VDEV_TYPE_REPLACING) == 0)
1181                 vdev = vdev_create(guid, vdev_replacing_read);
1182         else if (strcmp(type, VDEV_TYPE_INDIRECT) == 0) {
1183                 vdev_indirect_config_t *vic;
1184
1185                 vdev = vdev_create(guid, vdev_indirect_read);
1186                 if (vdev != NULL) {
1187                         vdev->v_state = VDEV_STATE_HEALTHY;
1188                         vic = &vdev->vdev_indirect_config;
1189
1190                         nvlist_find(nvlist,
1191                             ZPOOL_CONFIG_INDIRECT_OBJECT,
1192                             DATA_TYPE_UINT64,
1193                             NULL, &vic->vic_mapping_object);
1194                         nvlist_find(nvlist,
1195                             ZPOOL_CONFIG_INDIRECT_BIRTHS,
1196                             DATA_TYPE_UINT64,
1197                             NULL, &vic->vic_births_object);
1198                         nvlist_find(nvlist,
1199                             ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
1200                             DATA_TYPE_UINT64,
1201                             NULL, &vic->vic_prev_indirect_vdev);
1202                 }
1203         } else {
1204                 vdev = vdev_create(guid, vdev_disk_read);
1205         }
1206
1207         if (vdev == NULL)
1208                 return (ENOMEM);
1209
1210         vdev_set_initial_state(vdev, nvlist);
1211         vdev->v_id = id;
1212         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
1213             DATA_TYPE_UINT64, NULL, &ashift) == 0)
1214                 vdev->v_ashift = ashift;
1215
1216         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1217             DATA_TYPE_UINT64, NULL, &asize) == 0) {
1218                 vdev->v_psize = asize +
1219                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1220         }
1221
1222         if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1223             DATA_TYPE_UINT64, NULL, &nparity) == 0)
1224                 vdev->v_nparity = nparity;
1225
1226         if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1227             DATA_TYPE_STRING, NULL, &path) == 0) {
1228                 if (strncmp(path, "/dev/", 5) == 0)
1229                         path += 5;
1230                 vdev->v_name = strdup(path);
1231         } else {
1232                 char *name;
1233
1234                 name = NULL;
1235                 if (strcmp(type, "raidz") == 0) {
1236                         if (vdev->v_nparity < 1 ||
1237                             vdev->v_nparity > 3) {
1238                                 printf("ZFS: invalid raidz parity: %d\n",
1239                                     vdev->v_nparity);
1240                                 return (EIO);
1241                         }
1242                         (void) asprintf(&name, "%s%d-%" PRIu64, type,
1243                             vdev->v_nparity, id);
1244                 } else {
1245                         (void) asprintf(&name, "%s-%" PRIu64, type, id);
1246                 }
1247                 vdev->v_name = name;
1248         }
1249         *vdevp = vdev;
1250         return (0);
1251 }
1252
1253 /*
1254  * Find slot for vdev. We return either NULL to signal to use
1255  * STAILQ_INSERT_HEAD, or we return link element to be used with
1256  * STAILQ_INSERT_AFTER.
1257  */
1258 static vdev_t *
1259 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1260 {
1261         vdev_t *v, *previous;
1262
1263         if (STAILQ_EMPTY(&top_vdev->v_children))
1264                 return (NULL);
1265
1266         previous = NULL;
1267         STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1268                 if (v->v_id > vdev->v_id)
1269                         return (previous);
1270
1271                 if (v->v_id == vdev->v_id)
1272                         return (v);
1273
1274                 if (v->v_id < vdev->v_id)
1275                         previous = v;
1276         }
1277         return (previous);
1278 }
1279
1280 static size_t
1281 vdev_child_count(vdev_t *vdev)
1282 {
1283         vdev_t *v;
1284         size_t count;
1285
1286         count = 0;
1287         STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1288                 count++;
1289         }
1290         return (count);
1291 }
1292
1293 /*
1294  * Insert vdev into top_vdev children list. List is ordered by v_id.
1295  */
1296 static void
1297 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1298 {
1299         vdev_t *previous;
1300         size_t count;
1301
1302         /*
1303          * The top level vdev can appear in random order, depending how
1304          * the firmware is presenting the disk devices.
1305          * However, we will insert vdev to create list ordered by v_id,
1306          * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1307          * as STAILQ does not have insert before.
1308          */
1309         previous = vdev_find_previous(top_vdev, vdev);
1310
1311         if (previous == NULL) {
1312                 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1313         } else if (previous->v_id == vdev->v_id) {
1314                 /*
1315                  * This vdev was configured from label config,
1316                  * do not insert duplicate.
1317                  */
1318                 return;
1319         } else {
1320                 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1321                     v_childlink);
1322         }
1323
1324         count = vdev_child_count(top_vdev);
1325         if (top_vdev->v_nchildren < count)
1326                 top_vdev->v_nchildren = count;
1327 }
1328
1329 static int
1330 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const unsigned char *nvlist)
1331 {
1332         vdev_t *top_vdev, *vdev;
1333         const unsigned char *kids;
1334         int rc, nkids;
1335
1336         /* Get top vdev. */
1337         top_vdev = vdev_find(top_guid);
1338         if (top_vdev == NULL) {
1339                 rc = vdev_init(top_guid, nvlist, &top_vdev);
1340                 if (rc != 0)
1341                         return (rc);
1342                 top_vdev->v_spa = spa;
1343                 top_vdev->v_top = top_vdev;
1344                 vdev_insert(spa->spa_root_vdev, top_vdev);
1345         }
1346
1347         /* Add children if there are any. */
1348         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1349             &nkids, &kids);
1350         if (rc == 0) {
1351                 for (int i = 0; i < nkids; i++) {
1352                         uint64_t guid;
1353
1354                         rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
1355                             DATA_TYPE_UINT64, NULL, &guid);
1356                         if (rc != 0)
1357                                 return (rc);
1358                         rc = vdev_init(guid, kids, &vdev);
1359                         if (rc != 0)
1360                                 return (rc);
1361
1362                         vdev->v_spa = spa;
1363                         vdev->v_top = top_vdev;
1364                         vdev_insert(top_vdev, vdev);
1365
1366                         kids = nvlist_next(kids);
1367                 }
1368         } else {
1369                 /*
1370                  * When there are no children, nvlist_find() does return
1371                  * error, reset it because leaf devices have no children.
1372                  */
1373                 rc = 0;
1374         }
1375
1376         return (rc);
1377 }
1378
1379 static int
1380 vdev_init_from_label(spa_t *spa, const unsigned char *nvlist)
1381 {
1382         uint64_t pool_guid, top_guid;
1383         const unsigned char *vdevs;
1384
1385         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1386             NULL, &pool_guid) ||
1387             nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1388             NULL, &top_guid) ||
1389             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1390             NULL, &vdevs)) {
1391                 printf("ZFS: can't find vdev details\n");
1392                 return (ENOENT);
1393         }
1394
1395         return (vdev_from_nvlist(spa, top_guid, vdevs));
1396 }
1397
1398 static void
1399 vdev_set_state(vdev_t *vdev)
1400 {
1401         vdev_t *kid;
1402         int good_kids;
1403         int bad_kids;
1404
1405         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1406                 vdev_set_state(kid);
1407         }
1408
1409         /*
1410          * A mirror or raidz is healthy if all its kids are healthy. A
1411          * mirror is degraded if any of its kids is healthy; a raidz
1412          * is degraded if at most nparity kids are offline.
