]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/amd64/vmm/intel/vmx.c
Clear the upper 32-bits of registers in x86_emulate_cpuid().
[FreeBSD/FreeBSD.git] / sys / amd64 / vmm / intel / vmx.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  * Copyright (c) 2018 Joyent, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_bhyve_snapshot.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/smp.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/sysctl.h>
45
46 #include <vm/vm.h>
47 #include <vm/pmap.h>
48
49 #include <machine/psl.h>
50 #include <machine/cpufunc.h>
51 #include <machine/md_var.h>
52 #include <machine/reg.h>
53 #include <machine/segments.h>
54 #include <machine/smp.h>
55 #include <machine/specialreg.h>
56 #include <machine/vmparam.h>
57
58 #include <machine/vmm.h>
59 #include <machine/vmm_dev.h>
60 #include <machine/vmm_instruction_emul.h>
61 #include <machine/vmm_snapshot.h>
62
63 #include "vmm_lapic.h"
64 #include "vmm_host.h"
65 #include "vmm_ioport.h"
66 #include "vmm_ktr.h"
67 #include "vmm_stat.h"
68 #include "vatpic.h"
69 #include "vlapic.h"
70 #include "vlapic_priv.h"
71
72 #include "ept.h"
73 #include "vmx_cpufunc.h"
74 #include "vmx.h"
75 #include "vmx_msr.h"
76 #include "x86.h"
77 #include "vmx_controls.h"
78
79 #define PINBASED_CTLS_ONE_SETTING                                       \
80         (PINBASED_EXTINT_EXITING        |                               \
81          PINBASED_NMI_EXITING           |                               \
82          PINBASED_VIRTUAL_NMI)
83 #define PINBASED_CTLS_ZERO_SETTING      0
84
85 #define PROCBASED_CTLS_WINDOW_SETTING                                   \
86         (PROCBASED_INT_WINDOW_EXITING   |                               \
87          PROCBASED_NMI_WINDOW_EXITING)
88
89 #define PROCBASED_CTLS_ONE_SETTING                                      \
90         (PROCBASED_SECONDARY_CONTROLS   |                               \
91          PROCBASED_MWAIT_EXITING        |                               \
92          PROCBASED_MONITOR_EXITING      |                               \
93          PROCBASED_IO_EXITING           |                               \
94          PROCBASED_MSR_BITMAPS          |                               \
95          PROCBASED_CTLS_WINDOW_SETTING  |                               \
96          PROCBASED_CR8_LOAD_EXITING     |                               \
97          PROCBASED_CR8_STORE_EXITING)
98 #define PROCBASED_CTLS_ZERO_SETTING     \
99         (PROCBASED_CR3_LOAD_EXITING |   \
100         PROCBASED_CR3_STORE_EXITING |   \
101         PROCBASED_IO_BITMAPS)
102
103 #define PROCBASED_CTLS2_ONE_SETTING     PROCBASED2_ENABLE_EPT
104 #define PROCBASED_CTLS2_ZERO_SETTING    0
105
106 #define VM_EXIT_CTLS_ONE_SETTING                                        \
107         (VM_EXIT_SAVE_DEBUG_CONTROLS            |                       \
108         VM_EXIT_HOST_LMA                        |                       \
109         VM_EXIT_SAVE_EFER                       |                       \
110         VM_EXIT_LOAD_EFER                       |                       \
111         VM_EXIT_ACKNOWLEDGE_INTERRUPT)
112
113 #define VM_EXIT_CTLS_ZERO_SETTING       0
114
115 #define VM_ENTRY_CTLS_ONE_SETTING                                       \
116         (VM_ENTRY_LOAD_DEBUG_CONTROLS           |                       \
117         VM_ENTRY_LOAD_EFER)
118
119 #define VM_ENTRY_CTLS_ZERO_SETTING                                      \
120         (VM_ENTRY_INTO_SMM                      |                       \
121         VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
122
123 #define HANDLED         1
124 #define UNHANDLED       0
125
126 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
127 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
128
129 SYSCTL_DECL(_hw_vmm);
130 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
131     NULL);
132
133 int vmxon_enabled[MAXCPU];
134 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
135
136 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
137 static uint32_t exit_ctls, entry_ctls;
138
139 static uint64_t cr0_ones_mask, cr0_zeros_mask;
140 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
141              &cr0_ones_mask, 0, NULL);
142 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
143              &cr0_zeros_mask, 0, NULL);
144
145 static uint64_t cr4_ones_mask, cr4_zeros_mask;
146 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
147              &cr4_ones_mask, 0, NULL);
148 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
149              &cr4_zeros_mask, 0, NULL);
150
151 static int vmx_initialized;
152 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
153            &vmx_initialized, 0, "Intel VMX initialized");
154
155 /*
156  * Optional capabilities
157  */
158 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
159     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
160     NULL);
161
162 static int cap_halt_exit;
163 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
164     "HLT triggers a VM-exit");
165
166 static int cap_pause_exit;
167 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
168     0, "PAUSE triggers a VM-exit");
169
170 static int cap_rdpid;
171 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0,
172     "Guests are allowed to use RDPID");
173
174 static int cap_rdtscp;
175 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0,
176     "Guests are allowed to use RDTSCP");
177
178 static int cap_unrestricted_guest;
179 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
180     &cap_unrestricted_guest, 0, "Unrestricted guests");
181
182 static int cap_monitor_trap;
183 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
184     &cap_monitor_trap, 0, "Monitor trap flag");
185
186 static int cap_invpcid;
187 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
188     0, "Guests are allowed to use INVPCID");
189
190 static int tpr_shadowing;
191 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD,
192     &tpr_shadowing, 0, "TPR shadowing support");
193
194 static int virtual_interrupt_delivery;
195 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
196     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
197
198 static int posted_interrupts;
199 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
200     &posted_interrupts, 0, "APICv posted interrupt support");
201
202 static int pirvec = -1;
203 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
204     &pirvec, 0, "APICv posted interrupt vector");
205
206 static struct unrhdr *vpid_unr;
207 static u_int vpid_alloc_failed;
208 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
209             &vpid_alloc_failed, 0, NULL);
210
211 int guest_l1d_flush;
212 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD,
213     &guest_l1d_flush, 0, NULL);
214 int guest_l1d_flush_sw;
215 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD,
216     &guest_l1d_flush_sw, 0, NULL);
217
218 static struct msr_entry msr_load_list[1] __aligned(16);
219
220 /*
221  * The definitions of SDT probes for VMX.
222  */
223
224 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
225     "struct vmx *", "int", "struct vm_exit *");
226
227 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
228     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
229
230 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
231     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
232
233 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
234     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
235
236 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
237     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
238
239 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
240     "struct vmx *", "int", "struct vm_exit *");
241
242 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
243     "struct vmx *", "int", "struct vm_exit *");
244
245 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
246     "struct vmx *", "int", "struct vm_exit *");
247
248 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
249     "struct vmx *", "int", "struct vm_exit *");
250
251 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
252     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
253
254 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
255     "struct vmx *", "int", "struct vm_exit *");
256
257 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
258     "struct vmx *", "int", "struct vm_exit *");
259
260 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
261     "struct vmx *", "int", "struct vm_exit *");
262
263 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
264     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
265
266 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
267     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
268
269 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
270     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
271
272 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
273     "struct vmx *", "int", "struct vm_exit *");
274
275 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
276     "struct vmx *", "int", "struct vm_exit *");
277
278 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
279     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
280
281 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
282     "struct vmx *", "int", "struct vm_exit *");
283
284 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
285     "struct vmx *", "int", "struct vm_exit *");
286
287 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
288     "struct vmx *", "int", "struct vm_exit *");
289
290 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
291     "struct vmx *", "int", "struct vm_exit *");
292
293 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
294     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
295
296 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
297     "struct vmx *", "int", "struct vm_exit *", "int");
298
299 /*
300  * Use the last page below 4GB as the APIC access address. This address is
301  * occupied by the boot firmware so it is guaranteed that it will not conflict
302  * with a page in system memory.
303  */
304 #define APIC_ACCESS_ADDRESS     0xFFFFF000
305
306 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
307 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
308 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
309 static void vmx_inject_pir(struct vlapic *vlapic);
310 #ifdef BHYVE_SNAPSHOT
311 static int vmx_restore_tsc(void *arg, int vcpu, uint64_t now);
312 #endif
313
314 static inline bool
315 host_has_rdpid(void)
316 {
317         return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0);
318 }
319
320 static inline bool
321 host_has_rdtscp(void)
322 {
323         return ((amd_feature & AMDID_RDTSCP) != 0);
324 }
325
326 #ifdef KTR
327 static const char *
328 exit_reason_to_str(int reason)
329 {
330         static char reasonbuf[32];
331
332         switch (reason) {
333         case EXIT_REASON_EXCEPTION:
334                 return "exception";
335         case EXIT_REASON_EXT_INTR:
336                 return "extint";
337         case EXIT_REASON_TRIPLE_FAULT:
338                 return "triplefault";
339         case EXIT_REASON_INIT:
340                 return "init";
341         case EXIT_REASON_SIPI:
342                 return "sipi";
343         case EXIT_REASON_IO_SMI:
344                 return "iosmi";
345         case EXIT_REASON_SMI:
346                 return "smi";
347         case EXIT_REASON_INTR_WINDOW:
348                 return "intrwindow";
349         case EXIT_REASON_NMI_WINDOW:
350                 return "nmiwindow";
351         case EXIT_REASON_TASK_SWITCH:
352                 return "taskswitch";
353         case EXIT_REASON_CPUID:
354                 return "cpuid";
355         case EXIT_REASON_GETSEC:
356                 return "getsec";
357         case EXIT_REASON_HLT:
358                 return "hlt";
359         case EXIT_REASON_INVD:
360                 return "invd";
361         case EXIT_REASON_INVLPG:
362                 return "invlpg";
363         case EXIT_REASON_RDPMC:
364                 return "rdpmc";
365         case EXIT_REASON_RDTSC:
366                 return "rdtsc";
367         case EXIT_REASON_RSM:
368                 return "rsm";
369         case EXIT_REASON_VMCALL:
370                 return "vmcall";
371         case EXIT_REASON_VMCLEAR:
372                 return "vmclear";
373         case EXIT_REASON_VMLAUNCH:
374                 return "vmlaunch";
375         case EXIT_REASON_VMPTRLD:
376                 return "vmptrld";
377         case EXIT_REASON_VMPTRST:
378                 return "vmptrst";
379         case EXIT_REASON_VMREAD:
380                 return "vmread";
381         case EXIT_REASON_VMRESUME:
382                 return "vmresume";
383         case EXIT_REASON_VMWRITE:
384                 return "vmwrite";
385         case EXIT_REASON_VMXOFF:
386                 return "vmxoff";
387         case EXIT_REASON_VMXON:
388                 return "vmxon";
389         case EXIT_REASON_CR_ACCESS:
390                 return "craccess";
391         case EXIT_REASON_DR_ACCESS:
392                 return "draccess";
393         case EXIT_REASON_INOUT:
394                 return "inout";
395         case EXIT_REASON_RDMSR:
396                 return "rdmsr";
397         case EXIT_REASON_WRMSR:
398                 return "wrmsr";
399         case EXIT_REASON_INVAL_VMCS:
400                 return "invalvmcs";
401         case EXIT_REASON_INVAL_MSR:
402                 return "invalmsr";
403         case EXIT_REASON_MWAIT:
404                 return "mwait";
405         case EXIT_REASON_MTF:
406                 return "mtf";
407         case EXIT_REASON_MONITOR:
408                 return "monitor";
409         case EXIT_REASON_PAUSE:
410                 return "pause";
411         case EXIT_REASON_MCE_DURING_ENTRY:
412                 return "mce-during-entry";
413         case EXIT_REASON_TPR:
414                 return "tpr";
415         case EXIT_REASON_APIC_ACCESS:
416                 return "apic-access";
417         case EXIT_REASON_GDTR_IDTR:
418                 return "gdtridtr";
419         case EXIT_REASON_LDTR_TR:
420                 return "ldtrtr";
421         case EXIT_REASON_EPT_FAULT:
422                 return "eptfault";
423         case EXIT_REASON_EPT_MISCONFIG:
424                 return "eptmisconfig";
425         case EXIT_REASON_INVEPT:
426                 return "invept";
427         case EXIT_REASON_RDTSCP:
428                 return "rdtscp";
429         case EXIT_REASON_VMX_PREEMPT:
430                 return "vmxpreempt";
431         case EXIT_REASON_INVVPID:
432                 return "invvpid";
433         case EXIT_REASON_WBINVD:
434                 return "wbinvd";
435         case EXIT_REASON_XSETBV:
436                 return "xsetbv";
437         case EXIT_REASON_APIC_WRITE:
438                 return "apic-write";
439         default:
440                 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
441                 return (reasonbuf);
442         }
443 }
444 #endif  /* KTR */
445
446 static int
447 vmx_allow_x2apic_msrs(struct vmx *vmx)
448 {
449         int i, error;
450
451         error = 0;
452
453         /*
454          * Allow readonly access to the following x2APIC MSRs from the guest.
