]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - stand/libsa/zfs/zfsimpl.c
MFV r354378,r354379,r354386: 10499 Multi-modifier protection (MMP)
[FreeBSD/FreeBSD.git] / stand / libsa / zfs / zfsimpl.c
1 /*-
2  * Copyright (c) 2007 Doug Rabson
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26
27 #include <sys/cdefs.h>
28 __FBSDID("$FreeBSD$");
29
30 /*
31  *      Stand-alone ZFS file reader.
32  */
33
34 #include <sys/endian.h>
35 #include <sys/stat.h>
36 #include <sys/stdint.h>
37 #include <sys/list.h>
38
39 #include "zfsimpl.h"
40 #include "zfssubr.c"
41
42
43 struct zfsmount {
44         const spa_t     *spa;
45         objset_phys_t   objset;
46         uint64_t        rootobj;
47 };
48 static struct zfsmount zfsmount __unused;
49
50 /*
51  * The indirect_child_t represents the vdev that we will read from, when we
52  * need to read all copies of the data (e.g. for scrub or reconstruction).
53  * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
54  * ic_vdev is the same as is_vdev.  However, for mirror top-level vdevs,
55  * ic_vdev is a child of the mirror.
56  */
57 typedef struct indirect_child {
58         void *ic_data;
59         vdev_t *ic_vdev;
60 } indirect_child_t;
61
62 /*
63  * The indirect_split_t represents one mapped segment of an i/o to the
64  * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
65  * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
66  * For split blocks, there will be several of these.
67  */
68 typedef struct indirect_split {
69         list_node_t is_node; /* link on iv_splits */
70
71         /*
72          * is_split_offset is the offset into the i/o.
73          * This is the sum of the previous splits' is_size's.
74          */
75         uint64_t is_split_offset;
76
77         vdev_t *is_vdev; /* top-level vdev */
78         uint64_t is_target_offset; /* offset on is_vdev */
79         uint64_t is_size;
80         int is_children; /* number of entries in is_child[] */
81
82         /*
83          * is_good_child is the child that we are currently using to
84          * attempt reconstruction.
85          */
86         int is_good_child;
87
88         indirect_child_t is_child[1]; /* variable-length */
89 } indirect_split_t;
90
91 /*
92  * The indirect_vsd_t is associated with each i/o to the indirect vdev.
93  * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
94  */
95 typedef struct indirect_vsd {
96         boolean_t iv_split_block;
97         boolean_t iv_reconstruct;
98
99         list_t iv_splits; /* list of indirect_split_t's */
100 } indirect_vsd_t;
101
102 /*
103  * List of all vdevs, chained through v_alllink.
104  */
105 static vdev_list_t zfs_vdevs;
106
107  /*
108  * List of ZFS features supported for read
109  */
110 static const char *features_for_read[] = {
111         "org.illumos:lz4_compress",
112         "com.delphix:hole_birth",
113         "com.delphix:extensible_dataset",
114         "com.delphix:embedded_data",
115         "org.open-zfs:large_blocks",
116         "org.illumos:sha512",
117         "org.illumos:skein",
118         "org.zfsonlinux:large_dnode",
119         "com.joyent:multi_vdev_crash_dump",
120         "com.delphix:spacemap_histogram",
121         "com.delphix:zpool_checkpoint",
122         "com.delphix:spacemap_v2",
123         "com.datto:encryption",
124         "org.zfsonlinux:allocation_classes",
125         "com.datto:resilver_defer",
126         "com.delphix:device_removal",
127         "com.delphix:obsolete_counts",
128         NULL
129 };
130
131 /*
132  * List of all pools, chained through spa_link.
133  */
134 static spa_list_t zfs_pools;
135
136 static const dnode_phys_t *dnode_cache_obj;
137 static uint64_t dnode_cache_bn;
138 static char *dnode_cache_buf;
139 static char *zap_scratch;
140 static char *zfs_temp_buf, *zfs_temp_end, *zfs_temp_ptr;
141
142 #define TEMP_SIZE       (1024 * 1024)
143
144 static int zio_read(const spa_t *spa, const blkptr_t *bp, void *buf);
145 static int zfs_get_root(const spa_t *spa, uint64_t *objid);
146 static int zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result);
147 static int zap_lookup(const spa_t *spa, const dnode_phys_t *dnode,
148     const char *name, uint64_t integer_size, uint64_t num_integers,
149     void *value);
150 static int objset_get_dnode(const spa_t *, const objset_phys_t *, uint64_t,
151     dnode_phys_t *);
152 static int dnode_read(const spa_t *, const dnode_phys_t *, off_t, void *,
153     size_t);
154 static int vdev_indirect_read(vdev_t *, const blkptr_t *, void *, off_t,
155     size_t);
156 static int vdev_mirror_read(vdev_t *, const blkptr_t *, void *, off_t, size_t);
157 vdev_indirect_mapping_t *vdev_indirect_mapping_open(spa_t *, objset_phys_t *,
158     uint64_t);
159 vdev_indirect_mapping_entry_phys_t *
160     vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *, uint64_t,
161     uint64_t, uint64_t *);
162
163 static void
164 zfs_init(void)
165 {
166         STAILQ_INIT(&zfs_vdevs);
167         STAILQ_INIT(&zfs_pools);
168
169         zfs_temp_buf = malloc(TEMP_SIZE);
170         zfs_temp_end = zfs_temp_buf + TEMP_SIZE;
171         zfs_temp_ptr = zfs_temp_buf;
172         dnode_cache_buf = malloc(SPA_MAXBLOCKSIZE);
173         zap_scratch = malloc(SPA_MAXBLOCKSIZE);
174
175         zfs_init_crc();
176 }
177
178 static void *
179 zfs_alloc(size_t size)
180 {
181         char *ptr;
182
183         if (zfs_temp_ptr + size > zfs_temp_end) {
184                 panic("ZFS: out of temporary buffer space");
185         }
186         ptr = zfs_temp_ptr;
187         zfs_temp_ptr += size;
188
189         return (ptr);
190 }
191
192 static void
193 zfs_free(void *ptr, size_t size)
194 {
195
196         zfs_temp_ptr -= size;
197         if (zfs_temp_ptr != ptr) {
198                 panic("ZFS: zfs_alloc()/zfs_free() mismatch");
199         }
200 }
201
202 static int
203 xdr_int(const unsigned char **xdr, int *ip)
204 {
205         *ip = be32dec(*xdr);
206         (*xdr) += 4;
207         return (0);
208 }
209
210 static int
211 xdr_u_int(const unsigned char **xdr, u_int *ip)
212 {
213         *ip = be32dec(*xdr);
214         (*xdr) += 4;
215         return (0);
216 }
217
218 static int
219 xdr_uint64_t(const unsigned char **xdr, uint64_t *lp)
220 {
221         u_int hi, lo;
222
223         xdr_u_int(xdr, &hi);
224         xdr_u_int(xdr, &lo);
225         *lp = (((uint64_t) hi) << 32) | lo;
226         return (0);
227 }
228
229 static int
230 nvlist_find(const unsigned char *nvlist, const char *name, int type,
231             int *elementsp, void *valuep)
232 {
233         const unsigned char *p, *pair;
234         int junk;
235         int encoded_size, decoded_size;
236
237         p = nvlist;
238         xdr_int(&p, &junk);
239         xdr_int(&p, &junk);
240
241         pair = p;
242         xdr_int(&p, &encoded_size);
243         xdr_int(&p, &decoded_size);
244         while (encoded_size && decoded_size) {
245                 int namelen, pairtype, elements;
246                 const char *pairname;
247
248                 xdr_int(&p, &namelen);
249                 pairname = (const char*) p;
250                 p += roundup(namelen, 4);
251                 xdr_int(&p, &pairtype);
252
253                 if (!memcmp(name, pairname, namelen) && type == pairtype) {
254                         xdr_int(&p, &elements);
255                         if (elementsp)
256                                 *elementsp = elements;
257                         if (type == DATA_TYPE_UINT64) {
258                                 xdr_uint64_t(&p, (uint64_t *) valuep);
259                                 return (0);
260                         } else if (type == DATA_TYPE_STRING) {
261                                 int len;
262                                 xdr_int(&p, &len);
263                                 (*(const char**) valuep) = (const char*) p;
264                                 return (0);
265                         } else if (type == DATA_TYPE_NVLIST
266                                    || type == DATA_TYPE_NVLIST_ARRAY) {
267                                 (*(const unsigned char**) valuep) =
268                                          (const unsigned char*) p;
269                                 return (0);
270                         } else {
271                                 return (EIO);
272                         }
273                 } else {
274                         /*
275                          * Not the pair we are looking for, skip to the next one.
276                          */
277                         p = pair + encoded_size;
278                 }
279
280                 pair = p;
281                 xdr_int(&p, &encoded_size);
282                 xdr_int(&p, &decoded_size);
283         }
284
285         return (EIO);
286 }
287
288 static int
289 nvlist_check_features_for_read(const unsigned char *nvlist)
290 {
291         const unsigned char *p, *pair;
292         int junk;
293         int encoded_size, decoded_size;
294         int rc;
295
296         rc = 0;
297
298         p = nvlist;
299         xdr_int(&p, &junk);
300         xdr_int(&p, &junk);
301
302         pair = p;
303         xdr_int(&p, &encoded_size);
304         xdr_int(&p, &decoded_size);
305         while (encoded_size && decoded_size) {
306                 int namelen, pairtype;
307                 const char *pairname;
308                 int i, found;
309
310                 found = 0;
311
312                 xdr_int(&p, &namelen);
313                 pairname = (const char*) p;
314                 p += roundup(namelen, 4);
315                 xdr_int(&p, &pairtype);
316
317                 for (i = 0; features_for_read[i] != NULL; i++) {
318                         if (!memcmp(pairname, features_for_read[i], namelen)) {
319                                 found = 1;
320                                 break;
321                         }
322                 }
323
324                 if (!found) {
325                         printf("ZFS: unsupported feature: %s\n", pairname);
326                         rc = EIO;
327                 }
328
329                 p = pair + encoded_size;
330
331                 pair = p;
332                 xdr_int(&p, &encoded_size);
333                 xdr_int(&p, &decoded_size);
334         }
335
336         return (rc);
337 }
338
339 /*
340  * Return the next nvlist in an nvlist array.
341  */
342 static const unsigned char *
343 nvlist_next(const unsigned char *nvlist)
344 {
345         const unsigned char *p, *pair;
346         int junk;
347         int encoded_size, decoded_size;
348
349         p = nvlist;
350         xdr_int(&p, &junk);
351         xdr_int(&p, &junk);
352
353         pair = p;
354         xdr_int(&p, &encoded_size);
355         xdr_int(&p, &decoded_size);
356         while (encoded_size && decoded_size) {
357                 p = pair + encoded_size;
358
359                 pair = p;
360                 xdr_int(&p, &encoded_size);
361                 xdr_int(&p, &decoded_size);
362         }
363
364         return p;
365 }
366
367 #ifdef TEST
368
369 static const unsigned char *
370 nvlist_print(const unsigned char *nvlist, unsigned int indent)
371 {
372         static const char* typenames[] = {
373                 "DATA_TYPE_UNKNOWN",
374                 "DATA_TYPE_BOOLEAN",
375                 "DATA_TYPE_BYTE",
376                 "DATA_TYPE_INT16",
377                 "DATA_TYPE_UINT16",
378                 "DATA_TYPE_INT32",
379                 "DATA_TYPE_UINT32",
380                 "DATA_TYPE_INT64",
381                 "DATA_TYPE_UINT64",
382                 "DATA_TYPE_STRING",
383                 "DATA_TYPE_BYTE_ARRAY",
384                 "DATA_TYPE_INT16_ARRAY",
385                 "DATA_TYPE_UINT16_ARRAY",
386                 "DATA_TYPE_INT32_ARRAY",
387                 "DATA_TYPE_UINT32_ARRAY",
388                 "DATA_TYPE_INT64_ARRAY",
389                 "DATA_TYPE_UINT64_ARRAY",
390                 "DATA_TYPE_STRING_ARRAY",
391                 "DATA_TYPE_HRTIME",
392                 "DATA_TYPE_NVLIST",
393                 "DATA_TYPE_NVLIST_ARRAY",
394                 "DATA_TYPE_BOOLEAN_VALUE",
395                 "DATA_TYPE_INT8",
396                 "DATA_TYPE_UINT8",
397                 "DATA_TYPE_BOOLEAN_ARRAY",
398                 "DATA_TYPE_INT8_ARRAY",
399                 "DATA_TYPE_UINT8_ARRAY"
400         };
401
402         unsigned int i, j;
403         const unsigned char *p, *pair;
404         int junk;
405         int encoded_size, decoded_size;
406
407         p = nvlist;
408         xdr_int(&p, &junk);
409         xdr_int(&p, &junk);
410
411         pair = p;
412         xdr_int(&p, &encoded_size);
413         xdr_int(&p, &decoded_size);
414         while (encoded_size && decoded_size) {
415                 int namelen, pairtype, elements;
416                 const char *pairname;
417
418                 xdr_int(&p, &namelen);
419                 pairname = (const char*) p;
420                 p += roundup(namelen, 4);
421                 xdr_int(&p, &pairtype);
422
423                 for (i = 0; i < indent; i++)
424                         printf(" ");
425                 printf("%s %s", typenames[pairtype], pairname);
426
427                 xdr_int(&p, &elements);
428                 switch (pairtype) {
429                 case DATA_TYPE_UINT64: {
430                         uint64_t val;
431                         xdr_uint64_t(&p, &val);
432                         printf(" = 0x%jx\n", (uintmax_t)val);
433                         break;
434                 }
435
436                 case DATA_TYPE_STRING: {
437                         int len;
438                         xdr_int(&p, &len);
439                         printf(" = \"%s\"\n", p);
440                         break;
441                 }
442
443                 case DATA_TYPE_NVLIST:
444                         printf("\n");
445                         nvlist_print(p, indent + 1);
446                         break;
447
448                 case DATA_TYPE_NVLIST_ARRAY:
449                         for (j = 0; j < elements; j++) {
450                                 printf("[%d]\n", j);
451                                 p = nvlist_print(p, indent + 1);
452                                 if (j != elements - 1) {
453                                         for (i = 0; i < indent; i++)
454                                                 printf(" ");
455                                         printf("%s %s", typenames[pairtype], pairname);
456                                 }
457                         }
458                         break;
459
460                 default:
461                         printf("\n");
462                 }
463
464                 p = pair + encoded_size;
465
466                 pair = p;
467                 xdr_int(&p, &encoded_size);
468                 xdr_int(&p, &decoded_size);
469         }
470
471         return p;
472 }
473
474 #endif
475
476 static int
477 vdev_read_phys(vdev_t *vdev, const blkptr_t *bp, void *buf,
478     off_t offset, size_t size)
479 {
480         size_t psize;
481         int rc;
482
483         if (!vdev->v_phys_read)
484                 return (EIO);
485
486         if (bp) {
487                 psize = BP_GET_PSIZE(bp);
488         } else {
489                 psize = size;
490         }
491
492         /*printf("ZFS: reading %zu bytes at 0x%jx to %p\n", psize, (uintmax_t)offset, buf);*/
493         rc = vdev->v_phys_read(vdev, vdev->v_read_priv, offset, buf, psize);
494         if (rc)
495                 return (rc);
496         if (bp != NULL)
497                 return (zio_checksum_verify(vdev->spa, bp, buf));
498
499         return (0);
500 }
501
502 typedef struct remap_segment {
503         vdev_t *rs_vd;
504         uint64_t rs_offset;
505         uint64_t rs_asize;
506         uint64_t rs_split_offset;
507         list_node_t rs_node;
508 } remap_segment_t;
509
510 static remap_segment_t *
511 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
512 {
513         remap_segment_t *rs = malloc(sizeof (remap_segment_t));
514
515         if (rs != NULL) {
516                 rs->rs_vd = vd;
517                 rs->rs_offset = offset;
518                 rs->rs_asize = asize;
519                 rs->rs_split_offset = split_offset;
520         }
521
522         return (rs);
523 }
524
525 vdev_indirect_mapping_t *
526 vdev_indirect_mapping_open(spa_t *spa, objset_phys_t *os,
527     uint64_t mapping_object)
528 {
529         vdev_indirect_mapping_t *vim;
530         vdev_indirect_mapping_phys_t *vim_phys;
531         int rc;
532
533         vim = calloc(1, sizeof (*vim));
534         if (vim == NULL)
535                 return (NULL);
536
537         vim->vim_dn = calloc(1, sizeof (*vim->vim_dn));
538         if (vim->vim_dn == NULL) {
539                 free(vim);
540                 return (NULL);
541         }
542
543         rc = objset_get_dnode(spa, os, mapping_object, vim->vim_dn);
544         if (rc != 0) {
545                 free(vim->vim_dn);
546                 free(vim);
547                 return (NULL);
548         }
549
550         vim->vim_spa = spa;
551         vim->vim_phys = malloc(sizeof (*vim->vim_phys));
552         if (vim->vim_phys == NULL) {
553                 free(vim->vim_dn);
554                 free(vim);
555                 return (NULL);
556         }
557
558         vim_phys = (vdev_indirect_mapping_phys_t *)DN_BONUS(vim->vim_dn);
559         *vim->vim_phys = *vim_phys;
560
561         vim->vim_objset = os;
562         vim->vim_object = mapping_object;
563         vim->vim_entries = NULL;
564
565         vim->vim_havecounts =
566             (vim->vim_dn->dn_bonuslen > VDEV_INDIRECT_MAPPING_SIZE_V0);
567         return (vim);
568 }
569
570 /*
571  * Compare an offset with an indirect mapping entry; there are three
572  * possible scenarios:
573  *
574  *     1. The offset is "less than" the mapping entry; meaning the
575  *        offset is less than the source offset of the mapping entry. In
576  *        this case, there is no overlap between the offset and the
577  *        mapping entry and -1 will be returned.
