]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/amd64/vmm/intel/vmx.c
amd64: clean up empty lines in .c and .h files
[FreeBSD/FreeBSD.git] / sys / amd64 / vmm / intel / vmx.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  * Copyright (c) 2018 Joyent, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_bhyve_snapshot.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/smp.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/sysctl.h>
45
46 #include <vm/vm.h>
47 #include <vm/pmap.h>
48
49 #include <machine/psl.h>
50 #include <machine/cpufunc.h>
51 #include <machine/md_var.h>
52 #include <machine/reg.h>
53 #include <machine/segments.h>
54 #include <machine/smp.h>
55 #include <machine/specialreg.h>
56 #include <machine/vmparam.h>
57
58 #include <machine/vmm.h>
59 #include <machine/vmm_dev.h>
60 #include <machine/vmm_instruction_emul.h>
61 #include <machine/vmm_snapshot.h>
62
63 #include "vmm_lapic.h"
64 #include "vmm_host.h"
65 #include "vmm_ioport.h"
66 #include "vmm_ktr.h"
67 #include "vmm_stat.h"
68 #include "vatpic.h"
69 #include "vlapic.h"
70 #include "vlapic_priv.h"
71
72 #include "ept.h"
73 #include "vmx_cpufunc.h"
74 #include "vmx.h"
75 #include "vmx_msr.h"
76 #include "x86.h"
77 #include "vmx_controls.h"
78
79 #define PINBASED_CTLS_ONE_SETTING                                       \
80         (PINBASED_EXTINT_EXITING        |                               \
81          PINBASED_NMI_EXITING           |                               \
82          PINBASED_VIRTUAL_NMI)
83 #define PINBASED_CTLS_ZERO_SETTING      0
84
85 #define PROCBASED_CTLS_WINDOW_SETTING                                   \
86         (PROCBASED_INT_WINDOW_EXITING   |                               \
87          PROCBASED_NMI_WINDOW_EXITING)
88
89 #define PROCBASED_CTLS_ONE_SETTING                                      \
90         (PROCBASED_SECONDARY_CONTROLS   |                               \
91          PROCBASED_MWAIT_EXITING        |                               \
92          PROCBASED_MONITOR_EXITING      |                               \
93          PROCBASED_IO_EXITING           |                               \
94          PROCBASED_MSR_BITMAPS          |                               \
95          PROCBASED_CTLS_WINDOW_SETTING  |                               \
96          PROCBASED_CR8_LOAD_EXITING     |                               \
97          PROCBASED_CR8_STORE_EXITING)
98 #define PROCBASED_CTLS_ZERO_SETTING     \
99         (PROCBASED_CR3_LOAD_EXITING |   \
100         PROCBASED_CR3_STORE_EXITING |   \
101         PROCBASED_IO_BITMAPS)
102
103 #define PROCBASED_CTLS2_ONE_SETTING     PROCBASED2_ENABLE_EPT
104 #define PROCBASED_CTLS2_ZERO_SETTING    0
105
106 #define VM_EXIT_CTLS_ONE_SETTING                                        \
107         (VM_EXIT_SAVE_DEBUG_CONTROLS            |                       \
108         VM_EXIT_HOST_LMA                        |                       \
109         VM_EXIT_SAVE_EFER                       |                       \
110         VM_EXIT_LOAD_EFER                       |                       \
111         VM_EXIT_ACKNOWLEDGE_INTERRUPT)
112
113 #define VM_EXIT_CTLS_ZERO_SETTING       0
114
115 #define VM_ENTRY_CTLS_ONE_SETTING                                       \
116         (VM_ENTRY_LOAD_DEBUG_CONTROLS           |                       \
117         VM_ENTRY_LOAD_EFER)
118
119 #define VM_ENTRY_CTLS_ZERO_SETTING                                      \
120         (VM_ENTRY_INTO_SMM                      |                       \
121         VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
122
123 #define HANDLED         1
124 #define UNHANDLED       0
125
126 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
127 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
128
129 SYSCTL_DECL(_hw_vmm);
130 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
131     NULL);
132
133 int vmxon_enabled[MAXCPU];
134 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
135
136 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
137 static uint32_t exit_ctls, entry_ctls;
138
139 static uint64_t cr0_ones_mask, cr0_zeros_mask;
140 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
141              &cr0_ones_mask, 0, NULL);
142 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
143              &cr0_zeros_mask, 0, NULL);
144
145 static uint64_t cr4_ones_mask, cr4_zeros_mask;
146 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
147              &cr4_ones_mask, 0, NULL);
148 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
149              &cr4_zeros_mask, 0, NULL);
150
151 static int vmx_initialized;
152 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
153            &vmx_initialized, 0, "Intel VMX initialized");
154
155 /*
156  * Optional capabilities
157  */
158 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
159     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
160     NULL);
161
162 static int cap_halt_exit;
163 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
164     "HLT triggers a VM-exit");
165
166 static int cap_pause_exit;
167 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
168     0, "PAUSE triggers a VM-exit");
169
170 static int cap_rdpid;
171 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0,
172     "Guests are allowed to use RDPID");
173
174 static int cap_rdtscp;
175 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0,
176     "Guests are allowed to use RDTSCP");
177
178 static int cap_unrestricted_guest;
179 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
180     &cap_unrestricted_guest, 0, "Unrestricted guests");
181
182 static int cap_monitor_trap;
183 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
184     &cap_monitor_trap, 0, "Monitor trap flag");
185
186 static int cap_invpcid;
187 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
188     0, "Guests are allowed to use INVPCID");
189
190 static int tpr_shadowing;
191 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD,
192     &tpr_shadowing, 0, "TPR shadowing support");
193
194 static int virtual_interrupt_delivery;
195 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
196     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
197
198 static int posted_interrupts;
199 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
200     &posted_interrupts, 0, "APICv posted interrupt support");
201
202 static int pirvec = -1;
203 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
204     &pirvec, 0, "APICv posted interrupt vector");
205
206 static struct unrhdr *vpid_unr;
207 static u_int vpid_alloc_failed;
208 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
209             &vpid_alloc_failed, 0, NULL);
210
211 int guest_l1d_flush;
212 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD,
213     &guest_l1d_flush, 0, NULL);
214 int guest_l1d_flush_sw;
215 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD,
216     &guest_l1d_flush_sw, 0, NULL);
217
218 static struct msr_entry msr_load_list[1] __aligned(16);
219
220 /*
221  * The definitions of SDT probes for VMX.
222  */
223
224 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
225     "struct vmx *", "int", "struct vm_exit *");
226
227 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
228     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
229
230 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
231     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
232
233 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
234     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
235
236 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
237     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
238
239 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
240     "struct vmx *", "int", "struct vm_exit *");
241
242 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
243     "struct vmx *", "int", "struct vm_exit *");
244
245 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
246     "struct vmx *", "int", "struct vm_exit *");
247
248 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
249     "struct vmx *", "int", "struct vm_exit *");
250
251 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
252     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
253
254 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
255     "struct vmx *", "int", "struct vm_exit *");
256
257 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
258     "struct vmx *", "int", "struct vm_exit *");
259
260 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
261     "struct vmx *", "int", "struct vm_exit *");
262
263 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
264     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
265
266 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
267     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
268
269 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
270     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
271
272 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
273     "struct vmx *", "int", "struct vm_exit *");
274
275 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
276     "struct vmx *", "int", "struct vm_exit *");
277
278 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
279     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
280
281 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
282     "struct vmx *", "int", "struct vm_exit *");
283
284 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
285     "struct vmx *", "int", "struct vm_exit *");
286
287 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
288     "struct vmx *", "int", "struct vm_exit *");
289
290 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
291     "struct vmx *", "int", "struct vm_exit *");
292
293 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
294     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
295
296 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
297     "struct vmx *", "int", "struct vm_exit *", "int");
298
299 /*
300  * Use the last page below 4GB as the APIC access address. This address is
301  * occupied by the boot firmware so it is guaranteed that it will not conflict
302  * with a page in system memory.
303  */
304 #define APIC_ACCESS_ADDRESS     0xFFFFF000
305
306 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
307 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
308 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
309 static void vmx_inject_pir(struct vlapic *vlapic);
310 #ifdef BHYVE_SNAPSHOT
311 static int vmx_restore_tsc(void *arg, int vcpu, uint64_t now);
312 #endif
313
314 static inline bool
315 host_has_rdpid(void)
316 {
317         return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0);
318 }
319
320 static inline bool
321 host_has_rdtscp(void)
322 {
323         return ((amd_feature & AMDID_RDTSCP) != 0);
324 }
325
326 #ifdef KTR
327 static const char *
328 exit_reason_to_str(int reason)
329 {
330         static char reasonbuf[32];
331
332         switch (reason) {
333         case EXIT_REASON_EXCEPTION:
334                 return "exception";
335         case EXIT_REASON_EXT_INTR:
336                 return "extint";
337         case EXIT_REASON_TRIPLE_FAULT:
338                 return "triplefault";
339         case EXIT_REASON_INIT:
340                 return "init";
341         case EXIT_REASON_SIPI:
342                 return "sipi";
343         case EXIT_REASON_IO_SMI:
344                 return "iosmi";
345         case EXIT_REASON_SMI:
346                 return "smi";
347         case EXIT_REASON_INTR_WINDOW:
348                 return "intrwindow";
349         case EXIT_REASON_NMI_WINDOW:
350                 return "nmiwindow";
351         case EXIT_REASON_TASK_SWITCH:
352                 return "taskswitch";
353         case EXIT_REASON_CPUID:
354                 return "cpuid";
355         case EXIT_REASON_GETSEC:
356                 return "getsec";
357         case EXIT_REASON_HLT:
358                 return "hlt";
359         case EXIT_REASON_INVD:
360                 return "invd";
361         case EXIT_REASON_INVLPG:
362                 return "invlpg";
363         case EXIT_REASON_RDPMC:
364                 return "rdpmc";
365         case EXIT_REASON_RDTSC:
366                 return "rdtsc";
367         case EXIT_REASON_RSM:
368                 return "rsm";
369         case EXIT_REASON_VMCALL:
370                 return "vmcall";
371         case EXIT_REASON_VMCLEAR:
372                 return "vmclear";
373         case EXIT_REASON_VMLAUNCH:
374                 return "vmlaunch";
375         case EXIT_REASON_VMPTRLD:
376                 return "vmptrld";
377         case EXIT_REASON_VMPTRST:
378                 return "vmptrst";
379         case EXIT_REASON_VMREAD:
380                 return "vmread";
381         case EXIT_REASON_VMRESUME:
382                 return "vmresume";
383         case EXIT_REASON_VMWRITE:
384                 return "vmwrite";
385         case EXIT_REASON_VMXOFF:
386                 return "vmxoff";
387         case EXIT_REASON_VMXON:
388                 return "vmxon";
389         case EXIT_REASON_CR_ACCESS:
390                 return "craccess";
391         case EXIT_REASON_DR_ACCESS:
392                 return "draccess";
393         case EXIT_REASON_INOUT:
394                 return "inout";
395         case EXIT_REASON_RDMSR:
396                 return "rdmsr";
397         case EXIT_REASON_WRMSR:
398                 return "wrmsr";
399         case EXIT_REASON_INVAL_VMCS:
400                 return "invalvmcs";
401         case EXIT_REASON_INVAL_MSR:
402                 return "invalmsr";
403         case EXIT_REASON_MWAIT:
404                 return "mwait";
405         case EXIT_REASON_MTF:
406                 return "mtf";
407         case EXIT_REASON_MONITOR:
408                 return "monitor";
409         case EXIT_REASON_PAUSE:
410                 return "pause";
411         case EXIT_REASON_MCE_DURING_ENTRY:
412                 return "mce-during-entry";
413         case EXIT_REASON_TPR:
414                 return "tpr";
415         case EXIT_REASON_APIC_ACCESS:
416                 return "apic-access";
417         case EXIT_REASON_GDTR_IDTR:
418                 return "gdtridtr";
419         case EXIT_REASON_LDTR_TR:
420                 return "ldtrtr";
421         case EXIT_REASON_EPT_FAULT:
422                 return "eptfault";
423         case EXIT_REASON_EPT_MISCONFIG:
424                 return "eptmisconfig";
425         case EXIT_REASON_INVEPT:
426                 return "invept";
427         case EXIT_REASON_RDTSCP:
428                 return "rdtscp";
429         case EXIT_REASON_VMX_PREEMPT:
430                 return "vmxpreempt";
431         case EXIT_REASON_INVVPID:
432                 return "invvpid";
433         case EXIT_REASON_WBINVD:
434                 return "wbinvd";
435         case EXIT_REASON_XSETBV:
436                 return "xsetbv";
437         case EXIT_REASON_APIC_WRITE:
438                 return "apic-write";
439         default:
440                 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
441                 return (reasonbuf);
442         }
443 }
444 #endif  /* KTR */
445
446 static int
447 vmx_allow_x2apic_msrs(struct vmx *vmx)
448 {
449         int i, error;
450
451         error = 0;
452
453         /*
454          * Allow readonly access to the following x2APIC MSRs from the guest.
455          */
456         error += guest_msr_ro(vmx, MSR_APIC_ID);
457         error += guest_msr_ro(vmx, MSR_APIC_VERSION);
458         error += guest_msr_ro(vmx, MSR_APIC_LDR);
459         error += guest_msr_ro(vmx, MSR_APIC_SVR);
460
461         for (i = 0; i < 8; i++)
462                 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
463
464         for (i = 0; i < 8; i++)
465                 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
466
467         for (i = 0; i < 8; i++)
468                 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
469
470         error += guest_msr_ro(vmx, MSR_APIC_ESR);
471         error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
472         error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
473         error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
474         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
475         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
476         error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
477         error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
478         error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
479         error += guest_msr_ro(vmx, MSR_APIC_ICR);
480
481         /*
482          * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
483          *
484          * These registers get special treatment described in the section
485          * "Virtualizing MSR-Based APIC Accesses".
486          */
487         error += guest_msr_rw(vmx, MSR_APIC_TPR);
488         error += guest_msr_rw(vmx, MSR_APIC_EOI);
489         error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
490
491         return (error);
492 }
493
494 u_long
495 vmx_fix_cr0(u_long cr0)
496 {
497
498         return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
499 }
500
501 u_long
502 vmx_fix_cr4(u_long cr4)
503 {
504
505         return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
506 }
507
508 static void
509 vpid_free(int vpid)
510 {
511         if (vpid < 0 || vpid > 0xffff)
512                 panic("vpid_free: invalid vpid %d", vpid);
513
514         /*
515          * VPIDs [0,VM_MAXCPU] are special and are not allocated from
516          * the unit number allocator.
517          */
518
519         if (vpid > VM_MAXCPU)
520                 free_unr(vpid_unr, vpid);
521 }
522
523 static void
524 vpid_alloc(uint16_t *vpid, int num)
525 {
526         int i, x;
527
528         if (num <= 0 || num > VM_MAXCPU)
529                 panic("invalid number of vpids requested: %d", num);
530
531         /*
532          * If the "enable vpid" execution control is not enabled then the
533          * VPID is required to be 0 for all vcpus.
534          */
535         if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
536                 for (i = 0; i < num; i++)
537                         vpid[i] = 0;
538                 return;
539         }
540
541         /*
542          * Allocate a unique VPID for each vcpu from the unit number allocator.
543          */
544         for (i = 0; i < num; i++) {
545                 x = alloc_unr(vpid_unr);
546                 if (x == -1)
547                         break;
548                 else
549                         vpid[i] = x;
550         }
551
552         if (i < num) {
553                 atomic_add_int(&vpid_alloc_failed, 1);
554
555                 /*
556                  * If the unit number allocator does not have enough unique
557                  * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
558                  *
559                  * These VPIDs are not be unique across VMs but this does not
560                  * affect correctness because the combined mappings are also
561                  * tagged with the EP4TA which is unique for each VM.