455          */
456         error += guest_msr_ro(vmx, MSR_APIC_ID);
457         error += guest_msr_ro(vmx, MSR_APIC_VERSION);
458         error += guest_msr_ro(vmx, MSR_APIC_LDR);
459         error += guest_msr_ro(vmx, MSR_APIC_SVR);
460
461         for (i = 0; i < 8; i++)
462                 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
463
464         for (i = 0; i < 8; i++)
465                 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
466
467         for (i = 0; i < 8; i++)
468                 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
469
470         error += guest_msr_ro(vmx, MSR_APIC_ESR);
471         error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
472         error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
473         error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
474         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
475         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
476         error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
477         error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
478         error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
479         error += guest_msr_ro(vmx, MSR_APIC_ICR);
480
481         /*
482          * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
483          *
484          * These registers get special treatment described in the section
485          * "Virtualizing MSR-Based APIC Accesses".
486          */
487         error += guest_msr_rw(vmx, MSR_APIC_TPR);
488         error += guest_msr_rw(vmx, MSR_APIC_EOI);
489         error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
490
491         return (error);
492 }
493
494 u_long
495 vmx_fix_cr0(u_long cr0)
496 {
497
498         return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
499 }
500
501 u_long
502 vmx_fix_cr4(u_long cr4)
503 {
504
505         return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
506 }
507
508 static void
509 vpid_free(int vpid)
510 {
511         if (vpid < 0 || vpid > 0xffff)
512                 panic("vpid_free: invalid vpid %d", vpid);
513
514         /*
515          * VPIDs [0,VM_MAXCPU] are special and are not allocated from
516          * the unit number allocator.
517          */
518
519         if (vpid > VM_MAXCPU)
520                 free_unr(vpid_unr, vpid);
521 }
522
523 static void
524 vpid_alloc(uint16_t *vpid, int num)
525 {
526         int i, x;
527
528         if (num <= 0 || num > VM_MAXCPU)
529                 panic("invalid number of vpids requested: %d", num);
530
531         /*
532          * If the "enable vpid" execution control is not enabled then the
533          * VPID is required to be 0 for all vcpus.
534          */
535         if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
536                 for (i = 0; i < num; i++)
537                         vpid[i] = 0;
538                 return;
539         }
540
541         /*
542          * Allocate a unique VPID for each vcpu from the unit number allocator.
543          */
544         for (i = 0; i < num; i++) {
545                 x = alloc_unr(vpid_unr);
546                 if (x == -1)
547                         break;
548                 else
549                         vpid[i] = x;
550         }
551
552         if (i < num) {
553                 atomic_add_int(&vpid_alloc_failed, 1);
554
555                 /*
556                  * If the unit number allocator does not have enough unique
557                  * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
558                  *
559                  * These VPIDs are not be unique across VMs but this does not
560                  * affect correctness because the combined mappings are also
561                  * tagged with the EP4TA which is unique for each VM.
562                  *
563                  * It is still sub-optimal because the invvpid will invalidate
564                  * combined mappings for a particular VPID across all EP4TAs.
565                  */
566                 while (i-- > 0)
567                         vpid_free(vpid[i]);
568
569                 for (i = 0; i < num; i++)
570                         vpid[i] = i + 1;
571         }
572 }
573
574 static void
575 vpid_init(void)
576 {
577         /*
578          * VPID 0 is required when the "enable VPID" execution control is
579          * disabled.
580          *
581          * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
582          * unit number allocator does not have sufficient unique VPIDs to
583          * satisfy the allocation.
584          *
585          * The remaining VPIDs are managed by the unit number allocator.
586          */
587         vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
588 }
589
590 static void
591 vmx_disable(void *arg __unused)
592 {
593         struct invvpid_desc invvpid_desc = { 0 };
594         struct invept_desc invept_desc = { 0 };
595
596         if (vmxon_enabled[curcpu]) {
597                 /*
598                  * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
599                  *
600                  * VMXON or VMXOFF are not required to invalidate any TLB
601                  * caching structures. This prevents potential retention of
602                  * cached information in the TLB between distinct VMX episodes.
603                  */
604                 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
605                 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
606                 vmxoff();
607         }
608         load_cr4(rcr4() & ~CR4_VMXE);
609 }
610
611 static int
612 vmx_cleanup(void)
613 {
614
615         if (pirvec >= 0)
616                 lapic_ipi_free(pirvec);
617
618         if (vpid_unr != NULL) {
619                 delete_unrhdr(vpid_unr);
620                 vpid_unr = NULL;
621         }
622
623         if (nmi_flush_l1d_sw == 1)
624                 nmi_flush_l1d_sw = 0;
625
626         smp_rendezvous(NULL, vmx_disable, NULL, NULL);
627
628         return (0);
629 }
630
631 static void
632 vmx_enable(void *arg __unused)
633 {
634         int error;
635         uint64_t feature_control;
636
637         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
638         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
639             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
640                 wrmsr(MSR_IA32_FEATURE_CONTROL,
641                     feature_control | IA32_FEATURE_CONTROL_VMX_EN |
642                     IA32_FEATURE_CONTROL_LOCK);
643         }
644
645         load_cr4(rcr4() | CR4_VMXE);
646
647         *(uint32_t *)vmxon_region[curcpu] = vmx_revision();
648         error = vmxon(vmxon_region[curcpu]);
649         if (error == 0)
650                 vmxon_enabled[curcpu] = 1;
651 }
652
653 static void
654 vmx_restore(void)
655 {
656
657         if (vmxon_enabled[curcpu])
658                 vmxon(vmxon_region[curcpu]);
659 }
660
661 static int
662 vmx_init(int ipinum)
663 {
664         int error;
665         uint64_t basic, fixed0, fixed1, feature_control;
666         uint32_t tmp, procbased2_vid_bits;
667
668         /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
669         if (!(cpu_feature2 & CPUID2_VMX)) {
670                 printf("vmx_init: processor does not support VMX operation\n");
671                 return (ENXIO);
672         }
673
674         /*
675          * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
676          * are set (bits 0 and 2 respectively).
677          */
678         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
679         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
680             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
681                 printf("vmx_init: VMX operation disabled by BIOS\n");
682                 return (ENXIO);
683         }
684
685         /*
686          * Verify capabilities MSR_VMX_BASIC:
687          * - bit 54 indicates support for INS/OUTS decoding
688          */
689         basic = rdmsr(MSR_VMX_BASIC);
690         if ((basic & (1UL << 54)) == 0) {
691                 printf("vmx_init: processor does not support desired basic "
692                     "capabilities\n");
693                 return (EINVAL);
694         }
695
696         /* Check support for primary processor-based VM-execution controls */
697         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
698                                MSR_VMX_TRUE_PROCBASED_CTLS,
699                                PROCBASED_CTLS_ONE_SETTING,
700                                PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
701         if (error) {
702                 printf("vmx_init: processor does not support desired primary "
703                        "processor-based controls\n");
704                 return (error);
705         }
706
707         /* Clear the processor-based ctl bits that are set on demand */
708         procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
709
710         /* Check support for secondary processor-based VM-execution controls */
711         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
712                                MSR_VMX_PROCBASED_CTLS2,
713                                PROCBASED_CTLS2_ONE_SETTING,
714                                PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
715         if (error) {
716                 printf("vmx_init: processor does not support desired secondary "
717                        "processor-based controls\n");
718                 return (error);
719         }
720
721         /* Check support for VPID */
722         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
723                                PROCBASED2_ENABLE_VPID, 0, &tmp);
724         if (error == 0)
725                 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
726
727         /* Check support for pin-based VM-execution controls */
728         error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
729                                MSR_VMX_TRUE_PINBASED_CTLS,
730                                PINBASED_CTLS_ONE_SETTING,
731                                PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
732         if (error) {
733                 printf("vmx_init: processor does not support desired "
734                        "pin-based controls\n");
735                 return (error);
736         }
737
738         /* Check support for VM-exit controls */
739         error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
740                                VM_EXIT_CTLS_ONE_SETTING,
741                                VM_EXIT_CTLS_ZERO_SETTING,
742                                &exit_ctls);
743         if (error) {
744                 printf("vmx_init: processor does not support desired "
745                     "exit controls\n");
746                 return (error);
747         }
748
749         /* Check support for VM-entry controls */
750         error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
751             VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
752             &entry_ctls);
753         if (error) {
754                 printf("vmx_init: processor does not support desired "
755                     "entry controls\n");
756                 return (error);
757         }
758
759         /*
760          * Check support for optional features by testing them
761          * as individual bits
762          */
763         cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
764                                         MSR_VMX_TRUE_PROCBASED_CTLS,
765                                         PROCBASED_HLT_EXITING, 0,
766                                         &tmp) == 0);
767
768         cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
769                                         MSR_VMX_PROCBASED_CTLS,
770                                         PROCBASED_MTF, 0,
771                                         &tmp) == 0);
772
773         cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
774                                          MSR_VMX_TRUE_PROCBASED_CTLS,
775                                          PROCBASED_PAUSE_EXITING, 0,
776                                          &tmp) == 0);
777
778         /*
779          * Check support for RDPID and/or RDTSCP.
780          *
781          * Support a pass-through-based implementation of these via the
782          * "enable RDTSCP" VM-execution control and the "RDTSC exiting"
783          * VM-execution control.
784          *
785          * The "enable RDTSCP" VM-execution control applies to both RDPID
786          * and RDTSCP (see SDM volume 3, section 25.3, "Changes to
787          * Instruction Behavior in VMX Non-root operation"); this is why
788          * only this VM-execution control needs to be enabled in order to
789          * enable passing through whichever of RDPID and/or RDTSCP are
790          * supported by the host.
791          *
792          * The "RDTSC exiting" VM-execution control applies to both RDTSC
793          * and RDTSCP (again, per SDM volume 3, section 25.3), and is
794          * already set up for RDTSC and RDTSCP pass-through by the current
795          * implementation of RDTSC.
796          *
797          * Although RDPID and RDTSCP are optional capabilities, since there
798          * does not currently seem to be a use case for enabling/disabling
799          * these via libvmmapi, choose not to support this and, instead,
800          * just statically always enable or always disable this support
801          * across all vCPUs on all VMs. (Note that there may be some
802          * complications to providing this functionality, e.g., the MSR
803          * bitmap is currently per-VM rather than per-vCPU while the
804          * capability API wants to be able to control capabilities on a
805          * per-vCPU basis).
806          */
807         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
808                                MSR_VMX_PROCBASED_CTLS2,
809                                PROCBASED2_ENABLE_RDTSCP, 0, &tmp);
810         cap_rdpid = error == 0 && host_has_rdpid();
811         cap_rdtscp = error == 0 && host_has_rdtscp();
812         if (cap_rdpid || cap_rdtscp)
813                 procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP;
814
815         cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
816                                         MSR_VMX_PROCBASED_CTLS2,
817                                         PROCBASED2_UNRESTRICTED_GUEST, 0,
818                                         &tmp) == 0);
819
820         cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
821             MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
822             &tmp) == 0);
823
824         /*
825          * Check support for TPR shadow.
826          */
827         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
828             MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
829             &tmp);
830         if (error == 0) {
831                 tpr_shadowing = 1;
832                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
833                     &tpr_shadowing);
834         }
835
836         if (tpr_shadowing) {
837                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
838                 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
839                 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
840         }
841
842         /*
843          * Check support for virtual interrupt delivery.
844          */
845         procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
846             PROCBASED2_VIRTUALIZE_X2APIC_MODE |
847             PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
848             PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
849
850         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
851             procbased2_vid_bits, 0, &tmp);
852         if (error == 0 && tpr_shadowing) {
853                 virtual_interrupt_delivery = 1;
854                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
855                     &virtual_interrupt_delivery);
856         }
857
858         if (virtual_interrupt_delivery) {
859                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
860                 procbased_ctls2 |= procbased2_vid_bits;
861                 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
862
863                 /*
864                  * Check for Posted Interrupts only if Virtual Interrupt
865                  * Delivery is enabled.
866                  */
867                 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
868                     MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
869                     &tmp);
870                 if (error == 0) {
871                         pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
872                             &IDTVEC(justreturn));
873                         if (pirvec < 0) {
874                                 if (bootverbose) {
875                                         printf("vmx_init: unable to allocate "
876                                             "posted interrupt vector\n");
877                                 }
878                         } else {
879                                 posted_interrupts = 1;
880                                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
881                                     &posted_interrupts);
882                         }
883                 }
884         }
885
886         if (posted_interrupts)
887                     pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
888
889         /* Initialize EPT */
890         error = ept_init(ipinum);
891         if (error) {
892                 printf("vmx_init: ept initialization failed (%d)\n", error);
893                 return (error);
894         }
895
896         guest_l1d_flush = (cpu_ia32_arch_caps &
897             IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
898         TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
899
900         /*
901          * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
902          * available.  Otherwise fall back to the software flush
903          * method which loads enough data from the kernel text to
904          * flush existing L1D content, both on VMX entry and on NMI
905          * return.
906          */
907         if (guest_l1d_flush) {
908                 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
909                         guest_l1d_flush_sw = 1;
910                         TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
911                             &guest_l1d_flush_sw);
912                 }
913                 if (guest_l1d_flush_sw) {
914                         if (nmi_flush_l1d_sw <= 1)
915                                 nmi_flush_l1d_sw = 1;
916                 } else {
917                         msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
918                         msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
919                 }
920         }
921
922         /*
923          * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
924          */
925         fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
926         fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
927         cr0_ones_mask = fixed0 & fixed1;
928         cr0_zeros_mask = ~fixed0 & ~fixed1;
929
930         /*
931          * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
932          * if unrestricted guest execution is allowed.
