]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - stand/libsa/zfs/zfsimpl.c
Merge ^/vendor/llvm-project/release-10.x up to its last change (upstream
[FreeBSD/FreeBSD.git] / stand / libsa / zfs / zfsimpl.c
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  *      Stand-alone ZFS file reader.
32  */
33
34 #include <sys/endian.h>
35 #include <sys/stat.h>
36 #include <sys/stdint.h>
37 #include <sys/list.h>
38 #include <machine/_inttypes.h>
39
40 #include "zfsimpl.h"
41 #include "zfssubr.c"
42
43
44 struct zfsmount {
45         const spa_t     *spa;
46         objset_phys_t   objset;
47         uint64_t        rootobj;
48 };
49 static struct zfsmount zfsmount __unused;
50
51 /*
52  * The indirect_child_t represents the vdev that we will read from, when we
53  * need to read all copies of the data (e.g. for scrub or reconstruction).
54  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
55  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
56  * ic_vdev is a child of the mirror.
57  */
58 typedef struct indirect_child {
59         void *ic_data;
60         vdev_t *ic_vdev;
61 } indirect_child_t;
62
63 /*
64  * The indirect_split_t represents one mapped segment of an i/o to the
65  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
66  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
67  * For split blocks, there will be several of these.
68  */
69 typedef struct indirect_split {
70         list_node_t is_node; /* link on iv_splits */
71
72         /*
73          * is_split_offset is the offset into the i/o.
74          * This is the sum of the previous splits' is_size's.
75          */
76         uint64_t is_split_offset;
77
78         vdev_t *is_vdev; /* top-level vdev */
79         uint64_t is_target_offset; /* offset on is_vdev */
80         uint64_t is_size;
81         int is_children; /* number of entries in is_child[] */
82
83         /*
84          * is_good_child is the child that we are currently using to
85          * attempt reconstruction.
86          */
87         int is_good_child;
88
89         indirect_child_t is_child[1]; /* variable-length */
90 } indirect_split_t;
91
92 /*
93  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
94  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
95  */
96 typedef struct indirect_vsd {
97         boolean_t iv_split_block;
98         boolean_t iv_reconstruct;
99
100         list_t iv_splits; /* list of indirect_split_t's */
101 } indirect_vsd_t;
102
103 /*
104  * List of all vdevs, chained through v_alllink.
105  */
106 static vdev_list_t zfs_vdevs;
107
108 /*
109  * List of ZFS features supported for read
110  */
111 static const char *features_for_read[] = {
112         "org.illumos:lz4_compress",
113         "com.delphix:hole_birth",
114         "com.delphix:extensible_dataset",
115         "com.delphix:embedded_data",
116         "org.open-zfs:large_blocks",
117         "org.illumos:sha512",
118         "org.illumos:skein",
119         "org.zfsonlinux:large_dnode",
120         "com.joyent:multi_vdev_crash_dump",
121         "com.delphix:spacemap_histogram",
122         "com.delphix:zpool_checkpoint",
123         "com.delphix:spacemap_v2",
124         "com.datto:encryption",
125         "org.zfsonlinux:allocation_classes",
126         "com.datto:resilver_defer",
127         "com.delphix:device_removal",
128         "com.delphix:obsolete_counts",
129         "com.intel:allocation_classes",
130         NULL
131 };
132
133 /*
134  * List of all pools, chained through spa_link.
135  */
136 static spa_list_t zfs_pools;
137
138 static const dnode_phys_t *dnode_cache_obj;
139 static uint64_t dnode_cache_bn;
140 static char *dnode_cache_buf;
141
142 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
143 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
144 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
145 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
146     const char *name, uint64_t integer_size, uint64_t num_integers,
147     void *value);
148 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
149     dnode_phys_t *);
150 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
151     size_t);
152 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
153     size_t);
154 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
155 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
156     uint64_t);
157 vdev_indirect_mapping_entry_phys_t *
158     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
159     uint64_t, uint64_t *);
160
161 static void
162 zfs_init(void)
163 {
164         STAILQ_INIT(&zfs_vdevs);
165         STAILQ_INIT(&zfs_pools);
166
167         dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
168
169         zfs_init_crc();
170 }
171
172 static int
173 xdr_int(const unsigned char **xdr, int *ip)
174 {
175         *ip = be32dec(*xdr);
176         (*xdr) += 4;
177         return (0);
178 }
179
180 static int
181 xdr_u_int(const unsigned char **xdr, u_int *ip)
182 {
183         *ip = be32dec(*xdr);
184         (*xdr) += 4;
185         return (0);
186 }
187
188 static int
189 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
190 {
191         u_int hi, lo;
192
193         xdr_u_int(xdr, &hi);
194         xdr_u_int(xdr, &lo);
195         *lp = (((uint64_t)hi) << 32) | lo;
196         return (0);
197 }
198
199 static int
200 nvlist_find(const unsigned char *nvlist, const char *name, int type,
201     int *elementsp, void *valuep)
202 {
203         const unsigned char *p, *pair;
204         int junk;
205         int encoded_size, decoded_size;
206
207         p = nvlist;
208         xdr_int(&p, &junk);
209         xdr_int(&p, &junk);
210
211         pair = p;
212         xdr_int(&p, &encoded_size);
213         xdr_int(&p, &decoded_size);
214         while (encoded_size && decoded_size) {
215                 int namelen, pairtype, elements;
216                 const char *pairname;
217
218                 xdr_int(&p, &namelen);
219                 pairname = (const char *)p;
220                 p += roundup(namelen, 4);
221                 xdr_int(&p, &pairtype);
222
223                 if (memcmp(name, pairname, namelen) == 0 && type == pairtype) {
224                         xdr_int(&p, &elements);
225                         if (elementsp)
226                                 *elementsp = elements;
227                         if (type == DATA_TYPE_UINT64) {
228                                 xdr_uint64_t(&p, (uint64_t *)valuep);
229                                 return (0);
230                         } else if (type == DATA_TYPE_STRING) {
231                                 int len;
232                                 xdr_int(&p, &len);
233                                 (*(const char **)valuep) = (const char *)p;
234                                 return (0);
235                         } else if (type == DATA_TYPE_NVLIST ||
236                             type == DATA_TYPE_NVLIST_ARRAY) {
237                                 (*(const unsigned char **)valuep) =
238                                     (const unsigned char *)p;
239                                 return (0);
240                         } else {
241                                 return (EIO);
242                         }
243                 } else {
244                         /*
245                          * Not the pair we are looking for, skip to the
246                          * next one.
247                          */
248                         p = pair + encoded_size;
249                 }
250
251                 pair = p;
252                 xdr_int(&p, &encoded_size);
253                 xdr_int(&p, &decoded_size);
254         }
255
256         return (EIO);
257 }
258
259 static int
260 nvlist_check_features_for_read(const unsigned char *nvlist)
261 {
262         const unsigned char *p, *pair;
263         int junk;
264         int encoded_size, decoded_size;
265         int rc;
266
267         rc = 0;
268
269         p = nvlist;
270         xdr_int(&p, &junk);
271         xdr_int(&p, &junk);
272
273         pair = p;
274         xdr_int(&p, &encoded_size);
275         xdr_int(&p, &decoded_size);
276         while (encoded_size && decoded_size) {
277                 int namelen, pairtype;
278                 const char *pairname;
279                 int i, found;
280
281                 found = 0;
282
283                 xdr_int(&p, &namelen);
284                 pairname = (const char *)p;
285                 p += roundup(namelen, 4);
286                 xdr_int(&p, &pairtype);
287
288                 for (i = 0; features_for_read[i] != NULL; i++) {
289                         if (memcmp(pairname, features_for_read[i],
290                             namelen) == 0) {
291                                 found = 1;
292                                 break;
293                         }
294                 }
295
296                 if (!found) {
297                         printf("ZFS: unsupported feature: %s\n", pairname);
298                         rc = EIO;
299                 }
300
301                 p = pair + encoded_size;
302
303                 pair = p;
304                 xdr_int(&p, &encoded_size);
305                 xdr_int(&p, &decoded_size);
306         }
307
308         return (rc);
309 }
310
311 /*
312  * Return the next nvlist in an nvlist array.
313  */
314 static const unsigned char *
315 nvlist_next(const unsigned char *nvlist)
316 {
317         const unsigned char *p, *pair;
318         int junk;
319         int encoded_size, decoded_size;
320
321         p = nvlist;
322         xdr_int(&p, &junk);
323         xdr_int(&p, &junk);
324
325         pair = p;
326         xdr_int(&p, &encoded_size);
327         xdr_int(&p, &decoded_size);
328         while (encoded_size && decoded_size) {
329                 p = pair + encoded_size;
330
331                 pair = p;
332                 xdr_int(&p, &encoded_size);
333                 xdr_int(&p, &decoded_size);
334         }
335
336         return (p);
337 }
338
339 #ifdef TEST
340
341 static const unsigned char *
342 nvlist_print(const unsigned char *nvlist, unsigned int indent)
343 {
344         static const char *typenames[] = {
345                 "DATA_TYPE_UNKNOWN",
346                 "DATA_TYPE_BOOLEAN",
347                 "DATA_TYPE_BYTE",
348                 "DATA_TYPE_INT16",
349                 "DATA_TYPE_UINT16",
350                 "DATA_TYPE_INT32",
351                 "DATA_TYPE_UINT32",
352                 "DATA_TYPE_INT64",
353                 "DATA_TYPE_UINT64",
354                 "DATA_TYPE_STRING",
355                 "DATA_TYPE_BYTE_ARRAY",
356                 "DATA_TYPE_INT16_ARRAY",
357                 "DATA_TYPE_UINT16_ARRAY",
358                 "DATA_TYPE_INT32_ARRAY",
359                 "DATA_TYPE_UINT32_ARRAY",
360                 "DATA_TYPE_INT64_ARRAY",
361                 "DATA_TYPE_UINT64_ARRAY",
362                 "DATA_TYPE_STRING_ARRAY",
363                 "DATA_TYPE_HRTIME",
364                 "DATA_TYPE_NVLIST",
365                 "DATA_TYPE_NVLIST_ARRAY",
366                 "DATA_TYPE_BOOLEAN_VALUE",
367                 "DATA_TYPE_INT8",
368                 "DATA_TYPE_UINT8",
369                 "DATA_TYPE_BOOLEAN_ARRAY",
370                 "DATA_TYPE_INT8_ARRAY",
371                 "DATA_TYPE_UINT8_ARRAY"
372         };
373
374         unsigned int i, j;
375         const unsigned char *p, *pair;
376         int junk;
377         int encoded_size, decoded_size;
378
379         p = nvlist;
380         xdr_int(&p, &junk);
381         xdr_int(&p, &junk);
382
383         pair = p;
384         xdr_int(&p, &encoded_size);
385         xdr_int(&p, &decoded_size);
386         while (encoded_size && decoded_size) {
387                 int namelen, pairtype, elements;
388                 const char *pairname;
389
390                 xdr_int(&p, &namelen);
391                 pairname = (const char *)p;
392                 p += roundup(namelen, 4);
393                 xdr_int(&p, &pairtype);
394
395                 for (i = 0; i < indent; i++)
396                         printf(" ");
397                 printf("%s %s", typenames[pairtype], pairname);
398
399                 xdr_int(&p, &elements);
400                 switch (pairtype) {
401                 case DATA_TYPE_UINT64: {
402                         uint64_t val;
403                         xdr_uint64_t(&p, &val);
404                         printf(" = 0x%jx\n", (uintmax_t)val);
405                         break;
406                 }
407
408                 case DATA_TYPE_STRING: {
409                         int len;
410                         xdr_int(&p, &len);
411                         printf(" = \"%s\"\n", p);
412                         break;
413                 }
414
415                 case DATA_TYPE_NVLIST:
416                         printf("\n");
417                         nvlist_print(p, indent + 1);
418                         break;
419
420                 case DATA_TYPE_NVLIST_ARRAY:
421                         for (j = 0; j < elements; j++) {
422                                 printf("[%d]\n", j);
423                                 p = nvlist_print(p, indent + 1);
424                                 if (j != elements - 1) {
425                                         for (i = 0; i < indent; i++)
426                                                 printf(" ");
427                                         printf("%s %s", typenames[pairtype],
428                                             pairname);
429                                 }
430                         }
431                         break;
432
433                 default:
434                         printf("\n");
435                 }
436
437                 p = pair + encoded_size;
438
439                 pair = p;
440                 xdr_int(&p, &encoded_size);
441                 xdr_int(&p, &decoded_size);
442         }
443
444         return (p);
445 }
446
447 #endif
448
449 static int
450 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
451     off_t offset, size_t size)
452 {
453         size_t psize;
454         int rc;
455
456         if (!vdev->v_phys_read)
457                 return (EIO);
458
459         if (bp) {
460                 psize = BP_GET_PSIZE(bp);
461         } else {
462                 psize = size;
463         }
464
465         rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
466         if (rc == 0) {
467                 if (bp != NULL)
468                         rc = zio_checksum_verify(vdev->v_spa, bp, buf);
469         }
470
471         return (rc);
472 }
473
474 typedef struct remap_segment {
475         vdev_t *rs_vd;
476         uint64_t rs_offset;
477         uint64_t rs_asize;
478         uint64_t rs_split_offset;
479         list_node_t rs_node;
480 } remap_segment_t;
481
482 static remap_segment_t *
483 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
484 {
485         remap_segment_t *rs = malloc(sizeof (remap_segment_t));
486
487         if (rs != NULL) {
488                 rs->rs_vd = vd;
489                 rs->rs_offset = offset;
490                 rs->rs_asize = asize;
491                 rs->rs_split_offset = split_offset;
492         }
493
494         return (rs);
495 }
496
497 vdev_indirect_mapping_t *
498 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
499     uint64_t mapping_object)
500 {
501         vdev_indirect_mapping_t *vim;
502         vdev_indirect_mapping_phys_t *vim_phys;
503         int rc;
504
505         vim = calloc(1, sizeof (*vim));
506         if (vim == NULL)
507                 return (NULL);
508
509         vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
510         if (vim->vim_dn == NULL) {
511                 free(vim);
512                 return (NULL);
513         }
514
515         rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
516         if (rc != 0) {
517                 free(vim->vim_dn);
518                 free(vim);
519                 return (NULL);
520         }
521
522         vim->vim_spa = spa;
523         vim->vim_phys = malloc(sizeof (*vim->vim_phys));
524         if (vim->vim_phys == NULL) {
525                 free(vim->vim_dn);
526                 free(vim);
527                 return (NULL);
528         }
529
530         vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
531         *vim->vim_phys = *vim_phys;
532
533         vim->vim_objset = os;
534         vim->vim_object = mapping_object;
535         vim->vim_entries = NULL;
536
537         vim->vim_havecounts =
538             (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
539
540         return (vim);
541 }
542
543 /*
544  * Compare an offset with an indirect mapping entry; there are three
545  * possible scenarios:
546  *
547  *     1. The offset is "less than" the mapping entry; meaning the
548  *        offset is less than the source offset of the mapping entry. In
549  *        this case, there is no overlap between the offset and the
550  *        mapping entry and -1 will be returned.