562                  *
563                  * It is still sub-optimal because the invvpid will invalidate
564                  * combined mappings for a particular VPID across all EP4TAs.
565                  */
566                 while (i-- > 0)
567                         vpid_free(vpid[i]);
568
569                 for (i = 0; i < num; i++)
570                         vpid[i] = i + 1;
571         }
572 }
573
574 static void
575 vpid_init(void)
576 {
577         /*
578          * VPID 0 is required when the "enable VPID" execution control is
579          * disabled.
580          *
581          * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
582          * unit number allocator does not have sufficient unique VPIDs to
583          * satisfy the allocation.
584          *
585          * The remaining VPIDs are managed by the unit number allocator.
586          */
587         vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
588 }
589
590 static void
591 vmx_disable(void *arg __unused)
592 {
593         struct invvpid_desc invvpid_desc = { 0 };
594         struct invept_desc invept_desc = { 0 };
595
596         if (vmxon_enabled[curcpu]) {
597                 /*
598                  * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
599                  *
600                  * VMXON or VMXOFF are not required to invalidate any TLB
601                  * caching structures. This prevents potential retention of
602                  * cached information in the TLB between distinct VMX episodes.
603                  */
604                 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
605                 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
606                 vmxoff();
607         }
608         load_cr4(rcr4() & ~CR4_VMXE);
609 }
610
611 static int
612 vmx_cleanup(void)
613 {
614
615         if (pirvec >= 0)
616                 lapic_ipi_free(pirvec);
617
618         if (vpid_unr != NULL) {
619                 delete_unrhdr(vpid_unr);
620                 vpid_unr = NULL;
621         }
622
623         if (nmi_flush_l1d_sw == 1)
624                 nmi_flush_l1d_sw = 0;
625
626         smp_rendezvous(NULL, vmx_disable, NULL, NULL);
627
628         return (0);
629 }
630
631 static void
632 vmx_enable(void *arg __unused)
633 {
634         int error;
635         uint64_t feature_control;
636
637         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
638         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
639             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
640                 wrmsr(MSR_IA32_FEATURE_CONTROL,
641                     feature_control | IA32_FEATURE_CONTROL_VMX_EN |
642                     IA32_FEATURE_CONTROL_LOCK);
643         }
644
645         load_cr4(rcr4() | CR4_VMXE);
646
647         *(uint32_t *)vmxon_region[curcpu] = vmx_revision();
648         error = vmxon(vmxon_region[curcpu]);
649         if (error == 0)
650                 vmxon_enabled[curcpu] = 1;
651 }
652
653 static void
654 vmx_restore(void)
655 {
656
657         if (vmxon_enabled[curcpu])
658                 vmxon(vmxon_region[curcpu]);
659 }
660
661 static int
662 vmx_init(int ipinum)
663 {
664         int error;
665         uint64_t basic, fixed0, fixed1, feature_control;
666         uint32_t tmp, procbased2_vid_bits;
667
668         /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
669         if (!(cpu_feature2 & CPUID2_VMX)) {
670                 printf("vmx_init: processor does not support VMX operation\n");
671                 return (ENXIO);
672         }
673
674         /*
675          * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
676          * are set (bits 0 and 2 respectively).
677          */
678         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
679         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
680             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
681                 printf("vmx_init: VMX operation disabled by BIOS\n");
682                 return (ENXIO);
683         }
684
685         /*
686          * Verify capabilities MSR_VMX_BASIC:
687          * - bit 54 indicates support for INS/OUTS decoding
688          */
689         basic = rdmsr(MSR_VMX_BASIC);
690         if ((basic & (1UL << 54)) == 0) {
691                 printf("vmx_init: processor does not support desired basic "
692                     "capabilities\n");
693                 return (EINVAL);
694         }
695
696         /* Check support for primary processor-based VM-execution controls */
697         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
698                                MSR_VMX_TRUE_PROCBASED_CTLS,
699                                PROCBASED_CTLS_ONE_SETTING,
700                                PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
701         if (error) {
702                 printf("vmx_init: processor does not support desired primary "
703                        "processor-based controls\n");
704                 return (error);
705         }
706
707         /* Clear the processor-based ctl bits that are set on demand */
708         procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
709
710         /* Check support for secondary processor-based VM-execution controls */
711         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
712                                MSR_VMX_PROCBASED_CTLS2,
713                                PROCBASED_CTLS2_ONE_SETTING,
714                                PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
715         if (error) {
716                 printf("vmx_init: processor does not support desired secondary "
717                        "processor-based controls\n");
718                 return (error);
719         }
720
721         /* Check support for VPID */
722         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
723                                PROCBASED2_ENABLE_VPID, 0, &tmp);
724         if (error == 0)
725                 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
726
727         /* Check support for pin-based VM-execution controls */
728         error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
729                                MSR_VMX_TRUE_PINBASED_CTLS,
730                                PINBASED_CTLS_ONE_SETTING,
731                                PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
732         if (error) {
733                 printf("vmx_init: processor does not support desired "
734                        "pin-based controls\n");
735                 return (error);
736         }
737
738         /* Check support for VM-exit controls */
739         error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
740                                VM_EXIT_CTLS_ONE_SETTING,
741                                VM_EXIT_CTLS_ZERO_SETTING,
742                                &exit_ctls);
743         if (error) {
744                 printf("vmx_init: processor does not support desired "
745                     "exit controls\n");
746                 return (error);
747         }
748
749         /* Check support for VM-entry controls */
750         error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
751             VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
752             &entry_ctls);
753         if (error) {
754                 printf("vmx_init: processor does not support desired "
755                     "entry controls\n");
756                 return (error);
757         }
758
759         /*
760          * Check support for optional features by testing them
761          * as individual bits
762          */
763         cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
764                                         MSR_VMX_TRUE_PROCBASED_CTLS,
765                                         PROCBASED_HLT_EXITING, 0,
766                                         &tmp) == 0);
767
768         cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
769                                         MSR_VMX_PROCBASED_CTLS,
770                                         PROCBASED_MTF, 0,
771                                         &tmp) == 0);
772
773         cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
774                                          MSR_VMX_TRUE_PROCBASED_CTLS,
775                                          PROCBASED_PAUSE_EXITING, 0,
776                                          &tmp) == 0);
777
778         /*
779          * Check support for RDPID and/or RDTSCP.
780          *
781          * Support a pass-through-based implementation of these via the
782          * "enable RDTSCP" VM-execution control and the "RDTSC exiting"
783          * VM-execution control.
784          *
785          * The "enable RDTSCP" VM-execution control applies to both RDPID
786          * and RDTSCP (see SDM volume 3, section 25.3, "Changes to
787          * Instruction Behavior in VMX Non-root operation"); this is why
788          * only this VM-execution control needs to be enabled in order to
789          * enable passing through whichever of RDPID and/or RDTSCP are
790          * supported by the host.
791          *
792          * The "RDTSC exiting" VM-execution control applies to both RDTSC
793          * and RDTSCP (again, per SDM volume 3, section 25.3), and is
794          * already set up for RDTSC and RDTSCP pass-through by the current
795          * implementation of RDTSC.
796          *
797          * Although RDPID and RDTSCP are optional capabilities, since there
798          * does not currently seem to be a use case for enabling/disabling
799          * these via libvmmapi, choose not to support this and, instead,
800          * just statically always enable or always disable this support
801          * across all vCPUs on all VMs. (Note that there may be some
802          * complications to providing this functionality, e.g., the MSR
803          * bitmap is currently per-VM rather than per-vCPU while the
804          * capability API wants to be able to control capabilities on a
805          * per-vCPU basis).
806          */
807         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
808                                MSR_VMX_PROCBASED_CTLS2,
809                                PROCBASED2_ENABLE_RDTSCP, 0, &tmp);
810         cap_rdpid = error == 0 && host_has_rdpid();
811         cap_rdtscp = error == 0 && host_has_rdtscp();
812         if (cap_rdpid || cap_rdtscp)
813                 procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP;
814
815         cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
816                                         MSR_VMX_PROCBASED_CTLS2,
817                                         PROCBASED2_UNRESTRICTED_GUEST, 0,
818                                         &tmp) == 0);
819
820         cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
821             MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
822             &tmp) == 0);
823
824         /*
825          * Check support for TPR shadow.
826          */
827         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
828             MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
829             &tmp);
830         if (error == 0) {
831                 tpr_shadowing = 1;
832                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
833                     &tpr_shadowing);
834         }
835
836         if (tpr_shadowing) {
837                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
838                 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
839                 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
840         }
841
842         /*
843          * Check support for virtual interrupt delivery.
844          */
845         procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
846             PROCBASED2_VIRTUALIZE_X2APIC_MODE |
847             PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
848             PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
849
850         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
851             procbased2_vid_bits, 0, &tmp);
852         if (error == 0 && tpr_shadowing) {
853                 virtual_interrupt_delivery = 1;
854                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
855                     &virtual_interrupt_delivery);
856         }
857
858         if (virtual_interrupt_delivery) {
859                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
860                 procbased_ctls2 |= procbased2_vid_bits;
861                 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
862
863                 /*
864                  * Check for Posted Interrupts only if Virtual Interrupt
865                  * Delivery is enabled.
866                  */
867                 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
868                     MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
869                     &tmp);
870                 if (error == 0) {
871                         pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
872                             &IDTVEC(justreturn));
873                         if (pirvec < 0) {
874                                 if (bootverbose) {
875                                         printf("vmx_init: unable to allocate "
876                                             "posted interrupt vector\n");
877                                 }
878                         } else {
879                                 posted_interrupts = 1;
880                                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
881                                     &posted_interrupts);
882                         }
883                 }
884         }
885
886         if (posted_interrupts)
887                     pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
888
889         /* Initialize EPT */
890         error = ept_init(ipinum);
891         if (error) {
892                 printf("vmx_init: ept initialization failed (%d)\n", error);
893                 return (error);
894         }
895
896         guest_l1d_flush = (cpu_ia32_arch_caps &
897             IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
898         TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
899
900         /*
901          * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
902          * available.  Otherwise fall back to the software flush
903          * method which loads enough data from the kernel text to
904          * flush existing L1D content, both on VMX entry and on NMI
905          * return.
906          */
907         if (guest_l1d_flush) {
908                 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
909                         guest_l1d_flush_sw = 1;
910                         TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
911                             &guest_l1d_flush_sw);
912                 }
913                 if (guest_l1d_flush_sw) {
914                         if (nmi_flush_l1d_sw <= 1)
915                                 nmi_flush_l1d_sw = 1;
916                 } else {
917                         msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
918                         msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
919                 }
920         }
921
922         /*
923          * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
924          */
925         fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
926         fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
927         cr0_ones_mask = fixed0 & fixed1;
928         cr0_zeros_mask = ~fixed0 & ~fixed1;
929
930         /*
931          * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
932          * if unrestricted guest execution is allowed.
933          */
934         if (cap_unrestricted_guest)
935                 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
936
937         /*
938          * Do not allow the guest to set CR0_NW or CR0_CD.
939          */
940         cr0_zeros_mask |= (CR0_NW | CR0_CD);
941
942         fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
943         fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
944         cr4_ones_mask = fixed0 & fixed1;
945         cr4_zeros_mask = ~fixed0 & ~fixed1;
946
947         vpid_init();
948
949         vmx_msr_init();
950
951         /* enable VMX operation */
952         smp_rendezvous(NULL, vmx_enable, NULL, NULL);
953
954         vmx_initialized = 1;
955
956         return (0);
957 }
958
959 static void
960 vmx_trigger_hostintr(int vector)
961 {
962         uintptr_t func;
963         struct gate_descriptor *gd;
964
965         gd = &idt[vector];
966
967         KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
968             "invalid vector %d", vector));
969         KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
970             vector));
971         KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
972             "has invalid type %d", vector, gd->gd_type));
973         KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
974             "has invalid dpl %d", vector, gd->gd_dpl));
975         KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
976             "for vector %d has invalid selector %d", vector, gd->gd_selector));
977         KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
978             "IST %d", vector, gd->gd_ist));
979
980         func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
981         vmx_call_isr(func);
982 }
983
984 static int
985 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
986 {
987         int error, mask_ident, shadow_ident;
988         uint64_t mask_value;
989
990         if (which != 0 && which != 4)
991                 panic("vmx_setup_cr_shadow: unknown cr%d", which);
992
993         if (which == 0) {
994                 mask_ident = VMCS_CR0_MASK;
995                 mask_value = cr0_ones_mask | cr0_zeros_mask;
996                 shadow_ident = VMCS_CR0_SHADOW;
997         } else {
998                 mask_ident = VMCS_CR4_MASK;
999                 mask_value = cr4_ones_mask | cr4_zeros_mask;
1000                 shadow_ident = VMCS_CR4_SHADOW;
1001         }
1002
1003         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
1004         if (error)
1005                 return (error);
1006
1007         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
1008         if (error)
1009                 return (error);
1010
1011         return (0);
1012 }
1013 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
1014 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
1015
1016 static void *
1017 vmx_vminit(struct vm *vm, pmap_t pmap)
1018 {
1019         uint16_t vpid[VM_MAXCPU];
1020         int i, error;
1021         struct vmx *vmx;
1022         struct vmcs *vmcs;
1023         uint32_t exc_bitmap;
1024         uint16_t maxcpus;
1025
1026         vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
1027         if ((uintptr_t)vmx & PAGE_MASK) {
1028                 panic("malloc of struct vmx not aligned on %d byte boundary",
1029                       PAGE_SIZE);
1030         }
1031         vmx->vm = vm;
1032
1033         vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop));
1034
1035         /*
1036          * Clean up EPTP-tagged guest physical and combined mappings
1037          *
1038          * VMX transitions are not required to invalidate any guest physical
1039          * mappings. So, it may be possible for stale guest physical mappings
1040          * to be present in the processor TLBs.
1041          *
1042          * Combined mappings for this EP4TA are also invalidated for all VPIDs.
1043          */
1044         ept_invalidate_mappings(vmx->eptp);
1045
1046         msr_bitmap_initialize(vmx->msr_bitmap);
1047
1048         /*
1049          * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
1050          * The guest FSBASE and GSBASE are saved and restored during
1051          * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
1052          * always restored from the vmcs host state area on vm-exit.
1053          *
1054          * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
1055          * how they are saved/restored so can be directly accessed by the
1056          * guest.
1057          *
1058          * MSR_EFER is saved and restored in the guest VMCS area on a
1059          * VM exit and entry respectively. It is also restored from the
1060          * host VMCS area on a VM exit.
1061          *
1062          * The TSC MSR is exposed read-only. Writes are disallowed as
1063          * that will impact the host TSC.  If the guest does a write
1064          * the "use TSC offsetting" execution control is enabled and the
1065          * difference between the host TSC and the guest TSC is written
1066          * into the TSC offset in the VMCS.
1067          *
1068          * Guest TSC_AUX support is enabled if any of guest RDPID and/or
1069          * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM
1070          * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are
1071          * supported). If guest TSC_AUX support is enabled, TSC_AUX is
1072          * exposed read-only so that the VMM can do one fewer MSR read per
1073          * exit than if this register were exposed read-write; the guest
1074          * restore value can be updated during guest writes (expected to be
1075          * rare) instead of during all exits (common).