933          */
934         if (cap_unrestricted_guest)
935                 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
936
937         /*
938          * Do not allow the guest to set CR0_NW or CR0_CD.
939          */
940         cr0_zeros_mask |= (CR0_NW | CR0_CD);
941
942         fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
943         fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
944         cr4_ones_mask = fixed0 & fixed1;
945         cr4_zeros_mask = ~fixed0 & ~fixed1;
946
947         vpid_init();
948
949         vmx_msr_init();
950
951         /* enable VMX operation */
952         smp_rendezvous(NULL, vmx_enable, NULL, NULL);
953
954         vmx_initialized = 1;
955
956         return (0);
957 }
958
959 static void
960 vmx_trigger_hostintr(int vector)
961 {
962         uintptr_t func;
963         struct gate_descriptor *gd;
964
965         gd = &idt[vector];
966
967         KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
968             "invalid vector %d", vector));
969         KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
970             vector));
971         KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
972             "has invalid type %d", vector, gd->gd_type));
973         KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
974             "has invalid dpl %d", vector, gd->gd_dpl));
975         KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
976             "for vector %d has invalid selector %d", vector, gd->gd_selector));
977         KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
978             "IST %d", vector, gd->gd_ist));
979
980         func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
981         vmx_call_isr(func);
982 }
983
984 static int
985 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
986 {
987         int error, mask_ident, shadow_ident;
988         uint64_t mask_value;
989
990         if (which != 0 && which != 4)
991                 panic("vmx_setup_cr_shadow: unknown cr%d", which);
992
993         if (which == 0) {
994                 mask_ident = VMCS_CR0_MASK;
995                 mask_value = cr0_ones_mask | cr0_zeros_mask;
996                 shadow_ident = VMCS_CR0_SHADOW;
997         } else {
998                 mask_ident = VMCS_CR4_MASK;
999                 mask_value = cr4_ones_mask | cr4_zeros_mask;
1000                 shadow_ident = VMCS_CR4_SHADOW;
1001         }
1002
1003         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
1004         if (error)
1005                 return (error);
1006
1007         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
1008         if (error)
1009                 return (error);
1010
1011         return (0);
1012 }
1013 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
1014 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
1015
1016 static void *
1017 vmx_vminit(struct vm *vm, pmap_t pmap)
1018 {
1019         uint16_t vpid[VM_MAXCPU];
1020         int i, error;
1021         struct vmx *vmx;
1022         struct vmcs *vmcs;
1023         uint32_t exc_bitmap;
1024         uint16_t maxcpus;
1025
1026         vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
1027         if ((uintptr_t)vmx & PAGE_MASK) {
1028                 panic("malloc of struct vmx not aligned on %d byte boundary",
1029                       PAGE_SIZE);
1030         }
1031         vmx->vm = vm;
1032
1033         vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop));
1034
1035         /*
1036          * Clean up EPTP-tagged guest physical and combined mappings
1037          *
1038          * VMX transitions are not required to invalidate any guest physical
1039          * mappings. So, it may be possible for stale guest physical mappings
1040          * to be present in the processor TLBs.
1041          *
1042          * Combined mappings for this EP4TA are also invalidated for all VPIDs.
1043          */
1044         ept_invalidate_mappings(vmx->eptp);
1045
1046         msr_bitmap_initialize(vmx->msr_bitmap);
1047
1048         /*
1049          * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
1050          * The guest FSBASE and GSBASE are saved and restored during
1051          * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
1052          * always restored from the vmcs host state area on vm-exit.
1053          *
1054          * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
1055          * how they are saved/restored so can be directly accessed by the
1056          * guest.
1057          *
1058          * MSR_EFER is saved and restored in the guest VMCS area on a
1059          * VM exit and entry respectively. It is also restored from the
1060          * host VMCS area on a VM exit.
1061          *
1062          * The TSC MSR is exposed read-only. Writes are disallowed as
1063          * that will impact the host TSC.  If the guest does a write
1064          * the "use TSC offsetting" execution control is enabled and the
1065          * difference between the host TSC and the guest TSC is written
1066          * into the TSC offset in the VMCS.
1067          *
1068          * Guest TSC_AUX support is enabled if any of guest RDPID and/or
1069          * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM
1070          * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are
1071          * supported). If guest TSC_AUX support is enabled, TSC_AUX is
1072          * exposed read-only so that the VMM can do one fewer MSR read per
1073          * exit than if this register were exposed read-write; the guest
1074          * restore value can be updated during guest writes (expected to be
1075          * rare) instead of during all exits (common).
1076          */
1077         if (guest_msr_rw(vmx, MSR_GSBASE) ||
1078             guest_msr_rw(vmx, MSR_FSBASE) ||
1079             guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
1080             guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
1081             guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
1082             guest_msr_rw(vmx, MSR_EFER) ||
1083             guest_msr_ro(vmx, MSR_TSC) ||
1084             ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX)))
1085                 panic("vmx_vminit: error setting guest msr access");
1086
1087         vpid_alloc(vpid, VM_MAXCPU);
1088
1089         if (virtual_interrupt_delivery) {
1090                 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
1091                     APIC_ACCESS_ADDRESS);
1092                 /* XXX this should really return an error to the caller */
1093                 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
1094         }
1095
1096         maxcpus = vm_get_maxcpus(vm);
1097         for (i = 0; i < maxcpus; i++) {
1098                 vmcs = &vmx->vmcs[i];
1099                 vmcs->identifier = vmx_revision();
1100                 error = vmclear(vmcs);
1101                 if (error != 0) {
1102                         panic("vmx_vminit: vmclear error %d on vcpu %d\n",
1103                               error, i);
1104                 }
1105
1106                 vmx_msr_guest_init(vmx, i);
1107
1108                 error = vmcs_init(vmcs);
1109                 KASSERT(error == 0, ("vmcs_init error %d", error));
1110
1111                 VMPTRLD(vmcs);
1112                 error = 0;
1113                 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
1114                 error += vmwrite(VMCS_EPTP, vmx->eptp);
1115                 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
1116                 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
1117                 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
1118                 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
1119                 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1120                 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
1121                 error += vmwrite(VMCS_VPID, vpid[i]);
1122
1123                 if (guest_l1d_flush && !guest_l1d_flush_sw) {
1124                         vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
1125                             (vm_offset_t)&msr_load_list[0]));
1126                         vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
1127                             nitems(msr_load_list));
1128                         vmcs_write(VMCS_EXIT_MSR_STORE, 0);
1129                         vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
1130                 }
1131
1132                 /* exception bitmap */
1133                 if (vcpu_trace_exceptions(vm, i))
1134                         exc_bitmap = 0xffffffff;
1135                 else
1136                         exc_bitmap = 1 << IDT_MC;
1137                 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
1138
1139                 vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
1140                 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1141
1142                 if (tpr_shadowing) {
1143                         error += vmwrite(VMCS_VIRTUAL_APIC,
1144                             vtophys(&vmx->apic_page[i]));
1145                 }
1146
1147                 if (virtual_interrupt_delivery) {
1148                         error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1149                         error += vmwrite(VMCS_EOI_EXIT0, 0);
1150                         error += vmwrite(VMCS_EOI_EXIT1, 0);
1151                         error += vmwrite(VMCS_EOI_EXIT2, 0);
1152                         error += vmwrite(VMCS_EOI_EXIT3, 0);
1153                 }
1154                 if (posted_interrupts) {
1155                         error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1156                         error += vmwrite(VMCS_PIR_DESC,
1157                             vtophys(&vmx->pir_desc[i]));
1158                 }
1159                 VMCLEAR(vmcs);
1160                 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
1161
1162                 vmx->cap[i].set = 0;
1163                 vmx->cap[i].set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0;
1164                 vmx->cap[i].set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0;
1165                 vmx->cap[i].proc_ctls = procbased_ctls;
1166                 vmx->cap[i].proc_ctls2 = procbased_ctls2;
1167                 vmx->cap[i].exc_bitmap = exc_bitmap;
1168
1169                 vmx->state[i].nextrip = ~0;
1170                 vmx->state[i].lastcpu = NOCPU;
1171                 vmx->state[i].vpid = vpid[i];
1172
1173                 /*
1174                  * Set up the CR0/4 shadows, and init the read shadow
1175                  * to the power-on register value from the Intel Sys Arch.
1176                  *  CR0 - 0x60000010
1177                  *  CR4 - 0
1178                  */
1179                 error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1180                 if (error != 0)
1181                         panic("vmx_setup_cr0_shadow %d", error);
1182
1183                 error = vmx_setup_cr4_shadow(vmcs, 0);
1184                 if (error != 0)
1185                         panic("vmx_setup_cr4_shadow %d", error);
1186
1187                 vmx->ctx[i].pmap = pmap;
1188         }
1189
1190         return (vmx);
1191 }
1192
1193 static int
1194 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
1195 {
1196         int handled;
1197
1198         handled = x86_emulate_cpuid(vm, vcpu, (uint64_t *)&vmxctx->guest_rax,
1199             (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
1200             (uint64_t *)&vmxctx->guest_rdx);
1201         return (handled);
1202 }
1203
1204 static __inline void
1205 vmx_run_trace(struct vmx *vmx, int vcpu)
1206 {
1207 #ifdef KTR
1208         VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1209 #endif
1210 }
1211
1212 static __inline void
1213 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
1214                int handled)
1215 {
1216 #ifdef KTR
1217         VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
1218                  handled ? "handled" : "unhandled",
1219                  exit_reason_to_str(exit_reason), rip);
1220 #endif
1221 }
1222
1223 static __inline void
1224 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1225 {
1226 #ifdef KTR
1227         VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1228 #endif
1229 }
1230
1231 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1232 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1233
1234 /*
1235  * Invalidate guest mappings identified by its vpid from the TLB.
1236  */
1237 static __inline void
1238 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1239 {
1240         struct vmxstate *vmxstate;
1241         struct invvpid_desc invvpid_desc;
1242
1243         vmxstate = &vmx->state[vcpu];
1244         if (vmxstate->vpid == 0)
1245                 return;
1246
1247         if (!running) {
1248                 /*
1249                  * Set the 'lastcpu' to an invalid host cpu.
1250                  *
1251                  * This will invalidate TLB entries tagged with the vcpu's
1252                  * vpid the next time it runs via vmx_set_pcpu_defaults().
1253                  */
1254                 vmxstate->lastcpu = NOCPU;
1255                 return;
1256         }
1257
1258         KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1259             "critical section", __func__, vcpu));
1260
1261         /*
1262          * Invalidate all mappings tagged with 'vpid'
1263          *
1264          * We do this because this vcpu was executing on a different host
1265          * cpu when it last ran. We do not track whether it invalidated
1266          * mappings associated with its 'vpid' during that run. So we must
1267          * assume that the mappings associated with 'vpid' on 'curcpu' are
1268          * stale and invalidate them.
1269          *
1270          * Note that we incur this penalty only when the scheduler chooses to
1271          * move the thread associated with this vcpu between host cpus.
1272          *
1273          * Note also that this will invalidate mappings tagged with 'vpid'
1274          * for "all" EP4TAs.
1275          */
1276         if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1277                 invvpid_desc._res1 = 0;
1278                 invvpid_desc._res2 = 0;
1279                 invvpid_desc.vpid = vmxstate->vpid;
1280                 invvpid_desc.linear_addr = 0;
1281                 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1282                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1283         } else {
1284                 /*
1285                  * The invvpid can be skipped if an invept is going to
1286                  * be performed before entering the guest. The invept
1287                  * will invalidate combined mappings tagged with
1288                  * 'vmx->eptp' for all vpids.
1289                  */
1290                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1291         }
1292 }
1293
1294 static void
1295 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1296 {
1297         struct vmxstate *vmxstate;
1298
1299         vmxstate = &vmx->state[vcpu];
1300         if (vmxstate->lastcpu == curcpu)
1301                 return;
1302
1303         vmxstate->lastcpu = curcpu;
1304
1305         vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1306
1307         vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1308         vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1309         vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1310         vmx_invvpid(vmx, vcpu, pmap, 1);
1311 }
1312
1313 /*
1314  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1315  */
1316 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1317
1318 static void __inline
1319 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1320 {
1321
1322         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1323                 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1324                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1325                 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1326         }
1327 }
1328
1329 static void __inline
1330 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1331 {
1332
1333         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1334             ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1335         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1336         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1337         VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1338 }
1339
1340 static void __inline
1341 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1342 {
1343
1344         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1345                 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1346                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1347                 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1348         }
1349 }
1350
1351 static void __inline
1352 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1353 {
1354
1355         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1356             ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1357         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1358         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1359         VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1360 }
1361
1362 int
1363 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1364 {
1365         int error;
1366
1367         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1368                 vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1369                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1370                 VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1371         }
1372
1373         error = vmwrite(VMCS_TSC_OFFSET, offset);
1374 #ifdef BHYVE_SNAPSHOT
1375         if (error == 0)
1376                 error = vm_set_tsc_offset(vmx->vm, vcpu, offset);
1377 #endif
1378         return (error);
1379 }
1380
1381 #define NMI_BLOCKING    (VMCS_INTERRUPTIBILITY_NMI_BLOCKING |           \
1382                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1383 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING |           \
1384                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1385
1386 static void
1387 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1388 {
1389         uint32_t gi, info;
1390
1391         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1392         KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1393             "interruptibility-state %#x", gi));
1394
1395         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1396         KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1397             "VM-entry interruption information %#x", info));
1398
1399         /*
1400          * Inject the virtual NMI. The vector must be the NMI IDT entry
1401          * or the VMCS entry check will fail.