578  *
579  *     2. The offset is "greater than" the mapping entry; meaning the
580  *        offset is greater than the mapping entry's source offset plus
581  *        the entry's size. In this case, there is no overlap between
582  *        the offset and the mapping entry and 1 will be returned.
583  *
584  *        NOTE: If the offset is actually equal to the entry's offset
585  *        plus size, this is considered to be "greater" than the entry,
586  *        and this case applies (i.e. 1 will be returned). Thus, the
587  *        entry's "range" can be considered to be inclusive at its
588  *        start, but exclusive at its end: e.g. [src, src + size).
589  *
590  *     3. The last case to consider is if the offset actually falls
591  *        within the mapping entry's range. If this is the case, the
592  *        offset is considered to be "equal to" the mapping entry and
593  *        0 will be returned.
594  *
595  *        NOTE: If the offset is equal to the entry's source offset,
596  *        this case applies and 0 will be returned. If the offset is
597  *        equal to the entry's source plus its size, this case does
598  *        *not* apply (see "NOTE" above for scenario 2), and 1 will be
599  *        returned.
600  */
601 static int
602 dva_mapping_overlap_compare(const void *v_key, const void *v_array_elem)
603 {
604         const uint64_t *key = v_key;
605         const vdev_indirect_mapping_entry_phys_t *array_elem =
606             v_array_elem;
607         uint64_t src_offset = DVA_MAPPING_GET_SRC_OFFSET(array_elem);
608
609         if (*key < src_offset) {
610                 return (-1);
611         } else if (*key < src_offset + DVA_GET_ASIZE(&array_elem->vimep_dst)) {
612                 return (0);
613         } else {
614                 return (1);
615         }
616 }
617
618 /*
619  * Return array entry.
620  */
621 static vdev_indirect_mapping_entry_phys_t *
622 vdev_indirect_mapping_entry(vdev_indirect_mapping_t *vim, uint64_t index)
623 {
624         uint64_t size;
625         off_t offset = 0;
626         int rc;
627
628         if (vim->vim_phys->vimp_num_entries == 0)
629                 return (NULL);
630
631         if (vim->vim_entries == NULL) {
632                 uint64_t bsize;
633
634                 bsize = vim->vim_dn->dn_datablkszsec << SPA_MINBLOCKSHIFT;
635                 size = vim->vim_phys->vimp_num_entries *
636                     sizeof (*vim->vim_entries);
637                 if (size > bsize) {
638                         size = bsize / sizeof (*vim->vim_entries);
639                         size *= sizeof (*vim->vim_entries);
640                 }
641                 vim->vim_entries = malloc(size);
642                 if (vim->vim_entries == NULL)
643                         return (NULL);
644                 vim->vim_num_entries = size / sizeof (*vim->vim_entries);
645                 offset = index * sizeof (*vim->vim_entries);
646         }
647
648         /* We have data in vim_entries */
649         if (offset == 0) {
650                 if (index >= vim->vim_entry_offset &&
651                     index <= vim->vim_entry_offset + vim->vim_num_entries) {
652                         index -= vim->vim_entry_offset;
653                         return (&vim->vim_entries[index]);
654                 }
655                 offset = index * sizeof (*vim->vim_entries);
656         }
657
658         vim->vim_entry_offset = index;
659         size = vim->vim_num_entries * sizeof (*vim->vim_entries);
660         rc = dnode_read(vim->vim_spa, vim->vim_dn, offset, vim->vim_entries,
661             size);
662         if (rc != 0) {
663                 /* Read error, invalidate vim_entries. */
664                 free(vim->vim_entries);
665                 vim->vim_entries = NULL;
666                 return (NULL);
667         }
668         index -= vim->vim_entry_offset;
669         return (&vim->vim_entries[index]);
670 }
671
672 /*
673  * Returns the mapping entry for the given offset.
674  *
675  * It's possible that the given offset will not be in the mapping table
676  * (i.e. no mapping entries contain this offset), in which case, the
677  * return value value depends on the "next_if_missing" parameter.
678  *
679  * If the offset is not found in the table and "next_if_missing" is
680  * B_FALSE, then NULL will always be returned. The behavior is intended
681  * to allow consumers to get the entry corresponding to the offset
682  * parameter, iff the offset overlaps with an entry in the table.
683  *
684  * If the offset is not found in the table and "next_if_missing" is
685  * B_TRUE, then the entry nearest to the given offset will be returned,
686  * such that the entry's source offset is greater than the offset
687  * passed in (i.e. the "next" mapping entry in the table is returned, if
688  * the offset is missing from the table). If there are no entries whose
689  * source offset is greater than the passed in offset, NULL is returned.
690  */
691 static vdev_indirect_mapping_entry_phys_t *
692 vdev_indirect_mapping_entry_for_offset(vdev_indirect_mapping_t *vim,
693     uint64_t offset)
694 {
695         ASSERT(vim->vim_phys->vimp_num_entries > 0);
696
697         vdev_indirect_mapping_entry_phys_t *entry;
698
699         uint64_t last = vim->vim_phys->vimp_num_entries - 1;
700         uint64_t base = 0;
701
702         /*
703          * We don't define these inside of the while loop because we use
704          * their value in the case that offset isn't in the mapping.
705          */
706         uint64_t mid;
707         int result;
708
709         while (last >= base) {
710                 mid = base + ((last - base) >> 1);
711
712                 entry = vdev_indirect_mapping_entry(vim, mid);
713                 if (entry == NULL)
714                         break;
715                 result = dva_mapping_overlap_compare(&offset, entry);
716
717                 if (result == 0) {
718                         break;
719                 } else if (result < 0) {
720                         last = mid - 1;
721                 } else {
722                         base = mid + 1;
723                 }
724         }
725         return (entry);
726 }
727
728 /*
729  * Given an indirect vdev and an extent on that vdev, it duplicates the
730  * physical entries of the indirect mapping that correspond to the extent
731  * to a new array and returns a pointer to it. In addition, copied_entries
732  * is populated with the number of mapping entries that were duplicated.
733  *
734  * Finally, since we are doing an allocation, it is up to the caller to
735  * free the array allocated in this function.
736  */
737 vdev_indirect_mapping_entry_phys_t *
738 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
739     uint64_t asize, uint64_t *copied_entries)
740 {
741         vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
742         vdev_indirect_mapping_t *vim = vd->v_mapping;
743         uint64_t entries = 0;
744
745         vdev_indirect_mapping_entry_phys_t *first_mapping =
746             vdev_indirect_mapping_entry_for_offset(vim, offset);
747         ASSERT3P(first_mapping, !=, NULL);
748
749         vdev_indirect_mapping_entry_phys_t *m = first_mapping;
750         while (asize > 0) {
751                 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
752                 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
753                 uint64_t inner_size = MIN(asize, size - inner_offset);
754
755                 offset += inner_size;
756                 asize -= inner_size;
757                 entries++;
758                 m++;
759         }
760
761         size_t copy_length = entries * sizeof (*first_mapping);
762         duplicate_mappings = malloc(copy_length);
763         if (duplicate_mappings != NULL)
764                 bcopy(first_mapping, duplicate_mappings, copy_length);
765         else
766                 entries = 0;
767
768         *copied_entries = entries;
769
770         return (duplicate_mappings);
771 }
772
773 static vdev_t *
774 vdev_lookup_top(spa_t *spa, uint64_t vdev)
775 {
776         vdev_t *rvd;
777
778         STAILQ_FOREACH(rvd, &spa->spa_vdevs, v_childlink)
779                 if (rvd->v_id == vdev)
780                         break;
781
782         return (rvd);
783 }
784
785 /*
786  * This is a callback for vdev_indirect_remap() which allocates an
787  * indirect_split_t for each split segment and adds it to iv_splits.
788  */
789 static void
790 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
791     uint64_t size, void *arg)
792 {
793         int n = 1;
794         zio_t *zio = arg;
795         indirect_vsd_t *iv = zio->io_vsd;
796
797         if (vd->v_read == vdev_indirect_read)
798                 return;
799
800         if (vd->v_read == vdev_mirror_read)
801                 n = vd->v_nchildren;
802
803         indirect_split_t *is =
804             malloc(offsetof(indirect_split_t, is_child[n]));
805         if (is == NULL) {
806                 zio->io_error = ENOMEM;
807                 return;
808         }
809         bzero(is, offsetof(indirect_split_t, is_child[n]));
810
811         is->is_children = n;
812         is->is_size = size;
813         is->is_split_offset = split_offset;
814         is->is_target_offset = offset;
815         is->is_vdev = vd;
816
817         /*
818          * Note that we only consider multiple copies of the data for
819          * *mirror* vdevs.  We don't for "replacing" or "spare" vdevs, even
820          * though they use the same ops as mirror, because there's only one
821          * "good" copy under the replacing/spare.
822          */
823         if (vd->v_read == vdev_mirror_read) {
824                 int i = 0;
825                 vdev_t *kid;
826
827                 STAILQ_FOREACH(kid, &vd->v_children, v_childlink) {
828                         is->is_child[i++].ic_vdev = kid;
829                 }
830         } else {
831                 is->is_child[0].ic_vdev = vd;
832         }
833
834         list_insert_tail(&iv->iv_splits, is);
835 }
836
837 static void
838 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize, void *arg)
839 {
840         list_t stack;
841         spa_t *spa = vd->spa;
842         zio_t *zio = arg;
843         remap_segment_t *rs;
844
845         list_create(&stack, sizeof (remap_segment_t),
846             offsetof(remap_segment_t, rs_node));
847
848         rs = rs_alloc(vd, offset, asize, 0);
849         if (rs == NULL) {
850                 printf("vdev_indirect_remap: out of memory.\n");
851                 zio->io_error = ENOMEM;
852         }
853         for ( ; rs != NULL; rs = list_remove_head(&stack)) {
854                 vdev_t *v = rs->rs_vd;
855                 uint64_t num_entries = 0;
856                 /* vdev_indirect_mapping_t *vim = v->v_mapping; */
857                 vdev_indirect_mapping_entry_phys_t *mapping =
858                     vdev_indirect_mapping_duplicate_adjacent_entries(v,
859                     rs->rs_offset, rs->rs_asize, &num_entries);
860
861                 if (num_entries == 0)
862                         zio->io_error = ENOMEM;
863
864                 for (uint64_t i = 0; i < num_entries; i++) {
865                         vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
866                         uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
867                         uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
868                         uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
869                         uint64_t inner_offset = rs->rs_offset -
870                             DVA_MAPPING_GET_SRC_OFFSET(m);
871                         uint64_t inner_size =
872                             MIN(rs->rs_asize, size - inner_offset);
873                         vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
874
875                         if (dst_v->v_read == vdev_indirect_read) {
876                                 remap_segment_t *o;
877
878                                 o = rs_alloc(dst_v, dst_offset + inner_offset,
879                                     inner_size, rs->rs_split_offset);
880                                 if (o == NULL) {
881                                         printf("vdev_indirect_remap: "
882                                             "out of memory.\n");
883                                         zio->io_error = ENOMEM;
884                                         break;
885                                 }
886
887                                 list_insert_head(&stack, o);
888                         }
889                         vdev_indirect_gather_splits(rs->rs_split_offset, dst_v,
890                             dst_offset + inner_offset,
891                             inner_size, arg);
892
893                         /*
894                          * vdev_indirect_gather_splits can have memory
895                          * allocation error, we can not recover from it.