1076          */
1077         if (guest_msr_rw(vmx, MSR_GSBASE) ||
1078             guest_msr_rw(vmx, MSR_FSBASE) ||
1079             guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
1080             guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
1081             guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
1082             guest_msr_rw(vmx, MSR_EFER) ||
1083             guest_msr_ro(vmx, MSR_TSC) ||
1084             ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX)))
1085                 panic("vmx_vminit: error setting guest msr access");
1086
1087         vpid_alloc(vpid, VM_MAXCPU);
1088
1089         if (virtual_interrupt_delivery) {
1090                 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
1091                     APIC_ACCESS_ADDRESS);
1092                 /* XXX this should really return an error to the caller */
1093                 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
1094         }
1095
1096         maxcpus = vm_get_maxcpus(vm);
1097         for (i = 0; i < maxcpus; i++) {
1098                 vmcs = &vmx->vmcs[i];
1099                 vmcs->identifier = vmx_revision();
1100                 error = vmclear(vmcs);
1101                 if (error != 0) {
1102                         panic("vmx_vminit: vmclear error %d on vcpu %d\n",
1103                               error, i);
1104                 }
1105
1106                 vmx_msr_guest_init(vmx, i);
1107
1108                 error = vmcs_init(vmcs);
1109                 KASSERT(error == 0, ("vmcs_init error %d", error));
1110
1111                 VMPTRLD(vmcs);
1112                 error = 0;
1113                 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
1114                 error += vmwrite(VMCS_EPTP, vmx->eptp);
1115                 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
1116                 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
1117                 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
1118                 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
1119                 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1120                 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
1121                 error += vmwrite(VMCS_VPID, vpid[i]);
1122
1123                 if (guest_l1d_flush && !guest_l1d_flush_sw) {
1124                         vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
1125                             (vm_offset_t)&msr_load_list[0]));
1126                         vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
1127                             nitems(msr_load_list));
1128                         vmcs_write(VMCS_EXIT_MSR_STORE, 0);
1129                         vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
1130                 }
1131
1132                 /* exception bitmap */
1133                 if (vcpu_trace_exceptions(vm, i))
1134                         exc_bitmap = 0xffffffff;
1135                 else
1136                         exc_bitmap = 1 << IDT_MC;
1137                 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
1138
1139                 vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
1140                 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1141
1142                 if (tpr_shadowing) {
1143                         error += vmwrite(VMCS_VIRTUAL_APIC,
1144                             vtophys(&vmx->apic_page[i]));
1145                 }
1146
1147                 if (virtual_interrupt_delivery) {
1148                         error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1149                         error += vmwrite(VMCS_EOI_EXIT0, 0);
1150                         error += vmwrite(VMCS_EOI_EXIT1, 0);
1151                         error += vmwrite(VMCS_EOI_EXIT2, 0);
1152                         error += vmwrite(VMCS_EOI_EXIT3, 0);
1153                 }
1154                 if (posted_interrupts) {
1155                         error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1156                         error += vmwrite(VMCS_PIR_DESC,
1157                             vtophys(&vmx->pir_desc[i]));
1158                 }
1159                 VMCLEAR(vmcs);
1160                 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
1161
1162                 vmx->cap[i].set = 0;
1163                 vmx->cap[i].set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0;
1164                 vmx->cap[i].set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0;
1165                 vmx->cap[i].proc_ctls = procbased_ctls;
1166                 vmx->cap[i].proc_ctls2 = procbased_ctls2;
1167                 vmx->cap[i].exc_bitmap = exc_bitmap;
1168
1169                 vmx->state[i].nextrip = ~0;
1170                 vmx->state[i].lastcpu = NOCPU;
1171                 vmx->state[i].vpid = vpid[i];
1172
1173                 /*
1174                  * Set up the CR0/4 shadows, and init the read shadow
1175                  * to the power-on register value from the Intel Sys Arch.
1176                  *  CR0 - 0x60000010
1177                  *  CR4 - 0
1178                  */
1179                 error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1180                 if (error != 0)
1181                         panic("vmx_setup_cr0_shadow %d", error);
1182
1183                 error = vmx_setup_cr4_shadow(vmcs, 0);
1184                 if (error != 0)
1185                         panic("vmx_setup_cr4_shadow %d", error);
1186
1187                 vmx->ctx[i].pmap = pmap;
1188         }
1189
1190         return (vmx);
1191 }
1192
1193 static int
1194 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
1195 {
1196         int handled, func;
1197
1198         func = vmxctx->guest_rax;
1199
1200         handled = x86_emulate_cpuid(vm, vcpu,
1201                                     (uint32_t*)(&vmxctx->guest_rax),
1202                                     (uint32_t*)(&vmxctx->guest_rbx),
1203                                     (uint32_t*)(&vmxctx->guest_rcx),
1204                                     (uint32_t*)(&vmxctx->guest_rdx));
1205         return (handled);
1206 }
1207
1208 static __inline void
1209 vmx_run_trace(struct vmx *vmx, int vcpu)
1210 {
1211 #ifdef KTR
1212         VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1213 #endif
1214 }
1215
1216 static __inline void
1217 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
1218                int handled)
1219 {
1220 #ifdef KTR
1221         VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
1222                  handled ? "handled" : "unhandled",
1223                  exit_reason_to_str(exit_reason), rip);
1224 #endif
1225 }
1226
1227 static __inline void
1228 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1229 {
1230 #ifdef KTR
1231         VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1232 #endif
1233 }
1234
1235 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1236 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1237
1238 /*
1239  * Invalidate guest mappings identified by its vpid from the TLB.
1240  */
1241 static __inline void
1242 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1243 {
1244         struct vmxstate *vmxstate;
1245         struct invvpid_desc invvpid_desc;
1246
1247         vmxstate = &vmx->state[vcpu];
1248         if (vmxstate->vpid == 0)
1249                 return;
1250
1251         if (!running) {
1252                 /*
1253                  * Set the 'lastcpu' to an invalid host cpu.
1254                  *
1255                  * This will invalidate TLB entries tagged with the vcpu's
1256                  * vpid the next time it runs via vmx_set_pcpu_defaults().
1257                  */
1258                 vmxstate->lastcpu = NOCPU;
1259                 return;
1260         }
1261
1262         KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1263             "critical section", __func__, vcpu));
1264
1265         /*
1266          * Invalidate all mappings tagged with 'vpid'
1267          *
1268          * We do this because this vcpu was executing on a different host
1269          * cpu when it last ran. We do not track whether it invalidated
1270          * mappings associated with its 'vpid' during that run. So we must
1271          * assume that the mappings associated with 'vpid' on 'curcpu' are
1272          * stale and invalidate them.
1273          *
1274          * Note that we incur this penalty only when the scheduler chooses to
1275          * move the thread associated with this vcpu between host cpus.
1276          *
1277          * Note also that this will invalidate mappings tagged with 'vpid'
1278          * for "all" EP4TAs.
1279          */
1280         if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1281                 invvpid_desc._res1 = 0;
1282                 invvpid_desc._res2 = 0;
1283                 invvpid_desc.vpid = vmxstate->vpid;
1284                 invvpid_desc.linear_addr = 0;
1285                 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1286                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1287         } else {
1288                 /*
1289                  * The invvpid can be skipped if an invept is going to
1290                  * be performed before entering the guest. The invept
1291                  * will invalidate combined mappings tagged with
1292                  * 'vmx->eptp' for all vpids.
1293                  */
1294                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1295         }
1296 }
1297
1298 static void
1299 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1300 {
1301         struct vmxstate *vmxstate;
1302
1303         vmxstate = &vmx->state[vcpu];
1304         if (vmxstate->lastcpu == curcpu)
1305                 return;
1306
1307         vmxstate->lastcpu = curcpu;
1308
1309         vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1310
1311         vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1312         vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1313         vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1314         vmx_invvpid(vmx, vcpu, pmap, 1);
1315 }
1316
1317 /*
1318  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1319  */
1320 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1321
1322 static void __inline
1323 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1324 {
1325
1326         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1327                 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1328                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1329                 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1330         }
1331 }
1332
1333 static void __inline
1334 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1335 {
1336
1337         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1338             ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1339         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1340         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1341         VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1342 }
1343
1344 static void __inline
1345 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1346 {
1347
1348         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1349                 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1350                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1351                 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1352         }
1353 }
1354
1355 static void __inline
1356 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1357 {
1358
1359         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1360             ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1361         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1362         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1363         VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1364 }
1365
1366 int
1367 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1368 {
1369         int error;
1370
1371         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1372                 vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1373                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1374                 VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1375         }
1376
1377         error = vmwrite(VMCS_TSC_OFFSET, offset);
1378 #ifdef BHYVE_SNAPSHOT
1379         if (error == 0)
1380                 error = vm_set_tsc_offset(vmx->vm, vcpu, offset);
1381 #endif
1382         return (error);
1383 }
1384
1385 #define NMI_BLOCKING    (VMCS_INTERRUPTIBILITY_NMI_BLOCKING |           \
1386                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1387 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING |           \
1388                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1389
1390 static void
1391 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1392 {
1393         uint32_t gi, info;
1394
1395         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1396         KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1397             "interruptibility-state %#x", gi));
1398
1399         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1400         KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1401             "VM-entry interruption information %#x", info));
1402
1403         /*
1404          * Inject the virtual NMI. The vector must be the NMI IDT entry
1405          * or the VMCS entry check will fail.
1406          */
1407         info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1408         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1409
1410         VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1411
1412         /* Clear the request */
1413         vm_nmi_clear(vmx->vm, vcpu);
1414 }
1415
1416 static void
1417 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1418     uint64_t guestrip)
1419 {
1420         int vector, need_nmi_exiting, extint_pending;
1421         uint64_t rflags, entryinfo;
1422         uint32_t gi, info;
1423
1424         if (vmx->state[vcpu].nextrip != guestrip) {
1425                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1426                 if (gi & HWINTR_BLOCKING) {
1427                         VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1428                             "cleared due to rip change: %#lx/%#lx",
1429                             vmx->state[vcpu].nextrip, guestrip);
1430                         gi &= ~HWINTR_BLOCKING;
1431                         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1432                 }
1433         }
1434
1435         if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1436                 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1437                     "intinfo is not valid: %#lx", __func__, entryinfo));
1438
1439                 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1440                 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1441                      "pending exception: %#lx/%#x", __func__, entryinfo, info));
1442
1443                 info = entryinfo;
1444                 vector = info & 0xff;
1445                 if (vector == IDT_BP || vector == IDT_OF) {
1446                         /*
1447                          * VT-x requires #BP and #OF to be injected as software
1448                          * exceptions.
1449                          */
1450                         info &= ~VMCS_INTR_T_MASK;
1451                         info |= VMCS_INTR_T_SWEXCEPTION;
1452                 }
1453
1454                 if (info & VMCS_INTR_DEL_ERRCODE)
1455                         vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1456
1457                 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1458         }
1459
1460         if (vm_nmi_pending(vmx->vm, vcpu)) {
1461                 /*
1462                  * If there are no conditions blocking NMI injection then
1463                  * inject it directly here otherwise enable "NMI window
1464                  * exiting" to inject it as soon as we can.
1465                  *
1466                  * We also check for STI_BLOCKING because some implementations
1467                  * don't allow NMI injection in this case. If we are running
1468                  * on a processor that doesn't have this restriction it will
1469                  * immediately exit and the NMI will be injected in the
1470                  * "NMI window exiting" handler.
1471                  */
1472                 need_nmi_exiting = 1;
1473                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1474                 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1475                         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1476                         if ((info & VMCS_INTR_VALID) == 0) {
1477                                 vmx_inject_nmi(vmx, vcpu);
1478                                 need_nmi_exiting = 0;
1479                         } else {
1480                                 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1481                                     "due to VM-entry intr info %#x", info);
1482                         }
1483                 } else {
1484                         VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1485                             "Guest Interruptibility-state %#x", gi);
1486                 }
1487
1488                 if (need_nmi_exiting)
1489                         vmx_set_nmi_window_exiting(vmx, vcpu);
1490         }
1491
1492         extint_pending = vm_extint_pending(vmx->vm, vcpu);
1493
1494         if (!extint_pending && virtual_interrupt_delivery) {
1495                 vmx_inject_pir(vlapic);
1496                 return;
1497         }
1498
1499         /*
1500          * If interrupt-window exiting is already in effect then don't bother
1501          * checking for pending interrupts. This is just an optimization and
1502          * not needed for correctness.
1503          */
1504         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1505                 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1506                     "pending int_window_exiting");
1507                 return;
1508         }
1509
1510         if (!extint_pending) {
1511                 /* Ask the local apic for a vector to inject */
1512                 if (!vlapic_pending_intr(vlapic, &vector))
1513                         return;
1514
1515                 /*
1516                  * From the Intel SDM, Volume 3, Section "Maskable
1517                  * Hardware Interrupts":
1518                  * - maskable interrupt vectors [16,255] can be delivered
1519                  *   through the local APIC.
1520                 */
1521                 KASSERT(vector >= 16 && vector <= 255,
1522                     ("invalid vector %d from local APIC", vector));
1523         } else {
1524                 /* Ask the legacy pic for a vector to inject */
1525                 vatpic_pending_intr(vmx->vm, &vector);
1526
1527                 /*
1528                  * From the Intel SDM, Volume 3, Section "Maskable
1529                  * Hardware Interrupts":
1530                  * - maskable interrupt vectors [0,255] can be delivered
1531                  *   through the INTR pin.
1532                  */
1533                 KASSERT(vector >= 0 && vector <= 255,
1534                     ("invalid vector %d from INTR", vector));
1535         }
1536
1537         /* Check RFLAGS.IF and the interruptibility state of the guest */
1538         rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1539         if ((rflags & PSL_I) == 0) {
1540                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1541                     "rflags %#lx", vector, rflags);
1542                 goto cantinject;
1543         }
1544
1545         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1546         if (gi & HWINTR_BLOCKING) {
1547                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1548                     "Guest Interruptibility-state %#x", vector, gi);
1549                 goto cantinject;
1550         }
1551
1552         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1553         if (info & VMCS_INTR_VALID) {
1554                 /*
1555                  * This is expected and could happen for multiple reasons:
1556                  * - A vectoring VM-entry was aborted due to astpending
1557                  * - A VM-exit happened during event injection.
1558                  * - An exception was injected above.
1559                  * - An NMI was injected above or after "NMI window exiting"
1560                  */
1561                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1562                     "VM-entry intr info %#x", vector, info);
1563                 goto cantinject;
1564         }
1565
1566         /* Inject the interrupt */
1567         info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1568         info |= vector;
1569         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1570
1571         if (!extint_pending) {
1572                 /* Update the Local APIC ISR */
1573                 vlapic_intr_accepted(vlapic, vector);
1574         } else {
1575                 vm_extint_clear(vmx->vm, vcpu);
1576                 vatpic_intr_accepted(vmx->vm, vector);
1577
1578                 /*
1579                  * After we accepted the current ExtINT the PIC may
1580                  * have posted another one.  If that is the case, set
1581                  * the Interrupt Window Exiting execution control so
1582                  * we can inject that one too.
1583                  *
1584                  * Also, interrupt window exiting allows us to inject any
1585                  * pending APIC vector that was preempted by the ExtINT
1586                  * as soon as possible. This applies both for the software
1587                  * emulated vlapic and the hardware assisted virtual APIC.
1588                  */
1589                 vmx_set_int_window_exiting(vmx, vcpu);
1590         }
1591
1592         VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1593
1594         return;
1595
1596 cantinject:
1597         /*
1598          * Set the Interrupt Window Exiting execution control so we can inject
1599          * the interrupt as soon as blocking condition goes away.
1600          */
1601         vmx_set_int_window_exiting(vmx, vcpu);
1602 }
1603
1604 /*
1605  * If the Virtual NMIs execution control is '1' then the logical processor
1606  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1607  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1608  * virtual-NMI blocking.