551  *
552  *     2. The offset is "greater than" the mapping entry; meaning the
553  *        offset is greater than the mapping entry's source offset plus
554  *        the entry's size. In this case, there is no overlap between
555  *        the offset and the mapping entry and 1 will be returned.
556  *
557  *        NOTE: If the offset is actually equal to the entry's offset
558  *        plus size, this is considered to be "greater" than the entry,
559  *        and this case applies (i.e. 1 will be returned). Thus, the
560  *        entry's "range" can be considered to be inclusive at its
561  *        start, but exclusive at its end: e.g. [src, src + size).
562  *
563  *     3. The last case to consider is if the offset actually falls
564  *        within the mapping entry's range. If this is the case, the
565  *        offset is considered to be "equal to" the mapping entry and
566  *        0 will be returned.
567  *
568  *        NOTE: If the offset is equal to the entry's source offset,
569  *        this case applies and 0 will be returned. If the offset is
570  *        equal to the entry's source plus its size, this case does
571  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
572  *        returned.
573  */
574 static int
575 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
576 {
577         const uint64_t *key = v_key;
578         const vdev_indirect_mapping_entry_phys_t *array_elem =
579             v_array_elem;
580         uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
581
582         if (*key < src_offset) {
583                 return (-1);
584         } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
585                 return (0);
586         } else {
587                 return (1);
588         }
589 }
590
591 /*
592  * Return array entry.
593  */
594 static vdev_indirect_mapping_entry_phys_t *
595 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
596 {
597         uint64_t size;
598         off_t offset = 0;
599         int rc;
600
601         if (vim->vim_phys->vimp_num_entries == 0)
602                 return (NULL);
603
604         if (vim->vim_entries == NULL) {
605                 uint64_t bsize;
606
607                 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
608                 size = vim->vim_phys->vimp_num_entries *
609                     sizeof (*vim->vim_entries);
610                 if (size > bsize) {
611                         size = bsize / sizeof (*vim->vim_entries);
612                         size *= sizeof (*vim->vim_entries);
613                 }
614                 vim->vim_entries = malloc(size);
615                 if (vim->vim_entries == NULL)
616                         return (NULL);
617                 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
618                 offset = index * sizeof (*vim->vim_entries);
619         }
620
621         /* We have data in vim_entries */
622         if (offset == 0) {
623                 if (index >= vim->vim_entry_offset &&
624                     index <= vim->vim_entry_offset + vim->vim_num_entries) {
625                         index -= vim->vim_entry_offset;
626                         return (&vim->vim_entries[index]);
627                 }
628                 offset = index * sizeof (*vim->vim_entries);
629         }
630
631         vim->vim_entry_offset = index;
632         size = vim->vim_num_entries * sizeof (*vim->vim_entries);
633         rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
634             size);
635         if (rc != 0) {
636                 /* Read error, invalidate vim_entries. */
637                 free(vim->vim_entries);
638                 vim->vim_entries = NULL;
639                 return (NULL);
640         }
641         index -= vim->vim_entry_offset;
642         return (&vim->vim_entries[index]);
643 }
644
645 /*
646  * Returns the mapping entry for the given offset.
647  *
648  * It's possible that the given offset will not be in the mapping table
649  * (i.e. no mapping entries contain this offset), in which case, the
650  * return value value depends on the "next_if_missing" parameter.
651  *
652  * If the offset is not found in the table and "next_if_missing" is
653  * B_FALSE, then NULL will always be returned. The behavior is intended
654  * to allow consumers to get the entry corresponding to the offset
655  * parameter, iff the offset overlaps with an entry in the table.
656  *
657  * If the offset is not found in the table and "next_if_missing" is
658  * B_TRUE, then the entry nearest to the given offset will be returned,
659  * such that the entry's source offset is greater than the offset
660  * passed in (i.e. the "next" mapping entry in the table is returned, if
661  * the offset is missing from the table). If there are no entries whose
662  * source offset is greater than the passed in offset, NULL is returned.
663  */
664 static vdev_indirect_mapping_entry_phys_t *
665 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
666     uint64_t offset)
667 {
668         ASSERT(vim->vim_phys->vimp_num_entries > 0);
669
670         vdev_indirect_mapping_entry_phys_t *entry;
671
672         uint64_t last = vim->vim_phys->vimp_num_entries - 1;
673         uint64_t base = 0;
674
675         /*
676          * We don't define these inside of the while loop because we use
677          * their value in the case that offset isn't in the mapping.
678          */
679         uint64_t mid;
680         int result;
681
682         while (last >= base) {
683                 mid = base + ((last - base) >> 1);
684
685                 entry = vdev_indirect_mapping_entry(vim, mid);
686                 if (entry == NULL)
687                         break;
688                 result = dva_mapping_overlap_compare(&offset, entry);
689
690                 if (result == 0) {
691                         break;
692                 } else if (result < 0) {
693                         last = mid - 1;
694                 } else {
695                         base = mid + 1;
696                 }
697         }
698         return (entry);
699 }
700
701 /*
702  * Given an indirect vdev and an extent on that vdev, it duplicates the
703  * physical entries of the indirect mapping that correspond to the extent
704  * to a new array and returns a pointer to it. In addition, copied_entries
705  * is populated with the number of mapping entries that were duplicated.
706  *
707  * Finally, since we are doing an allocation, it is up to the caller to
708  * free the array allocated in this function.
709  */
710 vdev_indirect_mapping_entry_phys_t *
711 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
712     uint64_t asize, uint64_t *copied_entries)
713 {
714         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
715         vdev_indirect_mapping_t *vim = vd->v_mapping;
716         uint64_t entries = 0;
717
718         vdev_indirect_mapping_entry_phys_t *first_mapping =
719             vdev_indirect_mapping_entry_for_offset(vim, offset);
720         ASSERT3P(first_mapping, !=, NULL);
721
722         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
723         while (asize > 0) {
724                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
725                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
726                 uint64_t inner_size = MIN(asize, size - inner_offset);
727
728                 offset += inner_size;
729                 asize -= inner_size;
730                 entries++;
731                 m++;
732         }
733
734         size_t copy_length = entries * sizeof (*first_mapping);
735         duplicate_mappings = malloc(copy_length);
736         if (duplicate_mappings != NULL)
737                 bcopy(first_mapping, duplicate_mappings, copy_length);
738         else
739                 entries = 0;
740
741         *copied_entries = entries;
742
743         return (duplicate_mappings);
744 }
745
746 static vdev_t *
747 vdev_lookup_top(spa_t *spa, uint64_t vdev)
748 {
749         vdev_t *rvd;
750         vdev_list_t *vlist;
751
752         vlist = &spa->spa_root_vdev->v_children;
753         STAILQ_FOREACH(rvd, vlist, v_childlink)
754                 if (rvd->v_id == vdev)
755                         break;
756
757         return (rvd);
758 }
759
760 /*
761  * This is a callback for vdev_indirect_remap() which allocates an
762  * indirect_split_t for each split segment and adds it to iv_splits.
763  */
764 static void
765 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
766     uint64_t size, void *arg)
767 {
768         int n = 1;
769         zio_t *zio = arg;
770         indirect_vsd_t *iv = zio->io_vsd;
771
772         if (vd->v_read == vdev_indirect_read)
773                 return;
774
775         if (vd->v_read == vdev_mirror_read)
776                 n = vd->v_nchildren;
777
778         indirect_split_t *is =
779             malloc(offsetof(indirect_split_t, is_child[n]));
780         if (is == NULL) {
781                 zio->io_error = ENOMEM;
782                 return;
783         }
784         bzero(is, offsetof(indirect_split_t, is_child[n]));
785
786         is->is_children = n;
787         is->is_size = size;
788         is->is_split_offset = split_offset;
789         is->is_target_offset = offset;
790         is->is_vdev = vd;
791
792         /*
793          * Note that we only consider multiple copies of the data for
794          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
795          * though they use the same ops as mirror, because there's only one
796          * "good" copy under the replacing/spare.
797          */
798         if (vd->v_read == vdev_mirror_read) {
799                 int i = 0;
800                 vdev_t *kid;
801
802                 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
803                         is->is_child[i++].ic_vdev = kid;
804                 }
805         } else {
806                 is->is_child[0].ic_vdev = vd;
807         }
808
809         list_insert_tail(&iv->iv_splits, is);
810 }
811
812 static void
813 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
814 {
815         list_t stack;
816         spa_t *spa = vd->v_spa;
817         zio_t *zio = arg;
818         remap_segment_t *rs;
819
820         list_create(&stack, sizeof (remap_segment_t),
821             offsetof(remap_segment_t, rs_node));
822
823         rs = rs_alloc(vd, offset, asize, 0);
824         if (rs == NULL) {
825                 printf("vdev_indirect_remap: out of memory.\n");
826                 zio->io_error = ENOMEM;
827         }
828         for (; rs != NULL; rs = list_remove_head(&stack)) {
829                 vdev_t *v = rs->rs_vd;
830                 uint64_t num_entries = 0;
831                 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
832                 vdev_indirect_mapping_entry_phys_t *mapping =
833                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
834                     rs->rs_offset, rs->rs_asize, &num_entries);
835
836                 if (num_entries == 0)
837                         zio->io_error = ENOMEM;
838
839                 for (uint64_t i = 0; i < num_entries; i++) {
840                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
841                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
842                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
843                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
844                         uint64_t inner_offset = rs->rs_offset -
845                             DVA_MAPPING_GET_SRC_OFFSET(m);
846                         uint64_t inner_size =
847                             MIN(rs->rs_asize, size - inner_offset);
848                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
849
850                         if (dst_v->v_read == vdev_indirect_read) {
851                                 remap_segment_t *o;
852
853                                 o = rs_alloc(dst_v, dst_offset + inner_offset,
854                                     inner_size, rs->rs_split_offset);
855                                 if (o == NULL) {
856                                         printf("vdev_indirect_remap: "
857                                             "out of memory.\n");
858                                         zio->io_error = ENOMEM;
859                                         break;
860                                 }
861
862                                 list_insert_head(&stack, o);
863                         }
864                         vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
865                             dst_offset + inner_offset,
866                             inner_size, arg);
867
868                         /*
869                          * vdev_indirect_gather_splits can have memory
870                          * allocation error, we can not recover from it.
871                          */
872                         if (zio->io_error != 0)
873                                 break;
874                         rs->rs_offset += inner_size;
875                         rs->rs_asize -= inner_size;
876                         rs->rs_split_offset += inner_size;
877                 }
878
879                 free(mapping);
880                 free(rs);
881                 if (zio->io_error != 0)
882                         break;
883         }
884
885         list_destroy(&stack);
886 }
887
888 static void
889 vdev_indirect_map_free(zio_t *zio)
890 {
891         indirect_vsd_t *iv = zio->io_vsd;
892         indirect_split_t *is;
893
894         while ((is = list_head(&iv->iv_splits)) != NULL) {
895                 for (int c = 0; c < is->is_children; c++) {
896                         indirect_child_t *ic = &is->is_child[c];
897                         free(ic->ic_data);
898                 }
899                 list_remove(&iv->iv_splits, is);
900                 free(is);
901         }
902         free(iv);
903 }
904
905 static int
906 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
907     off_t offset, size_t bytes)
908 {
909         zio_t zio;
910         spa_t *spa = vdev->v_spa;
911         indirect_vsd_t *iv;
912         indirect_split_t *first;
913         int rc = EIO;
914
915         iv = calloc(1, sizeof(*iv));
916         if (iv == NULL)
917                 return (ENOMEM);
918
919         list_create(&iv->iv_splits,
920             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
921
922         bzero(&zio, sizeof(zio));
923         zio.io_spa = spa;
924         zio.io_bp = (blkptr_t *)bp;
925         zio.io_data = buf;
926         zio.io_size = bytes;
927         zio.io_offset = offset;
928         zio.io_vd = vdev;
929         zio.io_vsd = iv;
930
931         if (vdev->v_mapping == NULL) {
932                 vdev_indirect_config_t *vic;
933
934                 vic = &vdev->vdev_indirect_config;
935                 vdev->v_mapping = vdev_indirect_mapping_open(spa,
936                     &spa->spa_mos, vic->vic_mapping_object);
937         }
938
939         vdev_indirect_remap(vdev, offset, bytes, &zio);
940         if (zio.io_error != 0)
941                 return (zio.io_error);
942
943         first = list_head(&iv->iv_splits);
944         if (first->is_size == zio.io_size) {
945                 /*
946                  * This is not a split block; we are pointing to the entire
947                  * data, which will checksum the same as the original data.