896                          */
897                         if (zio->io_error != 0)
898                                 break;
899
900                         rs->rs_offset += inner_size;
901                         rs->rs_asize -= inner_size;
902                         rs->rs_split_offset += inner_size;
903                 }
904
905                 free(mapping);
906                 free(rs);
907                 if (zio->io_error != 0)
908                         break;
909         }
910
911         list_destroy(&stack);
912 }
913
914 static void
915 vdev_indirect_map_free(zio_t *zio)
916 {
917         indirect_vsd_t *iv = zio->io_vsd;
918         indirect_split_t *is;
919
920         while ((is = list_head(&iv->iv_splits)) != NULL) {
921                 for (int c = 0; c < is->is_children; c++) {
922                         indirect_child_t *ic = &is->is_child[c];
923                         free(ic->ic_data);
924                 }
925                 list_remove(&iv->iv_splits, is);
926                 free(is);
927         }
928         free(iv);
929 }
930
931 static int
932 vdev_indirect_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
933     off_t offset, size_t bytes)
934 {
935         zio_t zio = { 0 };
936         spa_t *spa = vdev->spa;
937         indirect_vsd_t *iv = malloc(sizeof (*iv));
938         indirect_split_t *first;
939         int rc = EIO;
940
941         if (iv == NULL)
942                 return (ENOMEM);
943         bzero(iv, sizeof (*iv));
944
945         list_create(&iv->iv_splits,
946             sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
947
948         zio.io_spa = spa;
949         zio.io_bp = (blkptr_t *)bp;
950         zio.io_data = buf;
951         zio.io_size = bytes;
952         zio.io_offset = offset;
953         zio.io_vd = vdev;
954         zio.io_vsd = iv;
955
956         if (vdev->v_mapping == NULL) {
957                 vdev_indirect_config_t *vic;
958
959                 vic = &vdev->vdev_indirect_config;
960                 vdev->v_mapping = vdev_indirect_mapping_open(spa,
961                     &spa->spa_mos, vic->vic_mapping_object);
962         }
963
964         vdev_indirect_remap(vdev, offset, bytes, &zio);
965         if (zio.io_error != 0)
966                 return (zio.io_error);
967
968         first = list_head(&iv->iv_splits);
969         if (first->is_size == zio.io_size) {
970                 /*
971                  * This is not a split block; we are pointing to the entire
972                  * data, which will checksum the same as the original data.
973                  * Pass the BP down so that the child i/o can verify the
974                  * checksum, and try a different location if available
975                  * (e.g. on a mirror).
976                  *
977                  * While this special case could be handled the same as the
978                  * general (split block) case, doing it this way ensures
979                  * that the vast majority of blocks on indirect vdevs
980                  * (which are not split) are handled identically to blocks
981                  * on non-indirect vdevs.  This allows us to be less strict
982                  * about performance in the general (but rare) case.
983                  */
984                 rc = first->is_vdev->v_read(first->is_vdev, zio.io_bp,
985                     zio.io_data, first->is_target_offset, bytes);
986         } else {
987                 iv->iv_split_block = B_TRUE;
988                 /*
989                  * Read one copy of each split segment, from the
990                  * top-level vdev.  Since we don't know the
991                  * checksum of each split individually, the child
992                  * zio can't ensure that we get the right data.
993                  * E.g. if it's a mirror, it will just read from a
994                  * random (healthy) leaf vdev.  We have to verify
995                  * the checksum in vdev_indirect_io_done().
996                  */
997                 for (indirect_split_t *is = list_head(&iv->iv_splits);
998                     is != NULL; is = list_next(&iv->iv_splits, is)) {
999                         char *ptr = zio.io_data;
1000
1001                         rc = is->is_vdev->v_read(is->is_vdev, zio.io_bp,
1002                             ptr + is->is_split_offset, is->is_target_offset,
1003                             is->is_size);
1004                 }
1005                 if (zio_checksum_verify(spa, zio.io_bp, zio.io_data))
1006                         rc = ECKSUM;
1007                 else
1008                         rc = 0;
1009         }
1010
1011         vdev_indirect_map_free(&zio);
1012         if (rc == 0)
1013                 rc = zio.io_error;
1014
1015         return (rc);
1016 }
1017
1018 static int
1019 vdev_disk_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1020     off_t offset, size_t bytes)
1021 {
1022
1023         return (vdev_read_phys(vdev, bp, buf,
1024                 offset + VDEV_LABEL_START_SIZE, bytes));
1025 }
1026
1027
1028 static int
1029 vdev_mirror_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1030     off_t offset, size_t bytes)
1031 {
1032         vdev_t *kid;
1033         int rc;
1034
1035         rc = EIO;
1036         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1037                 if (kid->v_state != VDEV_STATE_HEALTHY)
1038                         continue;
1039                 rc = kid->v_read(kid, bp, buf, offset, bytes);
1040                 if (!rc)
1041                         return (0);
1042         }
1043
1044         return (rc);
1045 }
1046
1047 static int
1048 vdev_replacing_read(vdev_t *vdev, const blkptr_t *bp, void *buf,
1049     off_t offset, size_t bytes)
1050 {
1051         vdev_t *kid;
1052
1053         /*
1054          * Here we should have two kids:
1055          * First one which is the one we are replacing and we can trust
1056          * only this one to have valid data, but it might not be present.
1057          * Second one is that one we are replacing with. It is most likely
1058          * healthy, but we can't trust it has needed data, so we won't use it.
1059          */
1060         kid = STAILQ_FIRST(&vdev->v_children);
1061         if (kid == NULL)
1062                 return (EIO);
1063         if (kid->v_state != VDEV_STATE_HEALTHY)
1064                 return (EIO);
1065         return (kid->v_read(kid, bp, buf, offset, bytes));
1066 }
1067
1068 static vdev_t *
1069 vdev_find(uint64_t guid)
1070 {
1071         vdev_t *vdev;
1072
1073         STAILQ_FOREACH(vdev, &zfs_vdevs, v_alllink)
1074                 if (vdev->v_guid == guid)
1075                         return (vdev);
1076
1077         return (0);
1078 }
1079
1080 static vdev_t *
1081 vdev_create(uint64_t guid, vdev_read_t *_read)
1082 {
1083         vdev_t *vdev;
1084         vdev_indirect_config_t *vic;
1085
1086         vdev = malloc(sizeof(vdev_t));
1087         memset(vdev, 0, sizeof(vdev_t));
1088         STAILQ_INIT(&vdev->v_children);
1089         vdev->v_guid = guid;
1090         vdev->v_state = VDEV_STATE_OFFLINE;
1091         vdev->v_read = _read;
1092
1093         vic = &vdev->vdev_indirect_config;
1094         vic->vic_prev_indirect_vdev = UINT64_MAX;
1095         STAILQ_INSERT_TAIL(&zfs_vdevs, vdev, v_alllink);
1096
1097         return (vdev);
1098 }
1099
1100 static int
1101 vdev_init_from_nvlist(const unsigned char *nvlist, vdev_t *pvdev,
1102     vdev_t **vdevp, int is_newer)
1103 {
1104         int rc;
1105         uint64_t guid, id, ashift, asize, nparity;
1106         const char *type;
1107         const char *path;
1108         vdev_t *vdev, *kid;
1109         const unsigned char *kids;
1110         int nkids, i, is_new;
1111         uint64_t is_offline, is_faulted, is_degraded, is_removed, isnt_present;
1112         uint64_t is_log;
1113
1114         if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1115             NULL, &guid)
1116             || nvlist_find(nvlist, ZPOOL_CONFIG_ID, DATA_TYPE_UINT64, NULL, &id)
1117             || nvlist_find(nvlist, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
1118             NULL, &type)) {
1119                 printf("ZFS: can't find vdev details\n");
1120                 return (ENOENT);
1121         }
1122
1123         if (strcmp(type, VDEV_TYPE_MIRROR)
1124             && strcmp(type, VDEV_TYPE_DISK)
1125 #ifdef ZFS_TEST
1126             && strcmp(type, VDEV_TYPE_FILE)
1127 #endif
1128             && strcmp(type, VDEV_TYPE_RAIDZ)
1129             && strcmp(type, VDEV_TYPE_INDIRECT)
1130             && strcmp(type, VDEV_TYPE_REPLACING)) {
1131                 printf("ZFS: can only boot from disk, mirror, raidz1, raidz2 and raidz3 vdevs\n");
1132                 return (EIO);
1133         }
1134
1135         is_offline = is_removed = is_faulted = is_degraded = isnt_present = 0;
1136         is_log = 0;
1137
1138         nvlist_find(nvlist, ZPOOL_CONFIG_OFFLINE, DATA_TYPE_UINT64, NULL,
1139             &is_offline);
1140         nvlist_find(nvlist, ZPOOL_CONFIG_REMOVED, DATA_TYPE_UINT64, NULL,
1141             &is_removed);
1142         nvlist_find(nvlist, ZPOOL_CONFIG_FAULTED, DATA_TYPE_UINT64, NULL,
1143             &is_faulted);
1144         nvlist_find(nvlist, ZPOOL_CONFIG_DEGRADED, DATA_TYPE_UINT64, NULL,
1145             &is_degraded);
1146         nvlist_find(nvlist, ZPOOL_CONFIG_NOT_PRESENT, DATA_TYPE_UINT64, NULL,
1147             &isnt_present);
1148         nvlist_find(nvlist, ZPOOL_CONFIG_IS_LOG, DATA_TYPE_UINT64, NULL,
1149             &is_log);
1150
1151         vdev = vdev_find(guid);
1152         if (!vdev) {
1153                 is_new = 1;
1154
1155                 if (!strcmp(type, VDEV_TYPE_MIRROR))
1156                         vdev = vdev_create(guid, vdev_mirror_read);
1157                 else if (!strcmp(type, VDEV_TYPE_RAIDZ))
1158                         vdev = vdev_create(guid, vdev_raidz_read);
1159                 else if (!strcmp(type, VDEV_TYPE_REPLACING))
1160                         vdev = vdev_create(guid, vdev_replacing_read);
1161                 else if (!strcmp(type, VDEV_TYPE_INDIRECT)) {
1162                         vdev_indirect_config_t *vic;
1163
1164                         vdev = vdev_create(guid, vdev_indirect_read);
1165                         vdev->v_state = VDEV_STATE_HEALTHY;
1166                         vic = &vdev->vdev_indirect_config;
1167
1168                         nvlist_find(nvlist,
1169                             ZPOOL_CONFIG_INDIRECT_OBJECT, DATA_TYPE_UINT64,
1170                             NULL, &vic->vic_mapping_object);
1171                         nvlist_find(nvlist,
1172                             ZPOOL_CONFIG_INDIRECT_BIRTHS, DATA_TYPE_UINT64,
1173                             NULL, &vic->vic_births_object);
1174                         nvlist_find(nvlist,
1175                             ZPOOL_CONFIG_PREV_INDIRECT_VDEV, DATA_TYPE_UINT64,
1176                             NULL, &vic->vic_prev_indirect_vdev);
1177                 } else
1178                         vdev = vdev_create(guid, vdev_disk_read);
1179
1180                 vdev->v_id = id;
1181                 vdev->v_top = pvdev != NULL ? pvdev : vdev;
1182                 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASHIFT,
1183                         DATA_TYPE_UINT64, NULL, &ashift) == 0) {
1184                         vdev->v_ashift = ashift;
1185                 } else {
1186                         vdev->v_ashift = 0;
1187                 }
1188                 if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1189                     DATA_TYPE_UINT64, NULL, &asize) == 0) {
1190                         vdev->v_psize = asize +
1191                             VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1192                 }
1193                 if (nvlist_find(nvlist, ZPOOL_CONFIG_NPARITY,
1194                         DATA_TYPE_UINT64, NULL, &nparity) == 0) {
1195                         vdev->v_nparity = nparity;
1196                 } else {
1197                         vdev->v_nparity = 0;
1198                 }
1199                 if (nvlist_find(nvlist, ZPOOL_CONFIG_PATH,
1200                                 DATA_TYPE_STRING, NULL, &path) == 0) {
1201                         if (strncmp(path, "/dev/", 5) == 0)
1202                                 path += 5;
1203                         vdev->v_name = strdup(path);
1204                 } else {
1205                         char *name;
1206
1207                         if (!strcmp(type, "raidz")) {
1208                                 if (vdev->v_nparity < 1 ||
1209                                     vdev->v_nparity > 3) {
1210                                         printf("ZFS: can only boot from disk, "
1211                                             "mirror, raidz1, raidz2 and raidz3 "
1212                                             "vdevs\n");
1213                                         return (EIO);
1214                                 }
1215                                 asprintf(&name, "%s%d-%jd", type,
1216                                     vdev->v_nparity, id);
1217                         } else {
1218                                 asprintf(&name, "%s-%jd", type, id);
1219                         }
1220                         if (name == NULL)
1221                                 return (ENOMEM);
1222                         vdev->v_name = name;
1223                 }
1224                 vdev->v_islog = is_log == 1;
1225         } else {
1226                 is_new = 0;
1227         }
1228
1229         if (is_new || is_newer) {
1230                 /*
1231                  * This is either new vdev or we've already seen this vdev,
1232                  * but from an older vdev label, so let's refresh its state
1233                  * from the newer label.
1234                  */
1235                 if (is_offline)
1236                         vdev->v_state = VDEV_STATE_OFFLINE;
1237                 else if (is_removed)
1238                         vdev->v_state = VDEV_STATE_REMOVED;
1239                 else if (is_faulted)
1240                         vdev->v_state = VDEV_STATE_FAULTED;
1241                 else if (is_degraded)
1242                         vdev->v_state = VDEV_STATE_DEGRADED;
1243                 else if (isnt_present)
1244                         vdev->v_state = VDEV_STATE_CANT_OPEN;
1245         }
1246
1247         rc = nvlist_find(nvlist, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
1248             &nkids, &kids);
1249         /*
1250          * Its ok if we don't have any kids.