1609  *
1610  * This unblocking occurs even if the IRET causes a fault. In this case the
1611  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1612  */
1613 static void
1614 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1615 {
1616         uint32_t gi;
1617
1618         VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1619         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1620         gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1621         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1622 }
1623
1624 static void
1625 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1626 {
1627         uint32_t gi;
1628
1629         VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1630         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1631         gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1632         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1633 }
1634
1635 static void
1636 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1637 {
1638         uint32_t gi;
1639
1640         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1641         KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1642             ("NMI blocking is not in effect %#x", gi));
1643 }
1644
1645 static int
1646 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1647 {
1648         struct vmxctx *vmxctx;
1649         uint64_t xcrval;
1650         const struct xsave_limits *limits;
1651
1652         vmxctx = &vmx->ctx[vcpu];
1653         limits = vmm_get_xsave_limits();
1654
1655         /*
1656          * Note that the processor raises a GP# fault on its own if
1657          * xsetbv is executed for CPL != 0, so we do not have to
1658          * emulate that fault here.
1659          */
1660
1661         /* Only xcr0 is supported. */
1662         if (vmxctx->guest_rcx != 0) {
1663                 vm_inject_gp(vmx->vm, vcpu);
1664                 return (HANDLED);
1665         }
1666
1667         /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1668         if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1669                 vm_inject_ud(vmx->vm, vcpu);
1670                 return (HANDLED);
1671         }
1672
1673         xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1674         if ((xcrval & ~limits->xcr0_allowed) != 0) {
1675                 vm_inject_gp(vmx->vm, vcpu);
1676                 return (HANDLED);
1677         }
1678
1679         if (!(xcrval & XFEATURE_ENABLED_X87)) {
1680                 vm_inject_gp(vmx->vm, vcpu);
1681                 return (HANDLED);
1682         }
1683
1684         /* AVX (YMM_Hi128) requires SSE. */
1685         if (xcrval & XFEATURE_ENABLED_AVX &&
1686             (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1687                 vm_inject_gp(vmx->vm, vcpu);
1688                 return (HANDLED);
1689         }
1690
1691         /*
1692          * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1693          * ZMM_Hi256, and Hi16_ZMM.
1694          */
1695         if (xcrval & XFEATURE_AVX512 &&
1696             (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1697             (XFEATURE_AVX512 | XFEATURE_AVX)) {
1698                 vm_inject_gp(vmx->vm, vcpu);
1699                 return (HANDLED);
1700         }
1701
1702         /*
1703          * Intel MPX requires both bound register state flags to be
1704          * set.
1705          */
1706         if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1707             ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1708                 vm_inject_gp(vmx->vm, vcpu);
1709                 return (HANDLED);
1710         }
1711
1712         /*
1713          * This runs "inside" vmrun() with the guest's FPU state, so
1714          * modifying xcr0 directly modifies the guest's xcr0, not the
1715          * host's.
1716          */
1717         load_xcr(0, xcrval);
1718         return (HANDLED);
1719 }
1720
1721 static uint64_t
1722 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1723 {
1724         const struct vmxctx *vmxctx;
1725
1726         vmxctx = &vmx->ctx[vcpu];
1727
1728         switch (ident) {
1729         case 0:
1730                 return (vmxctx->guest_rax);
1731         case 1:
1732                 return (vmxctx->guest_rcx);
1733         case 2:
1734                 return (vmxctx->guest_rdx);
1735         case 3:
1736                 return (vmxctx->guest_rbx);
1737         case 4:
1738                 return (vmcs_read(VMCS_GUEST_RSP));
1739         case 5:
1740                 return (vmxctx->guest_rbp);
1741         case 6:
1742                 return (vmxctx->guest_rsi);
1743         case 7:
1744                 return (vmxctx->guest_rdi);
1745         case 8:
1746                 return (vmxctx->guest_r8);
1747         case 9:
1748                 return (vmxctx->guest_r9);
1749         case 10:
1750                 return (vmxctx->guest_r10);
1751         case 11:
1752                 return (vmxctx->guest_r11);
1753         case 12:
1754                 return (vmxctx->guest_r12);
1755         case 13:
1756                 return (vmxctx->guest_r13);
1757         case 14:
1758                 return (vmxctx->guest_r14);
1759         case 15:
1760                 return (vmxctx->guest_r15);
1761         default:
1762                 panic("invalid vmx register %d", ident);
1763         }
1764 }
1765
1766 static void
1767 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1768 {
1769         struct vmxctx *vmxctx;
1770
1771         vmxctx = &vmx->ctx[vcpu];
1772
1773         switch (ident) {
1774         case 0:
1775                 vmxctx->guest_rax = regval;
1776                 break;
1777         case 1:
1778                 vmxctx->guest_rcx = regval;
1779                 break;
1780         case 2:
1781                 vmxctx->guest_rdx = regval;
1782                 break;
1783         case 3:
1784                 vmxctx->guest_rbx = regval;
1785                 break;
1786         case 4:
1787                 vmcs_write(VMCS_GUEST_RSP, regval);
1788                 break;
1789         case 5:
1790                 vmxctx->guest_rbp = regval;
1791                 break;
1792         case 6:
1793                 vmxctx->guest_rsi = regval;
1794                 break;
1795         case 7:
1796                 vmxctx->guest_rdi = regval;
1797                 break;
1798         case 8:
1799                 vmxctx->guest_r8 = regval;
1800                 break;
1801         case 9:
1802                 vmxctx->guest_r9 = regval;
1803                 break;
1804         case 10:
1805                 vmxctx->guest_r10 = regval;
1806                 break;
1807         case 11:
1808                 vmxctx->guest_r11 = regval;
1809                 break;
1810         case 12:
1811                 vmxctx->guest_r12 = regval;
1812                 break;
1813         case 13:
1814                 vmxctx->guest_r13 = regval;
1815                 break;
1816         case 14:
1817                 vmxctx->guest_r14 = regval;
1818                 break;
1819         case 15:
1820                 vmxctx->guest_r15 = regval;
1821                 break;
1822         default:
1823                 panic("invalid vmx register %d", ident);
1824         }
1825 }
1826
1827 static int
1828 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1829 {
1830         uint64_t crval, regval;
1831
1832         /* We only handle mov to %cr0 at this time */
1833         if ((exitqual & 0xf0) != 0x00)
1834                 return (UNHANDLED);
1835
1836         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1837
1838         vmcs_write(VMCS_CR0_SHADOW, regval);
1839
1840         crval = regval | cr0_ones_mask;
1841         crval &= ~cr0_zeros_mask;
1842         vmcs_write(VMCS_GUEST_CR0, crval);
1843
1844         if (regval & CR0_PG) {
1845                 uint64_t efer, entry_ctls;
1846
1847                 /*
1848                  * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1849                  * the "IA-32e mode guest" bit in VM-entry control must be
1850                  * equal.
1851                  */
1852                 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1853                 if (efer & EFER_LME) {
1854                         efer |= EFER_LMA;
1855                         vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1856                         entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1857                         entry_ctls |= VM_ENTRY_GUEST_LMA;
1858                         vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1859                 }
1860         }
1861
1862         return (HANDLED);
1863 }
1864
1865 static int
1866 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1867 {
1868         uint64_t crval, regval;
1869
1870         /* We only handle mov to %cr4 at this time */
1871         if ((exitqual & 0xf0) != 0x00)
1872                 return (UNHANDLED);
1873
1874         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1875
1876         vmcs_write(VMCS_CR4_SHADOW, regval);
1877
1878         crval = regval | cr4_ones_mask;
1879         crval &= ~cr4_zeros_mask;
1880         vmcs_write(VMCS_GUEST_CR4, crval);
1881
1882         return (HANDLED);
1883 }
1884
1885 static int
1886 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1887 {
1888         struct vlapic *vlapic;
1889         uint64_t cr8;
1890         int regnum;
1891
1892         /* We only handle mov %cr8 to/from a register at this time. */
1893         if ((exitqual & 0xe0) != 0x00) {
1894                 return (UNHANDLED);
1895         }
1896
1897         vlapic = vm_lapic(vmx->vm, vcpu);
1898         regnum = (exitqual >> 8) & 0xf;
1899         if (exitqual & 0x10) {
1900                 cr8 = vlapic_get_cr8(vlapic);
1901                 vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1902         } else {
1903                 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1904                 vlapic_set_cr8(vlapic, cr8);
1905         }
1906
1907         return (HANDLED);
1908 }
1909
1910 /*
1911  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1912  */
1913 static int
1914 vmx_cpl(void)
1915 {
1916         uint32_t ssar;
1917
1918         ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1919         return ((ssar >> 5) & 0x3);
1920 }
1921
1922 static enum vm_cpu_mode
1923 vmx_cpu_mode(void)
1924 {
1925         uint32_t csar;
1926
1927         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1928                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1929                 if (csar & 0x2000)
1930                         return (CPU_MODE_64BIT);        /* CS.L = 1 */
1931                 else
1932                         return (CPU_MODE_COMPATIBILITY);
1933         } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1934                 return (CPU_MODE_PROTECTED);
1935         } else {
1936                 return (CPU_MODE_REAL);
1937         }
1938 }
1939
1940 static enum vm_paging_mode
1941 vmx_paging_mode(void)
1942 {
1943         uint64_t cr4;
1944
1945         if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1946                 return (PAGING_MODE_FLAT);
1947         cr4 = vmcs_read(VMCS_GUEST_CR4);
1948         if (!(cr4 & CR4_PAE))
1949                 return (PAGING_MODE_32);
1950         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) {
1951                 if (!(cr4 & CR4_LA57))
1952                         return (PAGING_MODE_64);
1953                 return (PAGING_MODE_64_LA57);
1954         } else
1955                 return (PAGING_MODE_PAE);
1956 }
1957
1958 static uint64_t
1959 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1960 {
1961         uint64_t val;
1962         int error;
1963         enum vm_reg_name reg;
1964
1965         reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1966         error = vmx_getreg(vmx, vcpuid, reg, &val);
1967         KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1968         return (val);
1969 }
1970
1971 static uint64_t
1972 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1973 {
1974         uint64_t val;
1975         int error;
1976
1977         if (rep) {
1978                 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1979                 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1980         } else {
1981                 val = 1;
1982         }
1983         return (val);
1984 }
1985
1986 static int
1987 inout_str_addrsize(uint32_t inst_info)
1988 {
1989         uint32_t size;
1990
1991         size = (inst_info >> 7) & 0x7;
1992         switch (size) {
1993         case 0:
1994                 return (2);     /* 16 bit */
1995         case 1:
1996                 return (4);     /* 32 bit */
1997         case 2:
1998                 return (8);     /* 64 bit */
1999         default:
2000                 panic("%s: invalid size encoding %d", __func__, size);
2001         }
2002 }
2003
2004 static void
2005 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
2006     struct vm_inout_str *vis)
2007 {
2008         int error, s;
2009
2010         if (in) {
2011                 vis->seg_name = VM_REG_GUEST_ES;
2012         } else {
2013                 s = (inst_info >> 15) & 0x7;
2014                 vis->seg_name = vm_segment_name(s);
2015         }
2016
2017         error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
2018         KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
2019 }
2020
2021 static void
2022 vmx_paging_info(struct vm_guest_paging *paging)
2023 {
2024         paging->cr3 = vmcs_guest_cr3();
2025         paging->cpl = vmx_cpl();
2026         paging->cpu_mode = vmx_cpu_mode();
2027         paging->paging_mode = vmx_paging_mode();
2028 }
2029
2030 static void
2031 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
2032 {
2033         struct vm_guest_paging *paging;
2034         uint32_t csar;
2035
2036         paging = &vmexit->u.inst_emul.paging;
2037
2038         vmexit->exitcode = VM_EXITCODE_INST_EMUL;
2039         vmexit->inst_length = 0;
2040         vmexit->u.inst_emul.gpa = gpa;
2041         vmexit->u.inst_emul.gla = gla;
2042         vmx_paging_info(paging);
2043         switch (paging->cpu_mode) {
2044         case CPU_MODE_REAL:
2045                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2046                 vmexit->u.inst_emul.cs_d = 0;
2047                 break;
2048         case CPU_MODE_PROTECTED:
2049         case CPU_MODE_COMPATIBILITY:
2050                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2051                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
2052                 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
2053                 break;
2054         default:
2055                 vmexit->u.inst_emul.cs_base = 0;
2056                 vmexit->u.inst_emul.cs_d = 0;
2057                 break;
2058         }
2059         vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
2060 }
2061
2062 static int
2063 ept_fault_type(uint64_t ept_qual)
2064 {
2065         int fault_type;
2066
2067         if (ept_qual & EPT_VIOLATION_DATA_WRITE)
2068                 fault_type = VM_PROT_WRITE;
2069         else if (ept_qual & EPT_VIOLATION_INST_FETCH)
2070                 fault_type = VM_PROT_EXECUTE;
2071         else
2072                 fault_type= VM_PROT_READ;
2073
2074         return (fault_type);
2075 }
2076
2077 static bool
2078 ept_emulation_fault(uint64_t ept_qual)
2079 {
2080         int read, write;
2081
2082         /* EPT fault on an instruction fetch doesn't make sense here */
2083         if (ept_qual & EPT_VIOLATION_INST_FETCH)
2084                 return (false);
2085
2086         /* EPT fault must be a read fault or a write fault */
2087         read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
2088         write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
2089         if ((read | write) == 0)
2090                 return (false);
2091
2092         /*
2093          * The EPT violation must have been caused by accessing a
2094          * guest-physical address that is a translation of a guest-linear
2095          * address.
2096          */
2097         if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
2098             (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
2099                 return (false);
2100         }
2101
2102         return (true);
2103 }
2104
2105 static __inline int
2106 apic_access_virtualization(struct vmx *vmx, int vcpuid)
2107 {
2108         uint32_t proc_ctls2;
2109
2110         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2111         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
2112 }
2113
2114 static __inline int
2115 x2apic_virtualization(struct vmx *vmx, int vcpuid)
2116 {
2117         uint32_t proc_ctls2;
2118
2119         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2120         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
2121 }
2122
2123 static int
2124 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
2125     uint64_t qual)
2126 {
2127         int error, handled, offset;
2128         uint32_t *apic_regs, vector;
2129         bool retu;
2130
2131         handled = HANDLED;
2132         offset = APIC_WRITE_OFFSET(qual);
2133
2134         if (!apic_access_virtualization(vmx, vcpuid)) {
2135                 /*
2136                  * In general there should not be any APIC write VM-exits
2137                  * unless APIC-access virtualization is enabled.
2138                  *
2139                  * However self-IPI virtualization can legitimately trigger
2140                  * an APIC-write VM-exit so treat it specially.
2141                  */
2142                 if (x2apic_virtualization(vmx, vcpuid) &&
2143                     offset == APIC_OFFSET_SELF_IPI) {
2144                         apic_regs = (uint32_t *)(vlapic->apic_page);
2145                         vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
2146                         vlapic_self_ipi_handler(vlapic, vector);
2147                         return (HANDLED);
2148                 } else
2149                         return (UNHANDLED);
2150         }
2151
2152         switch (offset) {
2153         case APIC_OFFSET_ID:
2154                 vlapic_id_write_handler(vlapic);
2155                 break;
2156         case APIC_OFFSET_LDR:
2157                 vlapic_ldr_write_handler(vlapic);
2158                 break;
2159         case APIC_OFFSET_DFR:
2160                 vlapic_dfr_write_handler(vlapic);
2161                 break;
2162         case APIC_OFFSET_SVR:
2163                 vlapic_svr_write_handler(vlapic);
2164                 break;
2165         case APIC_OFFSET_ESR:
2166                 vlapic_esr_write_handler(vlapic);
2167                 break;
2168         case APIC_OFFSET_ICR_LOW:
2169                 retu = false;
2170                 error = vlapic_icrlo_write_handler(vlapic, &retu);
2171                 if (error != 0 || retu)
2172                         handled = UNHANDLED;
2173                 break;
2174         case APIC_OFFSET_CMCI_LVT:
2175         case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2176                 vlapic_lvt_write_handler(vlapic, offset);
2177                 break;
2178         case APIC_OFFSET_TIMER_ICR:
2179                 vlapic_icrtmr_write_handler(vlapic);
2180                 break;
2181         case APIC_OFFSET_TIMER_DCR:
2182                 vlapic_dcr_write_handler(vlapic);
2183                 break;
2184         default:
2185                 handled = UNHANDLED;
2186                 break;
2187         }
2188         return (handled);
2189 }
2190
2191 static bool
2192 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2193 {
2194
2195         if (apic_access_virtualization(vmx, vcpuid) &&
2196             (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2197                 return (true);
2198         else
2199                 return (false);
2200 }
2201
2202 static int
2203 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2204 {
2205         uint64_t qual;
2206         int access_type, offset, allowed;
2207
2208         if (!apic_access_virtualization(vmx, vcpuid))
2209                 return (UNHANDLED);
2210
2211         qual = vmexit->u.vmx.exit_qualification;
2212         access_type = APIC_ACCESS_TYPE(qual);
2213         offset = APIC_ACCESS_OFFSET(qual);
2214
2215         allowed = 0;
2216         if (access_type == 0) {
2217                 /*
2218                  * Read data access to the following registers is expected.