948                  * Pass the BP down so that the child i/o can verify the
949                  * checksum, and try a different location if available
950                  * (e.g. on a mirror).
951                  *
952                  * While this special case could be handled the same as the
953                  * general (split block) case, doing it this way ensures
954                  * that the vast majority of blocks on indirect vdevs
955                  * (which are not split) are handled identically to blocks
956                  * on non-indirect vdevs.  This allows us to be less strict
957                  * about performance in the general (but rare) case.
958                  */
959                 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
960                     zio.io_data, first->is_target_offset, bytes);
961         } else {
962                 iv->iv_split_block = B_TRUE;
963                 /*
964                  * Read one copy of each split segment, from the
965                  * top-level vdev.  Since we don't know the
966                  * checksum of each split individually, the child
967                  * zio can't ensure that we get the right data.
968                  * E.g. if it's a mirror, it will just read from a
969                  * random (healthy) leaf vdev.  We have to verify
970                  * the checksum in vdev_indirect_io_done().
971                  */
972                 for (indirect_split_t *is = list_head(&iv->iv_splits);
973                     is != NULL; is = list_next(&iv->iv_splits, is)) {
974                         char *ptr = zio.io_data;
975
976                         rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
977                             ptr + is->is_split_offset, is->is_target_offset,
978                             is->is_size);
979                 }
980                 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
981                         rc = ECKSUM;
982                 else
983                         rc = 0;
984         }
985
986         vdev_indirect_map_free(&zio);
987         if (rc == 0)
988                 rc = zio.io_error;
989
990         return (rc);
991 }
992
993 static int
994 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
995     off_t offset, size_t bytes)
996 {
997
998         return (vdev_read_phys(vdev, bp, buf,
999             offset + VDEV_LABEL_START_SIZE, bytes));
1000 }
1001
1002
1003 static int
1004 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1005     off_t offset, size_t bytes)
1006 {
1007         vdev_t *kid;
1008         int rc;
1009
1010         rc = EIO;
1011         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1012                 if (kid->v_state != VDEV_STATE_HEALTHY)
1013                         continue;
1014                 rc = kid->v_read(kid, bp, buf, offset, bytes);
1015                 if (!rc)
1016                         return (0);
1017         }
1018
1019         return (rc);
1020 }
1021
1022 static int
1023 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1024     off_t offset, size_t bytes)
1025 {
1026         vdev_t *kid;
1027
1028         /*
1029          * Here we should have two kids:
1030          * First one which is the one we are replacing and we can trust
1031          * only this one to have valid data, but it might not be present.
1032          * Second one is that one we are replacing with. It is most likely
1033          * healthy, but we can't trust it has needed data, so we won't use it.
1034          */
1035         kid = STAILQ_FIRST(&vdev->v_children);
1036         if (kid == NULL)
1037                 return (EIO);
1038         if (kid->v_state != VDEV_STATE_HEALTHY)
1039                 return (EIO);
1040         return (kid->v_read(kid, bp, buf, offset, bytes));
1041 }
1042
1043 static vdev_t *
1044 vdev_find(uint64_t guid)
1045 {
1046         vdev_t *vdev;
1047
1048         STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
1049                 if (vdev->v_guid == guid)
1050                         return (vdev);
1051
1052         return (0);
1053 }
1054
1055 static vdev_t *
1056 vdev_create(uint64_t guid, vdev_read_t *_read)
1057 {
1058         vdev_t *vdev;
1059         vdev_indirect_config_t *vic;
1060
1061         vdev = calloc(1, sizeof(vdev_t));
1062         if (vdev != NULL) {
1063                 STAILQ_INIT(&vdev->v_children);
1064                 vdev->v_guid = guid;
1065                 vdev->v_read = _read;
1066
1067                 /*
1068                  * root vdev has no read function, we use this fact to
1069                  * skip setting up data we do not need for root vdev.
1070                  * We only point root vdev from spa.
1071                  */
1072                 if (_read != NULL) {
1073                         vic = &vdev->vdev_indirect_config;
1074                         vic->vic_prev_indirect_vdev = UINT64_MAX;
1075                         STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
1076                 }
1077         }
1078
1079         return (vdev);
1080 }
1081
1082 static void
1083 vdev_set_initial_state(vdev_t *vdev, const unsigned char *nvlist)
1084 {
1085         uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
1086         uint64_t is_log;
1087
1088         is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
1089         is_log = 0;
1090         (void) nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
1091             &is_offline);
1092         (void) nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
1093             &is_removed);
1094         (void) nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
1095             &is_faulted);
1096         (void) nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64,
1097             NULL, &is_degraded);
1098         (void) nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64,
1099             NULL, &isnt_present);
1100         (void) nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
1101             &is_log);
1102
1103         if (is_offline != 0)
1104                 vdev->v_state = VDEV_STATE_OFFLINE;
1105         else if (is_removed != 0)
1106                 vdev->v_state = VDEV_STATE_REMOVED;
1107         else if (is_faulted != 0)
1108                 vdev->v_state = VDEV_STATE_FAULTED;
1109         else if (is_degraded != 0)
1110                 vdev->v_state = VDEV_STATE_DEGRADED;
1111         else if (isnt_present != 0)
1112                 vdev->v_state = VDEV_STATE_CANT_OPEN;
1113
1114         vdev->v_islog = is_log != 0;
1115 }
1116
1117 static int
1118 vdev_init(uint64_t guid, const unsigned char *nvlist, vdev_t **vdevp)
1119 {
1120         uint64_t id, ashift, asize, nparity;
1121         const char *path;
1122         const char *type;
1123         vdev_t *vdev;
1124
1125         if (nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id) ||
1126             nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1127             NULL, &type)) {
1128                 return (ENOENT);
1129         }
1130
1131         if (strcmp(type, VDEV_TYPE_MIRROR) != 0 &&
1132             strcmp(type, VDEV_TYPE_DISK) != 0 &&
1133 #ifdef ZFS_TEST
1134             strcmp(type, VDEV_TYPE_FILE) != 0 &&
1135 #endif
1136             strcmp(type, VDEV_TYPE_RAIDZ) != 0 &&
1137             strcmp(type, VDEV_TYPE_INDIRECT) != 0 &&
1138             strcmp(type, VDEV_TYPE_REPLACING) != 0) {
1139                 printf("ZFS: can only boot from disk, mirror, raidz1, "
1140                     "raidz2 and raidz3 vdevs\n");
1141                 return (EIO);
1142         }
1143
1144         if (strcmp(type, VDEV_TYPE_MIRROR) == 0)
1145                 vdev = vdev_create(guid, vdev_mirror_read);
1146         else if (strcmp(type, VDEV_TYPE_RAIDZ) == 0)
1147                 vdev = vdev_create(guid, vdev_raidz_read);
1148         else if (strcmp(type, VDEV_TYPE_REPLACING) == 0)
1149                 vdev = vdev_create(guid, vdev_replacing_read);
1150         else if (strcmp(type, VDEV_TYPE_INDIRECT) == 0) {
1151                 vdev_indirect_config_t *vic;
1152
1153                 vdev = vdev_create(guid, vdev_indirect_read);
1154                 if (vdev != NULL) {
1155                         vdev->v_state = VDEV_STATE_HEALTHY;
1156                         vic = &vdev->vdev_indirect_config;
1157
1158                         nvlist_find(nvlist,
1159                             ZPOOL_CONFIG_INDIRECT_OBJECT,
1160                             DATA_TYPE_UINT64,
1161                             NULL, &vic->vic_mapping_object);
1162                         nvlist_find(nvlist,
1163                             ZPOOL_CONFIG_INDIRECT_BIRTHS,
1164                             DATA_TYPE_UINT64,
1165                             NULL, &vic->vic_births_object);
1166                         nvlist_find(nvlist,
1167                             ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
1168                             DATA_TYPE_UINT64,
1169                             NULL, &vic->vic_prev_indirect_vdev);
1170                 }
1171         } else {
1172                 vdev = vdev_create(guid, vdev_disk_read);
1173         }
1174
1175         if (vdev == NULL)
1176                 return (ENOMEM);
1177
1178         vdev_set_initial_state(vdev, nvlist);
1179         vdev->v_id = id;
1180         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
1181             DATA_TYPE_UINT64, NULL, &ashift) == 0)
1182                 vdev->v_ashift = ashift;
1183
1184         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1185             DATA_TYPE_UINT64, NULL, &asize) == 0) {
1186                 vdev->v_psize = asize +
1187                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1188         }
1189
1190         if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1191             DATA_TYPE_UINT64, NULL, &nparity) == 0)
1192                 vdev->v_nparity = nparity;
1193
1194         if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1195             DATA_TYPE_STRING, NULL, &path) == 0) {
1196                 if (strncmp(path, "/dev/", 5) == 0)
1197                         path += 5;
1198                 vdev->v_name = strdup(path);
1199         } else {
1200                 char *name;
1201
1202                 name = NULL;
1203                 if (strcmp(type, "raidz") == 0) {
1204                         if (vdev->v_nparity < 1 ||
1205                             vdev->v_nparity > 3) {
1206                                 printf("ZFS: invalid raidz parity: %d\n",
1207                                     vdev->v_nparity);
1208                                 return (EIO);
1209                         }
1210                         (void) asprintf(&name, "%s%d-%" PRIu64, type,
1211                             vdev->v_nparity, id);
1212                 } else {
1213                         (void) asprintf(&name, "%s-%" PRIu64, type, id);
1214                 }
1215                 vdev->v_name = name;
1216         }
1217         *vdevp = vdev;
1218         return (0);
1219 }
1220
1221 /*
1222  * Find slot for vdev. We return either NULL to signal to use
1223  * STAILQ_INSERT_HEAD, or we return link element to be used with
1224  * STAILQ_INSERT_AFTER.
1225  */
1226 static vdev_t *
1227 vdev_find_previous(vdev_t *top_vdev, vdev_t *vdev)
1228 {
1229         vdev_t *v, *previous;
1230
1231         if (STAILQ_EMPTY(&top_vdev->v_children))
1232                 return (NULL);
1233
1234         previous = NULL;
1235         STAILQ_FOREACH(v, &top_vdev->v_children, v_childlink) {
1236                 if (v->v_id > vdev->v_id)
1237                         return (previous);
1238
1239                 if (v->v_id == vdev->v_id)
1240                         return (v);
1241
1242                 if (v->v_id < vdev->v_id)
1243                         previous = v;
1244         }
1245         return (previous);
1246 }
1247
1248 static size_t
1249 vdev_child_count(vdev_t *vdev)
1250 {
1251         vdev_t *v;
1252         size_t count;
1253
1254         count = 0;
1255         STAILQ_FOREACH(v, &vdev->v_children, v_childlink) {
1256                 count++;
1257         }
1258         return (count);
1259 }
1260
1261 /*
1262  * Insert vdev into top_vdev children list. List is ordered by v_id.
1263  */
1264 static void
1265 vdev_insert(vdev_t *top_vdev, vdev_t *vdev)
1266 {
1267         vdev_t *previous;
1268         size_t count;
1269
1270         /*
1271          * The top level vdev can appear in random order, depending how
1272          * the firmware is presenting the disk devices.
1273          * However, we will insert vdev to create list ordered by v_id,
1274          * so we can use either STAILQ_INSERT_HEAD or STAILQ_INSERT_AFTER
1275          * as STAILQ does not have insert before.
1276          */
1277         previous = vdev_find_previous(top_vdev, vdev);
1278
1279         if (previous == NULL) {
1280                 STAILQ_INSERT_HEAD(&top_vdev->v_children, vdev, v_childlink);
1281         } else if (previous->v_id == vdev->v_id) {
1282                 /*
1283                  * This vdev was configured from label config,
1284                  * do not insert duplicate.
1285                  */
1286                 return;
1287         } else {
1288                 STAILQ_INSERT_AFTER(&top_vdev->v_children, previous, vdev,
1289                     v_childlink);
1290         }
1291
1292         count = vdev_child_count(top_vdev);
1293         if (top_vdev->v_nchildren < count)
1294                 top_vdev->v_nchildren = count;
1295 }
1296
1297 static int
1298 vdev_from_nvlist(spa_t *spa, uint64_t top_guid, const unsigned char *nvlist)
1299 {
1300         vdev_t *top_vdev, *vdev;
1301         const unsigned char *kids;
1302         int rc, nkids;
1303
1304         /* Get top vdev. */
1305         top_vdev = vdev_find(top_guid);
1306         if (top_vdev == NULL) {
1307                 rc = vdev_init(top_guid, nvlist, &top_vdev);
1308                 if (rc != 0)
1309                         return (rc);
1310                 top_vdev->v_spa = spa;
1311                 top_vdev->v_top = top_vdev;
1312                 vdev_insert(spa->spa_root_vdev, top_vdev);
1313         }
1314
1315         /* Add children if there are any. */
1316         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1317             &nkids, &kids);
1318         if (rc == 0) {
1319                 for (int i = 0; i < nkids; i++) {
1320                         uint64_t guid;
1321
1322                         rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
1323                             DATA_TYPE_UINT64, NULL, &guid);
1324                         if (rc != 0)
1325                                 return (rc);
1326                         rc = vdev_init(guid, kids, &vdev);
1327                         if (rc != 0)
1328                                 return (rc);
1329
1330                         vdev->v_spa = spa;
1331                         vdev->v_top = top_vdev;
1332                         vdev_insert(top_vdev, vdev);
1333
1334                         kids = nvlist_next(kids);
1335                 }
1336         } else {
1337                 /*
1338                  * When there are no children, nvlist_find() does return
1339                  * error, reset it because leaf devices have no children.