1402          */
1403         info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1404         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1405
1406         VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1407
1408         /* Clear the request */
1409         vm_nmi_clear(vmx->vm, vcpu);
1410 }
1411
1412 static void
1413 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1414     uint64_t guestrip)
1415 {
1416         int vector, need_nmi_exiting, extint_pending;
1417         uint64_t rflags, entryinfo;
1418         uint32_t gi, info;
1419
1420         if (vmx->state[vcpu].nextrip != guestrip) {
1421                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1422                 if (gi & HWINTR_BLOCKING) {
1423                         VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1424                             "cleared due to rip change: %#lx/%#lx",
1425                             vmx->state[vcpu].nextrip, guestrip);
1426                         gi &= ~HWINTR_BLOCKING;
1427                         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1428                 }
1429         }
1430
1431         if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1432                 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1433                     "intinfo is not valid: %#lx", __func__, entryinfo));
1434
1435                 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1436                 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1437                      "pending exception: %#lx/%#x", __func__, entryinfo, info));
1438
1439                 info = entryinfo;
1440                 vector = info & 0xff;
1441                 if (vector == IDT_BP || vector == IDT_OF) {
1442                         /*
1443                          * VT-x requires #BP and #OF to be injected as software
1444                          * exceptions.
1445                          */
1446                         info &= ~VMCS_INTR_T_MASK;
1447                         info |= VMCS_INTR_T_SWEXCEPTION;
1448                 }
1449
1450                 if (info & VMCS_INTR_DEL_ERRCODE)
1451                         vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1452
1453                 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1454         }
1455
1456         if (vm_nmi_pending(vmx->vm, vcpu)) {
1457                 /*
1458                  * If there are no conditions blocking NMI injection then
1459                  * inject it directly here otherwise enable "NMI window
1460                  * exiting" to inject it as soon as we can.
1461                  *
1462                  * We also check for STI_BLOCKING because some implementations
1463                  * don't allow NMI injection in this case. If we are running
1464                  * on a processor that doesn't have this restriction it will
1465                  * immediately exit and the NMI will be injected in the
1466                  * "NMI window exiting" handler.
1467                  */
1468                 need_nmi_exiting = 1;
1469                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1470                 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1471                         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1472                         if ((info & VMCS_INTR_VALID) == 0) {
1473                                 vmx_inject_nmi(vmx, vcpu);
1474                                 need_nmi_exiting = 0;
1475                         } else {
1476                                 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1477                                     "due to VM-entry intr info %#x", info);
1478                         }
1479                 } else {
1480                         VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1481                             "Guest Interruptibility-state %#x", gi);
1482                 }
1483
1484                 if (need_nmi_exiting)
1485                         vmx_set_nmi_window_exiting(vmx, vcpu);
1486         }
1487
1488         extint_pending = vm_extint_pending(vmx->vm, vcpu);
1489
1490         if (!extint_pending && virtual_interrupt_delivery) {
1491                 vmx_inject_pir(vlapic);
1492                 return;
1493         }
1494
1495         /*
1496          * If interrupt-window exiting is already in effect then don't bother
1497          * checking for pending interrupts. This is just an optimization and
1498          * not needed for correctness.
1499          */
1500         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1501                 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1502                     "pending int_window_exiting");
1503                 return;
1504         }
1505
1506         if (!extint_pending) {
1507                 /* Ask the local apic for a vector to inject */
1508                 if (!vlapic_pending_intr(vlapic, &vector))
1509                         return;
1510
1511                 /*
1512                  * From the Intel SDM, Volume 3, Section "Maskable
1513                  * Hardware Interrupts":
1514                  * - maskable interrupt vectors [16,255] can be delivered
1515                  *   through the local APIC.
1516                 */
1517                 KASSERT(vector >= 16 && vector <= 255,
1518                     ("invalid vector %d from local APIC", vector));
1519         } else {
1520                 /* Ask the legacy pic for a vector to inject */
1521                 vatpic_pending_intr(vmx->vm, &vector);
1522
1523                 /*
1524                  * From the Intel SDM, Volume 3, Section "Maskable
1525                  * Hardware Interrupts":
1526                  * - maskable interrupt vectors [0,255] can be delivered
1527                  *   through the INTR pin.
1528                  */
1529                 KASSERT(vector >= 0 && vector <= 255,
1530                     ("invalid vector %d from INTR", vector));
1531         }
1532
1533         /* Check RFLAGS.IF and the interruptibility state of the guest */
1534         rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1535         if ((rflags & PSL_I) == 0) {
1536                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1537                     "rflags %#lx", vector, rflags);
1538                 goto cantinject;
1539         }
1540
1541         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1542         if (gi & HWINTR_BLOCKING) {
1543                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1544                     "Guest Interruptibility-state %#x", vector, gi);
1545                 goto cantinject;
1546         }
1547
1548         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1549         if (info & VMCS_INTR_VALID) {
1550                 /*
1551                  * This is expected and could happen for multiple reasons:
1552                  * - A vectoring VM-entry was aborted due to astpending
1553                  * - A VM-exit happened during event injection.
1554                  * - An exception was injected above.
1555                  * - An NMI was injected above or after "NMI window exiting"
1556                  */
1557                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1558                     "VM-entry intr info %#x", vector, info);
1559                 goto cantinject;
1560         }
1561
1562         /* Inject the interrupt */
1563         info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1564         info |= vector;
1565         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1566
1567         if (!extint_pending) {
1568                 /* Update the Local APIC ISR */
1569                 vlapic_intr_accepted(vlapic, vector);
1570         } else {
1571                 vm_extint_clear(vmx->vm, vcpu);
1572                 vatpic_intr_accepted(vmx->vm, vector);
1573
1574                 /*
1575                  * After we accepted the current ExtINT the PIC may
1576                  * have posted another one.  If that is the case, set
1577                  * the Interrupt Window Exiting execution control so
1578                  * we can inject that one too.
1579                  *
1580                  * Also, interrupt window exiting allows us to inject any
1581                  * pending APIC vector that was preempted by the ExtINT
1582                  * as soon as possible. This applies both for the software
1583                  * emulated vlapic and the hardware assisted virtual APIC.
1584                  */
1585                 vmx_set_int_window_exiting(vmx, vcpu);
1586         }
1587
1588         VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1589
1590         return;
1591
1592 cantinject:
1593         /*
1594          * Set the Interrupt Window Exiting execution control so we can inject
1595          * the interrupt as soon as blocking condition goes away.
1596          */
1597         vmx_set_int_window_exiting(vmx, vcpu);
1598 }
1599
1600 /*
1601  * If the Virtual NMIs execution control is '1' then the logical processor
1602  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1603  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1604  * virtual-NMI blocking.
1605  *
1606  * This unblocking occurs even if the IRET causes a fault. In this case the
1607  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1608  */
1609 static void
1610 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1611 {
1612         uint32_t gi;
1613
1614         VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1615         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1616         gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1617         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1618 }
1619
1620 static void
1621 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1622 {
1623         uint32_t gi;
1624
1625         VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1626         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1627         gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1628         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1629 }
1630
1631 static void
1632 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1633 {
1634         uint32_t gi;
1635
1636         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1637         KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1638             ("NMI blocking is not in effect %#x", gi));
1639 }
1640
1641 static int
1642 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1643 {
1644         struct vmxctx *vmxctx;
1645         uint64_t xcrval;
1646         const struct xsave_limits *limits;
1647
1648         vmxctx = &vmx->ctx[vcpu];
1649         limits = vmm_get_xsave_limits();
1650
1651         /*
1652          * Note that the processor raises a GP# fault on its own if
1653          * xsetbv is executed for CPL != 0, so we do not have to
1654          * emulate that fault here.
1655          */
1656
1657         /* Only xcr0 is supported. */
1658         if (vmxctx->guest_rcx != 0) {
1659                 vm_inject_gp(vmx->vm, vcpu);
1660                 return (HANDLED);
1661         }
1662
1663         /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1664         if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1665                 vm_inject_ud(vmx->vm, vcpu);
1666                 return (HANDLED);
1667         }
1668
1669         xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1670         if ((xcrval & ~limits->xcr0_allowed) != 0) {
1671                 vm_inject_gp(vmx->vm, vcpu);
1672                 return (HANDLED);
1673         }
1674
1675         if (!(xcrval & XFEATURE_ENABLED_X87)) {
1676                 vm_inject_gp(vmx->vm, vcpu);
1677                 return (HANDLED);
1678         }
1679
1680         /* AVX (YMM_Hi128) requires SSE. */
1681         if (xcrval & XFEATURE_ENABLED_AVX &&
1682             (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1683                 vm_inject_gp(vmx->vm, vcpu);
1684                 return (HANDLED);
1685         }
1686
1687         /*
1688          * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1689          * ZMM_Hi256, and Hi16_ZMM.
1690          */
1691         if (xcrval & XFEATURE_AVX512 &&
1692             (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1693             (XFEATURE_AVX512 | XFEATURE_AVX)) {
1694                 vm_inject_gp(vmx->vm, vcpu);
1695                 return (HANDLED);
1696         }
1697
1698         /*
1699          * Intel MPX requires both bound register state flags to be
1700          * set.
1701          */
1702         if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1703             ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1704                 vm_inject_gp(vmx->vm, vcpu);
1705                 return (HANDLED);
1706         }
1707
1708         /*
1709          * This runs "inside" vmrun() with the guest's FPU state, so
1710          * modifying xcr0 directly modifies the guest's xcr0, not the
1711          * host's.
1712          */
1713         load_xcr(0, xcrval);
1714         return (HANDLED);
1715 }
1716
1717 static uint64_t
1718 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1719 {
1720         const struct vmxctx *vmxctx;
1721
1722         vmxctx = &vmx->ctx[vcpu];
1723
1724         switch (ident) {
1725         case 0:
1726                 return (vmxctx->guest_rax);
1727         case 1:
1728                 return (vmxctx->guest_rcx);
1729         case 2:
1730                 return (vmxctx->guest_rdx);
1731         case 3:
1732                 return (vmxctx->guest_rbx);
1733         case 4:
1734                 return (vmcs_read(VMCS_GUEST_RSP));
1735         case 5:
1736                 return (vmxctx->guest_rbp);
1737         case 6:
1738                 return (vmxctx->guest_rsi);
1739         case 7:
1740                 return (vmxctx->guest_rdi);
1741         case 8:
1742                 return (vmxctx->guest_r8);
1743         case 9:
1744                 return (vmxctx->guest_r9);
1745         case 10:
1746                 return (vmxctx->guest_r10);
1747         case 11:
1748                 return (vmxctx->guest_r11);
1749         case 12:
1750                 return (vmxctx->guest_r12);
1751         case 13:
1752                 return (vmxctx->guest_r13);
1753         case 14:
1754                 return (vmxctx->guest_r14);
1755         case 15:
1756                 return (vmxctx->guest_r15);
1757         default:
1758                 panic("invalid vmx register %d", ident);
1759         }
1760 }
1761
1762 static void
1763 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1764 {
1765         struct vmxctx *vmxctx;
1766
1767         vmxctx = &vmx->ctx[vcpu];
1768
1769         switch (ident) {
1770         case 0:
1771                 vmxctx->guest_rax = regval;
1772                 break;
1773         case 1:
1774                 vmxctx->guest_rcx = regval;
1775                 break;
1776         case 2:
1777                 vmxctx->guest_rdx = regval;
1778                 break;
1779         case 3:
1780                 vmxctx->guest_rbx = regval;
1781                 break;
1782         case 4:
1783                 vmcs_write(VMCS_GUEST_RSP, regval);
1784                 break;
1785         case 5:
1786                 vmxctx->guest_rbp = regval;
1787                 break;
1788         case 6:
1789                 vmxctx->guest_rsi = regval;
1790                 break;
1791         case 7:
1792                 vmxctx->guest_rdi = regval;
1793                 break;
1794         case 8:
1795                 vmxctx->guest_r8 = regval;
1796                 break;
1797         case 9:
1798                 vmxctx->guest_r9 = regval;
1799                 break;
1800         case 10:
1801                 vmxctx->guest_r10 = regval;
1802                 break;
1803         case 11:
1804                 vmxctx->guest_r11 = regval;
1805                 break;
1806         case 12:
1807                 vmxctx->guest_r12 = regval;
1808                 break;
1809         case 13:
1810                 vmxctx->guest_r13 = regval;
1811                 break;
1812         case 14:
1813                 vmxctx->guest_r14 = regval;
1814                 break;
1815         case 15:
1816                 vmxctx->guest_r15 = regval;
1817                 break;
1818         default:
1819                 panic("invalid vmx register %d", ident);
1820         }
1821 }
1822
1823 static int
1824 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1825 {
1826         uint64_t crval, regval;
1827
1828         /* We only handle mov to %cr0 at this time */
1829         if ((exitqual & 0xf0) != 0x00)
1830                 return (UNHANDLED);
1831
1832         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1833
1834         vmcs_write(VMCS_CR0_SHADOW, regval);
1835
1836         crval = regval | cr0_ones_mask;
1837         crval &= ~cr0_zeros_mask;
1838         vmcs_write(VMCS_GUEST_CR0, crval);
1839
1840         if (regval & CR0_PG) {
1841                 uint64_t efer, entry_ctls;
1842
1843                 /*
1844                  * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1845                  * the "IA-32e mode guest" bit in VM-entry control must be
1846                  * equal.