1251          */
1252         if (rc == 0) {
1253                 vdev->v_nchildren = nkids;
1254                 for (i = 0; i < nkids; i++) {
1255                         rc = vdev_init_from_nvlist(kids, vdev, &kid, is_newer);
1256                         if (rc)
1257                                 return (rc);
1258                         if (is_new)
1259                                 STAILQ_INSERT_TAIL(&vdev->v_children, kid,
1260                                                    v_childlink);
1261                         kids = nvlist_next(kids);
1262                 }
1263         } else {
1264                 vdev->v_nchildren = 0;
1265         }
1266
1267         if (vdevp)
1268                 *vdevp = vdev;
1269         return (0);
1270 }
1271
1272 static void
1273 vdev_set_state(vdev_t *vdev)
1274 {
1275         vdev_t *kid;
1276         int good_kids;
1277         int bad_kids;
1278
1279         /*
1280          * A mirror or raidz is healthy if all its kids are healthy. A
1281          * mirror is degraded if any of its kids is healthy; a raidz
1282          * is degraded if at most nparity kids are offline.
1283          */
1284         if (STAILQ_FIRST(&vdev->v_children)) {
1285                 good_kids = 0;
1286                 bad_kids = 0;
1287                 STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1288                         if (kid->v_state == VDEV_STATE_HEALTHY)
1289                                 good_kids++;
1290                         else
1291                                 bad_kids++;
1292                 }
1293                 if (bad_kids == 0) {
1294                         vdev->v_state = VDEV_STATE_HEALTHY;
1295                 } else {
1296                         if (vdev->v_read == vdev_mirror_read) {
1297                                 if (good_kids) {
1298                                         vdev->v_state = VDEV_STATE_DEGRADED;
1299                                 } else {
1300                                         vdev->v_state = VDEV_STATE_OFFLINE;
1301                                 }
1302                         } else if (vdev->v_read == vdev_raidz_read) {
1303                                 if (bad_kids > vdev->v_nparity) {
1304                                         vdev->v_state = VDEV_STATE_OFFLINE;
1305                                 } else {
1306                                         vdev->v_state = VDEV_STATE_DEGRADED;
1307                                 }
1308                         }
1309                 }
1310         }
1311 }
1312
1313 static spa_t *
1314 spa_find_by_guid(uint64_t guid)
1315 {
1316         spa_t *spa;
1317
1318         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1319                 if (spa->spa_guid == guid)
1320                         return (spa);
1321
1322         return (0);
1323 }
1324
1325 static spa_t *
1326 spa_find_by_name(const char *name)
1327 {
1328         spa_t *spa;
1329
1330         STAILQ_FOREACH(spa, &zfs_pools, spa_link)
1331                 if (!strcmp(spa->spa_name, name))
1332                         return (spa);
1333
1334         return (0);
1335 }
1336
1337 #ifdef BOOT2
1338 static spa_t *
1339 spa_get_primary(void)
1340 {
1341
1342         return (STAILQ_FIRST(&zfs_pools));
1343 }
1344
1345 static vdev_t *
1346 spa_get_primary_vdev(const spa_t *spa)
1347 {
1348         vdev_t *vdev;
1349         vdev_t *kid;
1350
1351         if (spa == NULL)
1352                 spa = spa_get_primary();
1353         if (spa == NULL)
1354                 return (NULL);
1355         vdev = STAILQ_FIRST(&spa->spa_vdevs);
1356         if (vdev == NULL)
1357                 return (NULL);
1358         for (kid = STAILQ_FIRST(&vdev->v_children); kid != NULL;
1359              kid = STAILQ_FIRST(&vdev->v_children))
1360                 vdev = kid;
1361         return (vdev);
1362 }
1363 #endif
1364
1365 static spa_t *
1366 spa_create(uint64_t guid, const char *name)
1367 {
1368         spa_t *spa;
1369
1370         if ((spa = calloc(1, sizeof(spa_t))) == NULL)
1371                 return (NULL);
1372         if ((spa->spa_name = strdup(name)) == NULL) {
1373                 free(spa);
1374                 return (NULL);
1375         }
1376         STAILQ_INIT(&spa->spa_vdevs);
1377         spa->spa_guid = guid;
1378         STAILQ_INSERT_TAIL(&zfs_pools, spa, spa_link);
1379
1380         return (spa);
1381 }
1382
1383 static const char *
1384 state_name(vdev_state_t state)
1385 {
1386         static const char* names[] = {
1387                 "UNKNOWN",
1388                 "CLOSED",
1389                 "OFFLINE",
1390                 "REMOVED",
1391                 "CANT_OPEN",
1392                 "FAULTED",
1393                 "DEGRADED",
1394                 "ONLINE"
1395         };
1396         return names[state];
1397 }
1398
1399 #ifdef BOOT2
1400
1401 #define pager_printf printf
1402
1403 #else
1404
1405 static int
1406 pager_printf(const char *fmt, ...)
1407 {
1408         char line[80];
1409         va_list args;
1410
1411         va_start(args, fmt);
1412         vsprintf(line, fmt, args);
1413         va_end(args);
1414
1415         return (pager_output(line));
1416 }
1417
1418 #endif
1419
1420 #define STATUS_FORMAT   "        %s %s\n"
1421
1422 static int
1423 print_state(int indent, const char *name, vdev_state_t state)
1424 {
1425         char buf[512];
1426         int i;
1427
1428         buf[0] = 0;
1429         for (i = 0; i < indent; i++)
1430                 strcat(buf, "  ");
1431         strcat(buf, name);
1432
1433         return (pager_printf(STATUS_FORMAT, buf, state_name(state)));
1434 }
1435
1436 static int
1437 vdev_status(vdev_t *vdev, int indent)
1438 {
1439         vdev_t *kid;
1440         int ret;
1441
1442         if (vdev->v_islog) {
1443                 (void)pager_output("        logs\n");
1444                 indent++;
1445         }
1446
1447         ret = print_state(indent, vdev->v_name, vdev->v_state);
1448         if (ret != 0)
1449                 return (ret);
1450
1451         STAILQ_FOREACH(kid, &vdev->v_children, v_childlink) {
1452                 ret = vdev_status(kid, indent + 1);
1453                 if (ret != 0)
1454                         return (ret);
1455         }
1456         return (ret);
1457 }
1458
1459 static int
1460 spa_status(spa_t *spa)
1461 {
1462         static char bootfs[ZFS_MAXNAMELEN];
1463         uint64_t rootid;
1464         vdev_t *vdev;
1465         int good_kids, bad_kids, degraded_kids, ret;
1466         vdev_state_t state;
1467
1468         ret = pager_printf("  pool: %s\n", spa->spa_name);
1469         if (ret != 0)
1470                 return (ret);
1471
1472         if (zfs_get_root(spa, &rootid) == 0 &&
1473             zfs_rlookup(spa, rootid, bootfs) == 0) {
1474                 if (bootfs[0] == '\0')
1475                         ret = pager_printf("bootfs: %s\n", spa->spa_name);
1476                 else
1477                         ret = pager_printf("bootfs: %s/%s\n", spa->spa_name,
1478                             bootfs);
1479                 if (ret != 0)
1480                         return (ret);
1481         }
1482         ret = pager_printf("config:\n\n");
1483         if (ret != 0)
1484                 return (ret);
1485         ret = pager_printf(STATUS_FORMAT, "NAME", "STATE");
1486         if (ret != 0)
1487                 return (ret);
1488
1489         good_kids = 0;
1490         degraded_kids = 0;
1491         bad_kids = 0;
1492         STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1493                 if (vdev->v_state == VDEV_STATE_HEALTHY)
1494                         good_kids++;
1495                 else if (vdev->v_state == VDEV_STATE_DEGRADED)
1496                         degraded_kids++;
1497                 else
1498                         bad_kids++;
1499         }
1500
1501         state = VDEV_STATE_CLOSED;
1502         if (good_kids > 0 && (degraded_kids + bad_kids) == 0)
1503                 state = VDEV_STATE_HEALTHY;
1504         else if ((good_kids + degraded_kids) > 0)
1505                 state = VDEV_STATE_DEGRADED;
1506
1507         ret = print_state(0, spa->spa_name, state);
1508         if (ret != 0)
1509                 return (ret);
1510         STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1511                 ret = vdev_status(vdev, 1);
1512                 if (ret != 0)
1513                         return (ret);
1514         }
1515         return (ret);
1516 }
1517
1518 static int
1519 spa_all_status(void)
1520 {
1521         spa_t *spa;
1522         int first = 1, ret = 0;
1523
1524         STAILQ_FOREACH(spa, &zfs_pools, spa_link) {
1525                 if (!first) {
1526                         ret = pager_printf("\n");
1527                         if (ret != 0)
1528                                 return (ret);
1529                 }
1530                 first = 0;
1531                 ret = spa_status(spa);
1532                 if (ret != 0)
1533                         return (ret);
1534         }
1535         return (ret);
1536 }
1537
1538 static uint64_t
1539 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
1540 {
1541         uint64_t label_offset;
1542
1543         if (l < VDEV_LABELS / 2)
1544                 label_offset = 0;
1545         else
1546                 label_offset = psize - VDEV_LABELS * sizeof (vdev_label_t);
1547
1548         return (offset + l * sizeof (vdev_label_t) + label_offset);
1549 }
1550
1551 static int
1552 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1553 {
1554         unsigned int seq1 = 0;
1555         unsigned int seq2 = 0;
1556         int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1557
1558         if (cmp != 0)
1559                 return (cmp);
1560
1561         cmp = AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp);
1562         if (cmp != 0)
1563                 return (cmp);
1564
1565         if (MMP_VALID(ub1) && MMP_SEQ_VALID(ub1))
1566                 seq1 = MMP_SEQ(ub1);
1567
1568         if (MMP_VALID(ub2) && MMP_SEQ_VALID(ub2))
1569                 seq2 = MMP_SEQ(ub2);
1570
1571         return (AVL_CMP(seq1, seq2));
1572 }
1573
1574 static int
1575 uberblock_verify(uberblock_t *ub)
1576 {
1577         if (ub->ub_magic == BSWAP_64((uint64_t)UBERBLOCK_MAGIC)) {
1578                 byteswap_uint64_array(ub, sizeof (uberblock_t));
1579         }
1580
1581         if (ub->ub_magic != UBERBLOCK_MAGIC ||
1582             !SPA_VERSION_IS_SUPPORTED(ub->ub_version))
1583                 return (EINVAL);
1584
1585         return (0);
1586 }
1587
1588 static int
1589 vdev_label_read(vdev_t *vd, int l, void *buf, uint64_t offset,
1590     size_t size)
1591 {
1592         blkptr_t bp;
1593         off_t off;
1594
1595         off = vdev_label_offset(vd->v_psize, l, offset);
1596
1597         BP_ZERO(&bp);
1598         BP_SET_LSIZE(&bp, size);
1599         BP_SET_PSIZE(&bp, size);
1600         BP_SET_CHECKSUM(&bp, ZIO_CHECKSUM_LABEL);
1601         BP_SET_COMPRESS(&bp, ZIO_COMPRESS_OFF);
1602         DVA_SET_OFFSET(BP_IDENTITY(&bp), off);
1603         ZIO_SET_CHECKSUM(&bp.blk_cksum, off, 0, 0, 0);
1604
1605         return (vdev_read_phys(vd, &bp, buf, off, size));
1606 }
1607
1608 static unsigned char *
1609 vdev_label_read_config(vdev_t *vd, uint64_t txg)
1610 {
1611         vdev_phys_t *label;
1612         uint64_t best_txg = 0;
1613         uint64_t label_txg = 0;
1614         uint64_t asize;
1615         unsigned char *nvl;
1616         size_t nvl_size;
1617         int error;
1618
1619         label = malloc(sizeof (vdev_phys_t));
1620         if (label == NULL)
1621                 return (NULL);
1622
1623         nvl_size = VDEV_PHYS_SIZE - sizeof (zio_eck_t) - 4;
1624         nvl = malloc(nvl_size);
1625         if (nvl == NULL)
1626                 goto done;
1627
1628         for (int l = 0; l < VDEV_LABELS; l++) {
1629                 const unsigned char *nvlist;
1630
1631                 if (vdev_label_read(vd, l, label,
1632                     offsetof(vdev_label_t, vl_vdev_phys),
1633                     sizeof (vdev_phys_t)))
1634                         continue;
1635
1636                 if (label->vp_nvlist[0] != NV_ENCODE_XDR)
1637                         continue;
1638
1639                 nvlist = (const unsigned char *) label->vp_nvlist + 4;
1640                 error = nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG,
1641                     DATA_TYPE_UINT64, NULL, &label_txg);
1642                 if (error != 0 || label_txg == 0) {
1643                         memcpy(nvl, nvlist, nvl_size);
1644                         goto done;
1645                 }
1646
1647                 if (label_txg <= txg && label_txg > best_txg) {
1648                         best_txg = label_txg;
1649                         memcpy(nvl, nvlist, nvl_size);
1650
1651                         /*
1652                          * Use asize from pool config. We need this
1653                          * because we can get bad value from BIOS.
1654                          */
1655                         if (nvlist_find(nvlist, ZPOOL_CONFIG_ASIZE,
1656                             DATA_TYPE_UINT64, NULL, &asize) == 0) {
1657                                 vd->v_psize = asize +
1658                                     VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
1659                         }
1660                 }
1661         }
1662
1663         if (best_txg == 0) {
1664                 free(nvl);
1665                 nvl = NULL;
1666         }
1667 done:
1668         free(label);
1669         return (nvl);
1670 }
1671
1672 static void
1673 vdev_uberblock_load(vdev_t *vd, uberblock_t *ub)
1674 {
1675         uberblock_t *buf;
1676
1677         buf = malloc(VDEV_UBERBLOCK_SIZE(vd));
1678         if (buf == NULL)
1679                 return;
1680
1681         for (int l = 0; l < VDEV_LABELS; l++) {
1682                 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1683                         if (vdev_label_read(vd, l, buf,
1684                             VDEV_UBERBLOCK_OFFSET(vd, n),
1685                             VDEV_UBERBLOCK_SIZE(vd)))
1686                                 continue;
1687                         if (uberblock_verify(buf) != 0)
1688                                 continue;
1689
1690                         if (vdev_uberblock_compare(buf, ub) > 0)
1691                                 *ub = *buf;
1692                 }
1693         }
1694         free(buf);
1695 }
1696
1697 static int
1698 vdev_probe(vdev_phys_read_t *_read, void *read_priv, spa_t **spap)
1699 {
1700         vdev_t vtmp;
1701         spa_t *spa;
1702         vdev_t *vdev, *top_vdev, *pool_vdev;
1703         unsigned char *nvlist;
1704         uint64_t val;
1705         uint64_t guid;
1706         uint64_t pool_txg, pool_guid;
1707         const char *pool_name;
1708         const unsigned char *vdevs;
1709         const unsigned char *features;
1710         int rc, is_newer;
1711
1712         /*
1713          * Load the vdev label and figure out which
1714          * uberblock is most current.