1340                  */
1341                 rc = 0;
1342         }
1343
1344         return (rc);
1345 }
1346
1347 static int
1348 vdev_init_from_label(spa_t *spa, const unsigned char *nvlist)
1349 {
1350         uint64_t pool_guid, top_guid;
1351         const unsigned char *vdevs;
1352
1353         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1354             NULL, &pool_guid) ||
1355             nvlist_find(nvlist, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64,
1356             NULL, &top_guid) ||
1357             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1358             NULL, &vdevs)) {
1359                 printf("ZFS: can't find vdev details\n");
1360                 return (ENOENT);
1361         }
1362
1363         return (vdev_from_nvlist(spa, top_guid, vdevs));
1364 }
1365
1366 static void
1367 vdev_set_state(vdev_t *vdev)
1368 {
1369         vdev_t *kid;
1370         int good_kids;
1371         int bad_kids;
1372
1373         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1374                 vdev_set_state(kid);
1375         }
1376
1377         /*
1378          * A mirror or raidz is healthy if all its kids are healthy. A
1379          * mirror is degraded if any of its kids is healthy; a raidz
1380          * is degraded if at most nparity kids are offline.
1381          */
1382         if (STAILQ_FIRST(&vdev->v_children)) {
1383                 good_kids = 0;
1384                 bad_kids = 0;
1385                 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1386                         if (kid->v_state == VDEV_STATE_HEALTHY)
1387                                 good_kids++;
1388                         else
1389                                 bad_kids++;
1390                 }
1391                 if (bad_kids == 0) {
1392                         vdev->v_state = VDEV_STATE_HEALTHY;
1393                 } else {
1394                         if (vdev->v_read == vdev_mirror_read) {
1395                                 if (good_kids) {
1396                                         vdev->v_state = VDEV_STATE_DEGRADED;
1397                                 } else {
1398                                         vdev->v_state = VDEV_STATE_OFFLINE;
1399                                 }
1400                         } else if (vdev->v_read == vdev_raidz_read) {
1401                                 if (bad_kids > vdev->v_nparity) {
1402                                         vdev->v_state = VDEV_STATE_OFFLINE;
1403                                 } else {
1404                                         vdev->v_state = VDEV_STATE_DEGRADED;
1405                                 }
1406                         }
1407                 }
1408         }
1409 }
1410
1411 static int
1412 vdev_update_from_nvlist(uint64_t top_guid, const unsigned char *nvlist)
1413 {
1414         vdev_t *vdev;
1415         const unsigned char *kids;
1416         int rc, nkids;
1417
1418         /* Update top vdev. */
1419         vdev = vdev_find(top_guid);
1420         if (vdev != NULL)
1421                 vdev_set_initial_state(vdev, nvlist);
1422
1423         /* Update children if there are any. */
1424         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1425             &nkids, &kids);
1426         if (rc == 0) {
1427                 for (int i = 0; i < nkids; i++) {
1428                         uint64_t guid;
1429
1430                         rc = nvlist_find(kids, ZPOOL_CONFIG_GUID,
1431                             DATA_TYPE_UINT64, NULL, &guid);
1432                         if (rc != 0)
1433                                 break;
1434
1435                         vdev = vdev_find(guid);
1436                         if (vdev != NULL)
1437                                 vdev_set_initial_state(vdev, kids);
1438
1439                         kids = nvlist_next(kids);
1440                 }
1441         } else {
1442                 rc = 0;
1443         }
1444
1445         return (rc);
1446 }
1447
1448 static int
1449 vdev_init_from_nvlist(spa_t *spa, const unsigned char *nvlist)
1450 {
1451         uint64_t pool_guid, vdev_children;
1452         const unsigned char *vdevs, *kids;
1453         int rc, nkids;
1454
1455         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1456             NULL, &pool_guid) ||
1457             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN, DATA_TYPE_UINT64,
1458             NULL, &vdev_children) ||
1459             nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1460             NULL, &vdevs)) {
1461                 printf("ZFS: can't find vdev details\n");
1462                 return (ENOENT);
1463         }
1464
1465         /* Wrong guid?! */
1466         if (spa->spa_guid != pool_guid)
1467                 return (EINVAL);
1468
1469         spa->spa_root_vdev->v_nchildren = vdev_children;
1470
1471         rc = nvlist_find(vdevs, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1472             &nkids, &kids);
1473
1474         /*
1475          * MOS config has at least one child for root vdev.
1476          */
1477         if (rc != 0)
1478                 return (rc);
1479
1480         for (int i = 0; i < nkids; i++) {
1481                 uint64_t guid;
1482                 vdev_t *vdev;
1483
1484                 rc = nvlist_find(kids, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1485                     NULL, &guid);
1486                 if (rc != 0)
1487                         break;
1488                 vdev = vdev_find(guid);
1489                 /*
1490                  * Top level vdev is missing, create it.
1491                  */
1492                 if (vdev == NULL)
1493                         rc = vdev_from_nvlist(spa, guid, kids);
1494                 else
1495                         rc = vdev_update_from_nvlist(guid, kids);
1496                 if (rc != 0)
1497                         break;
1498                 kids = nvlist_next(kids);
1499         }
1500
1501         /*
1502          * Re-evaluate top-level vdev state.
1503          */
1504         vdev_set_state(spa->spa_root_vdev);
1505
1506         return (rc);
1507 }
1508
1509 static spa_t *
1510 spa_find_by_guid(uint64_t guid)
1511 {
1512         spa_t *spa;
1513
1514         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1515                 if (spa->spa_guid == guid)
1516                         return (spa);
1517
1518         return (NULL);
1519 }
1520
1521 static spa_t *
1522 spa_find_by_name(const char *name)
1523 {
1524         spa_t *spa;
1525
1526         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1527                 if (strcmp(spa->spa_name, name) == 0)
1528                         return (spa);
1529
1530         return (NULL);
1531 }
1532
1533 #ifdef BOOT2
1534 static spa_t *
1535 spa_get_primary(void)
1536 {
1537
1538         return (STAILQ_FIRST(&zfs_pools));
1539 }
1540
1541 static vdev_t *
1542 spa_get_primary_vdev(const spa_t *spa)
1543 {
1544         vdev_t *vdev;
1545         vdev_t *kid;
1546
1547         if (spa == NULL)
1548                 spa = spa_get_primary();
1549         if (spa == NULL)
1550                 return (NULL);
1551         vdev = spa->spa_root_vdev;
1552         if (vdev == NULL)
1553                 return (NULL);
1554         for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
1555             kid = STAILQ_FIRST(&vdev->v_children))
1556                 vdev = kid;
1557         return (vdev);
1558 }
1559 #endif
1560
1561 static spa_t *
1562 spa_create(uint64_t guid, const char *name)
1563 {
1564         spa_t *spa;
1565
1566         if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1567                 return (NULL);
1568         if ((spa->spa_name = strdup(name)) == NULL) {
1569                 free(spa);
1570                 return (NULL);
1571         }
1572         spa->spa_guid = guid;
1573         spa->spa_root_vdev = vdev_create(guid, NULL);
1574         if (spa->spa_root_vdev == NULL) {
1575                 free(spa->spa_name);
1576                 free(spa);
1577                 return (NULL);
1578         }
1579         spa->spa_root_vdev->v_name = strdup("root");
1580         STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1581
1582         return (spa);
1583 }
1584
1585 static const char *
1586 state_name(vdev_state_t state)
1587 {
1588         static const char *names[] = {
1589                 "UNKNOWN",
1590                 "CLOSED",
1591                 "OFFLINE",
1592                 "REMOVED",
1593                 "CANT_OPEN",
1594                 "FAULTED",
1595                 "DEGRADED",
1596                 "ONLINE"
1597         };
1598         return (names[state]);
1599 }
1600
1601 #ifdef BOOT2
1602
1603 #define pager_printf printf
1604
1605 #else
1606
1607 static int
1608 pager_printf(const char *fmt, ...)
1609 {
1610         char line[80];
1611         va_list args;
1612
1613         va_start(args, fmt);
1614         vsnprintf(line, sizeof(line), fmt, args);
1615         va_end(args);
1616         return (pager_output(line));
1617 }
1618
1619 #endif
1620
1621 #define STATUS_FORMAT   "        %s %s\n"
1622
1623 static int
1624 print_state(int indent, const char *name, vdev_state_t state)
1625 {
1626         int i;
1627         char buf[512];
1628
1629         buf[0] = 0;
1630         for (i = 0; i < indent; i++)
1631                 strcat(buf, "  ");
1632         strcat(buf, name);
1633         return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1634 }
1635
1636 static int
1637 vdev_status(vdev_t *vdev, int indent)
1638 {
1639         vdev_t *kid;
1640         int ret;
1641
1642         if (vdev->v_islog) {
1643                 (void) pager_output("        logs\n");
1644                 indent++;
1645         }
1646
1647         ret = print_state(indent, vdev->v_name, vdev->v_state);
1648         if (ret != 0)
1649                 return (ret);
1650
1651         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1652                 ret = vdev_status(kid, indent + 1);
1653                 if (ret != 0)
1654                         return (ret);
1655         }
1656         return (ret);
1657 }
1658
1659 static int
1660 spa_status(spa_t *spa)
1661 {
1662         static char bootfs[ZFS_MAXNAMELEN];
1663         uint64_t rootid;
1664         vdev_list_t *vlist;
1665         vdev_t *vdev;
1666         int good_kids, bad_kids, degraded_kids, ret;
1667         vdev_state_t state;
1668
1669         ret = pager_printf("  pool: %s\n", spa->spa_name);
1670         if (ret != 0)
1671                 return (ret);
1672
1673         if (zfs_get_root(spa, &rootid) == 0 &&
1674             zfs_rlookup(spa, rootid, bootfs) == 0) {
1675                 if (bootfs[0] == '\0')
1676                         ret = pager_printf("bootfs: %s\n", spa->spa_name);
1677                 else
1678                         ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1679                             bootfs);
1680                 if (ret != 0)
1681                         return (ret);
1682         }
1683         ret = pager_printf("config:\n\n");
1684         if (ret != 0)
1685                 return (ret);
1686         ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1687         if (ret != 0)
1688                 return (ret);
1689
1690         good_kids = 0;
1691         degraded_kids = 0;
1692         bad_kids = 0;
1693         vlist = &spa->spa_root_vdev->v_children;
1694         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1695                 if (vdev->v_state == VDEV_STATE_HEALTHY)
1696                         good_kids++;
1697                 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1698                         degraded_kids++;
1699                 else
1700                         bad_kids++;
1701         }
1702
1703         state = VDEV_STATE_CLOSED;
1704         if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1705                 state = VDEV_STATE_HEALTHY;
1706         else if ((good_kids + degraded_kids) > 0)
1707                 state = VDEV_STATE_DEGRADED;
1708
1709         ret = print_state(0, spa->spa_name, state);
1710         if (ret != 0)
1711                 return (ret);
1712
1713         STAILQ_FOREACH(vdev, vlist, v_childlink) {
1714                 ret = vdev_status(vdev, 1);
1715                 if (ret != 0)
1716                         return (ret);
1717         }
1718         return (ret);
1719 }
1720
1721 static int
1722 spa_all_status(void)
1723 {
1724         spa_t *spa;
1725         int first = 1, ret = 0;
1726
1727         STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1728                 if (!first) {
1729                         ret = pager_printf("\n");
1730                         if (ret != 0)
1731                                 return (ret);
1732                 }
1733                 first = 0;
1734                 ret = spa_status(spa);
1735                 if (ret != 0)
1736                         return (ret);
1737         }
1738         return (ret);
1739 }
1740
1741 static uint64_t
1742 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1743 {
1744         uint64_t label_offset;
1745
1746         if (l < VDEV_LABELS / 2)
1747                 label_offset = 0;
1748         else
1749                 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1750
1751         return (offset + l * sizeof (vdev_label_t) + label_offset);
1752 }
1753
1754 static int
1755 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1756 {
1757         unsigned int seq1 = 0;
1758         unsigned int seq2 = 0;
1759         int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1760
1761         if (cmp != 0)
1762                 return (cmp);
1763
1764         cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1765         if (cmp != 0)
1766                 return (cmp);
1767
1768         if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1769                 seq1 = MMP_SEQ(ub1);
1770
1771         if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1772                 seq2 = MMP_SEQ(ub2);
1773
1774         return (AVL_CMP(seq1, seq2));
1775 }
1776
1777 static int
1778 uberblock_verify(uberblock_t *ub)
1779 {
1780         if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1781                 byteswap_uint64_array(ub, sizeof (uberblock_t));
1782         }
1783
1784         if (ub->ub_magic != UBERBLOCK_MAGIC ||
1785             !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1786                 return (EINVAL);
1787
1788         return (0);
1789 }
1790
1791 static int
1792 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1793     size_t size)
1794 {
1795         blkptr_t bp;
1796         off_t off;
1797
1798         off = vdev_label_offset(vd->v_psize, l, offset);
1799
1800         BP_ZERO(&bp);
1801         BP_SET_LSIZE(&bp, size);
1802         BP_SET_PSIZE(&bp, size);
1803         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1804         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1805         DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1806         ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1807
1808         return (vdev_read_phys(vd, &bp, buf, off, size));
1809 }
1810
1811 static unsigned char *
1812 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1813 {
1814         vdev_phys_t *label;
1815         uint64_t best_txg = 0;
1816         uint64_t label_txg = 0;
1817         uint64_t asize;
1818         unsigned char *nvl;
1819         size_t nvl_size;
1820         int error;
1821
1822         label = malloc(sizeof (vdev_phys_t));
1823         if (label == NULL)
1824                 return (NULL);
1825
1826         nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4;
1827         nvl = malloc(nvl_size);
1828         if (nvl == NULL)
1829                 goto done;
1830
1831         for (int l = 0; l < VDEV_LABELS; l++) {
1832                 const unsigned char *nvlist;
1833
1834                 if (vdev_label_read(vd, l, label,
1835                     offsetof(vdev_label_t, vl_vdev_phys),
1836                     sizeof (vdev_phys_t)))
1837                         continue;
1838
1839                 if (label->vp_nvlist[0] != NV_ENCODE_XDR)
1840                         continue;
1841
1842                 nvlist = (const unsigned char *) label->vp_nvlist + 4;
1843                 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG,
1844                     DATA_TYPE_UINT64, NULL, &label_txg);
1845                 if (error != 0 || label_txg == 0) {
1846                         memcpy(nvl, nvlist, nvl_size);
1847                         goto done;
1848                 }
1849
1850                 if (label_txg <= txg && label_txg > best_txg) {
1851                         best_txg = label_txg;
1852                         memcpy(nvl, nvlist, nvl_size);
1853
1854                         /*
1855                          * Use asize from pool config. We need this
1856                          * because we can get bad value from BIOS.