1413          */
1414         if (STAILQ_FIRST(&vdev->v_children)) {
1415                 good_kids = 0;
1416                 bad_kids = 0;
1417                 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1418                         if (kid->v_state == VDEV_STATE_HEALTHY)
1419                                 good_kids++;
1420                         else
1421                                 bad_kids++;
1422                 }
1423                 if (bad_kids == 0) {
1424                         vdev->v_state = VDEV_STATE_HEALTHY;
1425                 } else {
1426                         if (vdev->v_read == vdev_mirror_read) {
1427                                 if (good_kids) {
1428                                         vdev->v_state = VDEV_STATE_DEGRADED;
1429                                 } else {
1430                                         vdev->v_state = VDEV_STATE_OFFLINE;
1431                                 }
1432                         } else if (vdev->v_read == vdev_raidz_read) {
1433                                 if (bad_kids > vdev->v_nparity) {
1434                                         vdev->v_state = VDEV_STATE_OFFLINE;
1435                                 } else {
1436                                         vdev->v_state = VDEV_STATE_DEGRADED;
1437                                 }
1438                         }
1439                 }
1440         }
1441 }
1442
1443 static int
1444 vdev_update_from_nvlist(uint64_t top_guid, const unsigned char *nvlist)
1445 {
1446         vdev_t *vdev;
1447         const unsigned char *kids;
1448         int rc, nkids;
1449
1450         /* Update top vdev. */
1451         vdev = vdev_find(top_guid);
1452         if (vdev != NULL)
1453                 vdev_set_initial_state(vdev, nvlist);
1454
1455         /* Update children if there are any. */
1456         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1457             &nkids, &kids);
1458         if (rc == 0) {
1459                 for (int i = 0; i < nkids; i++) {
1460                         uint64_t guid;
1461
1462                         rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
1463                             DATA_TYPE_UINT64, NULL, &guid);
1464                         if (rc != 0)
1465                                 break;
1466
1467                         vdev = vdev_find(guid);
1468                         if (vdev != NULL)
1469                                 vdev_set_initial_state(vdev, kids);
1470
1471                         kids = nvlist_next(kids);
1472                 }
1473         } else {
1474                 rc = 0;
1475         }
1476
1477         return (rc);
1478 }
1479
1480 static int
1481 vdev_init_from_nvlist(spa_t *spa, const unsigned char *nvlist)
1482 {
1483         uint64_t pool_guid, vdev_children;
1484         const unsigned char *vdevs, *kids;
1485         int rc, nkids;
1486
1487         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1488             NULL, &pool_guid) ||
1489             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1490             NULL, &vdev_children) ||
1491             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1492             NULL, &vdevs)) {
1493                 printf("ZFS: can't find vdev details\n");
1494                 return (ENOENT);
1495         }
1496
1497         /* Wrong guid?! */
1498         if (spa->spa_guid != pool_guid)
1499                 return (EINVAL);
1500
1501         spa->spa_root_vdev->v_nchildren = vdev_children;
1502
1503         rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1504             &nkids, &kids);
1505
1506         /*
1507          * MOS config has at least one child for root vdev.
1508          */
1509         if (rc != 0)
1510                 return (rc);
1511
1512         for (int i = 0; i < nkids; i++) {
1513                 uint64_t guid;
1514                 vdev_t *vdev;
1515
1516                 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1517                     NULL, &guid);
1518                 if (rc != 0)
1519                         break;
1520                 vdev = vdev_find(guid);
1521                 /*
1522                  * Top level vdev is missing, create it.
1523                  */
1524                 if (vdev == NULL)
1525                         rc = vdev_from_nvlist(spa, guid, kids);
1526                 else
1527                         rc = vdev_update_from_nvlist(guid, kids);
1528                 if (rc != 0)
1529                         break;
1530                 kids = nvlist_next(kids);
1531         }
1532
1533         /*
1534          * Re-evaluate top-level vdev state.
1535          */
1536         vdev_set_state(spa->spa_root_vdev);
1537
1538         return (rc);
1539 }
1540
1541 static spa_t *
1542 spa_find_by_guid(uint64_t guid)
1543 {
1544         spa_t *spa;
1545
1546         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1547                 if (spa->spa_guid == guid)
1548                         return (spa);
1549
1550         return (NULL);
1551 }
1552
1553 static spa_t *
1554 spa_find_by_name(const char *name)
1555 {
1556         spa_t *spa;
1557
1558         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1559                 if (strcmp(spa->spa_name, name) == 0)
1560                         return (spa);
1561
1562         return (NULL);
1563 }
1564
1565 #ifdef BOOT2
1566 static spa_t *
1567 spa_get_primary(void)
1568 {
1569
1570         return (STAILQ_FIRST(&zfs_pools));
1571 }
1572
1573 static vdev_t *
1574 spa_get_primary_vdev(const spa_t *spa)
1575 {
1576         vdev_t *vdev;
1577         vdev_t *kid;
1578
1579         if (spa == NULL)
1580                 spa = spa_get_primary();
1581         if (spa == NULL)
1582                 return (NULL);
1583         vdev = spa->spa_root_vdev;
1584         if (vdev == NULL)
1585                 return (NULL);
1586         for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
1587             kid = STAILQ_FIRST(&vdev->v_children))
1588                 vdev = kid;
1589         return (vdev);
1590 }
1591 #endif
1592
1593 static spa_t *
1594 spa_create(uint64_t guid, const char *name)
1595 {
1596         spa_t *spa;
1597
1598         if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1599                 return (NULL);
1600         if ((spa->spa_name = strdup(name)) == NULL) {
1601                 free(spa);
1602                 return (NULL);
1603         }
1604         spa->spa_guid = guid;
1605         spa->spa_root_vdev = vdev_create(guid, NULL);
1606         if (spa->spa_root_vdev == NULL) {
1607                 free(spa->spa_name);
1608                 free(spa);
1609                 return (NULL);
1610         }
1611         spa->spa_root_vdev->v_name = strdup("root");
1612         STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1613
1614         return (spa);
1615 }
1616
1617 static const char *
1618 state_name(vdev_state_t state)
1619 {
1620         static const char *names[] = {
1621                 "UNKNOWN",
1622                 "CLOSED",
1623                 "OFFLINE",
1624                 "REMOVED",
1625                 "CANT_OPEN",
1626                 "FAULTED",
1627                 "DEGRADED",
1628                 "ONLINE"
1629         };
1630         return (names[state]);
1631 }
1632
1633 #ifdef BOOT2
1634
1635 #define pager_printf printf
1636
1637 #else
1638
1639 static int
1640 pager_printf(const char *fmt, ...)
1641 {
1642         char line[80];
1643         va_list args;
1644
1645         va_start(args, fmt);
1646         vsnprintf(line, sizeof(line), fmt, args);
1647         va_end(args);
1648         return (pager_output(line));
1649 }
1650
1651 #endif
1652
1653 #define STATUS_FORMAT   "        %s %s\n"
1654
1655 static int
1656 print_state(int indent, const char *name, vdev_state_t state)
1657 {
1658         int i;
1659         char buf[512];
1660
1661         buf[0] = 0;
1662         for (i = 0; i < indent; i++)
1663                 strcat(buf, "  ");
1664         strcat(buf, name);
1665         return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1666 }
1667
1668 static int
1669 vdev_status(vdev_t *vdev, int indent)
1670 {
1671         vdev_t *kid;
1672         int ret;
1673
1674         if (vdev->v_islog) {
1675                 (void) pager_output("        logs\n");
1676                 indent++;
1677         }
1678
1679         ret = print_state(indent, vdev->v_name, vdev->v_state);
1680         if (ret != 0)
1681                 return (ret);
1682
1683         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1684                 ret = vdev_status(kid, indent + 1);
1685                 if (ret != 0)
1686                         return (ret);
1687         }
1688         return (ret);
1689 }
1690
1691 static int
1692 spa_status(spa_t *spa)
1693 {
1694         static char bootfs[ZFS_MAXNAMELEN];
1695         uint64_t rootid;
1696         vdev_list_t *vlist;
1697         vdev_t *vdev;
1698         int good_kids, bad_kids, degraded_kids, ret;
1699         vdev_state_t state;
1700
1701         ret = pager_printf("  pool: %s\n", spa->spa_name);
1702         if (ret != 0)
1703                 return (ret);
1704
1705         if (zfs_get_root(spa, &rootid) == 0 &&
1706             zfs_rlookup(spa, rootid, bootfs) == 0) {
1707                 if (bootfs[0] == '\0')
1708                         ret = pager_printf("bootfs: %s\n", spa->spa_name);
1709                 else
1710                         ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1711                             bootfs);
1712                 if (ret != 0)
1713                         return (ret);
1714         }
1715         ret = pager_printf("config:\n\n");
1716         if (ret != 0)
1717                 return (ret);
1718         ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1719         if (ret != 0)
1720                 return (ret);
1721
1722         good_kids = 0;
1723         degraded_kids = 0;
1724         bad_kids = 0;
1725         vlist = &spa->spa_root_vdev->v_children;
1726         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1727                 if (vdev->v_state == VDEV_STATE_HEALTHY)
1728                         good_kids++;
1729                 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1730                         degraded_kids++;
1731                 else
1732                         bad_kids++;
1733         }
1734
1735         state = VDEV_STATE_CLOSED;
1736         if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1737                 state = VDEV_STATE_HEALTHY;
1738         else if ((good_kids + degraded_kids) > 0)
1739                 state = VDEV_STATE_DEGRADED;
1740
1741         ret = print_state(0, spa->spa_name, state);
1742         if (ret != 0)
1743                 return (ret);
1744