1715          */
1716         memset(&vtmp, 0, sizeof(vtmp));
1717         vtmp.v_phys_read = _read;
1718         vtmp.v_read_priv = read_priv;
1719         vtmp.v_psize = P2ALIGN(ldi_get_size(read_priv),
1720             (uint64_t)sizeof (vdev_label_t));
1721
1722         /* Test for minimum device size. */
1723         if (vtmp.v_psize < SPA_MINDEVSIZE)
1724                 return (EIO);
1725
1726         nvlist = vdev_label_read_config(&vtmp, UINT64_MAX);
1727         if (nvlist == NULL)
1728                 return (EIO);
1729
1730         if (nvlist_find(nvlist, ZPOOL_CONFIG_VERSION, DATA_TYPE_UINT64,
1731             NULL, &val) != 0) {
1732                 free(nvlist);
1733                 return (EIO);
1734         }
1735
1736         if (!SPA_VERSION_IS_SUPPORTED(val)) {
1737                 printf("ZFS: unsupported ZFS version %u (should be %u)\n",
1738                     (unsigned) val, (unsigned) SPA_VERSION);
1739                 free(nvlist);
1740                 return (EIO);
1741         }
1742
1743         /* Check ZFS features for read */
1744         if (nvlist_find(nvlist, ZPOOL_CONFIG_FEATURES_FOR_READ,
1745             DATA_TYPE_NVLIST, NULL, &features) == 0 &&
1746             nvlist_check_features_for_read(features) != 0) {
1747                 free(nvlist);
1748                 return (EIO);
1749         }
1750
1751         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_STATE, DATA_TYPE_UINT64,
1752             NULL, &val) != 0) {
1753                 free(nvlist);
1754                 return (EIO);
1755         }
1756
1757         if (val == POOL_STATE_DESTROYED) {
1758                 /* We don't boot only from destroyed pools. */
1759                 free(nvlist);
1760                 return (EIO);
1761         }
1762
1763         if (nvlist_find(nvlist, ZPOOL_CONFIG_POOL_TXG, DATA_TYPE_UINT64,
1764             NULL, &pool_txg) != 0 ||
1765             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_GUID, DATA_TYPE_UINT64,
1766             NULL, &pool_guid) != 0 ||
1767             nvlist_find(nvlist, ZPOOL_CONFIG_POOL_NAME, DATA_TYPE_STRING,
1768             NULL, &pool_name) != 0) {
1769                 /*
1770                  * Cache and spare devices end up here - just ignore
1771                  * them.
1772                  */
1773                 free(nvlist);
1774                 return (EIO);
1775         }
1776
1777         /*
1778          * Create the pool if this is the first time we've seen it.
1779          */
1780         spa = spa_find_by_guid(pool_guid);
1781         if (spa == NULL) {
1782                 spa = spa_create(pool_guid, pool_name);
1783                 if (spa == NULL) {
1784                         free(nvlist);
1785                         return (ENOMEM);
1786                 }
1787         }
1788         if (pool_txg > spa->spa_txg) {
1789                 spa->spa_txg = pool_txg;
1790                 is_newer = 1;
1791         } else {
1792                 is_newer = 0;
1793         }
1794
1795         /*
1796          * Get the vdev tree and create our in-core copy of it.
1797          * If we already have a vdev with this guid, this must
1798          * be some kind of alias (overlapping slices, dangerously dedicated
1799          * disks etc).
1800          */
1801         if (nvlist_find(nvlist, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64,
1802             NULL, &guid) != 0) {
1803                 free(nvlist);
1804                 return (EIO);
1805         }
1806         vdev = vdev_find(guid);
1807         /* Has this vdev already been inited? */
1808         if (vdev && vdev->v_phys_read) {
1809                 free(nvlist);
1810                 return (EIO);
1811         }
1812
1813         if (nvlist_find(nvlist, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
1814             NULL, &vdevs)) {
1815                 free(nvlist);
1816                 return (EIO);
1817         }
1818
1819         rc = vdev_init_from_nvlist(vdevs, NULL, &top_vdev, is_newer);
1820         free(nvlist);
1821         if (rc != 0)
1822                 return (rc);
1823
1824         /*
1825          * Add the toplevel vdev to the pool if its not already there.
1826          */
1827         STAILQ_FOREACH(pool_vdev, &spa->spa_vdevs, v_childlink)
1828                 if (top_vdev == pool_vdev)
1829                         break;
1830
1831         if (!pool_vdev && top_vdev) {
1832                 top_vdev->spa = spa;
1833                 STAILQ_INSERT_TAIL(&spa->spa_vdevs, top_vdev, v_childlink);
1834         }
1835
1836         /*
1837          * We should already have created an incomplete vdev for this
1838          * vdev. Find it and initialise it with our read proc.
1839          */
1840         vdev = vdev_find(guid);
1841         if (vdev) {
1842                 vdev->v_phys_read = _read;
1843                 vdev->v_read_priv = read_priv;
1844                 vdev->v_state = VDEV_STATE_HEALTHY;
1845                 vdev->v_psize = vtmp.v_psize;
1846         } else {
1847                 printf("ZFS: inconsistent nvlist contents\n");
1848                 return (EIO);
1849         }
1850
1851         if (vdev->v_islog)
1852                 spa->spa_with_log = vdev->v_islog;
1853
1854         /*
1855          * Re-evaluate top-level vdev state.
1856          */
1857         vdev_set_state(top_vdev);
1858
1859         /*
1860          * Ok, we are happy with the pool so far. Lets find
1861          * the best uberblock and then we can actually access
1862          * the contents of the pool.
1863          */
1864         vdev_uberblock_load(vdev, &spa->spa_uberblock);
1865
1866         vdev->spa = spa;
1867         if (spap != NULL)
1868                 *spap = spa;
1869         return (0);
1870 }
1871
1872 static int
1873 ilog2(int n)
1874 {
1875         int v;
1876
1877         for (v = 0; v < 32; v++)
1878                 if (n == (1 << v))
1879                         return v;
1880         return -1;
1881 }
1882
1883 static int
1884 zio_read_gang(const spa_t *spa, const blkptr_t *bp, void *buf)
1885 {
1886         blkptr_t gbh_bp;
1887         zio_gbh_phys_t zio_gb;
1888         char *pbuf;
1889         int i;
1890
1891         /* Artificial BP for gang block header. */
1892         gbh_bp = *bp;
1893         BP_SET_PSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
1894         BP_SET_LSIZE(&gbh_bp, SPA_GANGBLOCKSIZE);
1895         BP_SET_CHECKSUM(&gbh_bp, ZIO_CHECKSUM_GANG_HEADER);
1896         BP_SET_COMPRESS(&gbh_bp, ZIO_COMPRESS_OFF);
1897         for (i = 0; i < SPA_DVAS_PER_BP; i++)
1898                 DVA_SET_GANG(&gbh_bp.blk_dva[i], 0);
1899
1900         /* Read gang header block using the artificial BP. */
1901         if (zio_read(spa, &gbh_bp, &zio_gb))
1902                 return (EIO);
1903
1904         pbuf = buf;
1905         for (i = 0; i < SPA_GBH_NBLKPTRS; i++) {
1906                 blkptr_t *gbp = &zio_gb.zg_blkptr[i];
1907
1908                 if (BP_IS_HOLE(gbp))
1909                         continue;
1910                 if (zio_read(spa, gbp, pbuf))
1911                         return (EIO);
1912                 pbuf += BP_GET_PSIZE(gbp);
1913         }
1914
1915         if (zio_checksum_verify(spa, bp, buf))
1916                 return (EIO);
1917         return (0);
1918 }
1919
1920 static int
1921 zio_read(const spa_t *spa, const blkptr_t *bp, void *buf)
1922 {
1923         int cpfunc = BP_GET_COMPRESS(bp);
1924         uint64_t align, size;
1925         void *pbuf;
1926         int i, error;
1927
1928         /*
1929          * Process data embedded in block pointer
1930          */
1931         if (BP_IS_EMBEDDED(bp)) {
1932                 ASSERT(BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
1933
1934                 size = BPE_GET_PSIZE(bp);
1935                 ASSERT(size <= BPE_PAYLOAD_SIZE);
1936
1937                 if (cpfunc != ZIO_COMPRESS_OFF)
1938                         pbuf = zfs_alloc(size);
1939                 else
1940                         pbuf = buf;
1941
1942                 decode_embedded_bp_compressed(bp, pbuf);
1943                 error = 0;
1944
1945                 if (cpfunc != ZIO_COMPRESS_OFF) {
1946                         error = zio_decompress_data(cpfunc, pbuf,
1947                             size, buf, BP_GET_LSIZE(bp));
1948                         zfs_free(pbuf, size);
1949                 }
1950                 if (error != 0)
1951                         printf("ZFS: i/o error - unable to decompress block pointer data, error %d\n",
1952                             error);
1953                 return (error);
1954         }
1955
1956         error = EIO;
1957
1958         for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1959                 const dva_t *dva = &bp->blk_dva[i];
1960                 vdev_t *vdev;
1961                 int vdevid;
1962                 off_t offset;
1963
1964                 if (!dva->dva_word[0] && !dva->dva_word[1])
1965                         continue;
1966
1967                 vdevid = DVA_GET_VDEV(dva);
1968                 offset = DVA_GET_OFFSET(dva);
1969                 STAILQ_FOREACH(vdev, &spa->spa_vdevs, v_childlink) {
1970                         if (vdev->v_id == vdevid)
1971                                 break;
1972                 }
1973                 if (!vdev || !vdev->v_read)
1974                         continue;
1975
1976                 size = BP_GET_PSIZE(bp);
1977                 if (vdev->v_read == vdev_raidz_read) {
1978                         align = 1ULL << vdev->v_top->v_ashift;
1979                         if (P2PHASE(size, align) != 0)
1980                                 size = P2ROUNDUP(size, align);
1981                 }
1982                 if (size != BP_GET_PSIZE(bp) || cpfunc != ZIO_COMPRESS_OFF)
1983                         pbuf = zfs_alloc(size);
1984                 else
1985                         pbuf = buf;
1986
1987                 if (DVA_GET_GANG(dva))
1988                         error = zio_read_gang(spa, bp, pbuf);
1989                 else
1990                         error = vdev->v_read(vdev, bp, pbuf, offset, size);
1991                 if (error == 0) {
1992                         if (cpfunc != ZIO_COMPRESS_OFF)
1993                                 error = zio_decompress_data(cpfunc, pbuf,
1994                                     BP_GET_PSIZE(bp), buf, BP_GET_LSIZE(bp));
1995                         else if (size != BP_GET_PSIZE(bp))
1996                                 bcopy(pbuf, buf, BP_GET_PSIZE(bp));
1997                 }
1998                 if (buf != pbuf)
1999                         zfs_free(pbuf, size);
2000                 if (error == 0)
2001                         break;
2002         }
2003         if (error != 0)
2004                 printf("ZFS: i/o error - all block copies unavailable\n");
2005         return (error);
2006 }
2007
2008 static int
2009 dnode_read(const spa_t *spa, const dnode_phys_t *dnode, off_t offset, void *buf, size_t buflen)
2010 {
2011         int ibshift = dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
2012         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2013         int nlevels = dnode->dn_nlevels;
2014         int i, rc;
2015
2016         if (bsize > SPA_MAXBLOCKSIZE) {
2017                 printf("ZFS: I/O error - blocks larger than %llu are not "
2018                     "supported\n", SPA_MAXBLOCKSIZE);
2019                 return (EIO);
2020         }
2021
2022         /*
2023          * Note: bsize may not be a power of two here so we need to do an
2024          * actual divide rather than a bitshift.
2025          */
2026         while (buflen > 0) {
2027                 uint64_t bn = offset / bsize;
2028                 int boff = offset % bsize;
2029                 int ibn;
2030                 const blkptr_t *indbp;
2031                 blkptr_t bp;
2032
2033                 if (bn > dnode->dn_maxblkid)
2034                         return (EIO);
2035
2036                 if (dnode == dnode_cache_obj && bn == dnode_cache_bn)
2037                         goto cached;
2038
2039                 indbp = dnode->dn_blkptr;
2040                 for (i = 0; i < nlevels; i++) {
2041                         /*
2042                          * Copy the bp from the indirect array so that
2043                          * we can re-use the scratch buffer for multi-level
2044                          * objects.
2045                          */
2046                         ibn = bn >> ((nlevels - i - 1) * ibshift);
2047                         ibn &= ((1 << ibshift) - 1);
2048                         bp = indbp[ibn];
2049                         if (BP_IS_HOLE(&bp)) {
2050                                 memset(dnode_cache_buf, 0, bsize);
2051                                 break;
2052                         }
2053                         rc = zio_read(spa, &bp, dnode_cache_buf);
2054                         if (rc)
2055                                 return (rc);
2056                         indbp = (const blkptr_t *) dnode_cache_buf;
2057                 }
2058                 dnode_cache_obj = dnode;
2059                 dnode_cache_bn = bn;
2060         cached:
2061
2062                 /*
2063                  * The buffer contains our data block. Copy what we
2064                  * need from it and loop.
2065                  */ 
2066                 i = bsize - boff;
2067                 if (i > buflen) i = buflen;
2068                 memcpy(buf, &dnode_cache_buf[boff], i);
2069                 buf = ((char*) buf) + i;
2070                 offset += i;
2071                 buflen -= i;
2072         }
2073
2074         return (0);
2075 }
2076
2077 /*
2078  * Lookup a value in a microzap directory. Assumes that the zap
2079  * scratch buffer contains the directory contents.
2080  */
2081 static int
2082 mzap_lookup(const dnode_phys_t *dnode, const char *name, uint64_t *value)
2083 {
2084         const mzap_phys_t *mz;
2085         const mzap_ent_phys_t *mze;
2086         size_t size;
2087         int chunks, i;
2088
2089         /*
2090          * Microzap objects use exactly one block. Read the whole
2091          * thing.
2092          */
2093         size = dnode->dn_datablkszsec * 512;
2094
2095         mz = (const mzap_phys_t *) zap_scratch;
2096         chunks = size / MZAP_ENT_LEN - 1;
2097
2098         for (i = 0; i < chunks; i++) {
2099                 mze = &mz->mz_chunk[i];
2100                 if (!strcmp(mze->mze_name, name)) {
2101                         *value = mze->mze_value;
2102                         return (0);
2103                 }
2104         }
2105
2106         return (ENOENT);
2107 }
2108
2109 /*
2110  * Compare a name with a zap leaf entry. Return non-zero if the name
2111  * matches.