1857                          */
1858                         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1859                             DATA_TYPE_UINT64, NULL, &asize) == 0) {
1860                                 vd->v_psize = asize +
1861                                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1862                         }
1863                 }
1864         }
1865
1866         if (best_txg == 0) {
1867                 free(nvl);
1868                 nvl = NULL;
1869         }
1870 done:
1871         free(label);
1872         return (nvl);
1873 }
1874
1875 static void
1876 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1877 {
1878         uberblock_t *buf;
1879
1880         buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1881         if (buf == NULL)
1882                 return;
1883
1884         for (int l = 0; l < VDEV_LABELS; l++) {
1885                 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1886                         if (vdev_label_read(vd, l, buf,
1887                             VDEV_UBERBLOCK_OFFSET(vd, n),
1888                             VDEV_UBERBLOCK_SIZE(vd)))
1889                                 continue;
1890                         if (uberblock_verify(buf) != 0)
1891                                 continue;
1892
1893                         if (vdev_uberblock_compare(buf, ub) > 0)
1894                                 *ub = *buf;
1895                 }
1896         }
1897         free(buf);
1898 }
1899
1900 static int
1901 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap)
1902 {
1903         vdev_t vtmp;
1904         spa_t *spa;
1905         vdev_t *vdev;
1906         unsigned char *nvlist;
1907         uint64_t val;
1908         uint64_t guid, vdev_children;
1909         uint64_t pool_txg, pool_guid;
1910         const char *pool_name;
1911         const unsigned char *features;
1912         int rc;
1913
1914         /*
1915          * Load the vdev label and figure out which
1916          * uberblock is most current.
1917          */
1918         memset(&vtmp, 0, sizeof(vtmp));
1919         vtmp.v_phys_read = _read;
1920         vtmp.v_read_priv = read_priv;
1921         vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv),
1922             (uint64_t)sizeof (vdev_label_t));
1923
1924         /* Test for minimum device size. */
1925         if (vtmp.v_psize < SPA_MINDEVSIZE)
1926                 return (EIO);
1927
1928         nvlist = vdev_label_read_config(&vtmp, UINT64_MAX);
1929         if (nvlist == NULL)
1930                 return (EIO);
1931
1932         if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
1933             NULL, &val) != 0) {
1934                 free(nvlist);
1935                 return (EIO);
1936         }
1937
1938         if (!SPA_VERSION_IS_SUPPORTED(val)) {
1939                 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
1940                     (unsigned)val, (unsigned)SPA_VERSION);
1941                 free(nvlist);
1942                 return (EIO);
1943         }
1944
1945         /* Check ZFS features for read */
1946         if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1947             DATA_TYPE_NVLIST, NULL, &features) == 0 &&
1948             nvlist_check_features_for_read(features) != 0) {
1949                 free(nvlist);
1950                 return (EIO);
1951         }
1952
1953         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
1954             NULL, &val) != 0) {
1955                 free(nvlist);
1956                 return (EIO);
1957         }
1958
1959         if (val == POOL_STATE_DESTROYED) {
1960                 /* We don't boot only from destroyed pools. */
1961                 free(nvlist);
1962                 return (EIO);
1963         }
1964
1965         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
1966             NULL, &pool_txg) != 0 ||
1967             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1968             NULL, &pool_guid) != 0 ||
1969             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
1970             NULL, &pool_name) != 0) {
1971                 /*
1972                  * Cache and spare devices end up here - just ignore
1973                  * them.
1974                  */
1975                 free(nvlist);
1976                 return (EIO);
1977         }
1978
1979         /*
1980          * Create the pool if this is the first time we've seen it.
1981          */
1982         spa = spa_find_by_guid(pool_guid);
1983         if (spa == NULL) {
1984                 nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_CHILDREN,
1985                     DATA_TYPE_UINT64, NULL, &vdev_children);
1986                 spa = spa_create(pool_guid, pool_name);
1987                 if (spa == NULL) {
1988                         free(nvlist);
1989                         return (ENOMEM);
1990                 }
1991                 spa->spa_root_vdev->v_nchildren = vdev_children;
1992         }
1993         if (pool_txg > spa->spa_txg)
1994                 spa->spa_txg = pool_txg;
1995
1996         /*
1997          * Get the vdev tree and create our in-core copy of it.
1998          * If we already have a vdev with this guid, this must
1999          * be some kind of alias (overlapping slices, dangerously dedicated
2000          * disks etc).
2001          */
2002         if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
2003             NULL, &guid) != 0) {
2004                 free(nvlist);
2005                 return (EIO);
2006         }
2007         vdev = vdev_find(guid);
2008         /* Has this vdev already been inited? */
2009         if (vdev && vdev->v_phys_read) {
2010                 free(nvlist);
2011                 return (EIO);
2012         }
2013
2014         rc = vdev_init_from_label(spa, nvlist);
2015         free(nvlist);
2016         if (rc != 0)
2017                 return (rc);
2018
2019         /*
2020          * We should already have created an incomplete vdev for this
2021          * vdev. Find it and initialise it with our read proc.
2022          */
2023         vdev = vdev_find(guid);
2024         if (vdev != NULL) {
2025                 vdev->v_phys_read = _read;
2026                 vdev->v_read_priv = read_priv;
2027                 vdev->v_psize = vtmp.v_psize;
2028                 /*
2029                  * If no other state is set, mark vdev healthy.
2030                  */
2031                 if (vdev->v_state == VDEV_STATE_UNKNOWN)
2032                         vdev->v_state = VDEV_STATE_HEALTHY;
2033         } else {
2034                 printf("ZFS: inconsistent nvlist contents\n");
2035                 return (EIO);
2036         }
2037
2038         if (vdev->v_islog)
2039                 spa->spa_with_log = vdev->v_islog;
2040
2041         /*
2042          * Re-evaluate top-level vdev state.
2043          */
2044         vdev_set_state(vdev->v_top);
2045
2046         /*
2047          * Ok, we are happy with the pool so far. Lets find
2048          * the best uberblock and then we can actually access
2049          * the contents of the pool.
2050          */
2051         vdev_uberblock_load(vdev, &spa->spa_uberblock);
2052
2053         if (spap != NULL)
2054                 *spap = spa;
2055         return (0);
2056 }
2057
2058 static int
2059 ilog2(int n)
2060 {
2061         int v;
2062
2063         for (v = 0; v < 32; v++)
2064                 if (n == (1 << v))
2065                         return (v);
2066         return (-1);
2067 }
2068
2069 static int
2070 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
2071 {
2072         blkptr_t gbh_bp;
2073         zio_gbh_phys_t zio_gb;
2074         char *pbuf;
2075         int i;
2076
2077         /* Artificial BP for gang block header. */
2078         gbh_bp = *bp;
2079         BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2080         BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
2081         BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
2082         BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
2083         for (i = 0; i < SPA_DVAS_PER_BP; i++)
2084                 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
2085
2086         /* Read gang header block using the artificial BP. */
2087         if (zio_read(spa, &gbh_bp, &zio_gb))
2088                 return (EIO);
2089
2090         pbuf = buf;
2091         for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
2092                 blkptr_t *gbp = &zio_gb.zg_blkptr[i];
2093
2094                 if (BP_IS_HOLE(gbp))
2095                         continue;
2096                 if (zio_read(spa, gbp, pbuf))
2097                         return (EIO);
2098                 pbuf += BP_GET_PSIZE(gbp);
2099         }
2100
2101         if (zio_checksum_verify(spa, bp, buf))
2102                 return (EIO);
2103         return (0);
2104 }
2105
2106 static int
2107 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
2108 {
2109         int cpfunc = BP_GET_COMPRESS(bp);
2110         uint64_t align, size;
2111         void *pbuf;
2112         int i, error;
2113
2114         /*
2115          * Process data embedded in block pointer
2116          */
2117         if (BP_IS_EMBEDDED(bp)) {
2118                 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
2119
2120                 size = BPE_GET_PSIZE(bp);
2121                 ASSERT(size <= BPE_PAYLOAD_SIZE);
2122
2123                 if (cpfunc != ZIO_COMPRESS_OFF)
2124                         pbuf = malloc(size);
2125                 else
2126                         pbuf = buf;
2127
2128                 if (pbuf == NULL)
2129                         return (ENOMEM);
2130
2131                 decode_embedded_bp_compressed(bp, pbuf);
2132                 error = 0;
2133
2134                 if (cpfunc != ZIO_COMPRESS_OFF) {
2135                         error = zio_decompress_data(cpfunc, pbuf,
2136                             size, buf, BP_GET_LSIZE(bp));
2137                         free(pbuf);
2138                 }
2139                 if (error != 0)
2140                         printf("ZFS: i/o error - unable to decompress "
2141                             "block pointer data, error %d\n", error);
2142                 return (error);
2143         }
2144
2145         error = EIO;
2146
2147         for (i = 0; i < SPA_DVAS_PER_BP; i++) {
2148                 const dva_t *dva = &bp->blk_dva[i];
2149                 vdev_t *vdev;
2150                 vdev_list_t *vlist;
2151                 uint64_t vdevid;
2152                 off_t offset;
2153
2154                 if (!dva->dva_word[0] && !dva->dva_word[1])
2155                         continue;
2156
2157                 vdevid = DVA_GET_VDEV(dva);
2158                 offset = DVA_GET_OFFSET(dva);
2159                 vlist = &spa->spa_root_vdev->v_children;
2160                 STAILQ_FOREACH(vdev, vlist, v_childlink) {
2161                         if (vdev->v_id == vdevid)
2162                                 break;
2163                 }
2164                 if (!vdev || !vdev->v_read)
2165                         continue;
2166
2167                 size = BP_GET_PSIZE(bp);
2168                 if (vdev->v_read == vdev_raidz_read) {
2169                         align = 1ULL << vdev->v_ashift;
2170                         if (P2PHASE(size, align) != 0)
2171                                 size = P2ROUNDUP(size, align);
2172                 }
2173                 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
2174                         pbuf = malloc(size);
2175                 else
2176                         pbuf = buf;
2177
2178                 if (pbuf == NULL) {
2179                         error = ENOMEM;
2180                         break;
2181                 }
2182
2183                 if (DVA_GET_GANG(dva))
2184                         error = zio_read_gang(spa, bp, pbuf);
2185                 else
2186                         error = vdev->v_read(vdev, bp, pbuf, offset, size);
2187                 if (error == 0) {
2188                         if (cpfunc != ZIO_COMPRESS_OFF)
2189                                 error = zio_decompress_data(cpfunc, pbuf,
2190                                     BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
2191                         else if (size != BP_GET_PSIZE(bp))
2192                                 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
2193                 }
2194                 if (buf != pbuf)
2195                         free(pbuf);
2196                 if (error == 0)
2197                         break;
2198         }
2199         if (error != 0)
2200                 printf("ZFS: i/o error - all block copies unavailable\n");
2201
2202         return (error);
2203 }
2204
2205 static int
2206 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset,
2207     void *buf, size_t buflen)
2208 {
2209         int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2210         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2211         int nlevels = dnode->dn_nlevels;
2212         int i, rc;
2213
2214         if (bsize > SPA_MAXBLOCKSIZE) {
2215                 printf("ZFS: I/O error - blocks larger than %llu are not "
2216                     "supported\n", SPA_MAXBLOCKSIZE);
2217                 return (EIO);
2218         }
2219
2220         /*
2221          * Note: bsize may not be a power of two here so we need to do an
2222          * actual divide rather than a bitshift.
2223          */
2224         while (buflen > 0) {
2225                 uint64_t bn = offset / bsize;
2226                 int boff = offset % bsize;
2227                 int ibn;
2228                 const blkptr_t *indbp;
2229                 blkptr_t bp;
2230
2231                 if (bn > dnode->dn_maxblkid)
2232                         return (EIO);
2233
2234                 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2235                         goto cached;
2236
2237                 indbp = dnode->dn_blkptr;
2238                 for (i = 0; i < nlevels; i++) {
2239                         /*
2240                          * Copy the bp from the indirect array so that
2241                          * we can re-use the scratch buffer for multi-level
2242                          * objects.