1745         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1746                 ret = vdev_status(vdev, 1);
1747                 if (ret != 0)
1748                         return (ret);
1749         }
1750         return (ret);
1751 }
1752
1753 static int
1754 spa_all_status(void)
1755 {
1756         spa_t *spa;
1757         int first = 1, ret = 0;
1758
1759         STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1760                 if (!first) {
1761                         ret = pager_printf("\n");
1762                         if (ret != 0)
1763                                 return (ret);
1764                 }
1765                 first = 0;
1766                 ret = spa_status(spa);
1767                 if (ret != 0)
1768                         return (ret);
1769         }
1770         return (ret);
1771 }
1772
1773 static uint64_t
1774 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1775 {
1776         uint64_t label_offset;
1777
1778         if (l < VDEV_LABELS / 2)
1779                 label_offset = 0;
1780         else
1781                 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1782
1783         return (offset + l * sizeof (vdev_label_t) + label_offset);
1784 }
1785
1786 static int
1787 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1788 {
1789         unsigned int seq1 = 0;
1790         unsigned int seq2 = 0;
1791         int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1792
1793         if (cmp != 0)
1794                 return (cmp);
1795
1796         cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1797         if (cmp != 0)
1798                 return (cmp);
1799
1800         if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1801                 seq1 = MMP_SEQ(ub1);
1802
1803         if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1804                 seq2 = MMP_SEQ(ub2);
1805
1806         return (AVL_CMP(seq1, seq2));
1807 }
1808
1809 static int
1810 uberblock_verify(uberblock_t *ub)
1811 {
1812         if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1813                 byteswap_uint64_array(ub, sizeof (uberblock_t));
1814         }
1815
1816         if (ub->ub_magic != UBERBLOCK_MAGIC ||
1817             !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1818                 return (EINVAL);
1819
1820         return (0);
1821 }
1822
1823 static int
1824 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1825     size_t size)
1826 {
1827         blkptr_t bp;
1828         off_t off;
1829
1830         off = vdev_label_offset(vd->v_psize, l, offset);
1831
1832         BP_ZERO(&bp);
1833         BP_SET_LSIZE(&bp, size);
1834         BP_SET_PSIZE(&bp, size);
1835         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1836         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1837         DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1838         ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1839
1840         return (vdev_read_phys(vd, &bp, buf, off, size));
1841 }
1842
1843 static unsigned char *
1844 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1845 {
1846         vdev_phys_t *label;
1847         uint64_t best_txg = 0;
1848         uint64_t label_txg = 0;
1849         uint64_t asize;
1850         unsigned char *nvl;
1851         size_t nvl_size;
1852         int error;
1853
1854         label = malloc(sizeof (vdev_phys_t));
1855         if (label == NULL)
1856                 return (NULL);
1857
1858         nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4;
1859         nvl = malloc(nvl_size);
1860         if (nvl == NULL)
1861                 goto done;
1862
1863         for (int l = 0; l < VDEV_LABELS; l++) {
1864                 const unsigned char *nvlist;
1865
1866                 if (vdev_label_read(vd, l, label,
1867                     offsetof(vdev_label_t, vl_vdev_phys),
1868                     sizeof (vdev_phys_t)))
1869                         continue;
1870
1871                 if (label->vp_nvlist[0] != NV_ENCODE_XDR)
1872                         continue;
1873
1874                 nvlist = (const unsigned char *) label->vp_nvlist + 4;
1875                 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG,
1876                     DATA_TYPE_UINT64, NULL, &label_txg);
1877                 if (error != 0 || label_txg == 0) {
1878                         memcpy(nvl, nvlist, nvl_size);
1879                         goto done;
1880                 }
1881
1882                 if (label_txg <= txg && label_txg > best_txg) {
1883                         best_txg = label_txg;
1884                         memcpy(nvl, nvlist, nvl_size);
1885
1886                         /*
1887                          * Use asize from pool config. We need this
1888                          * because we can get bad value from BIOS.
1889                          */
1890                         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1891                             DATA_TYPE_UINT64, NULL, &asize) == 0) {
1892                                 vd->v_psize = asize +
1893                                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1894                         }
1895                 }
1896         }
1897
1898         if (best_txg == 0) {
1899                 free(nvl);
1900                 nvl = NULL;
1901         }
1902 done:
1903         free(label);
1904         return (nvl);
1905 }
1906
1907 static void
1908 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1909 {
1910         uberblock_t *buf;
1911
1912         buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1913         if (buf == NULL)
1914                 return;
1915
1916         for (int l = 0; l < VDEV_LABELS; l++) {
1917                 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1918                         if (vdev_label_read(vd, l, buf,
1919                             VDEV_UBERBLOCK_OFFSET(vd, n),
1920                             VDEV_UBERBLOCK_SIZE(vd)))
1921                                 continue;
1922                         if (uberblock_verify(buf) != 0)
1923                                 continue;
1924
1925                         if (vdev_uberblock_compare(buf, ub) > 0)
1926                                 *ub = *buf;
1927                 }
1928         }
1929         free(buf);
1930 }
1931
1932 static int
1933 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap)
1934 {
1935         vdev_t vtmp;
1936         spa_t *spa;
1937         vdev_t *vdev;
1938         unsigned char *nvlist;
1939         uint64_t val;
1940         uint64_t guid, vdev_children;
1941         uint64_t pool_txg, pool_guid;
1942         const char *pool_name;
1943         const unsigned char *features;
1944         int rc;
1945
1946         /*
1947          * Load the vdev label and figure out which
1948          * uberblock is most current.
1949          */
1950         memset(&vtmp, 0, sizeof(vtmp));
1951         vtmp.v_phys_read = _read;
1952         vtmp.v_read_priv = read_priv;
1953         vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv),
1954             (uint64_t)sizeof (vdev_label_t));
1955
1956         /* Test for minimum device size. */
1957         if (vtmp.v_psize < SPA_MINDEVSIZE)
1958                 return (EIO);
1959
1960         nvlist = vdev_label_read_config(&vtmp, UINT64_MAX);
1961         if (nvlist == NULL)
1962                 return (EIO);
1963
1964         if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
1965             NULL, &val) != 0) {
1966                 free(nvlist);
1967                 return (EIO);
1968         }
1969
1970         if (!SPA_VERSION_IS_SUPPORTED(val)) {
1971                 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
1972                     (unsigned)val, (unsigned)SPA_VERSION);
1973                 free(nvlist);
1974                 return (EIO);
1975         }
1976
1977         /* Check ZFS features for read */
1978         if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1979             DATA_TYPE_NVLIST, NULL, &features) == 0 &&
1980             nvlist_check_features_for_read(features) != 0) {
1981                 free(nvlist);
1982                 return (EIO);
1983         }
1984
1985         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
1986             NULL, &val) != 0) {
1987                 free(nvlist);
1988                 return (EIO);
1989         }
1990
1991         if (val == POOL_STATE_DESTROYED) {
1992                 /* We don't boot only from destroyed pools. */
1993                 free(nvlist);
1994                 return (EIO);
1995         }
1996
1997         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
1998             NULL, &pool_txg) != 0 ||
1999             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
2000             NULL, &pool_guid) != 0 ||
2001             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
2002             NULL, &pool_name) != 0) {
2003                 /*
2004                  * Cache and spare devices end up here - just ignore
2005                  * them.
2006                  */
2007                 free(nvlist);
2008                 return (EIO);
2009         }
2010
2011         /*
2012          * Create the pool if this is the first time we've seen it.
2013          */
2014         spa = spa_find_by_guid(pool_guid);
2015         if (spa == NULL) {
2016                 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN,
2017                     DATA_TYPE_UINT64, NULL, &vdev_children);
2018                 spa = spa_create(pool_guid, pool_name);
2019                 if (spa == NULL) {
2020                         free(nvlist);
2021                         return (ENOMEM);
2022                 }
2023                 spa->spa_root_vdev->v_nchildren = vdev_children;
2024         }
2025         if (pool_txg > spa->spa_txg)
2026                 spa->spa_txg = pool_txg;
2027
2028         /*
2029          * Get the vdev tree and create our in-core copy of it.
2030          * If we already have a vdev with this guid, this must
2031          * be some kind of alias (overlapping slices, dangerously dedicated
2032          * disks etc).
2033          */
2034         if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2035             NULL, &guid) != 0) {
2036                 free(nvlist);
2037                 return (EIO);
2038         }
2039         vdev = vdev_find(guid);
2040         /* Has this vdev already been inited? */
2041         if (vdev && vdev->v_phys_read) {
2042                 free(nvlist);
2043                 return (EIO);
2044         }
2045
2046         rc = vdev_init_from_label(spa, nvlist);
2047         free(nvlist);
2048         if (rc != 0)
2049                 return (rc);
2050
2051         /*
2052          * We should already have created an incomplete vdev for this
2053          * vdev. Find it and initialise it with our read proc.