2219                  */
2220                 switch (offset) {
2221                 case APIC_OFFSET_APR:
2222                 case APIC_OFFSET_PPR:
2223                 case APIC_OFFSET_RRR:
2224                 case APIC_OFFSET_CMCI_LVT:
2225                 case APIC_OFFSET_TIMER_CCR:
2226                         allowed = 1;
2227                         break;
2228                 default:
2229                         break;
2230                 }
2231         } else if (access_type == 1) {
2232                 /*
2233                  * Write data access to the following registers is expected.
2234                  */
2235                 switch (offset) {
2236                 case APIC_OFFSET_VER:
2237                 case APIC_OFFSET_APR:
2238                 case APIC_OFFSET_PPR:
2239                 case APIC_OFFSET_RRR:
2240                 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2241                 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2242                 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2243                 case APIC_OFFSET_CMCI_LVT:
2244                 case APIC_OFFSET_TIMER_CCR:
2245                         allowed = 1;
2246                         break;
2247                 default:
2248                         break;
2249                 }
2250         }
2251
2252         if (allowed) {
2253                 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2254                     VIE_INVALID_GLA);
2255         }
2256
2257         /*
2258          * Regardless of whether the APIC-access is allowed this handler
2259          * always returns UNHANDLED:
2260          * - if the access is allowed then it is handled by emulating the
2261          *   instruction that caused the VM-exit (outside the critical section)
2262          * - if the access is not allowed then it will be converted to an
2263          *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2264          */
2265         return (UNHANDLED);
2266 }
2267
2268 static enum task_switch_reason
2269 vmx_task_switch_reason(uint64_t qual)
2270 {
2271         int reason;
2272
2273         reason = (qual >> 30) & 0x3;
2274         switch (reason) {
2275         case 0:
2276                 return (TSR_CALL);
2277         case 1:
2278                 return (TSR_IRET);
2279         case 2:
2280                 return (TSR_JMP);
2281         case 3:
2282                 return (TSR_IDT_GATE);
2283         default:
2284                 panic("%s: invalid reason %d", __func__, reason);
2285         }
2286 }
2287
2288 static int
2289 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2290 {
2291         int error;
2292
2293         if (lapic_msr(num))
2294                 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2295         else
2296                 error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2297
2298         return (error);
2299 }
2300
2301 static int
2302 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2303 {
2304         struct vmxctx *vmxctx;
2305         uint64_t result;
2306         uint32_t eax, edx;
2307         int error;
2308
2309         if (lapic_msr(num))
2310                 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2311         else
2312                 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2313
2314         if (error == 0) {
2315                 eax = result;
2316                 vmxctx = &vmx->ctx[vcpuid];
2317                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2318                 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2319
2320                 edx = result >> 32;
2321                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2322                 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2323         }
2324
2325         return (error);
2326 }
2327
2328 static int
2329 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2330 {
2331         int error, errcode, errcode_valid, handled, in;
2332         struct vmxctx *vmxctx;
2333         struct vlapic *vlapic;
2334         struct vm_inout_str *vis;
2335         struct vm_task_switch *ts;
2336         uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2337         uint32_t intr_type, intr_vec, reason;
2338         uint64_t exitintinfo, qual, gpa;
2339         bool retu;
2340
2341         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2342         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2343
2344         handled = UNHANDLED;
2345         vmxctx = &vmx->ctx[vcpu];
2346
2347         qual = vmexit->u.vmx.exit_qualification;
2348         reason = vmexit->u.vmx.exit_reason;
2349         vmexit->exitcode = VM_EXITCODE_BOGUS;
2350
2351         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2352         SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2353
2354         /*
2355          * VM-entry failures during or after loading guest state.
2356          *
2357          * These VM-exits are uncommon but must be handled specially
2358          * as most VM-exit fields are not populated as usual.
2359          */
2360         if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2361                 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2362                 __asm __volatile("int $18");
2363                 return (1);
2364         }
2365
2366         /*
2367          * VM exits that can be triggered during event delivery need to
2368          * be handled specially by re-injecting the event if the IDT
2369          * vectoring information field's valid bit is set.
2370          *
2371          * See "Information for VM Exits During Event Delivery" in Intel SDM
2372          * for details.
2373          */
2374         idtvec_info = vmcs_idt_vectoring_info();
2375         if (idtvec_info & VMCS_IDT_VEC_VALID) {
2376                 idtvec_info &= ~(1 << 12); /* clear undefined bit */
2377                 exitintinfo = idtvec_info;
2378                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2379                         idtvec_err = vmcs_idt_vectoring_err();
2380                         exitintinfo |= (uint64_t)idtvec_err << 32;
2381                 }
2382                 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2383                 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2384                     __func__, error));
2385
2386                 /*
2387                  * If 'virtual NMIs' are being used and the VM-exit
2388                  * happened while injecting an NMI during the previous
2389                  * VM-entry, then clear "blocking by NMI" in the
2390                  * Guest Interruptibility-State so the NMI can be
2391                  * reinjected on the subsequent VM-entry.
2392                  *
2393                  * However, if the NMI was being delivered through a task
2394                  * gate, then the new task must start execution with NMIs
2395                  * blocked so don't clear NMI blocking in this case.
2396                  */
2397                 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2398                 if (intr_type == VMCS_INTR_T_NMI) {
2399                         if (reason != EXIT_REASON_TASK_SWITCH)
2400                                 vmx_clear_nmi_blocking(vmx, vcpu);
2401                         else
2402                                 vmx_assert_nmi_blocking(vmx, vcpu);
2403                 }
2404
2405                 /*
2406                  * Update VM-entry instruction length if the event being
2407                  * delivered was a software interrupt or software exception.
2408                  */
2409                 if (intr_type == VMCS_INTR_T_SWINTR ||
2410                     intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2411                     intr_type == VMCS_INTR_T_SWEXCEPTION) {
2412                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2413                 }
2414         }
2415
2416         switch (reason) {
2417         case EXIT_REASON_TASK_SWITCH:
2418                 ts = &vmexit->u.task_switch;
2419                 ts->tsssel = qual & 0xffff;
2420                 ts->reason = vmx_task_switch_reason(qual);
2421                 ts->ext = 0;
2422                 ts->errcode_valid = 0;
2423                 vmx_paging_info(&ts->paging);
2424                 /*
2425                  * If the task switch was due to a CALL, JMP, IRET, software
2426                  * interrupt (INT n) or software exception (INT3, INTO),
2427                  * then the saved %rip references the instruction that caused
2428                  * the task switch. The instruction length field in the VMCS
2429                  * is valid in this case.
2430                  *
2431                  * In all other cases (e.g., NMI, hardware exception) the
2432                  * saved %rip is one that would have been saved in the old TSS
2433                  * had the task switch completed normally so the instruction
2434                  * length field is not needed in this case and is explicitly
2435                  * set to 0.
2436                  */
2437                 if (ts->reason == TSR_IDT_GATE) {
2438                         KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2439                             ("invalid idtvec_info %#x for IDT task switch",
2440                             idtvec_info));
2441                         intr_type = idtvec_info & VMCS_INTR_T_MASK;
2442                         if (intr_type != VMCS_INTR_T_SWINTR &&
2443                             intr_type != VMCS_INTR_T_SWEXCEPTION &&
2444                             intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2445                                 /* Task switch triggered by external event */
2446                                 ts->ext = 1;
2447                                 vmexit->inst_length = 0;
2448                                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2449                                         ts->errcode_valid = 1;
2450                                         ts->errcode = vmcs_idt_vectoring_err();
2451                                 }
2452                         }
2453                 }
2454                 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2455                 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2456                 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2457                     "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2458                     ts->ext ? "external" : "internal",
2459                     ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2460                 break;
2461         case EXIT_REASON_CR_ACCESS:
2462                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2463                 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2464                 switch (qual & 0xf) {
2465                 case 0:
2466                         handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2467                         break;
2468                 case 4:
2469                         handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2470                         break;
2471                 case 8:
2472                         handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2473                         break;
2474                 }
2475                 break;
2476         case EXIT_REASON_RDMSR:
2477                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2478                 retu = false;
2479                 ecx = vmxctx->guest_rcx;
2480                 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2481                 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
2482                 error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2483                 if (error) {
2484                         vmexit->exitcode = VM_EXITCODE_RDMSR;
2485                         vmexit->u.msr.code = ecx;
2486                 } else if (!retu) {
2487                         handled = HANDLED;
2488                 } else {
2489                         /* Return to userspace with a valid exitcode */
2490                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2491                             ("emulate_rdmsr retu with bogus exitcode"));
2492                 }
2493                 break;
2494         case EXIT_REASON_WRMSR:
2495                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2496                 retu = false;
2497                 eax = vmxctx->guest_rax;
2498                 ecx = vmxctx->guest_rcx;
2499                 edx = vmxctx->guest_rdx;
2500                 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2501                     ecx, (uint64_t)edx << 32 | eax);
2502                 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
2503                     (uint64_t)edx << 32 | eax);
2504                 error = emulate_wrmsr(vmx, vcpu, ecx,
2505                     (uint64_t)edx << 32 | eax, &retu);
2506                 if (error) {
2507                         vmexit->exitcode = VM_EXITCODE_WRMSR;
2508                         vmexit->u.msr.code = ecx;
2509                         vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2510                 } else if (!retu) {
2511                         handled = HANDLED;
2512                 } else {
2513                         /* Return to userspace with a valid exitcode */
2514                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2515                             ("emulate_wrmsr retu with bogus exitcode"));
2516                 }
2517                 break;
2518         case EXIT_REASON_HLT:
2519                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2520                 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2521                 vmexit->exitcode = VM_EXITCODE_HLT;
2522                 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2523                 if (virtual_interrupt_delivery)
2524                         vmexit->u.hlt.intr_status =
2525                             vmcs_read(VMCS_GUEST_INTR_STATUS);
2526                 else
2527                         vmexit->u.hlt.intr_status = 0;
2528                 break;
2529         case EXIT_REASON_MTF:
2530                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2531                 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2532                 vmexit->exitcode = VM_EXITCODE_MTRAP;
2533                 vmexit->inst_length = 0;
2534                 break;
2535         case EXIT_REASON_PAUSE:
2536                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2537                 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2538                 vmexit->exitcode = VM_EXITCODE_PAUSE;
2539                 break;
2540         case EXIT_REASON_INTR_WINDOW:
2541                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2542                 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2543                 vmx_clear_int_window_exiting(vmx, vcpu);
2544                 return (1);
2545         case EXIT_REASON_EXT_INTR:
2546                 /*
2547                  * External interrupts serve only to cause VM exits and allow
2548                  * the host interrupt handler to run.
2549                  *
2550                  * If this external interrupt triggers a virtual interrupt
2551                  * to a VM, then that state will be recorded by the
2552                  * host interrupt handler in the VM's softc. We will inject
2553                  * this virtual interrupt during the subsequent VM enter.
2554                  */
2555                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2556                 SDT_PROBE4(vmm, vmx, exit, interrupt,
2557                     vmx, vcpu, vmexit, intr_info);
2558
2559                 /*
2560                  * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2561                  * This appears to be a bug in VMware Fusion?
2562                  */
2563                 if (!(intr_info & VMCS_INTR_VALID))
2564                         return (1);
2565                 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2566                     (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2567                     ("VM exit interruption info invalid: %#x", intr_info));
2568                 vmx_trigger_hostintr(intr_info & 0xff);
2569
2570                 /*
2571                  * This is special. We want to treat this as an 'handled'
2572                  * VM-exit but not increment the instruction pointer.
2573                  */
2574                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2575                 return (1);
2576         case EXIT_REASON_NMI_WINDOW:
2577                 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2578                 /* Exit to allow the pending virtual NMI to be injected */
2579                 if (vm_nmi_pending(vmx->vm, vcpu))
2580                         vmx_inject_nmi(vmx, vcpu);
2581                 vmx_clear_nmi_window_exiting(vmx, vcpu);
2582                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2583                 return (1);
2584         case EXIT_REASON_INOUT:
2585                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2586                 vmexit->exitcode = VM_EXITCODE_INOUT;
2587                 vmexit->u.inout.bytes = (qual & 0x7) + 1;
2588                 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2589                 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2590                 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2591                 vmexit->u.inout.port = (uint16_t)(qual >> 16);
2592                 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2593                 if (vmexit->u.inout.string) {
2594                         inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2595                         vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2596                         vis = &vmexit->u.inout_str;
2597                         vmx_paging_info(&vis->paging);
2598                         vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2599                         vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2600                         vis->index = inout_str_index(vmx, vcpu, in);
2601                         vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2602                         vis->addrsize = inout_str_addrsize(inst_info);
2603                         inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2604                 }
2605                 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2606                 break;
2607         case EXIT_REASON_CPUID:
2608                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2609                 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2610                 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2611                 break;
2612         case EXIT_REASON_EXCEPTION:
2613                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2614                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2615                 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2616                     ("VM exit interruption info invalid: %#x", intr_info));
2617
2618                 intr_vec = intr_info & 0xff;
2619                 intr_type = intr_info & VMCS_INTR_T_MASK;
2620
2621                 /*
2622                  * If Virtual NMIs control is 1 and the VM-exit is due to a
2623                  * fault encountered during the execution of IRET then we must
2624                  * restore the state of "virtual-NMI blocking" before resuming
2625                  * the guest.
2626                  *
2627                  * See "Resuming Guest Software after Handling an Exception".
2628                  * See "Information for VM Exits Due to Vectored Events".
2629                  */
2630                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2631                     (intr_vec != IDT_DF) &&
2632                     (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2633                         vmx_restore_nmi_blocking(vmx, vcpu);
2634
2635                 /*
2636                  * The NMI has already been handled in vmx_exit_handle_nmi().
2637                  */
2638                 if (intr_type == VMCS_INTR_T_NMI)
2639                         return (1);
2640
2641                 /*
2642                  * Call the machine check handler by hand. Also don't reflect
2643                  * the machine check back into the guest.
2644                  */
2645                 if (intr_vec == IDT_MC) {
2646                         VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2647                         __asm __volatile("int $18");
2648                         return (1);
2649                 }
2650
2651                 /*
2652                  * If the hypervisor has requested user exits for
2653                  * debug exceptions, bounce them out to userland.
2654                  */
2655                 if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
2656                     (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2657                         vmexit->exitcode = VM_EXITCODE_BPT;
2658                         vmexit->u.bpt.inst_length = vmexit->inst_length;
2659                         vmexit->inst_length = 0;
2660                         break;
2661                 }
2662
2663                 if (intr_vec == IDT_PF) {
2664                         error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2665                         KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2666                             __func__, error));
2667                 }
2668
2669                 /*
2670                  * Software exceptions exhibit trap-like behavior. This in
2671                  * turn requires populating the VM-entry instruction length
2672                  * so that the %rip in the trap frame is past the INT3/INTO
2673                  * instruction.