2112  */
2113 static int
2114 fzap_name_equal(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, const char *name)
2115 {
2116         size_t namelen;
2117         const zap_leaf_chunk_t *nc;
2118         const char *p;
2119
2120         namelen = zc->l_entry.le_name_numints;
2121                         
2122         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2123         p = name;
2124         while (namelen > 0) {
2125                 size_t len;
2126                 len = namelen;
2127                 if (len > ZAP_LEAF_ARRAY_BYTES)
2128                         len = ZAP_LEAF_ARRAY_BYTES;
2129                 if (memcmp(p, nc->l_array.la_array, len))
2130                         return (0);
2131                 p += len;
2132                 namelen -= len;
2133                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2134         }
2135
2136         return 1;
2137 }
2138
2139 /*
2140  * Extract a uint64_t value from a zap leaf entry.
2141  */
2142 static uint64_t
2143 fzap_leaf_value(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc)
2144 {
2145         const zap_leaf_chunk_t *vc;
2146         int i;
2147         uint64_t value;
2148         const uint8_t *p;
2149
2150         vc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_value_chunk);
2151         for (i = 0, value = 0, p = vc->l_array.la_array; i < 8; i++) {
2152                 value = (value << 8) | p[i];
2153         }
2154
2155         return value;
2156 }
2157
2158 static void
2159 stv(int len, void *addr, uint64_t value)
2160 {
2161         switch (len) {
2162         case 1:
2163                 *(uint8_t *)addr = value;
2164                 return;
2165         case 2:
2166                 *(uint16_t *)addr = value;
2167                 return;
2168         case 4:
2169                 *(uint32_t *)addr = value;
2170                 return;
2171         case 8:
2172                 *(uint64_t *)addr = value;
2173                 return;
2174         }
2175 }
2176
2177 /*
2178  * Extract a array from a zap leaf entry.
2179  */
2180 static void
2181 fzap_leaf_array(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc,
2182     uint64_t integer_size, uint64_t num_integers, void *buf)
2183 {
2184         uint64_t array_int_len = zc->l_entry.le_value_intlen;
2185         uint64_t value = 0;
2186         uint64_t *u64 = buf;
2187         char *p = buf;
2188         int len = MIN(zc->l_entry.le_value_numints, num_integers);
2189         int chunk = zc->l_entry.le_value_chunk;
2190         int byten = 0;
2191
2192         if (integer_size == 8 && len == 1) {
2193                 *u64 = fzap_leaf_value(zl, zc);
2194                 return;
2195         }
2196
2197         while (len > 0) {
2198                 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(zl, chunk).l_array;
2199                 int i;
2200
2201                 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(zl));
2202                 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) {
2203                         value = (value << 8) | la->la_array[i];
2204                         byten++;
2205                         if (byten == array_int_len) {
2206                                 stv(integer_size, p, value);
2207                                 byten = 0;
2208                                 len--;
2209                                 if (len == 0)
2210                                         return;
2211                                 p += integer_size;
2212                         }
2213                 }
2214                 chunk = la->la_next;
2215         }
2216 }
2217
2218 /*
2219  * Lookup a value in a fatzap directory. Assumes that the zap scratch
2220  * buffer contains the directory header.
2221  */
2222 static int
2223 fzap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2224     uint64_t integer_size, uint64_t num_integers, void *value)
2225 {
2226         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2227         zap_phys_t zh = *(zap_phys_t *) zap_scratch;
2228         fat_zap_t z;
2229         uint64_t *ptrtbl;
2230         uint64_t hash;
2231         int rc;
2232
2233         if (zh.zap_magic != ZAP_MAGIC)
2234                 return (EIO);
2235
2236         z.zap_block_shift = ilog2(bsize);
2237         z.zap_phys = (zap_phys_t *) zap_scratch;
2238
2239         /*
2240          * Figure out where the pointer table is and read it in if necessary.
2241          */
2242         if (zh.zap_ptrtbl.zt_blk) {
2243                 rc = dnode_read(spa, dnode, zh.zap_ptrtbl.zt_blk * bsize,
2244                                zap_scratch, bsize);
2245                 if (rc)
2246                         return (rc);
2247                 ptrtbl = (uint64_t *) zap_scratch;
2248         } else {
2249                 ptrtbl = &ZAP_EMBEDDED_PTRTBL_ENT(&z, 0);
2250         }
2251
2252         hash = zap_hash(zh.zap_salt, name);
2253
2254         zap_leaf_t zl;
2255         zl.l_bs = z.zap_block_shift;
2256
2257         off_t off = ptrtbl[hash >> (64 - zh.zap_ptrtbl.zt_shift)] << zl.l_bs;
2258         zap_leaf_chunk_t *zc;
2259
2260         rc = dnode_read(spa, dnode, off, zap_scratch, bsize);
2261         if (rc)
2262                 return (rc);
2263
2264         zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
2265
2266         /*
2267          * Make sure this chunk matches our hash.
2268          */
2269         if (zl.l_phys->l_hdr.lh_prefix_len > 0
2270             && zl.l_phys->l_hdr.lh_prefix
2271             != hash >> (64 - zl.l_phys->l_hdr.lh_prefix_len))
2272                 return (ENOENT);
2273
2274         /*
2275          * Hash within the chunk to find our entry.
2276          */
2277         int shift = (64 - ZAP_LEAF_HASH_SHIFT(&zl) - zl.l_phys->l_hdr.lh_prefix_len);
2278         int h = (hash >> shift) & ((1 << ZAP_LEAF_HASH_SHIFT(&zl)) - 1);
2279         h = zl.l_phys->l_hash[h];
2280         if (h == 0xffff)
2281                 return (ENOENT);
2282         zc = &ZAP_LEAF_CHUNK(&zl, h);
2283         while (zc->l_entry.le_hash != hash) {
2284                 if (zc->l_entry.le_next == 0xffff) {
2285                         zc = NULL;
2286                         break;
2287                 }
2288                 zc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_next);
2289         }
2290         if (fzap_name_equal(&zl, zc, name)) {
2291                 if (zc->l_entry.le_value_intlen * zc->l_entry.le_value_numints >
2292                     integer_size * num_integers)
2293                         return (E2BIG);
2294                 fzap_leaf_array(&zl, zc, integer_size, num_integers, value);
2295                 return (0);
2296         }
2297
2298         return (ENOENT);
2299 }
2300
2301 /*
2302  * Lookup a name in a zap object and return its value as a uint64_t.
2303  */
2304 static int
2305 zap_lookup(const spa_t *spa, const dnode_phys_t *dnode, const char *name,
2306     uint64_t integer_size, uint64_t num_integers, void *value)
2307 {
2308         int rc;
2309         uint64_t zap_type;
2310         size_t size = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2311
2312         rc = dnode_read(spa, dnode, 0, zap_scratch, size);
2313         if (rc)
2314                 return (rc);
2315
2316         zap_type = *(uint64_t *) zap_scratch;
2317         if (zap_type == ZBT_MICRO)
2318                 return mzap_lookup(dnode, name, value);
2319         else if (zap_type == ZBT_HEADER) {
2320                 return fzap_lookup(spa, dnode, name, integer_size,
2321                     num_integers, value);
2322         }
2323         printf("ZFS: invalid zap_type=%d\n", (int)zap_type);
2324         return (EIO);
2325 }
2326
2327 /*
2328  * List a microzap directory. Assumes that the zap scratch buffer contains
2329  * the directory contents.
2330  */
2331 static int
2332 mzap_list(const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
2333 {
2334         const mzap_phys_t *mz;
2335         const mzap_ent_phys_t *mze;
2336         size_t size;
2337         int chunks, i, rc;
2338
2339         /*
2340          * Microzap objects use exactly one block. Read the whole
2341          * thing.
2342          */
2343         size = dnode->dn_datablkszsec * 512;
2344         mz = (const mzap_phys_t *) zap_scratch;
2345         chunks = size / MZAP_ENT_LEN - 1;
2346
2347         for (i = 0; i < chunks; i++) {
2348                 mze = &mz->mz_chunk[i];
2349                 if (mze->mze_name[0]) {
2350                         rc = callback(mze->mze_name, mze->mze_value);
2351                         if (rc != 0)
2352                                 return (rc);
2353                 }
2354         }
2355
2356         return (0);
2357 }
2358
2359 /*
2360  * List a fatzap directory. Assumes that the zap scratch buffer contains
2361  * the directory header.
2362  */
2363 static int
2364 fzap_list(const spa_t *spa, const dnode_phys_t *dnode, int (*callback)(const char *, uint64_t))
2365 {
2366         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2367         zap_phys_t zh = *(zap_phys_t *) zap_scratch;
2368         fat_zap_t z;
2369         int i, j, rc;
2370
2371         if (zh.zap_magic != ZAP_MAGIC)
2372                 return (EIO);
2373
2374         z.zap_block_shift = ilog2(bsize);
2375         z.zap_phys = (zap_phys_t *) zap_scratch;
2376
2377         /*
2378          * This assumes that the leaf blocks start at block 1. The
2379          * documentation isn't exactly clear on this.
2380          */
2381         zap_leaf_t zl;
2382         zl.l_bs = z.zap_block_shift;
2383         for (i = 0; i < zh.zap_num_leafs; i++) {
2384                 off_t off = (i + 1) << zl.l_bs;
2385                 char name[256], *p;
2386                 uint64_t value;
2387
2388                 if (dnode_read(spa, dnode, off, zap_scratch, bsize))
2389                         return (EIO);
2390
2391                 zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
2392
2393                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2394                         zap_leaf_chunk_t *zc, *nc;
2395                         int namelen;
2396
2397                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2398                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2399                                 continue;
2400                         namelen = zc->l_entry.le_name_numints;
2401                         if (namelen > sizeof(name))
2402                                 namelen = sizeof(name);
2403
2404                         /*
2405                          * Paste the name back together.
2406                          */
2407                         nc = &ZAP_LEAF_CHUNK(&zl, zc->l_entry.le_name_chunk);
2408                         p = name;
2409                         while (namelen > 0) {
2410                                 int len;
2411                                 len = namelen;
2412                                 if (len > ZAP_LEAF_ARRAY_BYTES)
2413                                         len = ZAP_LEAF_ARRAY_BYTES;
2414                                 memcpy(p, nc->l_array.la_array, len);
2415                                 p += len;
2416                                 namelen -= len;
2417                                 nc = &ZAP_LEAF_CHUNK(&zl, nc->l_array.la_next);
2418                         }
2419
2420                         /*
2421                          * Assume the first eight bytes of the value are
2422                          * a uint64_t.
2423                          */
2424                         value = fzap_leaf_value(&zl, zc);
2425
2426                         //printf("%s 0x%jx\n", name, (uintmax_t)value);
2427                         rc = callback((const char *)name, value);
2428                         if (rc != 0)
2429                                 return (rc);
2430                 }
2431         }
2432
2433         return (0);
2434 }
2435
2436 static int zfs_printf(const char *name, uint64_t value __unused)
2437 {
2438
2439         printf("%s\n", name);
2440
2441         return (0);
2442 }
2443
2444 /*
2445  * List a zap directory.
2446  */
2447 static int
2448 zap_list(const spa_t *spa, const dnode_phys_t *dnode)
2449 {
2450         uint64_t zap_type;
2451         size_t size = dnode->dn_datablkszsec * 512;
2452
2453         if (dnode_read(spa, dnode, 0, zap_scratch, size))
2454                 return (EIO);
2455
2456         zap_type = *(uint64_t *) zap_scratch;
2457         if (zap_type == ZBT_MICRO)
2458                 return mzap_list(dnode, zfs_printf);
2459         else
2460                 return fzap_list(spa, dnode, zfs_printf);
2461 }
2462
2463 static int
2464 objset_get_dnode(const spa_t *spa, const objset_phys_t *os, uint64_t objnum, dnode_phys_t *dnode)
2465 {
2466         off_t offset;
2467
2468         offset = objnum * sizeof(dnode_phys_t);
2469         return dnode_read(spa, &os->os_meta_dnode, offset,
2470                 dnode, sizeof(dnode_phys_t));
2471 }
2472
2473 static int
2474 mzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
2475 {
2476         const mzap_phys_t *mz;
2477         const mzap_ent_phys_t *mze;
2478         size_t size;
2479         int chunks, i;
2480
2481         /*
2482          * Microzap objects use exactly one block. Read the whole
2483          * thing.
2484          */
2485         size = dnode->dn_datablkszsec * 512;
2486
2487         mz = (const mzap_phys_t *) zap_scratch;
2488         chunks = size / MZAP_ENT_LEN - 1;
2489
2490         for (i = 0; i < chunks; i++) {
2491                 mze = &mz->mz_chunk[i];
2492                 if (value == mze->mze_value) {
2493                         strcpy(name, mze->mze_name);
2494                         return (0);
2495                 }
2496         }
2497
2498         return (ENOENT);
2499 }
2500
2501 static void
2502 fzap_name_copy(const zap_leaf_t *zl, const zap_leaf_chunk_t *zc, char *name)
2503 {
2504         size_t namelen;
2505         const zap_leaf_chunk_t *nc;
2506         char *p;
2507
2508         namelen = zc->l_entry.le_name_numints;
2509
2510         nc = &ZAP_LEAF_CHUNK(zl, zc->l_entry.le_name_chunk);
2511         p = name;
2512         while (namelen > 0) {
2513                 size_t len;
2514                 len = namelen;
2515                 if (len > ZAP_LEAF_ARRAY_BYTES)
2516                         len = ZAP_LEAF_ARRAY_BYTES;
2517                 memcpy(p, nc->l_array.la_array, len);
2518                 p += len;
2519                 namelen -= len;
2520                 nc = &ZAP_LEAF_CHUNK(zl, nc->l_array.la_next);
2521         }
2522
2523         *p = '\0';
2524 }
2525
2526 static int
2527 fzap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
2528 {
2529         int bsize = dnode->dn_datablkszsec << SPA_MINBLOCKSHIFT;
2530         zap_phys_t zh = *(zap_phys_t *) zap_scratch;
2531         fat_zap_t z;
2532         int i, j;
2533
2534         if (zh.zap_magic != ZAP_MAGIC)
2535                 return (EIO);
2536
2537         z.zap_block_shift = ilog2(bsize);
2538         z.zap_phys = (zap_phys_t *) zap_scratch;
2539
2540         /*
2541          * This assumes that the leaf blocks start at block 1. The
2542          * documentation isn't exactly clear on this.