2054          */
2055         vdev = vdev_find(guid);
2056         if (vdev != NULL) {
2057                 vdev->v_phys_read = _read;
2058                 vdev->v_read_priv = read_priv;
2059                 vdev->v_psize = vtmp.v_psize;
2060                 /*
2061                  * If no other state is set, mark vdev healthy.
2062                  */
2063                 if (vdev->v_state == VDEV_STATE_UNKNOWN)
2064                         vdev->v_state = VDEV_STATE_HEALTHY;
2065         } else {
2066                 printf("ZFS: inconsistent nvlist contents\n");
2067                 return (EIO);
2068         }
2069
2070         if (vdev->v_islog)
2071                 spa->spa_with_log = vdev->v_islog;
2072
2073         /*
2074          * Re-evaluate top-level vdev state.
2075          */
2076         vdev_set_state(vdev->v_top);
2077
2078         /*
2079          * Ok, we are happy with the pool so far. Lets find
2080          * the best uberblock and then we can actually access
2081          * the contents of the pool.
2082          */
2083         vdev_uberblock_load(vdev, &spa->spa_uberblock);
2084
2085         if (spap != NULL)
2086                 *spap = spa;
2087         return (0);
2088 }
2089
2090 static int
2091 ilog2(int n)
2092 {
2093         int v;
2094
2095         for (v = 0; v < 32; v++)
2096                 if (n == (1 << v))
2097                         return (v);
2098         return (-1);
2099 }
2100
2101 static int
2102 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2103 {
2104         blkptr_t gbh_bp;
2105         zio_gbh_phys_t zio_gb;
2106         char *pbuf;
2107         int i;
2108
2109         /* Artificial BP for gang block header. */
2110         gbh_bp = *bp;
2111         BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2112         BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2113         BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2114         BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2115         for (i = 0; i < SPA_DVAS_PER_BP; i++)
2116                 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2117
2118         /* Read gang header block using the artificial BP. */
2119         if (zio_read(spa, &gbh_bp, &zio_gb))
2120                 return (EIO);
2121
2122         pbuf = buf;
2123         for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2124                 blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2125
2126                 if (BP_IS_HOLE(gbp))
2127                         continue;
2128                 if (zio_read(spa, gbp, pbuf))
2129                         return (EIO);
2130                 pbuf += BP_GET_PSIZE(gbp);
2131         }
2132
2133         if (zio_checksum_verify(spa, bp, buf))
2134                 return (EIO);
2135         return (0);
2136 }
2137
2138 static int
2139 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2140 {
2141         int cpfunc = BP_GET_COMPRESS(bp);
2142         uint64_t align, size;
2143         void *pbuf;
2144         int i, error;
2145
2146         /*
2147          * Process data embedded in block pointer
2148          */
2149         if (BP_IS_EMBEDDED(bp)) {
2150                 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2151
2152                 size = BPE_GET_PSIZE(bp);
2153                 ASSERT(size <= BPE_PAYLOAD_SIZE);
2154
2155                 if (cpfunc != ZIO_COMPRESS_OFF)
2156                         pbuf = zfs_alloc(size);
2157                 else
2158                         pbuf = buf;
2159
2160                 decode_embedded_bp_compressed(bp, pbuf);
2161                 error = 0;
2162
2163                 if (cpfunc != ZIO_COMPRESS_OFF) {
2164                         error = zio_decompress_data(cpfunc, pbuf,
2165                             size, buf, BP_GET_LSIZE(bp));
2166                         zfs_free(pbuf, size);
2167                 }
2168                 if (error != 0)
2169                         printf("ZFS: i/o error - unable to decompress "
2170                             "block pointer data, error %d\n", error);
2171                 return (error);
2172         }
2173
2174         error = EIO;
2175
2176         for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2177                 const dva_t *dva = &bp->blk_dva[i];
2178                 vdev_t *vdev;
2179                 vdev_list_t *vlist;
2180                 uint64_t vdevid;
2181                 off_t offset;
2182
2183                 if (!dva->dva_word[0] && !dva->dva_word[1])
2184                         continue;
2185
2186                 vdevid = DVA_GET_VDEV(dva);
2187                 offset = DVA_GET_OFFSET(dva);
2188                 vlist = &spa->spa_root_vdev->v_children;
2189                 STAILQ_FOREACH(vdev, vlist, v_childlink) {
2190                         if (vdev->v_id == vdevid)
2191                                 break;
2192                 }
2193                 if (!vdev || !vdev->v_read)
2194                         continue;
2195
2196                 size = BP_GET_PSIZE(bp);
2197                 if (vdev->v_read == vdev_raidz_read) {
2198                         align = 1ULL << vdev->v_ashift;
2199                         if (P2PHASE(size, align) != 0)
2200                                 size = P2ROUNDUP(size, align);
2201                 }
2202                 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2203                         pbuf = zfs_alloc(size);
2204                 else
2205                         pbuf = buf;
2206
2207                 if (DVA_GET_GANG(dva))
2208                         error = zio_read_gang(spa, bp, pbuf);
2209                 else
2210                         error = vdev->v_read(vdev, bp, pbuf, offset, size);
2211                 if (error == 0) {
2212                         if (cpfunc != ZIO_COMPRESS_OFF)
2213                                 error = zio_decompress_data(cpfunc, pbuf,
2214                                     BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2215                         else if (size != BP_GET_PSIZE(bp))
2216                                 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2217                 }
2218                 if (buf != pbuf)
2219                         zfs_free(pbuf, size);
2220                 if (error == 0)
2221                         break;
2222         }
2223         if (error != 0)
2224                 printf("ZFS: i/o error - all block copies unavailable\n");
2225         return (error);
2226 }
2227
2228 static int
2229 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2230     void *buf, size_t buflen)
2231 {
2232         int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2233         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2234         int nlevels = dnode->dn_nlevels;
2235         int i, rc;
2236
2237         if (bsize > SPA_MAXBLOCKSIZE) {
2238                 printf("ZFS: I/O error - blocks larger than %llu are not "
2239                     "supported\n", SPA_MAXBLOCKSIZE);
2240                 return (EIO);
2241         }
2242
2243         /*
2244          * Note: bsize may not be a power of two here so we need to do an
2245          * actual divide rather than a bitshift.
2246          */
2247         while (buflen > 0) {
2248                 uint64_t bn = offset / bsize;
2249                 int boff = offset % bsize;
2250                 int ibn;
2251                 const blkptr_t *indbp;
2252                 blkptr_t bp;
2253
2254                 if (bn > dnode->dn_maxblkid)
2255                         return (EIO);
2256
2257                 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2258                         goto cached;
2259
2260                 indbp = dnode->dn_blkptr;
2261                 for (i = 0; i < nlevels; i++) {
2262                         /*
2263                          * Copy the bp from the indirect array so that
2264                          * we can re-use the scratch buffer for multi-level
2265                          * objects.
2266                          */
2267                         ibn = bn >> ((nlevels - i - 1) * ibshift);
2268                         ibn &= ((1 << ibshift) - 1);
2269                         bp = indbp[ibn];
2270                         if (BP_IS_HOLE(&bp)) {
2271                                 memset(dnode_cache_buf, 0, bsize);
2272                                 break;
2273                         }
2274                         rc = zio_read(spa, &bp, dnode_cache_buf);
2275                         if (rc)
2276                                 return (rc);
2277                         indbp = (const blkptr_t *) dnode_cache_buf;
2278                 }
2279                 dnode_cache_obj = dnode;
2280                 dnode_cache_bn = bn;
2281         cached:
2282
2283                 /*
2284                  * The buffer contains our data block. Copy what we
2285                  * need from it and loop.
2286                  */
2287                 i = bsize - boff;
2288                 if (i > buflen) i = buflen;
2289                 memcpy(buf, &dnode_cache_buf[boff], i);
2290                 buf = ((char *)buf) + i;
2291                 offset += i;
2292                 buflen -= i;
2293         }
2294
2295         return (0);
2296 }
2297
2298 /*
2299  * Lookup a value in a microzap directory. Assumes that the zap
2300  * scratch buffer contains the directory contents.
2301  */
2302 static int
2303 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value)
2304 {
2305         const mzap_phys_t *mz;
2306         const mzap_ent_phys_t *mze;
2307         size_t size;
2308         int chunks, i;
2309
2310         /*
2311          * Microzap objects use exactly one block. Read the whole
2312          * thing.