2674                  */
2675                 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2676                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2677
2678                 /* Reflect all other exceptions back into the guest */
2679                 errcode_valid = errcode = 0;
2680                 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2681                         errcode_valid = 1;
2682                         errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2683                 }
2684                 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2685                     "the guest", intr_vec, errcode);
2686                 SDT_PROBE5(vmm, vmx, exit, exception,
2687                     vmx, vcpu, vmexit, intr_vec, errcode);
2688                 error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2689                     errcode_valid, errcode, 0);
2690                 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2691                     __func__, error));
2692                 return (1);
2693
2694         case EXIT_REASON_EPT_FAULT:
2695                 /*
2696                  * If 'gpa' lies within the address space allocated to
2697                  * memory then this must be a nested page fault otherwise
2698                  * this must be an instruction that accesses MMIO space.
2699                  */
2700                 gpa = vmcs_gpa();
2701                 if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2702                     apic_access_fault(vmx, vcpu, gpa)) {
2703                         vmexit->exitcode = VM_EXITCODE_PAGING;
2704                         vmexit->inst_length = 0;
2705                         vmexit->u.paging.gpa = gpa;
2706                         vmexit->u.paging.fault_type = ept_fault_type(qual);
2707                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2708                         SDT_PROBE5(vmm, vmx, exit, nestedfault,
2709                             vmx, vcpu, vmexit, gpa, qual);
2710                 } else if (ept_emulation_fault(qual)) {
2711                         vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2712                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2713                         SDT_PROBE4(vmm, vmx, exit, mmiofault,
2714                             vmx, vcpu, vmexit, gpa);
2715                 }
2716                 /*
2717                  * If Virtual NMIs control is 1 and the VM-exit is due to an
2718                  * EPT fault during the execution of IRET then we must restore
2719                  * the state of "virtual-NMI blocking" before resuming.
2720                  *
2721                  * See description of "NMI unblocking due to IRET" in
2722                  * "Exit Qualification for EPT Violations".
2723                  */
2724                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2725                     (qual & EXIT_QUAL_NMIUDTI) != 0)
2726                         vmx_restore_nmi_blocking(vmx, vcpu);
2727                 break;
2728         case EXIT_REASON_VIRTUALIZED_EOI:
2729                 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2730                 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2731                 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2732                 vmexit->inst_length = 0;        /* trap-like */
2733                 break;
2734         case EXIT_REASON_APIC_ACCESS:
2735                 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2736                 handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2737                 break;
2738         case EXIT_REASON_APIC_WRITE:
2739                 /*
2740                  * APIC-write VM exit is trap-like so the %rip is already
2741                  * pointing to the next instruction.
2742                  */
2743                 vmexit->inst_length = 0;
2744                 vlapic = vm_lapic(vmx->vm, vcpu);
2745                 SDT_PROBE4(vmm, vmx, exit, apicwrite,
2746                     vmx, vcpu, vmexit, vlapic);
2747                 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2748                 break;
2749         case EXIT_REASON_XSETBV:
2750                 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2751                 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2752                 break;
2753         case EXIT_REASON_MONITOR:
2754                 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2755                 vmexit->exitcode = VM_EXITCODE_MONITOR;
2756                 break;
2757         case EXIT_REASON_MWAIT:
2758                 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2759                 vmexit->exitcode = VM_EXITCODE_MWAIT;
2760                 break;
2761         case EXIT_REASON_TPR:
2762                 vlapic = vm_lapic(vmx->vm, vcpu);
2763                 vlapic_sync_tpr(vlapic);
2764                 vmexit->inst_length = 0;
2765                 handled = HANDLED;
2766                 break;
2767         case EXIT_REASON_VMCALL:
2768         case EXIT_REASON_VMCLEAR:
2769         case EXIT_REASON_VMLAUNCH:
2770         case EXIT_REASON_VMPTRLD:
2771         case EXIT_REASON_VMPTRST:
2772         case EXIT_REASON_VMREAD:
2773         case EXIT_REASON_VMRESUME:
2774         case EXIT_REASON_VMWRITE:
2775         case EXIT_REASON_VMXOFF:
2776         case EXIT_REASON_VMXON:
2777                 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2778                 vmexit->exitcode = VM_EXITCODE_VMINSN;
2779                 break;
2780         default:
2781                 SDT_PROBE4(vmm, vmx, exit, unknown,
2782                     vmx, vcpu, vmexit, reason);
2783                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2784                 break;
2785         }
2786
2787         if (handled) {
2788                 /*
2789                  * It is possible that control is returned to userland
2790                  * even though we were able to handle the VM exit in the
2791                  * kernel.
2792                  *
2793                  * In such a case we want to make sure that the userland
2794                  * restarts guest execution at the instruction *after*
2795                  * the one we just processed. Therefore we update the
2796                  * guest rip in the VMCS and in 'vmexit'.
2797                  */
2798                 vmexit->rip += vmexit->inst_length;
2799                 vmexit->inst_length = 0;
2800                 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2801         } else {
2802                 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2803                         /*
2804                          * If this VM exit was not claimed by anybody then
2805                          * treat it as a generic VMX exit.
2806                          */
2807                         vmexit->exitcode = VM_EXITCODE_VMX;
2808                         vmexit->u.vmx.status = VM_SUCCESS;
2809                         vmexit->u.vmx.inst_type = 0;
2810                         vmexit->u.vmx.inst_error = 0;
2811                 } else {
2812                         /*
2813                          * The exitcode and collateral have been populated.
2814                          * The VM exit will be processed further in userland.
2815                          */
2816                 }
2817         }
2818
2819         SDT_PROBE4(vmm, vmx, exit, return,
2820             vmx, vcpu, vmexit, handled);
2821         return (handled);
2822 }
2823
2824 static __inline void
2825 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2826 {
2827
2828         KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2829             ("vmx_exit_inst_error: invalid inst_fail_status %d",
2830             vmxctx->inst_fail_status));
2831
2832         vmexit->inst_length = 0;
2833         vmexit->exitcode = VM_EXITCODE_VMX;
2834         vmexit->u.vmx.status = vmxctx->inst_fail_status;
2835         vmexit->u.vmx.inst_error = vmcs_instruction_error();
2836         vmexit->u.vmx.exit_reason = ~0;
2837         vmexit->u.vmx.exit_qualification = ~0;
2838
2839         switch (rc) {
2840         case VMX_VMRESUME_ERROR:
2841         case VMX_VMLAUNCH_ERROR:
2842         case VMX_INVEPT_ERROR:
2843                 vmexit->u.vmx.inst_type = rc;
2844                 break;
2845         default:
2846                 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2847         }
2848 }
2849
2850 /*
2851  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2852  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2853  * sufficient to simply vector to the NMI handler via a software interrupt.
2854  * However, this must be done before maskable interrupts are enabled
2855  * otherwise the "iret" issued by an interrupt handler will incorrectly
2856  * clear NMI blocking.
2857  */
2858 static __inline void
2859 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2860 {
2861         uint32_t intr_info;
2862
2863         KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2864
2865         if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2866                 return;
2867
2868         intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2869         KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2870             ("VM exit interruption info invalid: %#x", intr_info));
2871
2872         if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2873                 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2874                     "to NMI has invalid vector: %#x", intr_info));
2875                 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2876                 __asm __volatile("int $2");
2877         }
2878 }
2879
2880 static __inline void
2881 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2882 {
2883         register_t rflags;
2884
2885         /* Save host control debug registers. */
2886         vmxctx->host_dr7 = rdr7();
2887         vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2888
2889         /*
2890          * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2891          * exceptions in the host based on the guest DRx values.  The
2892          * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2893          */
2894         load_dr7(0);
2895         wrmsr(MSR_DEBUGCTLMSR, 0);
2896
2897         /*
2898          * Disable single stepping the kernel to avoid corrupting the
2899          * guest DR6.  A debugger might still be able to corrupt the
2900          * guest DR6 by setting a breakpoint after this point and then
2901          * single stepping.
2902          */
2903         rflags = read_rflags();
2904         vmxctx->host_tf = rflags & PSL_T;
2905         write_rflags(rflags & ~PSL_T);
2906
2907         /* Save host debug registers. */
2908         vmxctx->host_dr0 = rdr0();
2909         vmxctx->host_dr1 = rdr1();
2910         vmxctx->host_dr2 = rdr2();
2911         vmxctx->host_dr3 = rdr3();
2912         vmxctx->host_dr6 = rdr6();
2913
2914         /* Restore guest debug registers. */
2915         load_dr0(vmxctx->guest_dr0);
2916         load_dr1(vmxctx->guest_dr1);
2917         load_dr2(vmxctx->guest_dr2);
2918         load_dr3(vmxctx->guest_dr3);
2919         load_dr6(vmxctx->guest_dr6);
2920 }
2921
2922 static __inline void
2923 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2924 {
2925
2926         /* Save guest debug registers. */
2927         vmxctx->guest_dr0 = rdr0();
2928         vmxctx->guest_dr1 = rdr1();
2929         vmxctx->guest_dr2 = rdr2();
2930         vmxctx->guest_dr3 = rdr3();
2931         vmxctx->guest_dr6 = rdr6();
2932
2933         /*
2934          * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2935          * PSL_T last.
2936          */
2937         load_dr0(vmxctx->host_dr0);
2938         load_dr1(vmxctx->host_dr1);
2939         load_dr2(vmxctx->host_dr2);
2940         load_dr3(vmxctx->host_dr3);
2941         load_dr6(vmxctx->host_dr6);
2942         wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2943         load_dr7(vmxctx->host_dr7);
2944         write_rflags(read_rflags() | vmxctx->host_tf);
2945 }
2946
2947 static int
2948 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2949     struct vm_eventinfo *evinfo)
2950 {
2951         int rc, handled, launched;
2952         struct vmx *vmx;
2953         struct vm *vm;
2954         struct vmxctx *vmxctx;
2955         struct vmcs *vmcs;
2956         struct vm_exit *vmexit;
2957         struct vlapic *vlapic;
2958         uint32_t exit_reason;
2959         struct region_descriptor gdtr, idtr;
2960         uint16_t ldt_sel;
2961
2962         vmx = arg;
2963         vm = vmx->vm;
2964         vmcs = &vmx->vmcs[vcpu];
2965         vmxctx = &vmx->ctx[vcpu];
2966         vlapic = vm_lapic(vm, vcpu);
2967         vmexit = vm_exitinfo(vm, vcpu);
2968         launched = 0;
2969
2970         KASSERT(vmxctx->pmap == pmap,
2971             ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2972
2973         vmx_msr_guest_enter(vmx, vcpu);
2974
2975         VMPTRLD(vmcs);
2976
2977         /*
2978          * XXX
2979          * We do this every time because we may setup the virtual machine
2980          * from a different process than the one that actually runs it.
2981          *
2982          * If the life of a virtual machine was spent entirely in the context
2983          * of a single process we could do this once in vmx_vminit().
2984          */
2985         vmcs_write(VMCS_HOST_CR3, rcr3());
2986
2987         vmcs_write(VMCS_GUEST_RIP, rip);
2988         vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2989         do {
2990                 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2991                     "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
2992
2993                 handled = UNHANDLED;
2994                 /*
2995                  * Interrupts are disabled from this point on until the
2996                  * guest starts executing. This is done for the following
2997                  * reasons:
2998                  *
2999                  * If an AST is asserted on this thread after the check below,
3000                  * then the IPI_AST notification will not be lost, because it
3001                  * will cause a VM exit due to external interrupt as soon as
3002                  * the guest state is loaded.
3003                  *
3004                  * A posted interrupt after 'vmx_inject_interrupts()' will
3005                  * not be "lost" because it will be held pending in the host
3006                  * APIC because interrupts are disabled. The pending interrupt
3007                  * will be recognized as soon as the guest state is loaded.
3008                  *
3009                  * The same reasoning applies to the IPI generated by
3010                  * pmap_invalidate_ept().
3011                  */
3012                 disable_intr();
3013                 vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
3014
3015                 /*
3016                  * Check for vcpu suspension after injecting events because
3017                  * vmx_inject_interrupts() can suspend the vcpu due to a
3018                  * triple fault.
3019                  */
3020                 if (vcpu_suspended(evinfo)) {
3021                         enable_intr();
3022                         vm_exit_suspended(vmx->vm, vcpu, rip);
3023                         break;
3024                 }
3025
3026                 if (vcpu_rendezvous_pending(evinfo)) {
3027                         enable_intr();
3028                         vm_exit_rendezvous(vmx->vm, vcpu, rip);
3029                         break;
3030                 }
3031
3032                 if (vcpu_reqidle(evinfo)) {
3033                         enable_intr();
3034                         vm_exit_reqidle(vmx->vm, vcpu, rip);
3035                         break;
3036                 }
3037
3038                 if (vcpu_should_yield(vm, vcpu)) {
3039                         enable_intr();
3040                         vm_exit_astpending(vmx->vm, vcpu, rip);
3041                         vmx_astpending_trace(vmx, vcpu, rip);
3042                         handled = HANDLED;
3043                         break;
3044                 }
3045
3046                 if (vcpu_debugged(vm, vcpu)) {
3047                         enable_intr();
3048                         vm_exit_debug(vmx->vm, vcpu, rip);
3049                         break;
3050                 }
3051
3052                 /*
3053                  * If TPR Shadowing is enabled, the TPR Threshold
3054                  * must be updated right before entering the guest.
3055                  */
3056                 if (tpr_shadowing && !virtual_interrupt_delivery) {
3057                         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
3058                                 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3059                         }
3060                 }
3061
3062                 /*
3063                  * VM exits restore the base address but not the
3064                  * limits of GDTR and IDTR.  The VMCS only stores the
3065                  * base address, so VM exits set the limits to 0xffff.
3066                  * Save and restore the full GDTR and IDTR to restore
3067                  * the limits.
3068                  *
3069                  * The VMCS does not save the LDTR at all, and VM
3070                  * exits clear LDTR as if a NULL selector were loaded.
3071                  * The userspace hypervisor probably doesn't use a
3072                  * LDT, but save and restore it to be safe.
3073                  */
3074                 sgdt(&gdtr);
3075                 sidt(&idtr);
3076                 ldt_sel = sldt();
3077
3078                 /*
3079                  * The TSC_AUX MSR must be saved/restored while interrupts
3080                  * are disabled so that it is not possible for the guest
3081                  * TSC_AUX MSR value to be overwritten by the resume
3082                  * portion of the IPI_SUSPEND codepath. This is why the
3083                  * transition of this MSR is handled separately from those
3084                  * handled by vmx_msr_guest_{enter,exit}(), which are ok to
3085                  * be transitioned with preemption disabled but interrupts
3086                  * enabled.
3087                  *
3088                  * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be
3089                  * anywhere in this loop so long as they happen with
3090                  * interrupts disabled. This location is chosen for
3091                  * simplicity.