2543          */
2544         zap_leaf_t zl;
2545         zl.l_bs = z.zap_block_shift;
2546         for (i = 0; i < zh.zap_num_leafs; i++) {
2547                 off_t off = (i + 1) << zl.l_bs;
2548
2549                 if (dnode_read(spa, dnode, off, zap_scratch, bsize))
2550                         return (EIO);
2551
2552                 zl.l_phys = (zap_leaf_phys_t *) zap_scratch;
2553
2554                 for (j = 0; j < ZAP_LEAF_NUMCHUNKS(&zl); j++) {
2555                         zap_leaf_chunk_t *zc;
2556
2557                         zc = &ZAP_LEAF_CHUNK(&zl, j);
2558                         if (zc->l_entry.le_type != ZAP_CHUNK_ENTRY)
2559                                 continue;
2560                         if (zc->l_entry.le_value_intlen != 8 ||
2561                             zc->l_entry.le_value_numints != 1)
2562                                 continue;
2563
2564                         if (fzap_leaf_value(&zl, zc) == value) {
2565                                 fzap_name_copy(&zl, zc, name);
2566                                 return (0);
2567                         }
2568                 }
2569         }
2570
2571         return (ENOENT);
2572 }
2573
2574 static int
2575 zap_rlookup(const spa_t *spa, const dnode_phys_t *dnode, char *name, uint64_t value)
2576 {
2577         int rc;
2578         uint64_t zap_type;
2579         size_t size = dnode->dn_datablkszsec * 512;
2580
2581         rc = dnode_read(spa, dnode, 0, zap_scratch, size);
2582         if (rc)
2583                 return (rc);
2584
2585         zap_type = *(uint64_t *) zap_scratch;
2586         if (zap_type == ZBT_MICRO)
2587                 return mzap_rlookup(spa, dnode, name, value);
2588         else
2589                 return fzap_rlookup(spa, dnode, name, value);
2590 }
2591
2592 static int
2593 zfs_rlookup(const spa_t *spa, uint64_t objnum, char *result)
2594 {
2595         char name[256];
2596         char component[256];
2597         uint64_t dir_obj, parent_obj, child_dir_zapobj;
2598         dnode_phys_t child_dir_zap, dataset, dir, parent;
2599         dsl_dir_phys_t *dd;
2600         dsl_dataset_phys_t *ds;
2601         char *p;
2602         int len;
2603
2604         p = &name[sizeof(name) - 1];
2605         *p = '\0';
2606
2607         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2608                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2609                 return (EIO);
2610         }
2611         ds = (dsl_dataset_phys_t *)&dataset.dn_bonus;
2612         dir_obj = ds->ds_dir_obj;
2613
2614         for (;;) {
2615                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir) != 0)
2616                         return (EIO);
2617                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2618
2619                 /* Actual loop condition. */
2620                 parent_obj  = dd->dd_parent_obj;
2621                 if (parent_obj == 0)
2622                         break;
2623
2624                 if (objset_get_dnode(spa, &spa->spa_mos, parent_obj, &parent) != 0)
2625                         return (EIO);
2626                 dd = (dsl_dir_phys_t *)&parent.dn_bonus;
2627                 child_dir_zapobj = dd->dd_child_dir_zapobj;
2628                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
2629                         return (EIO);
2630                 if (zap_rlookup(spa, &child_dir_zap, component, dir_obj) != 0)
2631                         return (EIO);
2632
2633                 len = strlen(component);
2634                 p -= len;
2635                 memcpy(p, component, len);
2636                 --p;
2637                 *p = '/';
2638
2639                 /* Actual loop iteration. */
2640                 dir_obj = parent_obj;
2641         }
2642
2643         if (*p != '\0')
2644                 ++p;
2645         strcpy(result, p);
2646
2647         return (0);
2648 }
2649
2650 static int
2651 zfs_lookup_dataset(const spa_t *spa, const char *name, uint64_t *objnum)
2652 {
2653         char element[256];
2654         uint64_t dir_obj, child_dir_zapobj;
2655         dnode_phys_t child_dir_zap, dir;
2656         dsl_dir_phys_t *dd;
2657         const char *p, *q;
2658
2659         if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir))
2660                 return (EIO);
2661         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (dir_obj),
2662             1, &dir_obj))
2663                 return (EIO);
2664
2665         p = name;
2666         for (;;) {
2667                 if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir))
2668                         return (EIO);
2669                 dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2670
2671                 while (*p == '/')
2672                         p++;
2673                 /* Actual loop condition #1. */
2674                 if (*p == '\0')
2675                         break;
2676
2677                 q = strchr(p, '/');
2678                 if (q) {
2679                         memcpy(element, p, q - p);
2680                         element[q - p] = '\0';
2681                         p = q + 1;
2682                 } else {
2683                         strcpy(element, p);
2684                         p += strlen(p);
2685                 }
2686
2687                 child_dir_zapobj = dd->dd_child_dir_zapobj;
2688                 if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0)
2689                         return (EIO);
2690
2691                 /* Actual loop condition #2. */
2692                 if (zap_lookup(spa, &child_dir_zap, element, sizeof (dir_obj),
2693                     1, &dir_obj) != 0)
2694                         return (ENOENT);
2695         }
2696
2697         *objnum = dd->dd_head_dataset_obj;
2698         return (0);
2699 }
2700
2701 #ifndef BOOT2
2702 static int
2703 zfs_list_dataset(const spa_t *spa, uint64_t objnum/*, int pos, char *entry*/)
2704 {
2705         uint64_t dir_obj, child_dir_zapobj;
2706         dnode_phys_t child_dir_zap, dir, dataset;
2707         dsl_dataset_phys_t *ds;
2708         dsl_dir_phys_t *dd;
2709
2710         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2711                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2712                 return (EIO);
2713         }
2714         ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
2715         dir_obj = ds->ds_dir_obj;
2716
2717         if (objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir)) {
2718                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
2719                 return (EIO);
2720         }
2721         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2722
2723         child_dir_zapobj = dd->dd_child_dir_zapobj;
2724         if (objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap) != 0) {
2725                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
2726                 return (EIO);
2727         }
2728
2729         return (zap_list(spa, &child_dir_zap) != 0);
2730 }
2731
2732 int
2733 zfs_callback_dataset(const spa_t *spa, uint64_t objnum, int (*callback)(const char *, uint64_t))
2734 {
2735         uint64_t dir_obj, child_dir_zapobj, zap_type;
2736         dnode_phys_t child_dir_zap, dir, dataset;
2737         dsl_dataset_phys_t *ds;
2738         dsl_dir_phys_t *dd;
2739         int err;
2740
2741         err = objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset);
2742         if (err != 0) {
2743                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2744                 return (err);
2745         }
2746         ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
2747         dir_obj = ds->ds_dir_obj;
2748
2749         err = objset_get_dnode(spa, &spa->spa_mos, dir_obj, &dir);
2750         if (err != 0) {
2751                 printf("ZFS: can't find dirobj %ju\n", (uintmax_t)dir_obj);
2752                 return (err);
2753         }
2754         dd = (dsl_dir_phys_t *)&dir.dn_bonus;
2755
2756         child_dir_zapobj = dd->dd_child_dir_zapobj;
2757         err = objset_get_dnode(spa, &spa->spa_mos, child_dir_zapobj, &child_dir_zap);
2758         if (err != 0) {
2759                 printf("ZFS: can't find child zap %ju\n", (uintmax_t)dir_obj);
2760                 return (err);
2761         }
2762
2763         err = dnode_read(spa, &child_dir_zap, 0, zap_scratch, child_dir_zap.dn_datablkszsec * 512);
2764         if (err != 0)
2765                 return (err);
2766
2767         zap_type = *(uint64_t *) zap_scratch;
2768         if (zap_type == ZBT_MICRO)
2769                 return mzap_list(&child_dir_zap, callback);
2770         else
2771                 return fzap_list(spa, &child_dir_zap, callback);
2772 }
2773 #endif
2774
2775 /*
2776  * Find the object set given the object number of its dataset object
2777  * and return its details in *objset
2778  */
2779 static int
2780 zfs_mount_dataset(const spa_t *spa, uint64_t objnum, objset_phys_t *objset)
2781 {
2782         dnode_phys_t dataset;
2783         dsl_dataset_phys_t *ds;
2784
2785         if (objset_get_dnode(spa, &spa->spa_mos, objnum, &dataset)) {
2786                 printf("ZFS: can't find dataset %ju\n", (uintmax_t)objnum);
2787                 return (EIO);
2788         }
2789
2790         ds = (dsl_dataset_phys_t *) &dataset.dn_bonus;
2791         if (zio_read(spa, &ds->ds_bp, objset)) {
2792                 printf("ZFS: can't read object set for dataset %ju\n",
2793                     (uintmax_t)objnum);
2794                 return (EIO);
2795         }
2796
2797         return (0);
2798 }
2799
2800 /*
2801  * Find the object set pointed to by the BOOTFS property or the root
2802  * dataset if there is none and return its details in *objset
2803  */
2804 static int
2805 zfs_get_root(const spa_t *spa, uint64_t *objid)
2806 {
2807         dnode_phys_t dir, propdir;
2808         uint64_t props, bootfs, root;
2809
2810         *objid = 0;
2811
2812         /*
2813          * Start with the MOS directory object.
2814          */
2815         if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT, &dir)) {
2816                 printf("ZFS: can't read MOS object directory\n");
2817                 return (EIO);
2818         }
2819
2820         /*
2821          * Lookup the pool_props and see if we can find a bootfs.
2822          */
2823         if (zap_lookup(spa, &dir, DMU_POOL_PROPS, sizeof (props), 1, &props) == 0
2824              && objset_get_dnode(spa, &spa->spa_mos, props, &propdir) == 0
2825              && zap_lookup(spa, &propdir, "bootfs", sizeof (bootfs), 1, &bootfs) == 0
2826              && bootfs != 0)
2827         {
2828                 *objid = bootfs;
2829                 return (0);
2830         }
2831         /*
2832          * Lookup the root dataset directory
2833          */
2834         if (zap_lookup(spa, &dir, DMU_POOL_ROOT_DATASET, sizeof (root), 1, &root)
2835             || objset_get_dnode(spa, &spa->spa_mos, root, &dir)) {
2836                 printf("ZFS: can't find root dsl_dir\n");
2837                 return (EIO);
2838         }
2839
2840         /*
2841          * Use the information from the dataset directory's bonus buffer
2842          * to find the dataset object and from that the object set itself.
2843          */
2844         dsl_dir_phys_t *dd = (dsl_dir_phys_t *) &dir.dn_bonus;
2845         *objid = dd->dd_head_dataset_obj;
2846         return (0);
2847 }
2848
2849 static int
2850 zfs_mount(const spa_t *spa, uint64_t rootobj, struct zfsmount *mount)
2851 {
2852
2853         mount->spa = spa;
2854
2855         /*
2856          * Find the root object set if not explicitly provided
2857          */
2858         if (rootobj == 0 && zfs_get_root(spa, &rootobj)) {
2859                 printf("ZFS: can't find root filesystem\n");
2860                 return (EIO);
2861         }
2862
2863         if (zfs_mount_dataset(spa, rootobj, &mount->objset)) {
2864                 printf("ZFS: can't open root filesystem\n");
2865                 return (EIO);
2866         }
2867
2868         mount->rootobj = rootobj;
2869
2870         return (0);
2871 }
2872
2873 /*
2874  * callback function for feature name checks.
2875  */
2876 static int
2877 check_feature(const char *name, uint64_t value)
2878 {
2879         int i;
2880
2881         if (value == 0)
2882                 return (0);
2883         if (name[0] == '\0')
2884                 return (0);
2885
2886         for (i = 0; features_for_read[i] != NULL; i++) {
2887                 if (strcmp(name, features_for_read[i]) == 0)
2888                         return (0);
2889         }
2890         printf("ZFS: unsupported feature: %s\n", name);
2891         return (EIO);
2892 }
2893
2894 /*
2895  * Checks whether the MOS features that are active are supported.
2896  */
2897 static int
2898 check_mos_features(const spa_t *spa)
2899 {
2900         dnode_phys_t dir;
2901         uint64_t objnum, zap_type;
2902         size_t size;
2903         int rc;
2904
2905         if ((rc = objset_get_dnode(spa, &spa->spa_mos, DMU_OT_OBJECT_DIRECTORY,
2906             &dir)) != 0)
2907                 return (rc);
2908         if ((rc = zap_lookup(spa, &dir, DMU_POOL_FEATURES_FOR_READ,
2909             sizeof (objnum), 1, &objnum)) != 0) {
2910                 /*
2911                  * It is older pool without features. As we have already
2912                  * tested the label, just return without raising the error.