2313          */
2314         size = dnode->dn_datablkszsec * 512;
2315
2316         mz = (const mzap_phys_t *) zap_scratch;
2317         chunks = size / MZAP_ENT_LEN - 1;
2318
2319         for (i = 0; i < chunks; i++) {
2320                 mze = &mz->mz_chunk[i];
2321                 if (strcmp(mze->mze_name, name) == 0) {
2322                         *value = mze->mze_value;
2323                         return (0);
2324                 }
2325         }
2326
2327         return (ENOENT);
2328 }
2329
2330 /*
2331  * Compare a name with a zap leaf entry. Return non-zero if the name
2332  * matches.
2333  */
2334 static int
2335 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2336     const char *name)
2337 {
2338         size_t namelen;
2339         const zap_leaf_chunk_t *nc;
2340         const char *p;
2341
2342         namelen = zc->l_entry.le_name_numints;
2343
2344         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2345         p = name;
2346         while (namelen > 0) {
2347                 size_t len;
2348
2349                 len = namelen;
2350                 if (len > ZAP_LEAF_ARRAY_BYTES)
2351                         len = ZAP_LEAF_ARRAY_BYTES;
2352                 if (memcmp(p, nc->l_array.la_array, len))
2353                         return (0);
2354                 p += len;
2355                 namelen -= len;
2356                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2357         }
2358
2359         return (1);
2360 }
2361
2362 /*
2363  * Extract a uint64_t value from a zap leaf entry.
2364  */
2365 static uint64_t
2366 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2367 {
2368         const zap_leaf_chunk_t *vc;
2369         int i;
2370         uint64_t value;
2371         const uint8_t *p;
2372
2373         vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2374         for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2375                 value = (value << 8) | p[i];
2376         }
2377
2378         return (value);
2379 }
2380
2381 static void
2382 stv(int len, void *addr, uint64_t value)
2383 {
2384         switch (len) {
2385         case 1:
2386                 *(uint8_t *)addr = value;
2387                 return;
2388         case 2:
2389                 *(uint16_t *)addr = value;
2390                 return;
2391         case 4:
2392                 *(uint32_t *)addr = value;
2393                 return;
2394         case 8:
2395                 *(uint64_t *)addr = value;
2396                 return;
2397         }
2398 }
2399
2400 /*
2401  * Extract a array from a zap leaf entry.
2402  */
2403 static void
2404 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2405     uint64_t integer_size, uint64_t num_integers, void *buf)
2406 {
2407         uint64_t array_int_len = zc->l_entry.le_value_intlen;
2408         uint64_t value = 0;
2409         uint64_t *u64 = buf;
2410         char *p = buf;
2411         int len = MIN(zc->l_entry.le_value_numints, num_integers);
2412         int chunk = zc->l_entry.le_value_chunk;
2413         int byten = 0;
2414
2415         if (integer_size == 8 && len == 1) {
2416                 *u64 = fzap_leaf_value(zl, zc);
2417                 return;
2418         }
2419
2420         while (len > 0) {
2421                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2422                 int i;
2423
2424                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2425                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2426                         value = (value << 8) | la->la_array[i];
2427                         byten++;
2428                         if (byten == array_int_len) {
2429                                 stv(integer_size, p, value);
2430                                 byten = 0;
2431                                 len--;
2432                                 if (len == 0)
2433                                         return;
2434                                 p += integer_size;
2435                         }
2436                 }
2437                 chunk = la->la_next;
2438         }
2439 }
2440
2441 static int
2442 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2443 {
2444
2445         switch (integer_size) {
2446         case 1:
2447         case 2:
2448         case 4:
2449         case 8:
2450                 break;
2451         default:
2452                 return (EINVAL);
2453         }
2454
2455         if (integer_size * num_integers > ZAP_MAXVALUELEN)
2456                 return (E2BIG);
2457
2458         return (0);
2459 }
2460
2461 /*
2462  * Lookup a value in a fatzap directory. Assumes that the zap scratch
2463  * buffer contains the directory header.
2464  */
2465 static int
2466 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2467     uint64_t integer_size, uint64_t num_integers, void *value)
2468 {
2469         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2470         zap_phys_t zh = *(zap_phys_t *)zap_scratch;
2471         fat_zap_t z;
2472         uint64_t *ptrtbl;
2473         uint64_t hash;
2474         int rc;
2475
2476         if (zh.zap_magic != ZAP_MAGIC)
2477                 return (EIO);
2478
2479         if ((rc = fzap_check_size(integer_size, num_integers)) != 0)
2480                 return (rc);
2481
2482         z.zap_block_shift = ilog2(bsize);
2483         z.zap_phys = (zap_phys_t *)zap_scratch;
2484
2485         /*
2486          * Figure out where the pointer table is and read it in if necessary.
2487          */
2488         if (zh.zap_ptrtbl.zt_blk) {
2489                 rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
2490                     zap_scratch, bsize);
2491                 if (rc)
2492                         return (rc);
2493                 ptrtbl = (uint64_t *)zap_scratch;
2494         } else {
2495                 ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
2496         }
2497
2498         hash = zap_hash(zh.zap_salt, name);
2499
2500         zap_leaf_t zl;
2501         zl.l_bs = z.zap_block_shift;
2502
2503         off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
2504         zap_leaf_chunk_t *zc;
2505
2506         rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
2507         if (rc)
2508                 return (rc);
2509
2510         zl.l_phys = (zap_leaf_phys_t *)zap_scratch;
2511
2512         /*
2513          * Make sure this chunk matches our hash.
2514          */
2515         if (zl.l_phys->l_hdr.lh_prefix_len > 0 &&
2516             zl.l_phys->l_hdr.lh_prefix !=
2517             hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
2518                 return (ENOENT);
2519
2520         /*
2521          * Hash within the chunk to find our entry.
2522          */
2523         int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) -
2524             zl.l_phys->l_hdr.lh_prefix_len);
2525         int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
2526         h = zl.l_phys->l_hash[h];
2527         if (h == 0xffff)
2528                 return (ENOENT);
2529         zc = &ZAP_LEAF_CHUNK(&zl, h);
2530         while (zc->l_entry.le_hash != hash) {
2531                 if (zc->l_entry.le_next == 0xffff)
2532                         return (ENOENT);
2533                 zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
2534         }
2535         if (fzap_name_equal(&zl, zc, name)) {
2536                 if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints >
2537                     integer_size * num_integers)
2538                         return (E2BIG);
2539                 fzap_leaf_array(&zl, zc, integer_size, num_integers, value);
2540                 return (0);
2541         }
2542
2543         return (ENOENT);
2544 }
2545
2546 /*
2547  * Lookup a name in a zap object and return its value as a uint64_t.
2548  */
2549 static int
2550 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2551     uint64_t integer_size, uint64_t num_integers, void *value)
2552 {
2553         int rc;
2554         uint64_t zap_type;
2555         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2556
2557         rc = dnode_read(spa, dnode, 0, zap_scratch, size);
2558         if (rc)
2559                 return (rc);
2560
2561         zap_type = *(uint64_t *)zap_scratch;
2562         if (zap_type == ZBT_MICRO)
2563                 return (mzap_lookup(dnode, name, value));
2564         else if (zap_type == ZBT_HEADER) {
2565                 return (fzap_lookup(spa, dnode, name, integer_size,
2566                     num_integers, value));
2567         }
2568         printf("ZFS: invalid zap_type=%d\n", (int)zap_type);
2569         return (EIO);
2570 }
2571
2572 /*
2573  * List a microzap directory. Assumes that the zap scratch buffer contains
2574  * the directory contents.
2575  */
2576 static int
2577 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
2578 {
2579         const mzap_phys_t *mz;
2580         const mzap_ent_phys_t *mze;
2581         size_t size;
2582         int chunks, i, rc;
2583
2584         /*
2585          * Microzap objects use exactly one block. Read the whole
2586          * thing.
2587          */
2588         size = dnode->dn_datablkszsec * 512;
2589         mz = (const mzap_phys_t *) zap_scratch;
2590         chunks = size / MZAP_ENT_LEN - 1;
2591
2592         for (i = 0; i < chunks; i++) {
2593                 mze = &mz->mz_chunk[i];
2594                 if (mze->mze_name[0]) {
2595                         rc = callback(mze->mze_name, mze->mze_value);
2596                         if (rc != 0)
2597                                 return (rc);
2598                 }
2599         }
2600
2601         return (0);
2602 }
2603
2604 /*
2605  * List a fatzap directory. Assumes that the zap scratch buffer contains
2606  * the directory header.
2607  */
2608 static int
2609 fzap_list(const spa_t *spa, const dnode_phys_t *dnode,
2610     int (*callback)(const char *, uint64_t))
2611 {
2612         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2613         zap_phys_t zh = *(zap_phys_t *)zap_scratch;
2614         fat_zap_t z;
2615         int i, j, rc;
2616
2617         if (zh.zap_magic != ZAP_MAGIC)
2618                 return (EIO);
2619
2620         z.zap_block_shift = ilog2(bsize);
2621         z.zap_phys = (zap_phys_t *)zap_scratch;
2622
2623         /*
2624          * This assumes that the leaf blocks start at block 1. The
2625          * documentation isn't exactly clear on this.