1847                  */
1848                 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1849                 if (efer & EFER_LME) {
1850                         efer |= EFER_LMA;
1851                         vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1852                         entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1853                         entry_ctls |= VM_ENTRY_GUEST_LMA;
1854                         vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1855                 }
1856         }
1857
1858         return (HANDLED);
1859 }
1860
1861 static int
1862 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1863 {
1864         uint64_t crval, regval;
1865
1866         /* We only handle mov to %cr4 at this time */
1867         if ((exitqual & 0xf0) != 0x00)
1868                 return (UNHANDLED);
1869
1870         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1871
1872         vmcs_write(VMCS_CR4_SHADOW, regval);
1873
1874         crval = regval | cr4_ones_mask;
1875         crval &= ~cr4_zeros_mask;
1876         vmcs_write(VMCS_GUEST_CR4, crval);
1877
1878         return (HANDLED);
1879 }
1880
1881 static int
1882 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1883 {
1884         struct vlapic *vlapic;
1885         uint64_t cr8;
1886         int regnum;
1887
1888         /* We only handle mov %cr8 to/from a register at this time. */
1889         if ((exitqual & 0xe0) != 0x00) {
1890                 return (UNHANDLED);
1891         }
1892
1893         vlapic = vm_lapic(vmx->vm, vcpu);
1894         regnum = (exitqual >> 8) & 0xf;
1895         if (exitqual & 0x10) {
1896                 cr8 = vlapic_get_cr8(vlapic);
1897                 vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1898         } else {
1899                 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1900                 vlapic_set_cr8(vlapic, cr8);
1901         }
1902
1903         return (HANDLED);
1904 }
1905
1906 /*
1907  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1908  */
1909 static int
1910 vmx_cpl(void)
1911 {
1912         uint32_t ssar;
1913
1914         ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1915         return ((ssar >> 5) & 0x3);
1916 }
1917
1918 static enum vm_cpu_mode
1919 vmx_cpu_mode(void)
1920 {
1921         uint32_t csar;
1922
1923         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1924                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1925                 if (csar & 0x2000)
1926                         return (CPU_MODE_64BIT);        /* CS.L = 1 */
1927                 else
1928                         return (CPU_MODE_COMPATIBILITY);
1929         } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1930                 return (CPU_MODE_PROTECTED);
1931         } else {
1932                 return (CPU_MODE_REAL);
1933         }
1934 }
1935
1936 static enum vm_paging_mode
1937 vmx_paging_mode(void)
1938 {
1939         uint64_t cr4;
1940
1941         if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1942                 return (PAGING_MODE_FLAT);
1943         cr4 = vmcs_read(VMCS_GUEST_CR4);
1944         if (!(cr4 & CR4_PAE))
1945                 return (PAGING_MODE_32);
1946         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) {
1947                 if (!(cr4 & CR4_LA57))
1948                         return (PAGING_MODE_64);
1949                 return (PAGING_MODE_64_LA57);
1950         } else
1951                 return (PAGING_MODE_PAE);
1952 }
1953
1954 static uint64_t
1955 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1956 {
1957         uint64_t val;
1958         int error;
1959         enum vm_reg_name reg;
1960
1961         reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1962         error = vmx_getreg(vmx, vcpuid, reg, &val);
1963         KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1964         return (val);
1965 }
1966
1967 static uint64_t
1968 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1969 {
1970         uint64_t val;
1971         int error;
1972
1973         if (rep) {
1974                 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1975                 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1976         } else {
1977                 val = 1;
1978         }
1979         return (val);
1980 }
1981
1982 static int
1983 inout_str_addrsize(uint32_t inst_info)
1984 {
1985         uint32_t size;
1986
1987         size = (inst_info >> 7) & 0x7;
1988         switch (size) {
1989         case 0:
1990                 return (2);     /* 16 bit */
1991         case 1:
1992                 return (4);     /* 32 bit */
1993         case 2:
1994                 return (8);     /* 64 bit */
1995         default:
1996                 panic("%s: invalid size encoding %d", __func__, size);
1997         }
1998 }
1999
2000 static void
2001 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
2002     struct vm_inout_str *vis)
2003 {
2004         int error, s;
2005
2006         if (in) {
2007                 vis->seg_name = VM_REG_GUEST_ES;
2008         } else {
2009                 s = (inst_info >> 15) & 0x7;
2010                 vis->seg_name = vm_segment_name(s);
2011         }
2012
2013         error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
2014         KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
2015 }
2016
2017 static void
2018 vmx_paging_info(struct vm_guest_paging *paging)
2019 {
2020         paging->cr3 = vmcs_guest_cr3();
2021         paging->cpl = vmx_cpl();
2022         paging->cpu_mode = vmx_cpu_mode();
2023         paging->paging_mode = vmx_paging_mode();
2024 }
2025
2026 static void
2027 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
2028 {
2029         struct vm_guest_paging *paging;
2030         uint32_t csar;
2031
2032         paging = &vmexit->u.inst_emul.paging;
2033
2034         vmexit->exitcode = VM_EXITCODE_INST_EMUL;
2035         vmexit->inst_length = 0;
2036         vmexit->u.inst_emul.gpa = gpa;
2037         vmexit->u.inst_emul.gla = gla;
2038         vmx_paging_info(paging);
2039         switch (paging->cpu_mode) {
2040         case CPU_MODE_REAL:
2041                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2042                 vmexit->u.inst_emul.cs_d = 0;
2043                 break;
2044         case CPU_MODE_PROTECTED:
2045         case CPU_MODE_COMPATIBILITY:
2046                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2047                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
2048                 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
2049                 break;
2050         default:
2051                 vmexit->u.inst_emul.cs_base = 0;
2052                 vmexit->u.inst_emul.cs_d = 0;
2053                 break;
2054         }
2055         vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
2056 }
2057
2058 static int
2059 ept_fault_type(uint64_t ept_qual)
2060 {
2061         int fault_type;
2062
2063         if (ept_qual & EPT_VIOLATION_DATA_WRITE)
2064                 fault_type = VM_PROT_WRITE;
2065         else if (ept_qual & EPT_VIOLATION_INST_FETCH)
2066                 fault_type = VM_PROT_EXECUTE;
2067         else
2068                 fault_type= VM_PROT_READ;
2069
2070         return (fault_type);
2071 }
2072
2073 static bool
2074 ept_emulation_fault(uint64_t ept_qual)
2075 {
2076         int read, write;
2077
2078         /* EPT fault on an instruction fetch doesn't make sense here */
2079         if (ept_qual & EPT_VIOLATION_INST_FETCH)
2080                 return (false);
2081
2082         /* EPT fault must be a read fault or a write fault */
2083         read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
2084         write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
2085         if ((read | write) == 0)
2086                 return (false);
2087
2088         /*
2089          * The EPT violation must have been caused by accessing a
2090          * guest-physical address that is a translation of a guest-linear
2091          * address.
2092          */
2093         if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
2094             (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
2095                 return (false);
2096         }
2097
2098         return (true);
2099 }
2100
2101 static __inline int
2102 apic_access_virtualization(struct vmx *vmx, int vcpuid)
2103 {
2104         uint32_t proc_ctls2;
2105
2106         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2107         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
2108 }
2109
2110 static __inline int
2111 x2apic_virtualization(struct vmx *vmx, int vcpuid)
2112 {
2113         uint32_t proc_ctls2;
2114
2115         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2116         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
2117 }
2118
2119 static int
2120 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
2121     uint64_t qual)
2122 {
2123         int error, handled, offset;
2124         uint32_t *apic_regs, vector;
2125         bool retu;
2126
2127         handled = HANDLED;
2128         offset = APIC_WRITE_OFFSET(qual);
2129
2130         if (!apic_access_virtualization(vmx, vcpuid)) {
2131                 /*
2132                  * In general there should not be any APIC write VM-exits
2133                  * unless APIC-access virtualization is enabled.
2134                  *
2135                  * However self-IPI virtualization can legitimately trigger
2136                  * an APIC-write VM-exit so treat it specially.
2137                  */
2138                 if (x2apic_virtualization(vmx, vcpuid) &&
2139                     offset == APIC_OFFSET_SELF_IPI) {
2140                         apic_regs = (uint32_t *)(vlapic->apic_page);
2141                         vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
2142                         vlapic_self_ipi_handler(vlapic, vector);
2143                         return (HANDLED);
2144                 } else
2145                         return (UNHANDLED);
2146         }
2147
2148         switch (offset) {
2149         case APIC_OFFSET_ID:
2150                 vlapic_id_write_handler(vlapic);
2151                 break;
2152         case APIC_OFFSET_LDR:
2153                 vlapic_ldr_write_handler(vlapic);
2154                 break;
2155         case APIC_OFFSET_DFR:
2156                 vlapic_dfr_write_handler(vlapic);
2157                 break;
2158         case APIC_OFFSET_SVR:
2159                 vlapic_svr_write_handler(vlapic);
2160                 break;
2161         case APIC_OFFSET_ESR:
2162                 vlapic_esr_write_handler(vlapic);
2163                 break;
2164         case APIC_OFFSET_ICR_LOW:
2165                 retu = false;
2166                 error = vlapic_icrlo_write_handler(vlapic, &retu);
2167                 if (error != 0 || retu)
2168                         handled = UNHANDLED;
2169                 break;
2170         case APIC_OFFSET_CMCI_LVT:
2171         case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2172                 vlapic_lvt_write_handler(vlapic, offset);
2173                 break;
2174         case APIC_OFFSET_TIMER_ICR:
2175                 vlapic_icrtmr_write_handler(vlapic);
2176                 break;
2177         case APIC_OFFSET_TIMER_DCR:
2178                 vlapic_dcr_write_handler(vlapic);
2179                 break;
2180         default:
2181                 handled = UNHANDLED;
2182                 break;
2183         }
2184         return (handled);
2185 }
2186
2187 static bool
2188 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2189 {
2190
2191         if (apic_access_virtualization(vmx, vcpuid) &&
2192             (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2193                 return (true);
2194         else
2195                 return (false);
2196 }
2197
2198 static int
2199 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2200 {
2201         uint64_t qual;
2202         int access_type, offset, allowed;
2203
2204         if (!apic_access_virtualization(vmx, vcpuid))
2205                 return (UNHANDLED);
2206
2207         qual = vmexit->u.vmx.exit_qualification;
2208         access_type = APIC_ACCESS_TYPE(qual);
2209         offset = APIC_ACCESS_OFFSET(qual);
2210
2211         allowed = 0;
2212         if (access_type == 0) {
2213                 /*
2214                  * Read data access to the following registers is expected.
2215                  */
2216                 switch (offset) {
2217                 case APIC_OFFSET_APR:
2218                 case APIC_OFFSET_PPR:
2219                 case APIC_OFFSET_RRR:
2220                 case APIC_OFFSET_CMCI_LVT:
2221                 case APIC_OFFSET_TIMER_CCR:
2222                         allowed = 1;
2223                         break;
2224                 default:
2225                         break;
2226                 }
2227         } else if (access_type == 1) {
2228                 /*
2229                  * Write data access to the following registers is expected.
2230                  */
2231                 switch (offset) {
2232                 case APIC_OFFSET_VER:
2233                 case APIC_OFFSET_APR:
2234                 case APIC_OFFSET_PPR:
2235                 case APIC_OFFSET_RRR:
2236                 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2237                 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2238                 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2239                 case APIC_OFFSET_CMCI_LVT:
2240                 case APIC_OFFSET_TIMER_CCR:
2241                         allowed = 1;
2242                         break;
2243                 default:
2244                         break;
2245                 }
2246         }
2247
2248         if (allowed) {
2249                 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2250                     VIE_INVALID_GLA);
2251         }
2252
2253         /*
2254          * Regardless of whether the APIC-access is allowed this handler
2255          * always returns UNHANDLED:
2256          * - if the access is allowed then it is handled by emulating the
2257          *   instruction that caused the VM-exit (outside the critical section)
2258          * - if the access is not allowed then it will be converted to an
2259          *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2260          */
2261         return (UNHANDLED);
2262 }
2263
2264 static enum task_switch_reason
2265 vmx_task_switch_reason(uint64_t qual)
2266 {
2267         int reason;
2268
2269         reason = (qual >> 30) & 0x3;
2270         switch (reason) {
2271         case 0:
2272                 return (TSR_CALL);
2273         case 1:
2274                 return (TSR_IRET);
2275         case 2:
2276                 return (TSR_JMP);
2277         case 3:
2278                 return (TSR_IDT_GATE);
2279         default:
2280                 panic("%s: invalid reason %d", __func__, reason);
2281         }
2282 }
2283
2284 static int
2285 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2286 {
2287         int error;
2288
2289         if (lapic_msr(num))
2290                 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2291         else
2292                 error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2293
2294         return (error);
2295 }
2296
2297 static int
2298 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2299 {
2300         struct vmxctx *vmxctx;
2301         uint64_t result;
2302         uint32_t eax, edx;
2303         int error;
2304
2305         if (lapic_msr(num))
2306                 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2307         else
2308                 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2309
2310         if (error == 0) {
2311                 eax = result;
2312                 vmxctx = &vmx->ctx[vcpuid];
2313                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2314                 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2315
2316                 edx = result >> 32;
2317                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2318                 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2319         }
2320
2321         return (error);
2322 }
2323
2324 static int
2325 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2326 {
2327         int error, errcode, errcode_valid, handled, in;
2328         struct vmxctx *vmxctx;
2329         struct vlapic *vlapic;
2330         struct vm_inout_str *vis;
2331         struct vm_task_switch *ts;
2332         uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2333         uint32_t intr_type, intr_vec, reason;
2334         uint64_t exitintinfo, qual, gpa;
2335         bool retu;
2336
2337         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2338         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2339
2340         handled = UNHANDLED;
2341         vmxctx = &vmx->ctx[vcpu];
2342
2343         qual = vmexit->u.vmx.exit_qualification;
2344         reason = vmexit->u.vmx.exit_reason;
2345         vmexit->exitcode = VM_EXITCODE_BOGUS;
2346
2347         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2348         SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2349
2350         /*
2351          * VM-entry failures during or after loading guest state.