2913                  */
2914                 return (0);
2915         }
2916
2917         if ((rc = objset_get_dnode(spa, &spa->spa_mos, objnum, &dir)) != 0)
2918                 return (rc);
2919
2920         if (dir.dn_type != DMU_OTN_ZAP_METADATA)
2921                 return (EIO);
2922
2923         size = dir.dn_datablkszsec * 512;
2924         if (dnode_read(spa, &dir, 0, zap_scratch, size))
2925                 return (EIO);
2926
2927         zap_type = *(uint64_t *) zap_scratch;
2928         if (zap_type == ZBT_MICRO)
2929                 rc = mzap_list(&dir, check_feature);
2930         else
2931                 rc = fzap_list(spa, &dir, check_feature);
2932
2933         return (rc);
2934 }
2935
2936 static int
2937 load_nvlist(spa_t *spa, uint64_t obj, unsigned char **value)
2938 {
2939         dnode_phys_t dir;
2940         size_t size;
2941         int rc;
2942         unsigned char *nv;
2943
2944         *value = NULL;
2945         if ((rc = objset_get_dnode(spa, &spa->spa_mos, obj, &dir)) != 0)
2946                 return (rc);
2947         if (dir.dn_type != DMU_OT_PACKED_NVLIST &&
2948             dir.dn_bonustype != DMU_OT_PACKED_NVLIST_SIZE) {
2949                 return (EIO);
2950         }
2951
2952         if (dir.dn_bonuslen != sizeof (uint64_t))
2953                 return (EIO);
2954
2955         size = *(uint64_t *)DN_BONUS(&dir);
2956         nv = malloc(size);
2957         if (nv == NULL)
2958                 return (ENOMEM);
2959
2960         rc = dnode_read(spa, &dir, 0, nv, size);
2961         if (rc != 0) {
2962                 free(nv);
2963                 nv = NULL;
2964                 return (rc);
2965         }
2966         *value = nv;
2967         return (rc);
2968 }
2969
2970 static int
2971 zfs_spa_init(spa_t *spa)
2972 {
2973         dnode_phys_t dir;
2974         uint64_t config_object;
2975         unsigned char *nvlist;
2976         char *type;
2977         const unsigned char *nv;
2978         int nkids, rc;
2979
2980         if (zio_read(spa, &spa->spa_uberblock.ub_rootbp, &spa->spa_mos)) {
2981                 printf("ZFS: can't read MOS of pool %s\n", spa->spa_name);
2982                 return (EIO);
2983         }
2984         if (spa->spa_mos.os_type != DMU_OST_META) {
2985                 printf("ZFS: corrupted MOS of pool %s\n", spa->spa_name);
2986                 return (EIO);
2987         }
2988
2989         if (objset_get_dnode(spa, &spa->spa_mos, DMU_POOL_DIRECTORY_OBJECT,
2990             &dir)) {
2991                 printf("ZFS: failed to read pool %s directory object\n",
2992                     spa->spa_name);
2993                 return (EIO);
2994         }
2995         /* this is allowed to fail, older pools do not have salt */
2996         rc = zap_lookup(spa, &dir, DMU_POOL_CHECKSUM_SALT, 1,
2997             sizeof (spa->spa_cksum_salt.zcs_bytes),
2998             spa->spa_cksum_salt.zcs_bytes);
2999
3000         rc = check_mos_features(spa);
3001         if (rc != 0) {
3002                 printf("ZFS: pool %s is not supported\n", spa->spa_name);
3003                 return (rc);
3004         }
3005
3006         rc = zap_lookup(spa, &dir, DMU_POOL_CONFIG,
3007             sizeof (config_object), 1, &config_object);
3008         if (rc != 0) {
3009                 printf("ZFS: can not read MOS %s\n", DMU_POOL_CONFIG);
3010                 return (EIO);
3011         }
3012         rc = load_nvlist(spa, config_object, &nvlist);
3013         if (rc != 0)
3014                 return (rc);
3015
3016         /* Update vdevs from MOS config. */
3017         if (nvlist_find(nvlist + 4, ZPOOL_CONFIG_VDEV_TREE, DATA_TYPE_NVLIST,
3018             NULL, &nv)) {
3019                 rc = EIO;
3020                 goto done;
3021         }
3022
3023         if (nvlist_find(nv, ZPOOL_CONFIG_TYPE, DATA_TYPE_STRING,
3024             NULL, &type)) {
3025                 printf("ZFS: can't find vdev details\n");
3026                 rc = ENOENT;
3027                 goto done;
3028         }
3029         if (strcmp(type, VDEV_TYPE_ROOT) != 0) {
3030                 rc = ENOENT;
3031                 goto done;
3032         }
3033
3034         rc = nvlist_find(nv, ZPOOL_CONFIG_CHILDREN, DATA_TYPE_NVLIST_ARRAY,
3035             &nkids, &nv);
3036         if (rc != 0)
3037                 goto done;
3038
3039         for (int i = 0; i < nkids; i++) {
3040                 vdev_t *vd, *prev, *kid = NULL;
3041                 rc = vdev_init_from_nvlist(nv, NULL, &kid, 0);
3042                 if (rc != 0) {
3043                         printf("vdev_init_from_nvlist: %d\n", rc);
3044                         break;
3045                 }
3046                 kid->spa = spa;
3047                 prev = NULL;
3048                 STAILQ_FOREACH(vd, &spa->spa_vdevs, v_childlink) {
3049                         /* Already present? */
3050                         if (kid->v_id == vd->v_id) {
3051                                 kid = NULL;
3052                                 break;
3053                         }
3054                         if (vd->v_id > kid->v_id) {
3055                                 if (prev == NULL) {
3056                                         STAILQ_INSERT_HEAD(&spa->spa_vdevs,
3057                                             kid, v_childlink);
3058                                 } else {
3059                                         STAILQ_INSERT_AFTER(&spa->spa_vdevs,
3060                                             prev, kid, v_childlink);
3061                                 }
3062                                 kid = NULL;
3063                                 break;
3064                         }
3065                         prev = vd;
3066                 }
3067                 if (kid != NULL)
3068                         STAILQ_INSERT_TAIL(&spa->spa_vdevs, kid, v_childlink);
3069                 nv = nvlist_next(nv);
3070         }
3071         rc = 0;
3072 done:
3073         free(nvlist);
3074         return (rc);
3075 }
3076
3077 static int
3078 zfs_dnode_stat(const spa_t *spa, dnode_phys_t *dn, struct stat *sb)
3079 {
3080
3081         if (dn->dn_bonustype != DMU_OT_SA) {
3082                 znode_phys_t *zp = (znode_phys_t *)dn->dn_bonus;
3083
3084                 sb->st_mode = zp->zp_mode;
3085                 sb->st_uid = zp->zp_uid;
3086                 sb->st_gid = zp->zp_gid;
3087                 sb->st_size = zp->zp_size;
3088         } else {
3089                 sa_hdr_phys_t *sahdrp;
3090                 int hdrsize;
3091                 size_t size = 0;
3092                 void *buf = NULL;
3093
3094                 if (dn->dn_bonuslen != 0)
3095                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3096                 else {
3097                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0) {
3098                                 blkptr_t *bp = DN_SPILL_BLKPTR(dn);
3099                                 int error;
3100
3101                                 size = BP_GET_LSIZE(bp);
3102                                 buf = zfs_alloc(size);
3103                                 error = zio_read(spa, bp, buf);
3104                                 if (error != 0) {
3105                                         zfs_free(buf, size);
3106                                         return (error);
3107                                 }
3108                                 sahdrp = buf;
3109                         } else {
3110                                 return (EIO);
3111                         }
3112                 }
3113                 hdrsize = SA_HDR_SIZE(sahdrp);
3114                 sb->st_mode = *(uint64_t *)((char *)sahdrp + hdrsize +
3115                     SA_MODE_OFFSET);
3116                 sb->st_uid = *(uint64_t *)((char *)sahdrp + hdrsize +
3117                     SA_UID_OFFSET);
3118                 sb->st_gid = *(uint64_t *)((char *)sahdrp + hdrsize +
3119                     SA_GID_OFFSET);
3120                 sb->st_size = *(uint64_t *)((char *)sahdrp + hdrsize +
3121                     SA_SIZE_OFFSET);
3122                 if (buf != NULL)
3123                         zfs_free(buf, size);
3124         }
3125
3126         return (0);
3127 }
3128
3129 static int
3130 zfs_dnode_readlink(const spa_t *spa, dnode_phys_t *dn, char *path, size_t psize)
3131 {
3132         int rc = 0;
3133
3134         if (dn->dn_bonustype == DMU_OT_SA) {
3135                 sa_hdr_phys_t *sahdrp = NULL;
3136                 size_t size = 0;
3137                 void *buf = NULL;
3138                 int hdrsize;
3139                 char *p;
3140
3141                 if (dn->dn_bonuslen != 0)
3142                         sahdrp = (sa_hdr_phys_t *)DN_BONUS(dn);
3143                 else {
3144                         blkptr_t *bp;
3145
3146                         if ((dn->dn_flags & DNODE_FLAG_SPILL_BLKPTR) == 0)
3147                                 return (EIO);
3148                         bp = DN_SPILL_BLKPTR(dn);
3149
3150                         size = BP_GET_LSIZE(bp);
3151                         buf = zfs_alloc(size);
3152                         rc = zio_read(spa, bp, buf);
3153                         if (rc != 0) {
3154                                 zfs_free(buf, size);
3155                                 return (rc);
3156                         }
3157                         sahdrp = buf;
3158                 }
3159                 hdrsize = SA_HDR_SIZE(sahdrp);
3160                 p = (char *)((uintptr_t)sahdrp + hdrsize + SA_SYMLINK_OFFSET);
3161                 memcpy(path, p, psize);
3162                 if (buf != NULL)
3163                         zfs_free(buf, size);
3164                 return (0);
3165         }
3166         /*
3167          * Second test is purely to silence bogus compiler
3168          * warning about accessing past the end of dn_bonus.
3169          */
3170         if (psize + sizeof(znode_phys_t) <= dn->dn_bonuslen &&
3171             sizeof(znode_phys_t) <= sizeof(dn->dn_bonus)) {
3172                 memcpy(path, &dn->dn_bonus[sizeof(znode_phys_t)], psize);
3173         } else {
3174                 rc = dnode_read(spa, dn, 0, path, psize);
3175         }
3176         return (rc);
3177 }
3178
3179 struct obj_list {
3180         uint64_t                objnum;
3181         STAILQ_ENTRY(obj_list)  entry;
3182 };
3183
3184 /*
3185  * Lookup a file and return its dnode.
3186  */
3187 static int
3188 zfs_lookup(const struct zfsmount *mount, const char *upath, dnode_phys_t *dnode)
3189 {
3190         int rc;
3191         uint64_t objnum;
3192         const spa_t *spa;
3193         dnode_phys_t dn;
3194         const char *p, *q;
3195         char element[256];
3196         char path[1024];
3197         int symlinks_followed = 0;
3198         struct stat sb;
3199         struct obj_list *entry, *tentry;
3200         STAILQ_HEAD(, obj_list) on_cache = STAILQ_HEAD_INITIALIZER(on_cache);
3201
3202         spa = mount->spa;
3203         if (mount->objset.os_type != DMU_OST_ZFS) {
3204                 printf("ZFS: unexpected object set type %ju\n",
3205                     (uintmax_t)mount->objset.os_type);
3206                 return (EIO);
3207         }
3208
3209         if ((entry = malloc(sizeof(struct obj_list))) == NULL)
3210                 return (ENOMEM);
3211
3212         /*
3213          * Get the root directory dnode.
3214          */
3215         rc = objset_get_dnode(spa, &mount->objset, MASTER_NODE_OBJ, &dn);
3216         if (rc) {
3217                 free(entry);
3218                 return (rc);
3219         }
3220
3221         rc = zap_lookup(spa, &dn, ZFS_ROOT_OBJ, sizeof (objnum), 1, &objnum);
3222         if (rc) {
3223                 free(entry);
3224                 return (rc);
3225         }
3226         entry->objnum = objnum;
3227         STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3228
3229         rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3230         if (rc != 0)
3231                 goto done;
3232
3233         p = upath;
3234         while (p && *p) {
3235                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3236                 if (rc != 0)
3237                         goto done;
3238
3239                 while (*p == '/')
3240                         p++;
3241                 if (*p == '\0')
3242                         break;
3243                 q = p;
3244                 while (*q != '\0' && *q != '/')
3245                         q++;
3246
3247                 /* skip dot */
3248                 if (p + 1 == q && p[0] == '.') {
3249                         p++;
3250                         continue;
3251                 }
3252                 /* double dot */
3253                 if (p + 2 == q && p[0] == '.' && p[1] == '.') {
3254                         p += 2;
3255                         if (STAILQ_FIRST(&on_cache) ==
3256                             STAILQ_LAST(&on_cache, obj_list, entry)) {
3257                                 rc = ENOENT;
3258                                 goto done;
3259                         }
3260                         entry = STAILQ_FIRST(&on_cache);
3261                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3262                         free(entry);
3263                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3264                         continue;
3265                 }
3266                 if (q - p + 1 > sizeof(element)) {
3267                         rc = ENAMETOOLONG;
3268                         goto done;
3269                 }
3270                 memcpy(element, p, q - p);
3271                 element[q - p] = 0;
3272                 p = q;
3273
3274                 if ((rc = zfs_dnode_stat(spa, &dn, &sb)) != 0)
3275                         goto done;
3276                 if (!S_ISDIR(sb.st_mode)) {
3277                         rc = ENOTDIR;
3278                         goto done;
3279                 }
3280
3281                 rc = zap_lookup(spa, &dn, element, sizeof (objnum), 1, &objnum);
3282                 if (rc)
3283                         goto done;
3284                 objnum = ZFS_DIRENT_OBJ(objnum);
3285
3286                 if ((entry = malloc(sizeof(struct obj_list))) == NULL) {
3287                         rc = ENOMEM;
3288                         goto done;
3289                 }
3290                 entry->objnum = objnum;
3291                 STAILQ_INSERT_HEAD(&on_cache, entry, entry);
3292                 rc = objset_get_dnode(spa, &mount->objset, objnum, &dn);
3293                 if (rc)
3294                         goto done;
3295
3296                 /*
3297                  * Check for symlink.
3298                  */
3299                 rc = zfs_dnode_stat(spa, &dn, &sb);
3300                 if (rc)
3301                         goto done;
3302                 if (S_ISLNK(sb.st_mode)) {
3303                         if (symlinks_followed > 10) {
3304                                 rc = EMLINK;
3305                                 goto done;
3306                         }
3307                         symlinks_followed++;
3308
3309                         /*
3310                          * Read the link value and copy the tail of our
3311                          * current path onto the end.
3312                          */
3313                         if (sb.st_size + strlen(p) + 1 > sizeof(path)) {
3314                                 rc = ENAMETOOLONG;
3315                                 goto done;
3316                         }
3317                         strcpy(&path[sb.st_size], p);
3318
3319                         rc = zfs_dnode_readlink(spa, &dn, path, sb.st_size);
3320                         if (rc != 0)
3321                                 goto done;
3322
3323                         /*
3324                          * Restart with the new path, starting either at
3325                          * the root or at the parent depending whether or
3326                          * not the link is relative.
3327                          */
3328                         p = path;
3329                         if (*p == '/') {
3330                                 while (STAILQ_FIRST(&on_cache) !=
3331                                     STAILQ_LAST(&on_cache, obj_list, entry)) {
3332                                         entry = STAILQ_FIRST(&on_cache);
3333                                         STAILQ_REMOVE_HEAD(&on_cache, entry);
3334                                         free(entry);
3335                                 }
3336                         } else {
3337                                 entry = STAILQ_FIRST(&on_cache);
3338                                 STAILQ_REMOVE_HEAD(&on_cache, entry);
3339                                 free(entry);
3340                         }
3341                         objnum = (STAILQ_FIRST(&on_cache))->objnum;
3342                 }
3343         }
3344
3345         *dnode = dn;
3346 done:
3347         STAILQ_FOREACH_SAFE(entry, &on_cache, entry, tentry)
3348                 free(entry);
3349         return (rc);
3350 }