3092                  */
3093                 vmx_msr_guest_enter_tsc_aux(vmx, vcpu);
3094
3095                 vmx_run_trace(vmx, vcpu);
3096                 vmx_dr_enter_guest(vmxctx);
3097                 rc = vmx_enter_guest(vmxctx, vmx, launched);
3098                 vmx_dr_leave_guest(vmxctx);
3099
3100                 vmx_msr_guest_exit_tsc_aux(vmx, vcpu);
3101
3102                 bare_lgdt(&gdtr);
3103                 lidt(&idtr);
3104                 lldt(ldt_sel);
3105
3106                 /* Collect some information for VM exit processing */
3107                 vmexit->rip = rip = vmcs_guest_rip();
3108                 vmexit->inst_length = vmexit_instruction_length();
3109                 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
3110                 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
3111
3112                 /* Update 'nextrip' */
3113                 vmx->state[vcpu].nextrip = rip;
3114
3115                 if (rc == VMX_GUEST_VMEXIT) {
3116                         vmx_exit_handle_nmi(vmx, vcpu, vmexit);
3117                         enable_intr();
3118                         handled = vmx_exit_process(vmx, vcpu, vmexit);
3119                 } else {
3120                         enable_intr();
3121                         vmx_exit_inst_error(vmxctx, rc, vmexit);
3122                 }
3123                 launched = 1;
3124                 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
3125                 rip = vmexit->rip;
3126         } while (handled);
3127
3128         /*
3129          * If a VM exit has been handled then the exitcode must be BOGUS
3130          * If a VM exit is not handled then the exitcode must not be BOGUS
3131          */
3132         if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
3133             (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
3134                 panic("Mismatch between handled (%d) and exitcode (%d)",
3135                       handled, vmexit->exitcode);
3136         }
3137
3138         if (!handled)
3139                 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
3140
3141         VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
3142             vmexit->exitcode);
3143
3144         VMCLEAR(vmcs);
3145         vmx_msr_guest_exit(vmx, vcpu);
3146
3147         return (0);
3148 }
3149
3150 static void
3151 vmx_vmcleanup(void *arg)
3152 {
3153         int i;
3154         struct vmx *vmx = arg;
3155         uint16_t maxcpus;
3156
3157         if (apic_access_virtualization(vmx, 0))
3158                 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3159
3160         maxcpus = vm_get_maxcpus(vmx->vm);
3161         for (i = 0; i < maxcpus; i++)
3162                 vpid_free(vmx->state[i].vpid);
3163
3164         free(vmx, M_VMX);
3165
3166         return;
3167 }
3168
3169 static register_t *
3170 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3171 {
3172
3173         switch (reg) {
3174         case VM_REG_GUEST_RAX:
3175                 return (&vmxctx->guest_rax);
3176         case VM_REG_GUEST_RBX:
3177                 return (&vmxctx->guest_rbx);
3178         case VM_REG_GUEST_RCX:
3179                 return (&vmxctx->guest_rcx);
3180         case VM_REG_GUEST_RDX:
3181                 return (&vmxctx->guest_rdx);
3182         case VM_REG_GUEST_RSI:
3183                 return (&vmxctx->guest_rsi);
3184         case VM_REG_GUEST_RDI:
3185                 return (&vmxctx->guest_rdi);
3186         case VM_REG_GUEST_RBP:
3187                 return (&vmxctx->guest_rbp);
3188         case VM_REG_GUEST_R8:
3189                 return (&vmxctx->guest_r8);
3190         case VM_REG_GUEST_R9:
3191                 return (&vmxctx->guest_r9);
3192         case VM_REG_GUEST_R10:
3193                 return (&vmxctx->guest_r10);
3194         case VM_REG_GUEST_R11:
3195                 return (&vmxctx->guest_r11);
3196         case VM_REG_GUEST_R12:
3197                 return (&vmxctx->guest_r12);
3198         case VM_REG_GUEST_R13:
3199                 return (&vmxctx->guest_r13);
3200         case VM_REG_GUEST_R14:
3201                 return (&vmxctx->guest_r14);
3202         case VM_REG_GUEST_R15:
3203                 return (&vmxctx->guest_r15);
3204         case VM_REG_GUEST_CR2:
3205                 return (&vmxctx->guest_cr2);
3206         case VM_REG_GUEST_DR0:
3207                 return (&vmxctx->guest_dr0);
3208         case VM_REG_GUEST_DR1:
3209                 return (&vmxctx->guest_dr1);
3210         case VM_REG_GUEST_DR2:
3211                 return (&vmxctx->guest_dr2);
3212         case VM_REG_GUEST_DR3:
3213                 return (&vmxctx->guest_dr3);
3214         case VM_REG_GUEST_DR6:
3215                 return (&vmxctx->guest_dr6);
3216         default:
3217                 break;
3218         }
3219         return (NULL);
3220 }
3221
3222 static int
3223 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
3224 {
3225         register_t *regp;
3226
3227         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3228                 *retval = *regp;
3229                 return (0);
3230         } else
3231                 return (EINVAL);
3232 }
3233
3234 static int
3235 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
3236 {
3237         register_t *regp;
3238
3239         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3240                 *regp = val;
3241                 return (0);
3242         } else
3243                 return (EINVAL);
3244 }
3245
3246 static int
3247 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
3248 {
3249         uint64_t gi;
3250         int error;
3251
3252         error = vmcs_getreg(&vmx->vmcs[vcpu], running,
3253             VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3254         *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3255         return (error);
3256 }
3257
3258 static int
3259 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
3260 {
3261         struct vmcs *vmcs;
3262         uint64_t gi;
3263         int error, ident;
3264
3265         /*
3266          * Forcing the vcpu into an interrupt shadow is not supported.
3267          */
3268         if (val) {
3269                 error = EINVAL;
3270                 goto done;
3271         }
3272
3273         vmcs = &vmx->vmcs[vcpu];
3274         ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3275         error = vmcs_getreg(vmcs, running, ident, &gi);
3276         if (error == 0) {
3277                 gi &= ~HWINTR_BLOCKING;
3278                 error = vmcs_setreg(vmcs, running, ident, gi);
3279         }
3280 done:
3281         VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
3282             error ? "failed" : "succeeded");
3283         return (error);
3284 }
3285
3286 static int
3287 vmx_shadow_reg(int reg)
3288 {
3289         int shreg;
3290
3291         shreg = -1;
3292
3293         switch (reg) {
3294         case VM_REG_GUEST_CR0:
3295                 shreg = VMCS_CR0_SHADOW;
3296                 break;
3297         case VM_REG_GUEST_CR4:
3298                 shreg = VMCS_CR4_SHADOW;
3299                 break;
3300         default:
3301                 break;
3302         }
3303
3304         return (shreg);
3305 }
3306
3307 static int
3308 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3309 {
3310         int running, hostcpu;
3311         struct vmx *vmx = arg;
3312
3313         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3314         if (running && hostcpu != curcpu)
3315                 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
3316
3317         if (reg == VM_REG_GUEST_INTR_SHADOW)
3318                 return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
3319
3320         if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
3321                 return (0);
3322
3323         return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
3324 }
3325
3326 static int
3327 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3328 {
3329         int error, hostcpu, running, shadow;
3330         uint64_t ctls;
3331         pmap_t pmap;
3332         struct vmx *vmx = arg;
3333
3334         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3335         if (running && hostcpu != curcpu)
3336                 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3337
3338         if (reg == VM_REG_GUEST_INTR_SHADOW)
3339                 return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
3340
3341         if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
3342                 return (0);
3343
3344         error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
3345
3346         if (error == 0) {
3347                 /*
3348                  * If the "load EFER" VM-entry control is 1 then the
3349                  * value of EFER.LMA must be identical to "IA-32e mode guest"
3350                  * bit in the VM-entry control.
3351                  */
3352                 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3353                     (reg == VM_REG_GUEST_EFER)) {
3354                         vmcs_getreg(&vmx->vmcs[vcpu], running,
3355                                     VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3356                         if (val & EFER_LMA)
3357                                 ctls |= VM_ENTRY_GUEST_LMA;
3358                         else
3359                                 ctls &= ~VM_ENTRY_GUEST_LMA;
3360                         vmcs_setreg(&vmx->vmcs[vcpu], running,
3361                                     VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3362                 }
3363
3364                 shadow = vmx_shadow_reg(reg);
3365                 if (shadow > 0) {
3366                         /*
3367                          * Store the unmodified value in the shadow
3368                          */
3369                         error = vmcs_setreg(&vmx->vmcs[vcpu], running,
3370                                     VMCS_IDENT(shadow), val);
3371                 }
3372
3373                 if (reg == VM_REG_GUEST_CR3) {
3374                         /*
3375                          * Invalidate the guest vcpu's TLB mappings to emulate
3376                          * the behavior of updating %cr3.
3377                          *
3378                          * XXX the processor retains global mappings when %cr3
3379                          * is updated but vmx_invvpid() does not.
3380                          */
3381                         pmap = vmx->ctx[vcpu].pmap;
3382                         vmx_invvpid(vmx, vcpu, pmap, running);
3383                 }
3384         }
3385
3386         return (error);
3387 }
3388
3389 static int
3390 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3391 {
3392         int hostcpu, running;
3393         struct vmx *vmx = arg;
3394
3395         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3396         if (running && hostcpu != curcpu)
3397                 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3398
3399         return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
3400 }
3401
3402 static int
3403 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3404 {
3405         int hostcpu, running;
3406         struct vmx *vmx = arg;
3407
3408         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3409         if (running && hostcpu != curcpu)
3410                 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3411
3412         return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
3413 }
3414
3415 static int
3416 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3417 {
3418         struct vmx *vmx = arg;
3419         int vcap;
3420         int ret;
3421
3422         ret = ENOENT;
3423
3424         vcap = vmx->cap[vcpu].set;
3425
3426         switch (type) {
3427         case VM_CAP_HALT_EXIT:
3428                 if (cap_halt_exit)
3429                         ret = 0;
3430                 break;
3431         case VM_CAP_PAUSE_EXIT:
3432                 if (cap_pause_exit)
3433                         ret = 0;
3434                 break;
3435         case VM_CAP_MTRAP_EXIT:
3436                 if (cap_monitor_trap)
3437                         ret = 0;
3438                 break;
3439         case VM_CAP_RDPID:
3440                 if (cap_rdpid)
3441                         ret = 0;
3442                 break;
3443         case VM_CAP_RDTSCP:
3444                 if (cap_rdtscp)
3445                         ret = 0;
3446                 break;
3447         case VM_CAP_UNRESTRICTED_GUEST:
3448                 if (cap_unrestricted_guest)
3449                         ret = 0;
3450                 break;
3451         case VM_CAP_ENABLE_INVPCID:
3452                 if (cap_invpcid)
3453                         ret = 0;
3454                 break;
3455         case VM_CAP_BPT_EXIT:
3456                 ret = 0;
3457                 break;
3458         default:
3459                 break;
3460         }
3461
3462         if (ret == 0)
3463                 *retval = (vcap & (1 << type)) ? 1 : 0;
3464
3465         return (ret);
3466 }
3467
3468 static int
3469 vmx_setcap(void *arg, int vcpu, int type, int val)
3470 {
3471         struct vmx *vmx = arg;
3472         struct vmcs *vmcs = &vmx->vmcs[vcpu];
3473         uint32_t baseval;
3474         uint32_t *pptr;
3475         int error;
3476         int flag;
3477         int reg;
3478         int retval;
3479
3480         retval = ENOENT;
3481         pptr = NULL;
3482
3483         switch (type) {
3484         case VM_CAP_HALT_EXIT:
3485                 if (cap_halt_exit) {
3486                         retval = 0;
3487                         pptr = &vmx->cap[vcpu].proc_ctls;
3488                         baseval = *pptr;
3489                         flag = PROCBASED_HLT_EXITING;
3490                         reg = VMCS_PRI_PROC_BASED_CTLS;
3491                 }
3492                 break;
3493         case VM_CAP_MTRAP_EXIT:
3494                 if (cap_monitor_trap) {
3495                         retval = 0;
3496                         pptr = &vmx->cap[vcpu].proc_ctls;
3497                         baseval = *pptr;
3498                         flag = PROCBASED_MTF;
3499                         reg = VMCS_PRI_PROC_BASED_CTLS;
3500                 }
3501                 break;
3502         case VM_CAP_PAUSE_EXIT:
3503                 if (cap_pause_exit) {
3504                         retval = 0;
3505                         pptr = &vmx->cap[vcpu].proc_ctls;
3506                         baseval = *pptr;
3507                         flag = PROCBASED_PAUSE_EXITING;
3508                         reg = VMCS_PRI_PROC_BASED_CTLS;
3509                 }
3510                 break;
3511         case VM_CAP_RDPID:
3512         case VM_CAP_RDTSCP:
3513                 if (cap_rdpid || cap_rdtscp)
3514                         /*
3515                          * Choose not to support enabling/disabling
3516                          * RDPID/RDTSCP via libvmmapi since, as per the
3517                          * discussion in vmx_init(), RDPID/RDTSCP are
3518                          * either always enabled or always disabled.
3519                          */
3520                         error = EOPNOTSUPP;
3521                 break;
3522         case VM_CAP_UNRESTRICTED_GUEST:
3523                 if (cap_unrestricted_guest) {
3524                         retval = 0;
3525                         pptr = &vmx->cap[vcpu].proc_ctls2;
3526                         baseval = *pptr;
3527                         flag = PROCBASED2_UNRESTRICTED_GUEST;
3528                         reg = VMCS_SEC_PROC_BASED_CTLS;
3529                 }
3530                 break;
3531         case VM_CAP_ENABLE_INVPCID:
3532                 if (cap_invpcid) {
3533                         retval = 0;
3534                         pptr = &vmx->cap[vcpu].proc_ctls2;
3535                         baseval = *pptr;
3536                         flag = PROCBASED2_ENABLE_INVPCID;
3537                         reg = VMCS_SEC_PROC_BASED_CTLS;
3538                 }
3539                 break;
3540         case VM_CAP_BPT_EXIT:
3541                 retval = 0;
3542
3543                 /* Don't change the bitmap if we are tracing all exceptions. */
3544                 if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3545                         pptr = &vmx->cap[vcpu].exc_bitmap;
3546                         baseval = *pptr;
3547                         flag = (1 << IDT_BP);
3548                         reg = VMCS_EXCEPTION_BITMAP;
3549                 }
3550                 break;
3551         default:
3552                 break;
3553         }
3554
3555         if (retval)
3556                 return (retval);
3557
3558         if (pptr != NULL) {
3559                 if (val) {
3560                         baseval |= flag;
3561                 } else {
3562                         baseval &= ~flag;
3563                 }
3564                 VMPTRLD(vmcs);
3565                 error = vmwrite(reg, baseval);
3566                 VMCLEAR(vmcs);
3567
3568                 if (error)
3569                         return (error);
3570
3571                 /*
3572                  * Update optional stored flags, and record
3573                  * setting
3574                  */
3575                 *pptr = baseval;
3576         }
3577
3578         if (val) {
3579                 vmx->cap[vcpu].set |= (1 << type);
3580         } else {
3581                 vmx->cap[vcpu].set &= ~(1 << type);
3582         }
3583
3584         return (0);
3585 }
3586
3587 struct vlapic_vtx {
3588         struct vlapic   vlapic;
3589         struct pir_desc *pir_desc;
3590         struct vmx      *vmx;
3591         u_int   pending_prio;
3592 };
3593
3594 #define VPR_PRIO_BIT(vpr)       (1 << ((vpr) >> 4))
3595
3596 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)   \
3597 do {                                                                    \
3598         VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",     \
3599             level ? "level" : "edge", vector);                          \
3600         VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);  \
3601         VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);  \
3602         VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);  \
3603         VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);  \
3604         VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3605 } while (0)
3606
3607 /*
3608  * vlapic->ops handlers that utilize the APICv hardware assist described in
3609  * Chapter 29 of the Intel SDM.
3610  */
3611 static int
3612 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3613 {
3614         struct vlapic_vtx *vlapic_vtx;
3615         struct pir_desc *pir_desc;
3616         uint64_t mask;
3617         int idx, notify = 0;
3618
3619         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3620         pir_desc = vlapic_vtx->pir_desc;
3621
3622         /*
3623          * Keep track of interrupt requests in the PIR descriptor. This is
3624          * because the virtual APIC page pointed to by the VMCS cannot be
3625          * modified if the vcpu is running.