2626          */
2627         zap_leaf_t zl;
2628         zl.l_bs = z.zap_block_shift;
2629         for (i = 0; i < zh.zap_num_leafs; i++) {
2630                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2631                 char name[256], *p;
2632                 uint64_t value;
2633
2634                 if (dnode_read(spa, dnode, off, zap_scratch, bsize))
2635                         return (EIO);
2636
2637                 zl.l_phys = (zap_leaf_phys_t *)zap_scratch;
2638
2639                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2640                         zap_leaf_chunk_t *zc, *nc;
2641                         int namelen;
2642
2643                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2644                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2645                                 continue;
2646                         namelen = zc->l_entry.le_name_numints;
2647                         if (namelen > sizeof(name))
2648                                 namelen = sizeof(name);
2649
2650                         /*
2651                          * Paste the name back together.
2652                          */
2653                         nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2654                         p = name;
2655                         while (namelen > 0) {
2656                                 int len;
2657                                 len = namelen;
2658                                 if (len > ZAP_LEAF_ARRAY_BYTES)
2659                                         len = ZAP_LEAF_ARRAY_BYTES;
2660                                 memcpy(p, nc->l_array.la_array, len);
2661                                 p += len;
2662                                 namelen -= len;
2663                                 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2664                         }
2665
2666                         /*
2667                          * Assume the first eight bytes of the value are
2668                          * a uint64_t.
2669                          */
2670                         value = fzap_leaf_value(&zl, zc);
2671
2672                         /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2673                         rc = callback((const char *)name, value);
2674                         if (rc != 0)
2675                                 return (rc);
2676                 }
2677         }
2678
2679         return (0);
2680 }
2681
2682 static int zfs_printf(const char *name, uint64_t value __unused)
2683 {
2684
2685         printf("%s\n", name);
2686
2687         return (0);
2688 }
2689
2690 /*
2691  * List a zap directory.
2692  */
2693 static int
2694 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2695 {
2696         uint64_t zap_type;
2697         size_t size = dnode->dn_datablkszsec * 512;
2698
2699         if (dnode_read(spa, dnode, 0, zap_scratch, size))
2700                 return (EIO);
2701
2702         zap_type = *(uint64_t *)zap_scratch;
2703         if (zap_type == ZBT_MICRO)
2704                 return (mzap_list(dnode, zfs_printf));
2705         else
2706                 return (fzap_list(spa, dnode, zfs_printf));
2707 }
2708
2709 static int
2710 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2711     dnode_phys_t *dnode)
2712 {
2713         off_t offset;
2714
2715         offset = objnum * sizeof(dnode_phys_t);
2716         return dnode_read(spa, &os->os_meta_dnode, offset,
2717                 dnode, sizeof(dnode_phys_t));
2718 }
2719
2720 static int
2721 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
2722     uint64_t value)
2723 {
2724         const mzap_phys_t *mz;
2725         const mzap_ent_phys_t *mze;
2726         size_t size;
2727         int chunks, i;
2728
2729         /*
2730          * Microzap objects use exactly one block. Read the whole
2731          * thing.
2732          */
2733         size = dnode->dn_datablkszsec * 512;
2734
2735         mz = (const mzap_phys_t *)zap_scratch;
2736         chunks = size / MZAP_ENT_LEN - 1;
2737
2738         for (i = 0; i < chunks; i++) {
2739                 mze = &mz->mz_chunk[i];
2740                 if (value == mze->mze_value) {
2741                         strcpy(name, mze->mze_name);
2742                         return (0);
2743                 }
2744         }
2745
2746         return (ENOENT);
2747 }
2748
2749 static void
2750 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2751 {
2752         size_t namelen;
2753         const zap_leaf_chunk_t *nc;
2754         char *p;
2755
2756         namelen = zc->l_entry.le_name_numints;
2757
2758         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2759         p = name;
2760         while (namelen > 0) {
2761                 size_t len;
2762                 len = namelen;
2763                 if (len > ZAP_LEAF_ARRAY_BYTES)
2764                         len = ZAP_LEAF_ARRAY_BYTES;
2765                 memcpy(p, nc->l_array.la_array, len);
2766                 p += len;
2767                 namelen -= len;
2768                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2769         }
2770
2771         *p = '\0';
2772 }
2773
2774 static int
2775 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
2776     uint64_t value)
2777 {
2778         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2779         zap_phys_t zh = *(zap_phys_t *)zap_scratch;
2780         fat_zap_t z;
2781         int i, j;
2782
2783         if (zh.zap_magic != ZAP_MAGIC)
2784                 return (EIO);
2785
2786         z.zap_block_shift = ilog2(bsize);
2787         z.zap_phys = (zap_phys_t *)zap_scratch;
2788
2789         /*
2790          * This assumes that the leaf blocks start at block 1. The
2791          * documentation isn't exactly clear on this.
2792          */
2793         zap_leaf_t zl;
2794         zl.l_bs = z.zap_block_shift;
2795         for (i = 0; i < zh.zap_num_leafs; i++) {
2796                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2797
2798                 if (dnode_read(spa, dnode, off, zap_scratch, bsize))
2799                         return (EIO);
2800
2801                 zl.l_phys = (zap_leaf_phys_t *)zap_scratch;
2802
2803                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2804                         zap_leaf_chunk_t *zc;
2805
2806                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2807                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2808                                 continue;
2809                         if (zc->l_entry.le_value_intlen != 8 ||
2810                             zc->l_entry.le_value_numints != 1)
2811                                 continue;
2812
2813                         if (fzap_leaf_value(&zl, zc) == value) {
2814                                 fzap_name_copy(&zl, zc, name);
2815                                 return (0);
2816                         }
2817                 }
2818         }
2819
2820         return (ENOENT);
2821 }
2822
2823 static int
2824 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
2825     uint64_t value)
2826 {
2827         int rc;
2828         uint64_t zap_type;
2829         size_t size = dnode->dn_datablkszsec * 512;
2830
2831         rc = dnode_read(spa, dnode, 0, zap_scratch, size);
2832         if (rc)
2833                 return (rc);
2834
2835         zap_type = *(uint64_t *)zap_scratch;
2836         if (zap_type == ZBT_MICRO)
2837                 return (mzap_rlookup(spa, dnode, name, value));
2838         else
2839                 return (fzap_rlookup(spa, dnode, name, value));
2840 }
2841
2842 static int
2843 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
2844 {
2845         char name[256];
2846         char component[256];
2847         uint64_t dir_obj, parent_obj, child_dir_zapobj;
2848         dnode_phys_t child_dir_zap, dataset, dir, parent;
2849         dsl_dir_phys_t *dd;
2850         dsl_dataset_phys_t *ds;
2851         char *p;
2852         int len;
2853
2854         p = &name[sizeof(name) - 1];
2855         *p = '\0';
2856
2857         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2858                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2859                 return (EIO);
2860         }
2861         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2862         dir_obj = ds->ds_dir_obj;
2863
2864         for (;;) {
2865                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
2866                         return (EIO);
2867                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2868
2869                 /* Actual loop condition. */
2870                 parent_obj = dd->dd_parent_obj;
2871                 if (parent_obj == 0)
2872                         break;
2873
2874                 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj,
2875                     &parent) != 0)
2876                         return (EIO);
2877                 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
2878                 child_dir_zapobj = dd->dd_child_dir_zapobj;
2879                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
2880                     &child_dir_zap) != 0)
2881                         return (EIO);
2882                 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
2883                         return (EIO);
2884
2885                 len = strlen(component);
2886                 p -= len;
2887                 memcpy(p, component, len);
2888                 --p;
2889                 *p = '/';
2890
2891                 /* Actual loop iteration. */
2892                 dir_obj = parent_obj;
2893         }
2894
2895         if (*p != '\0')
2896                 ++p;
2897         strcpy(result, p);
2898
2899         return (0);
2900 }
2901
2902 static int
2903 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
2904 {
2905         char element[256];
2906         uint64_t dir_obj, child_dir_zapobj;
2907         dnode_phys_t child_dir_zap, dir;
2908         dsl_dir_phys_t *dd;
2909         const char *p, *q;
2910
2911         if (objset_get_dnode(spa, &spa->spa_mos,
2912             DMU_POOL_DIRECTORY_OBJECT, &dir))
2913                 return (EIO);
2914         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
2915             1, &dir_obj))
2916                 return (EIO);
2917
2918         p = name;
2919         for (;;) {
2920                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
2921                         return (EIO);
2922                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2923
2924                 while (*p == '/')
2925                         p++;
2926                 /* Actual loop condition #1. */
2927                 if (*p == '\0')
2928                         break;
2929
2930                 q = strchr(p, '/');
2931                 if (q) {
2932                         memcpy(element, p, q - p);
2933                         element[q - p] = '\0';
2934                         p = q + 1;
2935                 } else {
2936                         strcpy(element, p);
2937                         p += strlen(p);
2938                 }
2939
2940                 child_dir_zapobj = dd->dd_child_dir_zapobj;
2941                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
2942                     &child_dir_zap) != 0)
2943                         return (EIO);
2944
2945                 /* Actual loop condition #2. */