2352          *
2353          * These VM-exits are uncommon but must be handled specially
2354          * as most VM-exit fields are not populated as usual.
2355          */
2356         if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2357                 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2358                 __asm __volatile("int $18");
2359                 return (1);
2360         }
2361
2362         /*
2363          * VM exits that can be triggered during event delivery need to
2364          * be handled specially by re-injecting the event if the IDT
2365          * vectoring information field's valid bit is set.
2366          *
2367          * See "Information for VM Exits During Event Delivery" in Intel SDM
2368          * for details.
2369          */
2370         idtvec_info = vmcs_idt_vectoring_info();
2371         if (idtvec_info & VMCS_IDT_VEC_VALID) {
2372                 idtvec_info &= ~(1 << 12); /* clear undefined bit */
2373                 exitintinfo = idtvec_info;
2374                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2375                         idtvec_err = vmcs_idt_vectoring_err();
2376                         exitintinfo |= (uint64_t)idtvec_err << 32;
2377                 }
2378                 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2379                 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2380                     __func__, error));
2381
2382                 /*
2383                  * If 'virtual NMIs' are being used and the VM-exit
2384                  * happened while injecting an NMI during the previous
2385                  * VM-entry, then clear "blocking by NMI" in the
2386                  * Guest Interruptibility-State so the NMI can be
2387                  * reinjected on the subsequent VM-entry.
2388                  *
2389                  * However, if the NMI was being delivered through a task
2390                  * gate, then the new task must start execution with NMIs
2391                  * blocked so don't clear NMI blocking in this case.
2392                  */
2393                 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2394                 if (intr_type == VMCS_INTR_T_NMI) {
2395                         if (reason != EXIT_REASON_TASK_SWITCH)
2396                                 vmx_clear_nmi_blocking(vmx, vcpu);
2397                         else
2398                                 vmx_assert_nmi_blocking(vmx, vcpu);
2399                 }
2400
2401                 /*
2402                  * Update VM-entry instruction length if the event being
2403                  * delivered was a software interrupt or software exception.
2404                  */
2405                 if (intr_type == VMCS_INTR_T_SWINTR ||
2406                     intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2407                     intr_type == VMCS_INTR_T_SWEXCEPTION) {
2408                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2409                 }
2410         }
2411
2412         switch (reason) {
2413         case EXIT_REASON_TASK_SWITCH:
2414                 ts = &vmexit->u.task_switch;
2415                 ts->tsssel = qual & 0xffff;
2416                 ts->reason = vmx_task_switch_reason(qual);
2417                 ts->ext = 0;
2418                 ts->errcode_valid = 0;
2419                 vmx_paging_info(&ts->paging);
2420                 /*
2421                  * If the task switch was due to a CALL, JMP, IRET, software
2422                  * interrupt (INT n) or software exception (INT3, INTO),
2423                  * then the saved %rip references the instruction that caused
2424                  * the task switch. The instruction length field in the VMCS
2425                  * is valid in this case.
2426                  *
2427                  * In all other cases (e.g., NMI, hardware exception) the
2428                  * saved %rip is one that would have been saved in the old TSS
2429                  * had the task switch completed normally so the instruction
2430                  * length field is not needed in this case and is explicitly
2431                  * set to 0.
2432                  */
2433                 if (ts->reason == TSR_IDT_GATE) {
2434                         KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2435                             ("invalid idtvec_info %#x for IDT task switch",
2436                             idtvec_info));
2437                         intr_type = idtvec_info & VMCS_INTR_T_MASK;
2438                         if (intr_type != VMCS_INTR_T_SWINTR &&
2439                             intr_type != VMCS_INTR_T_SWEXCEPTION &&
2440                             intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2441                                 /* Task switch triggered by external event */
2442                                 ts->ext = 1;
2443                                 vmexit->inst_length = 0;
2444                                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2445                                         ts->errcode_valid = 1;
2446                                         ts->errcode = vmcs_idt_vectoring_err();
2447                                 }
2448                         }
2449                 }
2450                 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2451                 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2452                 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2453                     "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2454                     ts->ext ? "external" : "internal",
2455                     ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2456                 break;
2457         case EXIT_REASON_CR_ACCESS:
2458                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2459                 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2460                 switch (qual & 0xf) {
2461                 case 0:
2462                         handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2463                         break;
2464                 case 4:
2465                         handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2466                         break;
2467                 case 8:
2468                         handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2469                         break;
2470                 }
2471                 break;
2472         case EXIT_REASON_RDMSR:
2473                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2474                 retu = false;
2475                 ecx = vmxctx->guest_rcx;
2476                 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2477                 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
2478                 error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2479                 if (error) {
2480                         vmexit->exitcode = VM_EXITCODE_RDMSR;
2481                         vmexit->u.msr.code = ecx;
2482                 } else if (!retu) {
2483                         handled = HANDLED;
2484                 } else {
2485                         /* Return to userspace with a valid exitcode */
2486                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2487                             ("emulate_rdmsr retu with bogus exitcode"));
2488                 }
2489                 break;
2490         case EXIT_REASON_WRMSR:
2491                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2492                 retu = false;
2493                 eax = vmxctx->guest_rax;
2494                 ecx = vmxctx->guest_rcx;
2495                 edx = vmxctx->guest_rdx;
2496                 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2497                     ecx, (uint64_t)edx << 32 | eax);
2498                 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
2499                     (uint64_t)edx << 32 | eax);
2500                 error = emulate_wrmsr(vmx, vcpu, ecx,
2501                     (uint64_t)edx << 32 | eax, &retu);
2502                 if (error) {
2503                         vmexit->exitcode = VM_EXITCODE_WRMSR;
2504                         vmexit->u.msr.code = ecx;
2505                         vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2506                 } else if (!retu) {
2507                         handled = HANDLED;
2508                 } else {
2509                         /* Return to userspace with a valid exitcode */
2510                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2511                             ("emulate_wrmsr retu with bogus exitcode"));
2512                 }
2513                 break;
2514         case EXIT_REASON_HLT:
2515                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2516                 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2517                 vmexit->exitcode = VM_EXITCODE_HLT;
2518                 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2519                 if (virtual_interrupt_delivery)
2520                         vmexit->u.hlt.intr_status =
2521                             vmcs_read(VMCS_GUEST_INTR_STATUS);
2522                 else
2523                         vmexit->u.hlt.intr_status = 0;
2524                 break;
2525         case EXIT_REASON_MTF:
2526                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2527                 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2528                 vmexit->exitcode = VM_EXITCODE_MTRAP;
2529                 vmexit->inst_length = 0;
2530                 break;
2531         case EXIT_REASON_PAUSE:
2532                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2533                 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2534                 vmexit->exitcode = VM_EXITCODE_PAUSE;
2535                 break;
2536         case EXIT_REASON_INTR_WINDOW:
2537                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2538                 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2539                 vmx_clear_int_window_exiting(vmx, vcpu);
2540                 return (1);
2541         case EXIT_REASON_EXT_INTR:
2542                 /*
2543                  * External interrupts serve only to cause VM exits and allow
2544                  * the host interrupt handler to run.
2545                  *
2546                  * If this external interrupt triggers a virtual interrupt
2547                  * to a VM, then that state will be recorded by the
2548                  * host interrupt handler in the VM's softc. We will inject
2549                  * this virtual interrupt during the subsequent VM enter.
2550                  */
2551                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2552                 SDT_PROBE4(vmm, vmx, exit, interrupt,
2553                     vmx, vcpu, vmexit, intr_info);
2554
2555                 /*
2556                  * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2557                  * This appears to be a bug in VMware Fusion?
2558                  */
2559                 if (!(intr_info & VMCS_INTR_VALID))
2560                         return (1);
2561                 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2562                     (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2563                     ("VM exit interruption info invalid: %#x", intr_info));
2564                 vmx_trigger_hostintr(intr_info & 0xff);
2565
2566                 /*
2567                  * This is special. We want to treat this as an 'handled'
2568                  * VM-exit but not increment the instruction pointer.
2569                  */
2570                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2571                 return (1);
2572         case EXIT_REASON_NMI_WINDOW:
2573                 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2574                 /* Exit to allow the pending virtual NMI to be injected */
2575                 if (vm_nmi_pending(vmx->vm, vcpu))
2576                         vmx_inject_nmi(vmx, vcpu);
2577                 vmx_clear_nmi_window_exiting(vmx, vcpu);
2578                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2579                 return (1);
2580         case EXIT_REASON_INOUT:
2581                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2582                 vmexit->exitcode = VM_EXITCODE_INOUT;
2583                 vmexit->u.inout.bytes = (qual & 0x7) + 1;
2584                 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2585                 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2586                 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2587                 vmexit->u.inout.port = (uint16_t)(qual >> 16);
2588                 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2589                 if (vmexit->u.inout.string) {
2590                         inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2591                         vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2592                         vis = &vmexit->u.inout_str;
2593                         vmx_paging_info(&vis->paging);
2594                         vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2595                         vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2596                         vis->index = inout_str_index(vmx, vcpu, in);
2597                         vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2598                         vis->addrsize = inout_str_addrsize(inst_info);
2599                         inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2600                 }
2601                 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2602                 break;
2603         case EXIT_REASON_CPUID:
2604                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2605                 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2606                 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2607                 break;
2608         case EXIT_REASON_EXCEPTION:
2609                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2610                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2611                 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2612                     ("VM exit interruption info invalid: %#x", intr_info));
2613
2614                 intr_vec = intr_info & 0xff;
2615                 intr_type = intr_info & VMCS_INTR_T_MASK;
2616
2617                 /*
2618                  * If Virtual NMIs control is 1 and the VM-exit is due to a
2619                  * fault encountered during the execution of IRET then we must
2620                  * restore the state of "virtual-NMI blocking" before resuming
2621                  * the guest.
2622                  *
2623                  * See "Resuming Guest Software after Handling an Exception".
2624                  * See "Information for VM Exits Due to Vectored Events".
2625                  */
2626                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2627                     (intr_vec != IDT_DF) &&
2628                     (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2629                         vmx_restore_nmi_blocking(vmx, vcpu);
2630
2631                 /*
2632                  * The NMI has already been handled in vmx_exit_handle_nmi().
2633                  */
2634                 if (intr_type == VMCS_INTR_T_NMI)
2635                         return (1);
2636
2637                 /*
2638                  * Call the machine check handler by hand. Also don't reflect
2639                  * the machine check back into the guest.
2640                  */
2641                 if (intr_vec == IDT_MC) {
2642                         VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2643                         __asm __volatile("int $18");
2644                         return (1);
2645                 }
2646
2647                 /*
2648                  * If the hypervisor has requested user exits for
2649                  * debug exceptions, bounce them out to userland.
2650                  */
2651                 if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
2652                     (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2653                         vmexit->exitcode = VM_EXITCODE_BPT;
2654                         vmexit->u.bpt.inst_length = vmexit->inst_length;
2655                         vmexit->inst_length = 0;
2656                         break;
2657                 }
2658
2659                 if (intr_vec == IDT_PF) {
2660                         error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2661                         KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2662                             __func__, error));
2663                 }
2664
2665                 /*
2666                  * Software exceptions exhibit trap-like behavior. This in
2667                  * turn requires populating the VM-entry instruction length
2668                  * so that the %rip in the trap frame is past the INT3/INTO
2669                  * instruction.
2670                  */
2671                 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2672                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2673
2674                 /* Reflect all other exceptions back into the guest */
2675                 errcode_valid = errcode = 0;
2676                 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2677                         errcode_valid = 1;
2678                         errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2679                 }
2680                 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2681                     "the guest", intr_vec, errcode);
2682                 SDT_PROBE5(vmm, vmx, exit, exception,
2683                     vmx, vcpu, vmexit, intr_vec, errcode);
2684                 error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2685                     errcode_valid, errcode, 0);
2686                 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2687                     __func__, error));
2688                 return (1);
2689
2690         case EXIT_REASON_EPT_FAULT:
2691                 /*
2692                  * If 'gpa' lies within the address space allocated to
2693                  * memory then this must be a nested page fault otherwise
2694                  * this must be an instruction that accesses MMIO space.