3626          */
3627         idx = vector / 64;
3628         mask = 1UL << (vector % 64);
3629         atomic_set_long(&pir_desc->pir[idx], mask);
3630
3631         /*
3632          * A notification is required whenever the 'pending' bit makes a
3633          * transition from 0->1.
3634          *
3635          * Even if the 'pending' bit is already asserted, notification about
3636          * the incoming interrupt may still be necessary.  For example, if a
3637          * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3638          * the 0->1 'pending' transition with a notification, but the vCPU
3639          * would ignore the interrupt for the time being.  The same vCPU would
3640          * need to then be notified if a high-priority interrupt arrived which
3641          * satisfied the PPR.
3642          *
3643          * The priorities of interrupts injected while 'pending' is asserted
3644          * are tracked in a custom bitfield 'pending_prio'.  Should the
3645          * to-be-injected interrupt exceed the priorities already present, the
3646          * notification is sent.  The priorities recorded in 'pending_prio' are
3647          * cleared whenever the 'pending' bit makes another 0->1 transition.
3648          */
3649         if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3650                 notify = 1;
3651                 vlapic_vtx->pending_prio = 0;
3652         } else {
3653                 const u_int old_prio = vlapic_vtx->pending_prio;
3654                 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3655
3656                 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3657                         atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3658                         notify = 1;
3659                 }
3660         }
3661
3662         VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3663             level, "vmx_set_intr_ready");
3664         return (notify);
3665 }
3666
3667 static int
3668 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3669 {
3670         struct vlapic_vtx *vlapic_vtx;
3671         struct pir_desc *pir_desc;
3672         struct LAPIC *lapic;
3673         uint64_t pending, pirval;
3674         uint32_t ppr, vpr;
3675         int i;
3676
3677         /*
3678          * This function is only expected to be called from the 'HLT' exit
3679          * handler which does not care about the vector that is pending.
3680          */
3681         KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3682
3683         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3684         pir_desc = vlapic_vtx->pir_desc;
3685
3686         pending = atomic_load_acq_long(&pir_desc->pending);
3687         if (!pending) {
3688                 /*
3689                  * While a virtual interrupt may have already been
3690                  * processed the actual delivery maybe pending the
3691                  * interruptibility of the guest.  Recognize a pending
3692                  * interrupt by reevaluating virtual interrupts
3693                  * following Section 29.2.1 in the Intel SDM Volume 3.
3694                  */
3695                 struct vm_exit *vmexit;
3696                 uint8_t rvi, ppr;
3697
3698                 vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid);
3699                 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3700                     ("vmx_pending_intr: exitcode not 'HLT'"));
3701                 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3702                 lapic = vlapic->apic_page;
3703                 ppr = lapic->ppr & APIC_TPR_INT;
3704                 if (rvi > ppr) {
3705                         return (1);
3706                 }
3707
3708                 return (0);
3709         }
3710
3711         /*
3712          * If there is an interrupt pending then it will be recognized only
3713          * if its priority is greater than the processor priority.
3714          *
3715          * Special case: if the processor priority is zero then any pending
3716          * interrupt will be recognized.
3717          */
3718         lapic = vlapic->apic_page;
3719         ppr = lapic->ppr & APIC_TPR_INT;
3720         if (ppr == 0)
3721                 return (1);
3722
3723         VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3724             lapic->ppr);
3725
3726         vpr = 0;
3727         for (i = 3; i >= 0; i--) {
3728                 pirval = pir_desc->pir[i];
3729                 if (pirval != 0) {
3730                         vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3731                         break;
3732                 }
3733         }
3734
3735         /*
3736          * If the highest-priority pending interrupt falls short of the
3737          * processor priority of this vCPU, ensure that 'pending_prio' does not
3738          * have any stale bits which would preclude a higher-priority interrupt
3739          * from incurring a notification later.
3740          */
3741         if (vpr <= ppr) {
3742                 const u_int prio_bit = VPR_PRIO_BIT(vpr);
3743                 const u_int old = vlapic_vtx->pending_prio;
3744
3745                 if (old > prio_bit && (old & prio_bit) == 0) {
3746                         vlapic_vtx->pending_prio = prio_bit;
3747                 }
3748                 return (0);
3749         }
3750         return (1);
3751 }
3752
3753 static void
3754 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3755 {
3756
3757         panic("vmx_intr_accepted: not expected to be called");
3758 }
3759
3760 static void
3761 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3762 {
3763         struct vlapic_vtx *vlapic_vtx;
3764         struct vmx *vmx;
3765         struct vmcs *vmcs;
3766         uint64_t mask, val;
3767
3768         KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3769         KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3770             ("vmx_set_tmr: vcpu cannot be running"));
3771
3772         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3773         vmx = vlapic_vtx->vmx;
3774         vmcs = &vmx->vmcs[vlapic->vcpuid];
3775         mask = 1UL << (vector % 64);
3776
3777         VMPTRLD(vmcs);
3778         val = vmcs_read(VMCS_EOI_EXIT(vector));
3779         if (level)
3780                 val |= mask;
3781         else
3782                 val &= ~mask;
3783         vmcs_write(VMCS_EOI_EXIT(vector), val);
3784         VMCLEAR(vmcs);
3785 }
3786
3787 static void
3788 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3789 {
3790         struct vmx *vmx;
3791         struct vmcs *vmcs;
3792         uint32_t proc_ctls;
3793         int vcpuid;
3794
3795         vcpuid = vlapic->vcpuid;
3796         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3797         vmcs = &vmx->vmcs[vcpuid];
3798
3799         proc_ctls = vmx->cap[vcpuid].proc_ctls;
3800         proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3801         proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3802         proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3803         vmx->cap[vcpuid].proc_ctls = proc_ctls;
3804
3805         VMPTRLD(vmcs);
3806         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3807         VMCLEAR(vmcs);
3808 }
3809
3810 static void
3811 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3812 {
3813         struct vmx *vmx;
3814         struct vmcs *vmcs;
3815         uint32_t proc_ctls2;
3816         int vcpuid, error;
3817
3818         vcpuid = vlapic->vcpuid;
3819         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3820         vmcs = &vmx->vmcs[vcpuid];
3821
3822         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3823         KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3824             ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3825
3826         proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3827         proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3828         vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3829
3830         VMPTRLD(vmcs);
3831         vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3832         VMCLEAR(vmcs);
3833
3834         if (vlapic->vcpuid == 0) {
3835                 /*
3836                  * The nested page table mappings are shared by all vcpus
3837                  * so unmap the APIC access page just once.
3838                  */
3839                 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3840                 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3841                     __func__, error));
3842
3843                 /*
3844                  * The MSR bitmap is shared by all vcpus so modify it only
3845                  * once in the context of vcpu 0.
3846                  */
3847                 error = vmx_allow_x2apic_msrs(vmx);
3848                 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3849                     __func__, error));
3850         }
3851 }
3852
3853 static void
3854 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3855 {
3856
3857         ipi_cpu(hostcpu, pirvec);
3858 }
3859
3860 /*
3861  * Transfer the pending interrupts in the PIR descriptor to the IRR
3862  * in the virtual APIC page.
3863  */
3864 static void
3865 vmx_inject_pir(struct vlapic *vlapic)
3866 {
3867         struct vlapic_vtx *vlapic_vtx;
3868         struct pir_desc *pir_desc;
3869         struct LAPIC *lapic;
3870         uint64_t val, pirval;
3871         int rvi, pirbase = -1;
3872         uint16_t intr_status_old, intr_status_new;
3873
3874         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3875         pir_desc = vlapic_vtx->pir_desc;
3876         if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3877                 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3878                     "no posted interrupt pending");
3879                 return;
3880         }
3881
3882         pirval = 0;
3883         pirbase = -1;
3884         lapic = vlapic->apic_page;
3885
3886         val = atomic_readandclear_long(&pir_desc->pir[0]);
3887         if (val != 0) {
3888                 lapic->irr0 |= val;
3889                 lapic->irr1 |= val >> 32;
3890                 pirbase = 0;
3891                 pirval = val;
3892         }
3893
3894         val = atomic_readandclear_long(&pir_desc->pir[1]);
3895         if (val != 0) {
3896                 lapic->irr2 |= val;
3897                 lapic->irr3 |= val >> 32;
3898                 pirbase = 64;
3899                 pirval = val;
3900         }
3901
3902         val = atomic_readandclear_long(&pir_desc->pir[2]);
3903         if (val != 0) {
3904                 lapic->irr4 |= val;
3905                 lapic->irr5 |= val >> 32;
3906                 pirbase = 128;
3907                 pirval = val;
3908         }
3909
3910         val = atomic_readandclear_long(&pir_desc->pir[3]);
3911         if (val != 0) {
3912                 lapic->irr6 |= val;
3913                 lapic->irr7 |= val >> 32;
3914                 pirbase = 192;
3915                 pirval = val;
3916         }
3917
3918         VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3919
3920         /*
3921          * Update RVI so the processor can evaluate pending virtual
3922          * interrupts on VM-entry.
3923          *
3924          * It is possible for pirval to be 0 here, even though the
3925          * pending bit has been set. The scenario is:
3926          * CPU-Y is sending a posted interrupt to CPU-X, which
3927          * is running a guest and processing posted interrupts in h/w.
3928          * CPU-X will eventually exit and the state seen in s/w is
3929          * the pending bit set, but no PIR bits set.
3930          *
3931          *      CPU-X                      CPU-Y
3932          *   (vm running)                (host running)
3933          *   rx posted interrupt
3934          *   CLEAR pending bit
3935          *                               SET PIR bit
3936          *   READ/CLEAR PIR bits
3937          *                               SET pending bit
3938          *   (vm exit)
3939          *   pending bit set, PIR 0
3940          */
3941         if (pirval != 0) {
3942                 rvi = pirbase + flsl(pirval) - 1;
3943                 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3944                 intr_status_new = (intr_status_old & 0xFF00) | rvi;
3945                 if (intr_status_new > intr_status_old) {
3946                         vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3947                         VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3948                             "guest_intr_status changed from 0x%04x to 0x%04x",
3949                             intr_status_old, intr_status_new);
3950                 }
3951         }
3952 }
3953
3954 static struct vlapic *
3955 vmx_vlapic_init(void *arg, int vcpuid)
3956 {
3957         struct vmx *vmx;
3958         struct vlapic *vlapic;
3959         struct vlapic_vtx *vlapic_vtx;
3960
3961         vmx = arg;
3962
3963         vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3964         vlapic->vm = vmx->vm;
3965         vlapic->vcpuid = vcpuid;
3966         vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3967
3968         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3969         vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3970         vlapic_vtx->vmx = vmx;
3971
3972         if (tpr_shadowing) {
3973                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
3974         }
3975
3976         if (virtual_interrupt_delivery) {
3977                 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3978                 vlapic->ops.pending_intr = vmx_pending_intr;
3979                 vlapic->ops.intr_accepted = vmx_intr_accepted;
3980                 vlapic->ops.set_tmr = vmx_set_tmr;
3981                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
3982         }
3983
3984         if (posted_interrupts)
3985                 vlapic->ops.post_intr = vmx_post_intr;
3986
3987         vlapic_init(vlapic);
3988
3989         return (vlapic);
3990 }
3991
3992 static void
3993 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3994 {
3995
3996         vlapic_cleanup(vlapic);
3997         free(vlapic, M_VLAPIC);
3998 }
3999
4000 #ifdef BHYVE_SNAPSHOT
4001 static int
4002 vmx_snapshot_vmi(void *arg, struct vm_snapshot_meta *meta)
4003 {
4004         struct vmx *vmx;
4005         struct vmxctx *vmxctx;
4006         int i;
4007         int ret;
4008
4009         vmx = arg;
4010
4011         KASSERT(vmx != NULL, ("%s: arg was NULL", __func__));
4012
4013         for (i = 0; i < VM_MAXCPU; i++) {
4014                 SNAPSHOT_BUF_OR_LEAVE(vmx->guest_msrs[i],
4015                       sizeof(vmx->guest_msrs[i]), meta, ret, done);
4016
4017                 vmxctx = &vmx->ctx[i];
4018                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, ret, done);
4019                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, ret, done);
4020                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, ret, done);
4021                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, ret, done);
4022                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, ret, done);
4023                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, ret, done);
4024                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, ret, done);
4025                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, ret, done);
4026                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, ret, done);
4027                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, ret, done);
4028                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, ret, done);
4029                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, ret, done);
4030                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, ret, done);
4031                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, ret, done);
4032                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, ret, done);
4033                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, ret, done);
4034                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, ret, done);
4035                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, ret, done);
4036                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, ret, done);
4037                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, ret, done);
4038                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, ret, done);
4039         }
4040
4041 done:
4042         return (ret);
4043 }
4044
4045 static int
4046 vmx_snapshot_vmcx(void *arg, struct vm_snapshot_meta *meta, int vcpu)
4047 {
4048         struct vmcs *vmcs;
4049         struct vmx *vmx;
4050         int err, run, hostcpu;
4051
4052         vmx = (struct vmx *)arg;
4053         err = 0;
4054
4055         KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4056         vmcs = &vmx->vmcs[vcpu];
4057
4058         run = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4059         if (run && hostcpu != curcpu) {
4060                 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4061                 return (EINVAL);
4062         }
4063
4064         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
4065         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
4066         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
4067         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
4068         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
4069         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
4070         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
4071
4072         /* Guest segments */
4073         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
4074         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
4075
4076         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
4077         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
4078
4079         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
4080         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
4081
4082         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
4083         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
4084
4085         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
4086         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
4087
4088         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
4089         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
4090
4091         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
4092         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
4093
4094         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
4095         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
4096
4097         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
4098
4099         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
4100         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
4101
4102         /* Guest page tables */
4103         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
4104         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
4105         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
4106         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
4107
4108         /* Other guest state */
4109         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
4110         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
4111         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
4112         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
4113         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
4114         err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
4115         err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
4116
4117         return (err);
4118 }
4119
4120 static int
4121 vmx_restore_tsc(void *arg, int vcpu, uint64_t offset)
4122 {
4123         struct vmcs *vmcs;
4124         struct vmx *vmx = (struct vmx *)arg;
4125         int error, running, hostcpu;
4126
4127         KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4128         vmcs = &vmx->vmcs[vcpu];
4129
4130         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4131         if (running && hostcpu != curcpu) {
4132                 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4133                 return (EINVAL);
4134         }
4135
4136         if (!running)
4137                 VMPTRLD(vmcs);
4138
4139         error = vmx_set_tsc_offset(vmx, vcpu, offset);
4140
4141         if (!running)
4142                 VMCLEAR(vmcs);
4143         return (error);
4144 }
4145 #endif
4146
4147 struct vmm_ops vmm_ops_intel = {
4148         .init           = vmx_init,
4149         .cleanup        = vmx_cleanup,
4150         .resume         = vmx_restore,
4151         .vminit         = vmx_vminit,
4152         .vmrun          = vmx_run,
4153         .vmcleanup      = vmx_vmcleanup,
4154         .vmgetreg       = vmx_getreg,
4155         .vmsetreg       = vmx_setreg,
4156         .vmgetdesc      = vmx_getdesc,
4157         .vmsetdesc      = vmx_setdesc,
4158         .vmgetcap       = vmx_getcap,
4159         .vmsetcap       = vmx_setcap,
4160         .vmspace_alloc  = ept_vmspace_alloc,
4161         .vmspace_free   = ept_vmspace_free,
4162         .vlapic_init    = vmx_vlapic_init,
4163         .vlapic_cleanup = vmx_vlapic_cleanup,
4164 #ifdef BHYVE_SNAPSHOT
4165         .vmsnapshot     = vmx_snapshot_vmi,
4166         .vmcx_snapshot  = vmx_snapshot_vmcx,
4167         .vm_restore_tsc = vmx_restore_tsc,
4168 #endif
4169 };