2946                 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
2947                     1, &dir_obj) != 0)
2948                         return (ENOENT);
2949         }
2950
2951         *objnum = dd->dd_head_dataset_obj;
2952         return (0);
2953 }
2954
2955 #ifndef BOOT2
2956 static int
2957 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
2958 {
2959         uint64_t dir_obj, child_dir_zapobj;
2960         dnode_phys_t child_dir_zap, dir, dataset;
2961         dsl_dataset_phys_t *ds;
2962         dsl_dir_phys_t *dd;
2963
2964         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2965                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2966                 return (EIO);
2967         }
2968         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2969         dir_obj = ds->ds_dir_obj;
2970
2971         if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
2972                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
2973                 return (EIO);
2974         }
2975         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2976
2977         child_dir_zapobj = dd->dd_child_dir_zapobj;
2978         if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
2979             &child_dir_zap) != 0) {
2980                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
2981                 return (EIO);
2982         }
2983
2984         return (zap_list(spa, &child_dir_zap) != 0);
2985 }
2986
2987 int
2988 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
2989     int (*callback)(const char *, uint64_t))
2990 {
2991         uint64_t dir_obj, child_dir_zapobj, zap_type;
2992         dnode_phys_t child_dir_zap, dir, dataset;
2993         dsl_dataset_phys_t *ds;
2994         dsl_dir_phys_t *dd;
2995         int err;
2996
2997         err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
2998         if (err != 0) {
2999                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3000                 return (err);
3001         }
3002         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3003         dir_obj = ds->ds_dir_obj;
3004
3005         err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
3006         if (err != 0) {
3007                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3008                 return (err);
3009         }
3010         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3011
3012         child_dir_zapobj = dd->dd_child_dir_zapobj;
3013         err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3014             &child_dir_zap);
3015         if (err != 0) {
3016                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3017                 return (err);
3018         }
3019
3020         err = dnode_read(spa, &child_dir_zap, 0, zap_scratch,
3021             child_dir_zap.dn_datablkszsec * 512);
3022         if (err != 0)
3023                 return (err);
3024
3025         zap_type = *(uint64_t *)zap_scratch;
3026         if (zap_type == ZBT_MICRO)
3027                 return (mzap_list(&child_dir_zap, callback));
3028         else
3029                 return (fzap_list(spa, &child_dir_zap, callback));
3030 }
3031 #endif
3032
3033 /*
3034  * Find the object set given the object number of its dataset object
3035  * and return its details in *objset
3036  */
3037 static int
3038 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3039 {
3040         dnode_phys_t dataset;
3041         dsl_dataset_phys_t *ds;
3042
3043         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3044                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3045                 return (EIO);
3046         }
3047
3048         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3049         if (zio_read(spa, &ds->ds_bp, objset)) {
3050                 printf("ZFS: can't read object set for dataset %ju\n",
3051                     (uintmax_t)objnum);
3052                 return (EIO);
3053         }
3054
3055         return (0);
3056 }
3057
3058 /*
3059  * Find the object set pointed to by the BOOTFS property or the root
3060  * dataset if there is none and return its details in *objset
3061  */
3062 static int
3063 zfs_get_root(const spa_t *spa, uint64_t *objid)
3064 {
3065         dnode_phys_t dir, propdir;
3066         uint64_t props, bootfs, root;
3067
3068         *objid = 0;
3069
3070         /*
3071          * Start with the MOS directory object.
3072          */
3073         if (objset_get_dnode(spa, &spa->spa_mos,
3074             DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3075                 printf("ZFS: can't read MOS object directory\n");
3076                 return (EIO);
3077         }
3078
3079         /*
3080          * Lookup the pool_props and see if we can find a bootfs.
3081          */
3082         if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3083             sizeof(props), 1, &props) == 0 &&
3084             objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 &&
3085             zap_lookup(spa, &propdir, "bootfs",
3086             sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3087                 *objid = bootfs;
3088                 return (0);
3089         }
3090         /*
3091          * Lookup the root dataset directory
3092          */
3093         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3094             sizeof(root), 1, &root) ||
3095             objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
3096                 printf("ZFS: can't find root dsl_dir\n");
3097                 return (EIO);
3098         }
3099
3100         /*
3101          * Use the information from the dataset directory's bonus buffer
3102          * to find the dataset object and from that the object set itself.
3103          */
3104         dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3105         *objid = dd->dd_head_dataset_obj;
3106         return (0);
3107 }
3108
3109 static int
3110 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3111 {
3112
3113         mount->spa = spa;
3114
3115         /*
3116          * Find the root object set if not explicitly provided
3117          */
3118         if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3119                 printf("ZFS: can't find root filesystem\n");
3120                 return (EIO);
3121         }
3122
3123         if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3124                 printf("ZFS: can't open root filesystem\n");
3125                 return (EIO);
3126         }
3127
3128         mount->rootobj = rootobj;
3129
3130         return (0);
3131 }
3132
3133 /*
3134  * callback function for feature name checks.
3135  */
3136 static int
3137 check_feature(const char *name, uint64_t value)
3138 {
3139         int i;
3140
3141         if (value == 0)
3142                 return (0);
3143         if (name[0] == '\0')
3144                 return (0);
3145
3146         for (i = 0; features_for_read[i] != NULL; i++) {
3147                 if (strcmp(name, features_for_read[i]) == 0)
3148                         return (0);
3149         }
3150         printf("ZFS: unsupported feature: %s\n", name);
3151         return (EIO);
3152 }
3153
3154 /*
3155  * Checks whether the MOS features that are active are supported.
3156  */
3157 static int
3158 check_mos_features(const spa_t *spa)
3159 {
3160         dnode_phys_t dir;
3161         uint64_t objnum, zap_type;
3162         size_t size;
3163         int rc;
3164
3165         if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3166             &dir)) != 0)
3167                 return (rc);
3168         if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3169             sizeof (objnum), 1, &objnum)) != 0) {
3170                 /*
3171                  * It is older pool without features. As we have already
3172                  * tested the label, just return without raising the error.
3173                  */
3174                 return (0);
3175         }
3176
3177         if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
3178                 return (rc);
3179
3180         if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3181                 return (EIO);
3182
3183         size = dir.dn_datablkszsec * 512;
3184         if (dnode_read(spa, &dir, 0, zap_scratch, size))
3185                 return (EIO);
3186
3187         zap_type = *(uint64_t *)zap_scratch;
3188         if (zap_type == ZBT_MICRO)
3189                 rc = mzap_list(&dir, check_feature);
3190         else
3191                 rc = fzap_list(spa, &dir, check_feature);
3192
3193         return (rc);
3194 }
3195
3196 static int
3197 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value)
3198 {
3199         dnode_phys_t dir;
3200         size_t size;
3201         int rc;
3202         unsigned char *nv;
3203
3204         *value = NULL;
3205         if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
3206                 return (rc);
3207         if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3208             dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3209                 return (EIO);
3210         }
3211
3212         if (dir.dn_bonuslen != sizeof (uint64_t))
3213                 return (EIO);
3214
3215         size = *(uint64_t *)DN_BONUS(&dir);
3216         nv = malloc(size);
3217         if (nv == NULL)
3218                 return (ENOMEM);
3219
3220         rc = dnode_read(spa, &dir, 0, nv, size);
3221         if (rc != 0) {
3222                 free(nv);
3223                 nv = NULL;
3224                 return (rc);
3225         }
3226         *value = nv;
3227         return (rc);
3228 }
3229
3230 static int
3231 zfs_spa_init(spa_t *spa)
3232 {
3233         dnode_phys_t dir;
3234         uint64_t config_object;
3235         unsigned char *nvlist;
3236         int rc;
3237
3238         if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
3239                 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3240                 return (EIO);
3241         }
3242         if (spa->spa_mos.os_type != DMU_OST_META) {
3243                 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3244                 return (EIO);
3245         }
3246
3247         if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
3248             &dir)) {
3249                 printf("ZFS: failed to read pool %s directory object\n",
3250                     spa->spa_name);
3251                 return (EIO);
3252         }
3253         /* this is allowed to fail, older pools do not have salt */
3254         rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3255             sizeof (spa->spa_cksum_salt.zcs_bytes),
3256             spa->spa_cksum_salt.zcs_bytes);
3257
3258         rc = check_mos_features(spa);
3259         if (rc != 0) {
3260                 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3261                 return (rc);
3262         }
3263
3264         rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3265             sizeof (config_object), 1, &config_object);
3266         if (rc != 0) {
3267                 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3268                 return (EIO);
3269         }
3270         rc = load_nvlist(spa, config_object, &nvlist);
3271         if (rc != 0)
3272                 return (rc);
3273
3274         /*
3275          * Update vdevs from MOS config. Note, we do skip encoding bytes
3276          * here. See also vdev_label_read_config().