2695                  */
2696                 gpa = vmcs_gpa();
2697                 if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2698                     apic_access_fault(vmx, vcpu, gpa)) {
2699                         vmexit->exitcode = VM_EXITCODE_PAGING;
2700                         vmexit->inst_length = 0;
2701                         vmexit->u.paging.gpa = gpa;
2702                         vmexit->u.paging.fault_type = ept_fault_type(qual);
2703                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2704                         SDT_PROBE5(vmm, vmx, exit, nestedfault,
2705                             vmx, vcpu, vmexit, gpa, qual);
2706                 } else if (ept_emulation_fault(qual)) {
2707                         vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2708                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2709                         SDT_PROBE4(vmm, vmx, exit, mmiofault,
2710                             vmx, vcpu, vmexit, gpa);
2711                 }
2712                 /*
2713                  * If Virtual NMIs control is 1 and the VM-exit is due to an
2714                  * EPT fault during the execution of IRET then we must restore
2715                  * the state of "virtual-NMI blocking" before resuming.
2716                  *
2717                  * See description of "NMI unblocking due to IRET" in
2718                  * "Exit Qualification for EPT Violations".
2719                  */
2720                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2721                     (qual & EXIT_QUAL_NMIUDTI) != 0)
2722                         vmx_restore_nmi_blocking(vmx, vcpu);
2723                 break;
2724         case EXIT_REASON_VIRTUALIZED_EOI:
2725                 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2726                 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2727                 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2728                 vmexit->inst_length = 0;        /* trap-like */
2729                 break;
2730         case EXIT_REASON_APIC_ACCESS:
2731                 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2732                 handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2733                 break;
2734         case EXIT_REASON_APIC_WRITE:
2735                 /*
2736                  * APIC-write VM exit is trap-like so the %rip is already
2737                  * pointing to the next instruction.
2738                  */
2739                 vmexit->inst_length = 0;
2740                 vlapic = vm_lapic(vmx->vm, vcpu);
2741                 SDT_PROBE4(vmm, vmx, exit, apicwrite,
2742                     vmx, vcpu, vmexit, vlapic);
2743                 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2744                 break;
2745         case EXIT_REASON_XSETBV:
2746                 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2747                 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2748                 break;
2749         case EXIT_REASON_MONITOR:
2750                 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2751                 vmexit->exitcode = VM_EXITCODE_MONITOR;
2752                 break;
2753         case EXIT_REASON_MWAIT:
2754                 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2755                 vmexit->exitcode = VM_EXITCODE_MWAIT;
2756                 break;
2757         case EXIT_REASON_TPR:
2758                 vlapic = vm_lapic(vmx->vm, vcpu);
2759                 vlapic_sync_tpr(vlapic);
2760                 vmexit->inst_length = 0;
2761                 handled = HANDLED;
2762                 break;
2763         case EXIT_REASON_VMCALL:
2764         case EXIT_REASON_VMCLEAR:
2765         case EXIT_REASON_VMLAUNCH:
2766         case EXIT_REASON_VMPTRLD:
2767         case EXIT_REASON_VMPTRST:
2768         case EXIT_REASON_VMREAD:
2769         case EXIT_REASON_VMRESUME:
2770         case EXIT_REASON_VMWRITE:
2771         case EXIT_REASON_VMXOFF:
2772         case EXIT_REASON_VMXON:
2773                 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2774                 vmexit->exitcode = VM_EXITCODE_VMINSN;
2775                 break;
2776         default:
2777                 SDT_PROBE4(vmm, vmx, exit, unknown,
2778                     vmx, vcpu, vmexit, reason);
2779                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2780                 break;
2781         }
2782
2783         if (handled) {
2784                 /*
2785                  * It is possible that control is returned to userland
2786                  * even though we were able to handle the VM exit in the
2787                  * kernel.
2788                  *
2789                  * In such a case we want to make sure that the userland
2790                  * restarts guest execution at the instruction *after*
2791                  * the one we just processed. Therefore we update the
2792                  * guest rip in the VMCS and in 'vmexit'.
2793                  */
2794                 vmexit->rip += vmexit->inst_length;
2795                 vmexit->inst_length = 0;
2796                 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2797         } else {
2798                 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2799                         /*
2800                          * If this VM exit was not claimed by anybody then
2801                          * treat it as a generic VMX exit.
2802                          */
2803                         vmexit->exitcode = VM_EXITCODE_VMX;
2804                         vmexit->u.vmx.status = VM_SUCCESS;
2805                         vmexit->u.vmx.inst_type = 0;
2806                         vmexit->u.vmx.inst_error = 0;
2807                 } else {
2808                         /*
2809                          * The exitcode and collateral have been populated.
2810                          * The VM exit will be processed further in userland.
2811                          */
2812                 }
2813         }
2814
2815         SDT_PROBE4(vmm, vmx, exit, return,
2816             vmx, vcpu, vmexit, handled);
2817         return (handled);
2818 }
2819
2820 static __inline void
2821 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2822 {
2823
2824         KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2825             ("vmx_exit_inst_error: invalid inst_fail_status %d",
2826             vmxctx->inst_fail_status));
2827
2828         vmexit->inst_length = 0;
2829         vmexit->exitcode = VM_EXITCODE_VMX;
2830         vmexit->u.vmx.status = vmxctx->inst_fail_status;
2831         vmexit->u.vmx.inst_error = vmcs_instruction_error();
2832         vmexit->u.vmx.exit_reason = ~0;
2833         vmexit->u.vmx.exit_qualification = ~0;
2834
2835         switch (rc) {
2836         case VMX_VMRESUME_ERROR:
2837         case VMX_VMLAUNCH_ERROR:
2838         case VMX_INVEPT_ERROR:
2839                 vmexit->u.vmx.inst_type = rc;
2840                 break;
2841         default:
2842                 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2843         }
2844 }
2845
2846 /*
2847  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2848  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2849  * sufficient to simply vector to the NMI handler via a software interrupt.
2850  * However, this must be done before maskable interrupts are enabled
2851  * otherwise the "iret" issued by an interrupt handler will incorrectly
2852  * clear NMI blocking.
2853  */
2854 static __inline void
2855 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2856 {
2857         uint32_t intr_info;
2858
2859         KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2860
2861         if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2862                 return;
2863
2864         intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2865         KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2866             ("VM exit interruption info invalid: %#x", intr_info));
2867
2868         if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2869                 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2870                     "to NMI has invalid vector: %#x", intr_info));
2871                 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2872                 __asm __volatile("int $2");
2873         }
2874 }
2875
2876 static __inline void
2877 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2878 {
2879         register_t rflags;
2880
2881         /* Save host control debug registers. */
2882         vmxctx->host_dr7 = rdr7();
2883         vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2884
2885         /*
2886          * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2887          * exceptions in the host based on the guest DRx values.  The
2888          * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2889          */
2890         load_dr7(0);
2891         wrmsr(MSR_DEBUGCTLMSR, 0);
2892
2893         /*
2894          * Disable single stepping the kernel to avoid corrupting the
2895          * guest DR6.  A debugger might still be able to corrupt the
2896          * guest DR6 by setting a breakpoint after this point and then
2897          * single stepping.
2898          */
2899         rflags = read_rflags();
2900         vmxctx->host_tf = rflags & PSL_T;
2901         write_rflags(rflags & ~PSL_T);
2902
2903         /* Save host debug registers. */
2904         vmxctx->host_dr0 = rdr0();
2905         vmxctx->host_dr1 = rdr1();
2906         vmxctx->host_dr2 = rdr2();
2907         vmxctx->host_dr3 = rdr3();
2908         vmxctx->host_dr6 = rdr6();
2909
2910         /* Restore guest debug registers. */
2911         load_dr0(vmxctx->guest_dr0);
2912         load_dr1(vmxctx->guest_dr1);
2913         load_dr2(vmxctx->guest_dr2);
2914         load_dr3(vmxctx->guest_dr3);
2915         load_dr6(vmxctx->guest_dr6);
2916 }
2917
2918 static __inline void
2919 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2920 {
2921
2922         /* Save guest debug registers. */
2923         vmxctx->guest_dr0 = rdr0();
2924         vmxctx->guest_dr1 = rdr1();
2925         vmxctx->guest_dr2 = rdr2();
2926         vmxctx->guest_dr3 = rdr3();
2927         vmxctx->guest_dr6 = rdr6();
2928
2929         /*
2930          * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2931          * PSL_T last.
2932          */
2933         load_dr0(vmxctx->host_dr0);
2934         load_dr1(vmxctx->host_dr1);
2935         load_dr2(vmxctx->host_dr2);
2936         load_dr3(vmxctx->host_dr3);
2937         load_dr6(vmxctx->host_dr6);
2938         wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2939         load_dr7(vmxctx->host_dr7);
2940         write_rflags(read_rflags() | vmxctx->host_tf);
2941 }
2942
2943 static int
2944 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2945     struct vm_eventinfo *evinfo)
2946 {
2947         int rc, handled, launched;
2948         struct vmx *vmx;
2949         struct vm *vm;
2950         struct vmxctx *vmxctx;
2951         struct vmcs *vmcs;
2952         struct vm_exit *vmexit;
2953         struct vlapic *vlapic;
2954         uint32_t exit_reason;
2955         struct region_descriptor gdtr, idtr;
2956         uint16_t ldt_sel;
2957
2958         vmx = arg;
2959         vm = vmx->vm;
2960         vmcs = &vmx->vmcs[vcpu];
2961         vmxctx = &vmx->ctx[vcpu];
2962         vlapic = vm_lapic(vm, vcpu);
2963         vmexit = vm_exitinfo(vm, vcpu);
2964         launched = 0;
2965
2966         KASSERT(vmxctx->pmap == pmap,
2967             ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2968
2969         vmx_msr_guest_enter(vmx, vcpu);
2970
2971         VMPTRLD(vmcs);
2972
2973         /*
2974          * XXX
2975          * We do this every time because we may setup the virtual machine
2976          * from a different process than the one that actually runs it.
2977          *
2978          * If the life of a virtual machine was spent entirely in the context
2979          * of a single process we could do this once in vmx_vminit().
2980          */
2981         vmcs_write(VMCS_HOST_CR3, rcr3());
2982
2983         vmcs_write(VMCS_GUEST_RIP, rip);
2984         vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2985         do {
2986                 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2987                     "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
2988
2989                 handled = UNHANDLED;
2990                 /*
2991                  * Interrupts are disabled from this point on until the
2992                  * guest starts executing. This is done for the following
2993                  * reasons:
2994                  *
2995                  * If an AST is asserted on this thread after the check below,
2996                  * then the IPI_AST notification will not be lost, because it
2997                  * will cause a VM exit due to external interrupt as soon as
2998                  * the guest state is loaded.
2999                  *
3000                  * A posted interrupt after 'vmx_inject_interrupts()' will
3001                  * not be "lost" because it will be held pending in the host
3002                  * APIC because interrupts are disabled. The pending interrupt
3003                  * will be recognized as soon as the guest state is loaded.
3004                  *
3005                  * The same reasoning applies to the IPI generated by
3006                  * pmap_invalidate_ept().
3007                  */
3008                 disable_intr();
3009                 vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
3010
3011                 /*
3012                  * Check for vcpu suspension after injecting events because
3013                  * vmx_inject_interrupts() can suspend the vcpu due to a
3014                  * triple fault.
3015                  */
3016                 if (vcpu_suspended(evinfo)) {
3017                         enable_intr();
3018                         vm_exit_suspended(vmx->vm, vcpu, rip);
3019                         break;
3020                 }
3021
3022                 if (vcpu_rendezvous_pending(evinfo)) {
3023                         enable_intr();
3024                         vm_exit_rendezvous(vmx->vm, vcpu, rip);
3025                         break;
3026                 }
3027
3028                 if (vcpu_reqidle(evinfo)) {
3029                         enable_intr();
3030                         vm_exit_reqidle(vmx->vm, vcpu, rip);
3031                         break;
3032                 }
3033
3034                 if (vcpu_should_yield(vm, vcpu)) {
3035                         enable_intr();
3036                         vm_exit_astpending(vmx->vm, vcpu, rip);
3037                         vmx_astpending_trace(vmx, vcpu, rip);
3038                         handled = HANDLED;
3039                         break;
3040                 }
3041
3042                 if (vcpu_debugged(vm, vcpu)) {
3043                         enable_intr();
3044                         vm_exit_debug(vmx->vm, vcpu, rip);
3045                         break;
3046                 }
3047
3048                 /*
3049                  * If TPR Shadowing is enabled, the TPR Threshold
3050                  * must be updated right before entering the guest.
3051                  */
3052                 if (tpr_shadowing && !virtual_interrupt_delivery) {
3053                         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
3054                                 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3055                         }
3056                 }
3057
3058                 /*
3059                  * VM exits restore the base address but not the
3060                  * limits of GDTR and IDTR.  The VMCS only stores the
3061                  * base address, so VM exits set the limits to 0xffff.
3062                  * Save and restore the full GDTR and IDTR to restore
3063                  * the limits.
3064                  *
3065                  * The VMCS does not save the LDTR at all, and VM
3066                  * exits clear LDTR as if a NULL selector were loaded.
3067                  * The userspace hypervisor probably doesn't use a
3068                  * LDT, but save and restore it to be safe.
3069                  */
3070                 sgdt(&gdtr);
3071                 sidt(&idtr);
3072                 ldt_sel = sldt();
3073
3074                 /*
3075                  * The TSC_AUX MSR must be saved/restored while interrupts
3076                  * are disabled so that it is not possible for the guest
3077                  * TSC_AUX MSR value to be overwritten by the resume
3078                  * portion of the IPI_SUSPEND codepath. This is why the
3079                  * transition of this MSR is handled separately from those
3080                  * handled by vmx_msr_guest_{enter,exit}(), which are ok to
3081                  * be transitioned with preemption disabled but interrupts
3082                  * enabled.