2243                          */
2244                         ibn = bn >> ((nlevels - i - 1) * ibshift);
2245                         ibn &= ((1 << ibshift) - 1);
2246                         bp = indbp[ibn];
2247                         if (BP_IS_HOLE(&bp)) {
2248                                 memset(dnode_cache_buf, 0, bsize);
2249                                 break;
2250                         }
2251                         rc = zio_read(spa, &bp, dnode_cache_buf);
2252                         if (rc)
2253                                 return (rc);
2254                         indbp = (const blkptr_t *) dnode_cache_buf;
2255                 }
2256                 dnode_cache_obj = dnode;
2257                 dnode_cache_bn = bn;
2258         cached:
2259
2260                 /*
2261                  * The buffer contains our data block. Copy what we
2262                  * need from it and loop.
2263                  */
2264                 i = bsize - boff;
2265                 if (i > buflen) i = buflen;
2266                 memcpy(buf, &dnode_cache_buf[boff], i);
2267                 buf = ((char *)buf) + i;
2268                 offset += i;
2269                 buflen -= i;
2270         }
2271
2272         return (0);
2273 }
2274
2275 /*
2276  * Lookup a value in a microzap directory.
2277  */
2278 static int
2279 mzap_lookup(const mzap_phys_t *mz, size_t size, const char *name,
2280     uint64_t *value)
2281 {
2282         const mzap_ent_phys_t *mze;
2283         int chunks, i;
2284
2285         /*
2286          * Microzap objects use exactly one block. Read the whole
2287          * thing.
2288          */
2289         chunks = size / MZAP_ENT_LEN - 1;
2290         for (i = 0; i < chunks; i++) {
2291                 mze = &mz->mz_chunk[i];
2292                 if (strcmp(mze->mze_name, name) == 0) {
2293                         *value = mze->mze_value;
2294                         return (0);
2295                 }
2296         }
2297
2298         return (ENOENT);
2299 }
2300
2301 /*
2302  * Compare a name with a zap leaf entry. Return non-zero if the name
2303  * matches.
2304  */
2305 static int
2306 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2307     const char *name)
2308 {
2309         size_t namelen;
2310         const zap_leaf_chunk_t *nc;
2311         const char *p;
2312
2313         namelen = zc->l_entry.le_name_numints;
2314
2315         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2316         p = name;
2317         while (namelen > 0) {
2318                 size_t len;
2319
2320                 len = namelen;
2321                 if (len > ZAP_LEAF_ARRAY_BYTES)
2322                         len = ZAP_LEAF_ARRAY_BYTES;
2323                 if (memcmp(p, nc->l_array.la_array, len))
2324                         return (0);
2325                 p += len;
2326                 namelen -= len;
2327                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2328         }
2329
2330         return (1);
2331 }
2332
2333 /*
2334  * Extract a uint64_t value from a zap leaf entry.
2335  */
2336 static uint64_t
2337 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2338 {
2339         const zap_leaf_chunk_t *vc;
2340         int i;
2341         uint64_t value;
2342         const uint8_t *p;
2343
2344         vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2345         for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2346                 value = (value << 8) | p[i];
2347         }
2348
2349         return (value);
2350 }
2351
2352 static void
2353 stv(int len, void *addr, uint64_t value)
2354 {
2355         switch (len) {
2356         case 1:
2357                 *(uint8_t *)addr = value;
2358                 return;
2359         case 2:
2360                 *(uint16_t *)addr = value;
2361                 return;
2362         case 4:
2363                 *(uint32_t *)addr = value;
2364                 return;
2365         case 8:
2366                 *(uint64_t *)addr = value;
2367                 return;
2368         }
2369 }
2370
2371 /*
2372  * Extract a array from a zap leaf entry.
2373  */
2374 static void
2375 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2376     uint64_t integer_size, uint64_t num_integers, void *buf)
2377 {
2378         uint64_t array_int_len = zc->l_entry.le_value_intlen;
2379         uint64_t value = 0;
2380         uint64_t *u64 = buf;
2381         char *p = buf;
2382         int len = MIN(zc->l_entry.le_value_numints, num_integers);
2383         int chunk = zc->l_entry.le_value_chunk;
2384         int byten = 0;
2385
2386         if (integer_size == 8 && len == 1) {
2387                 *u64 = fzap_leaf_value(zl, zc);
2388                 return;
2389         }
2390
2391         while (len > 0) {
2392                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2393                 int i;
2394
2395                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2396                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2397                         value = (value << 8) | la->la_array[i];
2398                         byten++;
2399                         if (byten == array_int_len) {
2400                                 stv(integer_size, p, value);
2401                                 byten = 0;
2402                                 len--;
2403                                 if (len == 0)
2404                                         return;
2405                                 p += integer_size;
2406                         }
2407                 }
2408                 chunk = la->la_next;
2409         }
2410 }
2411
2412 static int
2413 fzap_check_size(uint64_t integer_size, uint64_t num_integers)
2414 {
2415
2416         switch (integer_size) {
2417         case 1:
2418         case 2:
2419         case 4:
2420         case 8:
2421                 break;
2422         default:
2423                 return (EINVAL);
2424         }
2425
2426         if (integer_size * num_integers > ZAP_MAXVALUELEN)
2427                 return (E2BIG);
2428
2429         return (0);
2430 }
2431
2432 static void
2433 zap_leaf_free(zap_leaf_t *leaf)
2434 {
2435         free(leaf->l_phys);
2436         free(leaf);
2437 }
2438
2439 static int
2440 zap_get_leaf_byblk(fat_zap_t *zap, uint64_t blk, zap_leaf_t **lp)
2441 {
2442         int bs = FZAP_BLOCK_SHIFT(zap);
2443         int err;
2444
2445         *lp = malloc(sizeof(**lp));
2446         if (*lp == NULL)
2447                 return (ENOMEM);
2448
2449         (*lp)->l_bs = bs;
2450         (*lp)->l_phys = malloc(1 << bs);
2451
2452         if ((*lp)->l_phys == NULL) {
2453                 free(*lp);
2454                 return (ENOMEM);
2455         }
2456         err = dnode_read(zap->zap_spa, zap->zap_dnode, blk << bs, (*lp)->l_phys,
2457             1 << bs);
2458         if (err != 0) {
2459                 zap_leaf_free(*lp);
2460         }
2461         return (err);
2462 }
2463
2464 static int
2465 zap_table_load(fat_zap_t *zap, zap_table_phys_t *tbl, uint64_t idx,
2466     uint64_t *valp)
2467 {
2468         int bs = FZAP_BLOCK_SHIFT(zap);
2469         uint64_t blk = idx >> (bs - 3);
2470         uint64_t off = idx & ((1 << (bs - 3)) - 1);
2471         uint64_t *buf;
2472         int rc;
2473
2474         buf = malloc(1 << zap->zap_block_shift);
2475         if (buf == NULL)
2476                 return (ENOMEM);
2477         rc = dnode_read(zap->zap_spa, zap->zap_dnode, (tbl->zt_blk + blk) << bs,
2478             buf, 1 << zap->zap_block_shift);
2479         if (rc == 0)
2480                 *valp = buf[off];
2481         free(buf);
2482         return (rc);
2483 }
2484
2485 static int
2486 zap_idx_to_blk(fat_zap_t *zap, uint64_t idx, uint64_t *valp)
2487 {
2488         if (zap->zap_phys->zap_ptrtbl.zt_numblks == 0) {
2489                 *valp = ZAP_EMBEDDED_PTRTBL_ENT(zap, idx);
2490                 return (0);
2491         } else {
2492                 return (zap_table_load(zap, &zap->zap_phys->zap_ptrtbl,
2493                     idx, valp));
2494         }
2495 }
2496
2497 #define ZAP_HASH_IDX(hash, n)   (((n) == 0) ? 0 : ((hash) >> (64 - (n))))
2498 static int
2499 zap_deref_leaf(fat_zap_t *zap, uint64_t h, zap_leaf_t **lp)
2500 {
2501         uint64_t idx, blk;
2502         int err;
2503
2504         idx = ZAP_HASH_IDX(h, zap->zap_phys->zap_ptrtbl.zt_shift);
2505         err = zap_idx_to_blk(zap, idx, &blk);
2506         if (err != 0)
2507                 return (err);
2508         return (zap_get_leaf_byblk(zap, blk, lp));
2509 }
2510
2511 #define CHAIN_END       0xffff  /* end of the chunk chain */
2512 #define LEAF_HASH(l, h) \
2513         ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
2514         ((h) >> \
2515         (64 - ZAP_LEAF_HASH_SHIFT(l) - (l)->l_phys->l_hdr.lh_prefix_len)))
2516 #define LEAF_HASH_ENTPTR(l, h)  (&(l)->l_phys->l_hash[LEAF_HASH(l, h)])
2517
2518 static int
2519 zap_leaf_lookup(zap_leaf_t *zl, uint64_t hash, const char *name,
2520     uint64_t integer_size, uint64_t num_integers, void *value)
2521 {
2522         int rc;
2523         uint16_t *chunkp;
2524         struct zap_leaf_entry *le;
2525
2526         /*
2527          * Make sure this chunk matches our hash.
2528          */
2529         if (zl->l_phys->l_hdr.lh_prefix_len > 0 &&
2530             zl->l_phys->l_hdr.lh_prefix !=
2531             hash >> (64 - zl->l_phys->l_hdr.lh_prefix_len))
2532                 return (EIO);
2533
2534         rc = ENOENT;
2535         for (chunkp = LEAF_HASH_ENTPTR(zl, hash);
2536             *chunkp != CHAIN_END; chunkp = &le->le_next) {
2537                 zap_leaf_chunk_t *zc;
2538                 uint16_t chunk = *chunkp;
2539
2540                 le = ZAP_LEAF_ENTRY(zl, chunk);
2541                 if (le->le_hash != hash)
2542                         continue;
2543                 zc = &ZAP_LEAF_CHUNK(zl, chunk);
2544                 if (fzap_name_equal(zl, zc, name)) {
2545                         if (zc->l_entry.le_value_intlen > integer_size) {
2546                                 rc = EINVAL;
2547                         } else {
2548                                 fzap_leaf_array(zl, zc, integer_size,
2549                                     num_integers, value);
2550                                 rc = 0;
2551                         }
2552                         break;
2553                 }
2554         }
2555         return (rc);
2556 }
2557
2558 /*
2559  * Lookup a value in a fatzap directory.
2560  */
2561 static int
2562 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2563     const char *name, uint64_t integer_size, uint64_t num_integers,
2564     void *value)
2565 {
2566         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2567         fat_zap_t z;
2568         zap_leaf_t *zl;
2569         uint64_t hash;
2570         int rc;
2571
2572         if (zh->zap_magic != ZAP_MAGIC)
2573                 return (EIO);
2574
2575         if ((rc = fzap_check_size(integer_size, num_integers)) != 0)
2576                 return (rc);
2577
2578         z.zap_block_shift = ilog2(bsize);
2579         z.zap_phys = zh;
2580         z.zap_spa = spa;
2581         z.zap_dnode = dnode;
2582
2583         hash = zap_hash(zh->zap_salt, name);
2584         rc = zap_deref_leaf(&z, hash, &zl);
2585         if (rc != 0)
2586                 return (rc);
2587
2588         rc = zap_leaf_lookup(zl, hash, name, integer_size, num_integers, value);
2589
2590         zap_leaf_free(zl);
2591         return (rc);
2592 }
2593
2594 /*
2595  * Lookup a name in a zap object and return its value as a uint64_t.
2596  */
2597 static int
2598 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2599     uint64_t integer_size, uint64_t num_integers, void *value)
2600 {
2601         int rc;
2602         zap_phys_t *zap;
2603         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2604
2605         zap = malloc(size);
2606         if (zap == NULL)
2607                 return (ENOMEM);
2608
2609         rc = dnode_read(spa, dnode, 0, zap, size);
2610         if (rc)
2611                 goto done;
2612
2613         switch (zap->zap_block_type) {
2614         case ZBT_MICRO:
2615                 rc = mzap_lookup((const mzap_phys_t *)zap, size, name, value);
2616                 break;
2617         case ZBT_HEADER:
2618                 rc = fzap_lookup(spa, dnode, zap, name, integer_size,
2619                     num_integers, value);
2620                 break;
2621         default:
2622                 printf("ZFS: invalid zap_type=%" PRIx64 "\n",
2623                     zap->zap_block_type);
2624                 rc = EIO;
2625         }
2626 done:
2627         free(zap);
2628         return (rc);
2629 }
2630
2631 /*
2632  * List a microzap directory.
2633  */
2634 static int
2635 mzap_list(const mzap_phys_t *mz, size_t size,
2636     int (*callback)(const char *, uint64_t))
2637 {
2638         const mzap_ent_phys_t *mze;
2639         int chunks, i, rc;
2640
2641         /*
2642          * Microzap objects use exactly one block. Read the whole
2643          * thing.
2644          */
2645         rc = 0;
2646         chunks = size / MZAP_ENT_LEN - 1;
2647         for (i = 0; i < chunks; i++) {
2648                 mze = &mz->mz_chunk[i];
2649                 if (mze->mze_name[0]) {
2650                         rc = callback(mze->mze_name, mze->mze_value);
2651                         if (rc != 0)
2652                                 break;
2653                 }
2654         }
2655
2656         return (rc);
2657 }
2658
2659 /*
2660  * List a fatzap directory.