3277          */
3278         rc = vdev_init_from_nvlist(spa, nvlist + 4);
3279         free(nvlist);
3280         return (rc);
3281 }
3282
3283 static int
3284 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3285 {
3286
3287         if (dn->dn_bonustype != DMU_OT_SA) {
3288                 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3289
3290                 sb->st_mode = zp->zp_mode;
3291                 sb->st_uid = zp->zp_uid;
3292                 sb->st_gid = zp->zp_gid;
3293                 sb->st_size = zp->zp_size;
3294         } else {
3295                 sa_hdr_phys_t *sahdrp;
3296                 int hdrsize;
3297                 size_t size = 0;
3298                 void *buf = NULL;
3299
3300                 if (dn->dn_bonuslen != 0)
3301                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3302                 else {
3303                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3304                                 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3305                                 int error;
3306
3307                                 size = BP_GET_LSIZE(bp);
3308                                 buf = zfs_alloc(size);
3309                                 error = zio_read(spa, bp, buf);
3310                                 if (error != 0) {
3311                                         zfs_free(buf, size);
3312                                         return (error);
3313                                 }
3314                                 sahdrp = buf;
3315                         } else {
3316                                 return (EIO);
3317                         }
3318                 }
3319                 hdrsize = SA_HDR_SIZE(sahdrp);
3320                 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3321                     SA_MODE_OFFSET);
3322                 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3323                     SA_UID_OFFSET);
3324                 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3325                     SA_GID_OFFSET);
3326                 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3327                     SA_SIZE_OFFSET);
3328                 if (buf != NULL)
3329                         zfs_free(buf, size);
3330         }
3331
3332         return (0);
3333 }
3334
3335 static int
3336 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3337 {
3338         int rc = 0;
3339
3340         if (dn->dn_bonustype == DMU_OT_SA) {
3341                 sa_hdr_phys_t *sahdrp = NULL;
3342                 size_t size = 0;
3343                 void *buf = NULL;
3344                 int hdrsize;
3345                 char *p;
3346
3347                 if (dn->dn_bonuslen != 0)
3348                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3349                 else {
3350                         blkptr_t *bp;
3351
3352                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3353                                 return (EIO);
3354                         bp = DN_SPILL_BLKPTR(dn);
3355
3356                         size = BP_GET_LSIZE(bp);
3357                         buf = zfs_alloc(size);
3358                         rc = zio_read(spa, bp, buf);
3359                         if (rc != 0) {
3360                                 zfs_free(buf, size);
3361                                 return (rc);
3362                         }
3363                         sahdrp = buf;
3364                 }
3365                 hdrsize = SA_HDR_SIZE(sahdrp);
3366                 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3367                 memcpy(path, p, psize);
3368                 if (buf != NULL)
3369                         zfs_free(buf, size);
3370                 return (0);
3371         }
3372         /*
3373          * Second test is purely to silence bogus compiler
3374          * warning about accessing past the end of dn_bonus.
3375          */
3376         if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3377             sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3378                 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3379         } else {
3380                 rc = dnode_read(spa, dn, 0, path, psize);
3381         }
3382         return (rc);
3383 }
3384
3385 struct obj_list {
3386         uint64_t                objnum;
3387         STAILQ_ENTRY(obj_list)  entry;
3388 };
3389
3390 /*
3391  * Lookup a file and return its dnode.
3392  */
3393 static int
3394 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3395 {
3396         int rc;
3397         uint64_t objnum;
3398         const spa_t *spa;
3399         dnode_phys_t dn;
3400         const char *p, *q;
3401         char element[256];
3402         char path[1024];
3403         int symlinks_followed = 0;
3404         struct stat sb;
3405         struct obj_list *entry, *tentry;
3406         STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3407
3408         spa = mount->spa;
3409         if (mount->objset.os_type != DMU_OST_ZFS) {
3410                 printf("ZFS: unexpected object set type %ju\n",
3411                     (uintmax_t)mount->objset.os_type);
3412                 return (EIO);
3413         }
3414
3415         if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3416                 return (ENOMEM);
3417
3418         /*
3419          * Get the root directory dnode.
3420          */
3421         rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3422         if (rc) {
3423                 free(entry);
3424                 return (rc);
3425         }
3426
3427         rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3428         if (rc) {
3429                 free(entry);
3430                 return (rc);
3431         }
3432         entry->objnum = objnum;
3433         STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3434
3435         rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3436         if (rc != 0)
3437                 goto done;
3438
3439         p = upath;
3440         while (p && *p) {
3441                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3442                 if (rc != 0)
3443                         goto done;
3444
3445                 while (*p == '/')
3446                         p++;
3447                 if (*p == '\0')
3448                         break;
3449                 q = p;
3450                 while (*q != '\0' && *q != '/')
3451                         q++;
3452
3453                 /* skip dot */
3454                 if (p + 1 == q && p[0] == '.') {
3455                         p++;
3456                         continue;
3457                 }
3458                 /* double dot */
3459                 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3460                         p += 2;
3461                         if (STAILQ_FIRST(&on_cache) ==
3462                             STAILQ_LAST(&on_cache, obj_list, entry)) {
3463                                 rc = ENOENT;
3464                                 goto done;
3465                         }
3466                         entry = STAILQ_FIRST(&on_cache);
3467                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3468                         free(entry);
3469                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3470                         continue;
3471                 }
3472                 if (q - p + 1 > sizeof(element)) {
3473                         rc = ENAMETOOLONG;
3474                         goto done;
3475                 }
3476                 memcpy(element, p, q - p);
3477                 element[q - p] = 0;
3478                 p = q;
3479
3480                 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3481                         goto done;
3482                 if (!S_ISDIR(sb.st_mode)) {
3483                         rc = ENOTDIR;
3484                         goto done;
3485                 }
3486
3487                 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3488                 if (rc)
3489                         goto done;
3490                 objnum = ZFS_DIRENT_OBJ(objnum);
3491
3492                 if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3493                         rc = ENOMEM;
3494                         goto done;
3495                 }
3496                 entry->objnum = objnum;
3497                 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3498                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3499                 if (rc)
3500                         goto done;
3501
3502                 /*
3503                  * Check for symlink.
3504                  */
3505                 rc = zfs_dnode_stat(spa, &dn, &sb);
3506                 if (rc)
3507                         goto done;
3508                 if (S_ISLNK(sb.st_mode)) {
3509                         if (symlinks_followed > 10) {
3510                                 rc = EMLINK;
3511                                 goto done;
3512                         }
3513                         symlinks_followed++;
3514
3515                         /*
3516                          * Read the link value and copy the tail of our
3517                          * current path onto the end.
3518                          */
3519                         if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3520                                 rc = ENAMETOOLONG;
3521                                 goto done;
3522                         }
3523                         strcpy(&path[sb.st_size], p);
3524
3525                         rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3526                         if (rc != 0)
3527                                 goto done;
3528
3529                         /*
3530                          * Restart with the new path, starting either at
3531                          * the root or at the parent depending whether or
3532                          * not the link is relative.
3533                          */
3534                         p = path;
3535                         if (*p == '/') {
3536                                 while (STAILQ_FIRST(&on_cache) !=
3537                                     STAILQ_LAST(&on_cache, obj_list, entry)) {
3538                                         entry = STAILQ_FIRST(&on_cache);
3539                                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3540                                         free(entry);
3541                                 }
3542                         } else {
3543                                 entry = STAILQ_FIRST(&on_cache);
3544                                 STAILQ_REMOVE_HEAD(&on_cache, entry);
3545                                 free(entry);
3546                         }
3547                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3548                 }
3549         }
3550
3551         *dnode = dn;
3552 done:
3553         STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3554                 free(entry);
3555         return (rc);
3556 }