2661  */
2662 static int
2663 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2664     int (*callback)(const char *, uint64_t))
2665 {
2666         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2667         fat_zap_t z;
2668         uint64_t i;
2669         int j, rc;
2670
2671         if (zh->zap_magic != ZAP_MAGIC)
2672                 return (EIO);
2673
2674         z.zap_block_shift = ilog2(bsize);
2675         z.zap_phys = zh;
2676
2677         /*
2678          * This assumes that the leaf blocks start at block 1. The
2679          * documentation isn't exactly clear on this.
2680          */
2681         zap_leaf_t zl;
2682         zl.l_bs = z.zap_block_shift;
2683         zl.l_phys = malloc(bsize);
2684         if (zl.l_phys == NULL)
2685                 return (ENOMEM);
2686
2687         for (i = 0; i < zh->zap_num_leafs; i++) {
2688                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2689                 char name[256], *p;
2690                 uint64_t value;
2691
2692                 if (dnode_read(spa, dnode, off, zl.l_phys, bsize)) {
2693                         free(zl.l_phys);
2694                         return (EIO);
2695                 }
2696
2697                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2698                         zap_leaf_chunk_t *zc, *nc;
2699                         int namelen;
2700
2701                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2702                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2703                                 continue;
2704                         namelen = zc->l_entry.le_name_numints;
2705                         if (namelen > sizeof(name))
2706                                 namelen = sizeof(name);
2707
2708                         /*
2709                          * Paste the name back together.
2710                          */
2711                         nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2712                         p = name;
2713                         while (namelen > 0) {
2714                                 int len;
2715                                 len = namelen;
2716                                 if (len > ZAP_LEAF_ARRAY_BYTES)
2717                                         len = ZAP_LEAF_ARRAY_BYTES;
2718                                 memcpy(p, nc->l_array.la_array, len);
2719                                 p += len;
2720                                 namelen -= len;
2721                                 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2722                         }
2723
2724                         /*
2725                          * Assume the first eight bytes of the value are
2726                          * a uint64_t.
2727                          */
2728                         value = fzap_leaf_value(&zl, zc);
2729
2730                         /* printf("%s 0x%jx\n", name, (uintmax_t)value); */
2731                         rc = callback((const char *)name, value);
2732                         if (rc != 0) {
2733                                 free(zl.l_phys);
2734                                 return (rc);
2735                         }
2736                 }
2737         }
2738
2739         free(zl.l_phys);
2740         return (0);
2741 }
2742
2743 static int zfs_printf(const char *name, uint64_t value __unused)
2744 {
2745
2746         printf("%s\n", name);
2747
2748         return (0);
2749 }
2750
2751 /*
2752  * List a zap directory.
2753  */
2754 static int
2755 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2756 {
2757         zap_phys_t *zap;
2758         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2759         int rc;
2760
2761         zap = malloc(size);
2762         if (zap == NULL)
2763                 return (ENOMEM);
2764
2765         rc = dnode_read(spa, dnode, 0, zap, size);
2766         if (rc == 0) {
2767                 if (zap->zap_block_type == ZBT_MICRO)
2768                         rc = mzap_list((const mzap_phys_t *)zap, size,
2769                             zfs_printf);
2770                 else
2771                         rc = fzap_list(spa, dnode, zap, zfs_printf);
2772         }
2773         free(zap);
2774         return (rc);
2775 }
2776
2777 static int
2778 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum,
2779     dnode_phys_t *dnode)
2780 {
2781         off_t offset;
2782
2783         offset = objnum * sizeof(dnode_phys_t);
2784         return dnode_read(spa, &os->os_meta_dnode, offset,
2785                 dnode, sizeof(dnode_phys_t));
2786 }
2787
2788 /*
2789  * Lookup a name in a microzap directory.
2790  */
2791 static int
2792 mzap_rlookup(const mzap_phys_t *mz, size_t size, char *name, uint64_t value)
2793 {
2794         const mzap_ent_phys_t *mze;
2795         int chunks, i;
2796
2797         /*
2798          * Microzap objects use exactly one block. Read the whole
2799          * thing.
2800          */
2801         chunks = size / MZAP_ENT_LEN - 1;
2802         for (i = 0; i < chunks; i++) {
2803                 mze = &mz->mz_chunk[i];
2804                 if (value == mze->mze_value) {
2805                         strcpy(name, mze->mze_name);
2806                         return (0);
2807                 }
2808         }
2809
2810         return (ENOENT);
2811 }
2812
2813 static void
2814 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2815 {
2816         size_t namelen;
2817         const zap_leaf_chunk_t *nc;
2818         char *p;
2819
2820         namelen = zc->l_entry.le_name_numints;
2821
2822         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2823         p = name;
2824         while (namelen > 0) {
2825                 size_t len;
2826                 len = namelen;
2827                 if (len > ZAP_LEAF_ARRAY_BYTES)
2828                         len = ZAP_LEAF_ARRAY_BYTES;
2829                 memcpy(p, nc->l_array.la_array, len);
2830                 p += len;
2831                 namelen -= len;
2832                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2833         }
2834
2835         *p = '\0';
2836 }
2837
2838 static int
2839 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, zap_phys_t *zh,
2840     char *name, uint64_t value)
2841 {
2842         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2843         fat_zap_t z;
2844         uint64_t i;
2845         int j, rc;
2846
2847         if (zh->zap_magic != ZAP_MAGIC)
2848                 return (EIO);
2849
2850         z.zap_block_shift = ilog2(bsize);
2851         z.zap_phys = zh;
2852
2853         /*
2854          * This assumes that the leaf blocks start at block 1. The
2855          * documentation isn't exactly clear on this.
2856          */
2857         zap_leaf_t zl;
2858         zl.l_bs = z.zap_block_shift;
2859         zl.l_phys = malloc(bsize);
2860         if (zl.l_phys == NULL)
2861                 return (ENOMEM);
2862
2863         for (i = 0; i < zh->zap_num_leafs; i++) {
2864                 off_t off = ((off_t)(i + 1)) << zl.l_bs;
2865
2866                 rc = dnode_read(spa, dnode, off, zl.l_phys, bsize);
2867                 if (rc != 0)
2868                         goto done;
2869
2870                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2871                         zap_leaf_chunk_t *zc;
2872
2873                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2874                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2875                                 continue;
2876                         if (zc->l_entry.le_value_intlen != 8 ||
2877                             zc->l_entry.le_value_numints != 1)
2878                                 continue;
2879
2880                         if (fzap_leaf_value(&zl, zc) == value) {
2881                                 fzap_name_copy(&zl, zc, name);
2882                                 goto done;
2883                         }
2884                 }
2885         }
2886
2887         rc = ENOENT;
2888 done:
2889         free(zl.l_phys);
2890         return (rc);
2891 }
2892
2893 static int
2894 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name,
2895     uint64_t value)
2896 {
2897         zap_phys_t *zap;
2898         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2899         int rc;
2900
2901         zap = malloc(size);
2902         if (zap == NULL)
2903                 return (ENOMEM);
2904
2905         rc = dnode_read(spa, dnode, 0, zap, size);
2906         if (rc == 0) {
2907                 if (zap->zap_block_type == ZBT_MICRO)
2908                         rc = mzap_rlookup((const mzap_phys_t *)zap, size,
2909                             name, value);
2910                 else
2911                         rc = fzap_rlookup(spa, dnode, zap, name, value);
2912         }
2913         free(zap);
2914         return (rc);
2915 }
2916
2917 static int
2918 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
2919 {
2920         char name[256];
2921         char component[256];
2922         uint64_t dir_obj, parent_obj, child_dir_zapobj;
2923         dnode_phys_t child_dir_zap, dataset, dir, parent;
2924         dsl_dir_phys_t *dd;
2925         dsl_dataset_phys_t *ds;
2926         char *p;
2927         int len;
2928
2929         p = &name[sizeof(name) - 1];
2930         *p = '\0';
2931
2932         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2933                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2934                 return (EIO);
2935         }
2936         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2937         dir_obj = ds->ds_dir_obj;
2938
2939         for (;;) {
2940                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
2941                         return (EIO);
2942                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2943
2944                 /* Actual loop condition. */
2945                 parent_obj = dd->dd_parent_obj;
2946                 if (parent_obj == 0)
2947                         break;
2948
2949                 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj,
2950                     &parent) != 0)
2951                         return (EIO);
2952                 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
2953                 child_dir_zapobj = dd->dd_child_dir_zapobj;
2954                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
2955                     &child_dir_zap) != 0)
2956                         return (EIO);
2957                 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
2958                         return (EIO);
2959
2960                 len = strlen(component);
2961                 p -= len;
2962                 memcpy(p, component, len);
2963                 --p;
2964                 *p = '/';
2965
2966                 /* Actual loop iteration. */
2967                 dir_obj = parent_obj;
2968         }
2969
2970         if (*p != '\0')
2971                 ++p;
2972         strcpy(result, p);
2973
2974         return (0);
2975 }
2976
2977 static int
2978 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
2979 {
2980         char element[256];
2981         uint64_t dir_obj, child_dir_zapobj;
2982         dnode_phys_t child_dir_zap, dir;
2983         dsl_dir_phys_t *dd;
2984         const char *p, *q;
2985
2986         if (objset_get_dnode(spa, &spa->spa_mos,
2987             DMU_POOL_DIRECTORY_OBJECT, &dir))
2988                 return (EIO);
2989         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
2990             1, &dir_obj))
2991                 return (EIO);
2992
2993         p = name;
2994         for (;;) {
2995                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
2996                         return (EIO);
2997                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2998
2999                 while (*p == '/')
3000                         p++;
3001                 /* Actual loop condition #1. */
3002                 if (*p == '\0')
3003                         break;
3004
3005                 q = strchr(p, '/');
3006                 if (q) {
3007                         memcpy(element, p, q - p);
3008                         element[q - p] = '\0';
3009                         p = q + 1;
3010                 } else {
3011                         strcpy(element, p);
3012                         p += strlen(p);
3013                 }
3014
3015                 child_dir_zapobj = dd->dd_child_dir_zapobj;
3016                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3017                     &child_dir_zap) != 0)
3018                         return (EIO);
3019
3020                 /* Actual loop condition #2. */
3021                 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
3022                     1, &dir_obj) != 0)
3023                         return (ENOENT);
3024         }
3025
3026         *objnum = dd->dd_head_dataset_obj;
3027         return (0);
3028 }
3029
3030 #ifndef BOOT2
3031 static int
3032 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
3033 {
3034         uint64_t dir_obj, child_dir_zapobj;
3035         dnode_phys_t child_dir_zap, dir, dataset;
3036         dsl_dataset_phys_t *ds;
3037         dsl_dir_phys_t *dd;
3038
3039         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3040                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3041                 return (EIO);
3042         }
3043         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3044         dir_obj = ds->ds_dir_obj;
3045
3046         if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
3047                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3048                 return (EIO);
3049         }
3050         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3051
3052         child_dir_zapobj = dd->dd_child_dir_zapobj;
3053         if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3054             &child_dir_zap) != 0) {
3055                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3056                 return (EIO);
3057         }
3058
3059         return (zap_list(spa, &child_dir_zap) != 0);
3060 }
3061
3062 int
3063 zfs_callback_dataset(const spa_t *spa, uint64_t objnum,
3064     int (*callback)(const char *, uint64_t))
3065 {
3066         uint64_t dir_obj, child_dir_zapobj;
3067         dnode_phys_t child_dir_zap, dir, dataset;
3068         dsl_dataset_phys_t *ds;
3069         dsl_dir_phys_t *dd;
3070         zap_phys_t *zap;
3071         size_t size;
3072         int err;
3073
3074         err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
3075         if (err != 0) {
3076                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3077                 return (err);
3078         }
3079         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3080         dir_obj = ds->ds_dir_obj;
3081
3082         err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
3083         if (err != 0) {
3084                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
3085                 return (err);
3086         }
3087         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3088
3089         child_dir_zapobj = dd->dd_child_dir_zapobj;
3090         err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj,
3091             &child_dir_zap);
3092         if (err != 0) {
3093                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
3094                 return (err);
3095         }
3096
3097         size = child_dir_zap.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3098         zap = malloc(size);
3099         if (zap != NULL) {
3100                 err = dnode_read(spa, &child_dir_zap, 0, zap, size);
3101                 if (err != 0)
3102                         goto done;
3103
3104                 if (zap->zap_block_type == ZBT_MICRO)
3105                         err = mzap_list((const mzap_phys_t *)zap, size,
3106                             callback);
3107                 else
3108                         err = fzap_list(spa, &child_dir_zap, zap, callback);
3109         } else {
3110                 err = ENOMEM;
3111         }
3112 done:
3113         free(zap);
3114         return (err);
3115 }
3116 #endif
3117
3118 /*
3119  * Find the object set given the object number of its dataset object
3120  * and return its details in *objset
3121  */
3122 static int
3123 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
3124 {
3125         dnode_phys_t dataset;
3126         dsl_dataset_phys_t *ds;
3127
3128         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
3129                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
3130                 return (EIO);
3131         }
3132
3133         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
3134         if (zio_read(spa, &ds->ds_bp, objset)) {
3135                 printf("ZFS: can't read object set for dataset %ju\n",
3136                     (uintmax_t)objnum);
3137                 return (EIO);
3138         }
3139
3140         return (0);
3141 }
3142
3143 /*
3144  * Find the object set pointed to by the BOOTFS property or the root
3145  * dataset if there is none and return its details in *objset
3146  */
3147 static int
3148 zfs_get_root(const spa_t *spa, uint64_t *objid)
3149 {
3150         dnode_phys_t dir, propdir;
3151         uint64_t props, bootfs, root;
3152
3153         *objid = 0;
3154
3155         /*
3156          * Start with the MOS directory object.
3157          */
3158         if (objset_get_dnode(spa, &spa->spa_mos,
3159             DMU_POOL_DIRECTORY_OBJECT, &dir)) {
3160                 printf("ZFS: can't read MOS object directory\n");
3161                 return (EIO);
3162         }
3163
3164         /*
3165          * Lookup the pool_props and see if we can find a bootfs.
3166          */
3167         if (zap_lookup(spa, &dir, DMU_POOL_PROPS,
3168             sizeof(props), 1, &props) == 0 &&
3169             objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0 &&
3170             zap_lookup(spa, &propdir, "bootfs",
3171             sizeof(bootfs), 1, &bootfs) == 0 && bootfs != 0) {
3172                 *objid = bootfs;
3173                 return (0);
3174         }
3175         /*
3176          * Lookup the root dataset directory
3177          */
3178         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET,
3179             sizeof(root), 1, &root) ||
3180             objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
3181                 printf("ZFS: can't find root dsl_dir\n");
3182                 return (EIO);
3183         }
3184
3185         /*
3186          * Use the information from the dataset directory's bonus buffer
3187          * to find the dataset object and from that the object set itself.
3188          */
3189         dsl_dir_phys_t *dd = (dsl_dir_phys_t *)&dir.dn_bonus;
3190         *objid = dd->dd_head_dataset_obj;
3191         return (0);
3192 }
3193
3194 static int
3195 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
3196 {
3197
3198         mount->spa = spa;
3199
3200         /*
3201          * Find the root object set if not explicitly provided
3202          */
3203         if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
3204                 printf("ZFS: can't find root filesystem\n");
3205                 return (EIO);
3206         }
3207
3208         if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
3209                 printf("ZFS: can't open root filesystem\n");
3210                 return (EIO);
3211         }
3212
3213         mount->rootobj = rootobj;
3214
3215         return (0);
3216 }
3217
3218 /*
3219  * callback function for feature name checks.
3220  */
3221 static int
3222 check_feature(const char *name, uint64_t value)
3223 {
3224         int i;
3225
3226         if (value == 0)
3227                 return (0);
3228         if (name[0] == '\0')
3229                 return (0);
3230
3231         for (i = 0; features_for_read[i] != NULL; i++) {
3232                 if (strcmp(name, features_for_read[i]) == 0)
3233                         return (0);
3234         }
3235         printf("ZFS: unsupported feature: %s\n", name);
3236         return (EIO);
3237 }
3238
3239 /*
3240  * Checks whether the MOS features that are active are supported.
3241  */
3242 static int
3243 check_mos_features(const spa_t *spa)
3244 {
3245         dnode_phys_t dir;
3246         zap_phys_t *zap;
3247         uint64_t objnum;
3248         size_t size;
3249         int rc;
3250
3251         if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
3252             &dir)) != 0)
3253                 return (rc);
3254         if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
3255             sizeof (objnum), 1, &objnum)) != 0) {
3256                 /*
3257                  * It is older pool without features. As we have already
3258                  * tested the label, just return without raising the error.
3259                  */
3260                 return (0);
3261         }
3262
3263         if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
3264                 return (rc);
3265
3266         if (dir.dn_type != DMU_OTN_ZAP_METADATA)
3267                 return (EIO);
3268
3269         size = dir.dn_datablkszsec << SPA_MINBLOCKSHIFT;
3270         zap = malloc(size);
3271         if (zap == NULL)
3272                 return (ENOMEM);
3273
3274         if (dnode_read(spa, &dir, 0, zap, size)) {
3275                 free(zap);
3276                 return (EIO);
3277         }
3278
3279         if (zap->zap_block_type == ZBT_MICRO)
3280                 rc = mzap_list((const mzap_phys_t *)zap, size, check_feature);
3281         else
3282                 rc = fzap_list(spa, &dir, zap, check_feature);
3283
3284         free(zap);
3285         return (rc);
3286 }
3287
3288 static int
3289 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value)
3290 {
3291         dnode_phys_t dir;
3292         size_t size;
3293         int rc;
3294         unsigned char *nv;
3295
3296         *value = NULL;
3297         if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
3298                 return (rc);
3299         if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
3300             dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
3301                 return (EIO);
3302         }
3303
3304         if (dir.dn_bonuslen != sizeof (uint64_t))
3305                 return (EIO);
3306
3307         size = *(uint64_t *)DN_BONUS(&dir);
3308         nv = malloc(size);
3309         if (nv == NULL)
3310                 return (ENOMEM);
3311
3312         rc = dnode_read(spa, &dir, 0, nv, size);
3313         if (rc != 0) {
3314                 free(nv);
3315                 nv = NULL;
3316                 return (rc);
3317         }
3318         *value = nv;
3319         return (rc);
3320 }
3321
3322 static int
3323 zfs_spa_init(spa_t *spa)
3324 {
3325         dnode_phys_t dir;
3326         uint64_t config_object;
3327         unsigned char *nvlist;
3328         int rc;
3329
3330         if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
3331                 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
3332                 return (EIO);
3333         }
3334         if (spa->spa_mos.os_type != DMU_OST_META) {
3335                 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
3336                 return (EIO);
3337         }
3338
3339         if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
3340             &dir)) {
3341                 printf("ZFS: failed to read pool %s directory object\n",
3342                     spa->spa_name);
3343                 return (EIO);
3344         }
3345         /* this is allowed to fail, older pools do not have salt */
3346         rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
3347             sizeof (spa->spa_cksum_salt.zcs_bytes),
3348             spa->spa_cksum_salt.zcs_bytes);
3349
3350         rc = check_mos_features(spa);
3351         if (rc != 0) {
3352                 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3353                 return (rc);
3354         }
3355
3356         rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3357             sizeof (config_object), 1, &config_object);
3358         if (rc != 0) {
3359                 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3360                 return (EIO);
3361         }
3362         rc = load_nvlist(spa, config_object, &nvlist);
3363         if (rc != 0)
3364                 return (rc);
3365
3366         /*
3367          * Update vdevs from MOS config. Note, we do skip encoding bytes
3368          * here. See also vdev_label_read_config().
3369          */
3370         rc = vdev_init_from_nvlist(spa, nvlist + 4);
3371         free(nvlist);
3372         return (rc);
3373 }
3374
3375 static int
3376 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3377 {
3378
3379         if (dn->dn_bonustype != DMU_OT_SA) {
3380                 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3381
3382                 sb->st_mode = zp->zp_mode;
3383                 sb->st_uid = zp->zp_uid;
3384                 sb->st_gid = zp->zp_gid;
3385                 sb->st_size = zp->zp_size;
3386         } else {
3387                 sa_hdr_phys_t *sahdrp;
3388                 int hdrsize;
3389                 size_t size = 0;
3390                 void *buf = NULL;
3391
3392                 if (dn->dn_bonuslen != 0)
3393                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3394                 else {
3395                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3396                                 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3397                                 int error;
3398
3399                                 size = BP_GET_LSIZE(bp);
3400                                 buf = malloc(size);
3401                                 if (buf == NULL)
3402                                         error = ENOMEM;
3403                                 else
3404                                         error = zio_read(spa, bp, buf);
3405
3406                                 if (error != 0) {
3407                                         free(buf);
3408                                         return (error);
3409                                 }
3410                                 sahdrp = buf;
3411                         } else {
3412                                 return (EIO);
3413                         }
3414                 }
3415                 hdrsize = SA_HDR_SIZE(sahdrp);
3416                 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3417                     SA_MODE_OFFSET);
3418                 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3419                     SA_UID_OFFSET);
3420                 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3421                     SA_GID_OFFSET);
3422                 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3423                     SA_SIZE_OFFSET);
3424                 free(buf);
3425         }
3426
3427         return (0);
3428 }
3429
3430 static int
3431 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3432 {
3433         int rc = 0;
3434
3435         if (dn->dn_bonustype == DMU_OT_SA) {
3436                 sa_hdr_phys_t *sahdrp = NULL;
3437                 size_t size = 0;
3438                 void *buf = NULL;
3439                 int hdrsize;
3440                 char *p;
3441
3442                 if (dn->dn_bonuslen != 0) {
3443                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3444                 } else {
3445                         blkptr_t *bp;
3446
3447                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3448                                 return (EIO);
3449                         bp = DN_SPILL_BLKPTR(dn);
3450
3451                         size = BP_GET_LSIZE(bp);
3452                         buf = malloc(size);
3453                         if (buf == NULL)
3454                                 rc = ENOMEM;
3455                         else
3456                                 rc = zio_read(spa, bp, buf);
3457                         if (rc != 0) {
3458                                 free(buf);
3459                                 return (rc);
3460                         }
3461                         sahdrp = buf;
3462                 }
3463                 hdrsize = SA_HDR_SIZE(sahdrp);
3464                 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3465                 memcpy(path, p, psize);
3466                 free(buf);
3467                 return (0);
3468         }
3469         /*
3470          * Second test is purely to silence bogus compiler
3471          * warning about accessing past the end of dn_bonus.
3472          */
3473         if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3474             sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3475                 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3476         } else {
3477                 rc = dnode_read(spa, dn, 0, path, psize);
3478         }
3479         return (rc);
3480 }
3481
3482 struct obj_list {
3483         uint64_t                objnum;
3484         STAILQ_ENTRY(obj_list)  entry;
3485 };
3486
3487 /*
3488  * Lookup a file and return its dnode.
3489  */
3490 static int
3491 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3492 {
3493         int rc;
3494         uint64_t objnum;
3495         const spa_t *spa;
3496         dnode_phys_t dn;
3497         const char *p, *q;
3498         char element[256];
3499         char path[1024];
3500         int symlinks_followed = 0;
3501         struct stat sb;
3502         struct obj_list *entry, *tentry;
3503         STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3504
3505         spa = mount->spa;
3506         if (mount->objset.os_type != DMU_OST_ZFS) {
3507                 printf("ZFS: unexpected object set type %ju\n",
3508                     (uintmax_t)mount->objset.os_type);
3509                 return (EIO);
3510         }
3511
3512         if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3513                 return (ENOMEM);
3514
3515         /*
3516          * Get the root directory dnode.
3517          */
3518         rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3519         if (rc) {
3520                 free(entry);
3521                 return (rc);
3522         }
3523
3524         rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof(objnum), 1, &objnum);
3525         if (rc) {
3526                 free(entry);
3527                 return (rc);
3528         }
3529         entry->objnum = objnum;
3530         STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3531
3532         rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3533         if (rc != 0)
3534                 goto done;
3535
3536         p = upath;
3537         while (p && *p) {
3538                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3539                 if (rc != 0)
3540                         goto done;
3541
3542                 while (*p == '/')
3543                         p++;
3544                 if (*p == '\0')
3545                         break;
3546                 q = p;
3547                 while (*q != '\0' && *q != '/')
3548                         q++;
3549
3550                 /* skip dot */
3551                 if (p + 1 == q && p[0] == '.') {
3552                         p++;
3553                         continue;
3554                 }
3555                 /* double dot */
3556                 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3557                         p += 2;
3558                         if (STAILQ_FIRST(&on_cache) ==
3559                             STAILQ_LAST(&on_cache, obj_list, entry)) {
3560                                 rc = ENOENT;
3561                                 goto done;
3562                         }
3563                         entry = STAILQ_FIRST(&on_cache);
3564                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3565                         free(entry);
3566                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3567                         continue;
3568                 }
3569                 if (q - p + 1 > sizeof(element)) {
3570                         rc = ENAMETOOLONG;
3571                         goto done;
3572                 }
3573                 memcpy(element, p, q - p);
3574                 element[q - p] = 0;
3575                 p = q;
3576
3577                 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3578                         goto done;
3579                 if (!S_ISDIR(sb.st_mode)) {
3580                         rc = ENOTDIR;
3581                         goto done;
3582                 }
3583
3584                 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3585                 if (rc)
3586                         goto done;
3587                 objnum = ZFS_DIRENT_OBJ(objnum);
3588
3589                 if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3590                         rc = ENOMEM;
3591                         goto done;
3592                 }
3593                 entry->objnum = objnum;
3594                 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3595                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3596                 if (rc)
3597                         goto done;
3598
3599                 /*
3600                  * Check for symlink.
3601                  */
3602                 rc = zfs_dnode_stat(spa, &dn, &sb);
3603                 if (rc)
3604                         goto done;
3605                 if (S_ISLNK(sb.st_mode)) {
3606                         if (symlinks_followed > 10) {
3607                                 rc = EMLINK;
3608                                 goto done;
3609                         }
3610                         symlinks_followed++;
3611
3612                         /*
3613                          * Read the link value and copy the tail of our
3614                          * current path onto the end.
3615                          */
3616                         if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3617                                 rc = ENAMETOOLONG;
3618                                 goto done;
3619                         }
3620                         strcpy(&path[sb.st_size], p);
3621
3622                         rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3623                         if (rc != 0)
3624                                 goto done;
3625
3626                         /*
3627                          * Restart with the new path, starting either at
3628                          * the root or at the parent depending whether or
3629                          * not the link is relative.
3630                          */
3631                         p = path;
3632                         if (*p == '/') {
3633                                 while (STAILQ_FIRST(&on_cache) !=
3634                                     STAILQ_LAST(&on_cache, obj_list, entry)) {
3635                                         entry = STAILQ_FIRST(&on_cache);
3636                                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3637                                         free(entry);
3638                                 }
3639                         } else {
3640                                 entry = STAILQ_FIRST(&on_cache);
3641                                 STAILQ_REMOVE_HEAD(&on_cache, entry);
3642                                 free(entry);
3643                         }
3644                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3645                 }
3646         }
3647
3648         *dnode = dn;
3649 done:
3650         STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3651                 free(entry);
3652         return (rc);
3653 }