3083                  *
3084                  * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be
3085                  * anywhere in this loop so long as they happen with
3086                  * interrupts disabled. This location is chosen for
3087                  * simplicity.
3088                  */
3089                 vmx_msr_guest_enter_tsc_aux(vmx, vcpu);
3090
3091                 vmx_run_trace(vmx, vcpu);
3092                 vmx_dr_enter_guest(vmxctx);
3093                 rc = vmx_enter_guest(vmxctx, vmx, launched);
3094                 vmx_dr_leave_guest(vmxctx);
3095
3096                 vmx_msr_guest_exit_tsc_aux(vmx, vcpu);
3097
3098                 bare_lgdt(&gdtr);
3099                 lidt(&idtr);
3100                 lldt(ldt_sel);
3101
3102                 /* Collect some information for VM exit processing */
3103                 vmexit->rip = rip = vmcs_guest_rip();
3104                 vmexit->inst_length = vmexit_instruction_length();
3105                 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
3106                 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
3107
3108                 /* Update 'nextrip' */
3109                 vmx->state[vcpu].nextrip = rip;
3110
3111                 if (rc == VMX_GUEST_VMEXIT) {
3112                         vmx_exit_handle_nmi(vmx, vcpu, vmexit);
3113                         enable_intr();
3114                         handled = vmx_exit_process(vmx, vcpu, vmexit);
3115                 } else {
3116                         enable_intr();
3117                         vmx_exit_inst_error(vmxctx, rc, vmexit);
3118                 }
3119                 launched = 1;
3120                 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
3121                 rip = vmexit->rip;
3122         } while (handled);
3123
3124         /*
3125          * If a VM exit has been handled then the exitcode must be BOGUS
3126          * If a VM exit is not handled then the exitcode must not be BOGUS
3127          */
3128         if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
3129             (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
3130                 panic("Mismatch between handled (%d) and exitcode (%d)",
3131                       handled, vmexit->exitcode);
3132         }
3133
3134         if (!handled)
3135                 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
3136
3137         VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
3138             vmexit->exitcode);
3139
3140         VMCLEAR(vmcs);
3141         vmx_msr_guest_exit(vmx, vcpu);
3142
3143         return (0);
3144 }
3145
3146 static void
3147 vmx_vmcleanup(void *arg)
3148 {
3149         int i;
3150         struct vmx *vmx = arg;
3151         uint16_t maxcpus;
3152
3153         if (apic_access_virtualization(vmx, 0))
3154                 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3155
3156         maxcpus = vm_get_maxcpus(vmx->vm);
3157         for (i = 0; i < maxcpus; i++)
3158                 vpid_free(vmx->state[i].vpid);
3159
3160         free(vmx, M_VMX);
3161
3162         return;
3163 }
3164
3165 static register_t *
3166 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3167 {
3168
3169         switch (reg) {
3170         case VM_REG_GUEST_RAX:
3171                 return (&vmxctx->guest_rax);
3172         case VM_REG_GUEST_RBX:
3173                 return (&vmxctx->guest_rbx);
3174         case VM_REG_GUEST_RCX:
3175                 return (&vmxctx->guest_rcx);
3176         case VM_REG_GUEST_RDX:
3177                 return (&vmxctx->guest_rdx);
3178         case VM_REG_GUEST_RSI:
3179                 return (&vmxctx->guest_rsi);
3180         case VM_REG_GUEST_RDI:
3181                 return (&vmxctx->guest_rdi);
3182         case VM_REG_GUEST_RBP:
3183                 return (&vmxctx->guest_rbp);
3184         case VM_REG_GUEST_R8:
3185                 return (&vmxctx->guest_r8);
3186         case VM_REG_GUEST_R9:
3187                 return (&vmxctx->guest_r9);
3188         case VM_REG_GUEST_R10:
3189                 return (&vmxctx->guest_r10);
3190         case VM_REG_GUEST_R11:
3191                 return (&vmxctx->guest_r11);
3192         case VM_REG_GUEST_R12:
3193                 return (&vmxctx->guest_r12);
3194         case VM_REG_GUEST_R13:
3195                 return (&vmxctx->guest_r13);
3196         case VM_REG_GUEST_R14:
3197                 return (&vmxctx->guest_r14);
3198         case VM_REG_GUEST_R15:
3199                 return (&vmxctx->guest_r15);
3200         case VM_REG_GUEST_CR2:
3201                 return (&vmxctx->guest_cr2);
3202         case VM_REG_GUEST_DR0:
3203                 return (&vmxctx->guest_dr0);
3204         case VM_REG_GUEST_DR1:
3205                 return (&vmxctx->guest_dr1);
3206         case VM_REG_GUEST_DR2:
3207                 return (&vmxctx->guest_dr2);
3208         case VM_REG_GUEST_DR3:
3209                 return (&vmxctx->guest_dr3);
3210         case VM_REG_GUEST_DR6:
3211                 return (&vmxctx->guest_dr6);
3212         default:
3213                 break;
3214         }
3215         return (NULL);
3216 }
3217
3218 static int
3219 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
3220 {
3221         register_t *regp;
3222
3223         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3224                 *retval = *regp;
3225                 return (0);
3226         } else
3227                 return (EINVAL);
3228 }
3229
3230 static int
3231 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
3232 {
3233         register_t *regp;
3234
3235         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3236                 *regp = val;
3237                 return (0);
3238         } else
3239                 return (EINVAL);
3240 }
3241
3242 static int
3243 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
3244 {
3245         uint64_t gi;
3246         int error;
3247
3248         error = vmcs_getreg(&vmx->vmcs[vcpu], running,
3249             VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3250         *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3251         return (error);
3252 }
3253
3254 static int
3255 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
3256 {
3257         struct vmcs *vmcs;
3258         uint64_t gi;
3259         int error, ident;
3260
3261         /*
3262          * Forcing the vcpu into an interrupt shadow is not supported.
3263          */
3264         if (val) {
3265                 error = EINVAL;
3266                 goto done;
3267         }
3268
3269         vmcs = &vmx->vmcs[vcpu];
3270         ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3271         error = vmcs_getreg(vmcs, running, ident, &gi);
3272         if (error == 0) {
3273                 gi &= ~HWINTR_BLOCKING;
3274                 error = vmcs_setreg(vmcs, running, ident, gi);
3275         }
3276 done:
3277         VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
3278             error ? "failed" : "succeeded");
3279         return (error);
3280 }
3281
3282 static int
3283 vmx_shadow_reg(int reg)
3284 {
3285         int shreg;
3286
3287         shreg = -1;
3288
3289         switch (reg) {
3290         case VM_REG_GUEST_CR0:
3291                 shreg = VMCS_CR0_SHADOW;
3292                 break;
3293         case VM_REG_GUEST_CR4:
3294                 shreg = VMCS_CR4_SHADOW;
3295                 break;
3296         default:
3297                 break;
3298         }
3299
3300         return (shreg);
3301 }
3302
3303 static int
3304 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3305 {
3306         int running, hostcpu;
3307         struct vmx *vmx = arg;
3308
3309         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3310         if (running && hostcpu != curcpu)
3311                 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
3312
3313         if (reg == VM_REG_GUEST_INTR_SHADOW)
3314                 return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
3315
3316         if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
3317                 return (0);
3318
3319         return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
3320 }
3321
3322 static int
3323 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3324 {
3325         int error, hostcpu, running, shadow;
3326         uint64_t ctls;
3327         pmap_t pmap;
3328         struct vmx *vmx = arg;
3329
3330         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3331         if (running && hostcpu != curcpu)
3332                 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3333
3334         if (reg == VM_REG_GUEST_INTR_SHADOW)
3335                 return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
3336
3337         if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
3338                 return (0);
3339
3340         /* Do not permit user write access to VMCS fields by offset. */
3341         if (reg < 0)
3342                 return (EINVAL);
3343
3344         error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
3345
3346         if (error == 0) {
3347                 /*
3348                  * If the "load EFER" VM-entry control is 1 then the
3349                  * value of EFER.LMA must be identical to "IA-32e mode guest"
3350                  * bit in the VM-entry control.
3351                  */
3352                 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3353                     (reg == VM_REG_GUEST_EFER)) {
3354                         vmcs_getreg(&vmx->vmcs[vcpu], running,
3355                                     VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3356                         if (val & EFER_LMA)
3357                                 ctls |= VM_ENTRY_GUEST_LMA;
3358                         else
3359                                 ctls &= ~VM_ENTRY_GUEST_LMA;
3360                         vmcs_setreg(&vmx->vmcs[vcpu], running,
3361                                     VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3362                 }
3363
3364                 shadow = vmx_shadow_reg(reg);
3365                 if (shadow > 0) {
3366                         /*
3367                          * Store the unmodified value in the shadow
3368                          */
3369                         error = vmcs_setreg(&vmx->vmcs[vcpu], running,
3370                                     VMCS_IDENT(shadow), val);
3371                 }
3372
3373                 if (reg == VM_REG_GUEST_CR3) {
3374                         /*
3375                          * Invalidate the guest vcpu's TLB mappings to emulate
3376                          * the behavior of updating %cr3.
3377                          *
3378                          * XXX the processor retains global mappings when %cr3
3379                          * is updated but vmx_invvpid() does not.
3380                          */
3381                         pmap = vmx->ctx[vcpu].pmap;
3382                         vmx_invvpid(vmx, vcpu, pmap, running);
3383                 }
3384         }
3385
3386         return (error);
3387 }
3388
3389 static int
3390 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3391 {
3392         int hostcpu, running;
3393         struct vmx *vmx = arg;
3394
3395         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3396         if (running && hostcpu != curcpu)
3397                 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3398
3399         return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
3400 }
3401
3402 static int
3403 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3404 {
3405         int hostcpu, running;
3406         struct vmx *vmx = arg;
3407
3408         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3409         if (running && hostcpu != curcpu)
3410                 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3411
3412         return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
3413 }
3414
3415 static int
3416 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3417 {
3418         struct vmx *vmx = arg;
3419         int vcap;
3420         int ret;
3421
3422         ret = ENOENT;
3423
3424         vcap = vmx->cap[vcpu].set;
3425
3426         switch (type) {
3427         case VM_CAP_HALT_EXIT:
3428                 if (cap_halt_exit)
3429                         ret = 0;
3430                 break;
3431         case VM_CAP_PAUSE_EXIT:
3432                 if (cap_pause_exit)
3433                         ret = 0;
3434                 break;
3435         case VM_CAP_MTRAP_EXIT:
3436                 if (cap_monitor_trap)
3437                         ret = 0;
3438                 break;
3439         case VM_CAP_RDPID:
3440                 if (cap_rdpid)
3441                         ret = 0;
3442                 break;
3443         case VM_CAP_RDTSCP:
3444                 if (cap_rdtscp)
3445                         ret = 0;
3446                 break;
3447         case VM_CAP_UNRESTRICTED_GUEST:
3448                 if (cap_unrestricted_guest)
3449                         ret = 0;
3450                 break;
3451         case VM_CAP_ENABLE_INVPCID:
3452                 if (cap_invpcid)
3453                         ret = 0;
3454                 break;
3455         case VM_CAP_BPT_EXIT:
3456                 ret = 0;
3457                 break;
3458         default:
3459                 break;
3460         }
3461
3462         if (ret == 0)
3463                 *retval = (vcap & (1 << type)) ? 1 : 0;
3464
3465         return (ret);
3466 }
3467
3468 static int
3469 vmx_setcap(void *arg, int vcpu, int type, int val)
3470 {
3471         struct vmx *vmx = arg;
3472         struct vmcs *vmcs = &vmx->vmcs[vcpu];
3473         uint32_t baseval;
3474         uint32_t *pptr;
3475         int error;
3476         int flag;
3477         int reg;
3478         int retval;
3479
3480         retval = ENOENT;
3481         pptr = NULL;
3482
3483         switch (type) {
3484         case VM_CAP_HALT_EXIT:
3485                 if (cap_halt_exit) {
3486                         retval = 0;
3487                         pptr = &vmx->cap[vcpu].proc_ctls;
3488                         baseval = *pptr;
3489                         flag = PROCBASED_HLT_EXITING;
3490                         reg = VMCS_PRI_PROC_BASED_CTLS;
3491                 }
3492                 break;
3493         case VM_CAP_MTRAP_EXIT:
3494                 if (cap_monitor_trap) {
3495                         retval = 0;
3496                         pptr = &vmx->cap[vcpu].proc_ctls;
3497                         baseval = *pptr;
3498                         flag = PROCBASED_MTF;
3499                         reg = VMCS_PRI_PROC_BASED_CTLS;
3500                 }
3501                 break;
3502         case VM_CAP_PAUSE_EXIT:
3503                 if (cap_pause_exit) {
3504                         retval = 0;
3505                         pptr = &vmx->cap[vcpu].proc_ctls;
3506                         baseval = *pptr;
3507                         flag = PROCBASED_PAUSE_EXITING;
3508                         reg = VMCS_PRI_PROC_BASED_CTLS;
3509                 }
3510                 break;
3511         case VM_CAP_RDPID:
3512         case VM_CAP_RDTSCP:
3513                 if (cap_rdpid || cap_rdtscp)
3514                         /*
3515                          * Choose not to support enabling/disabling
3516                          * RDPID/RDTSCP via libvmmapi since, as per the
3517                          * discussion in vmx_init(), RDPID/RDTSCP are
3518                          * either always enabled or always disabled.
3519                          */
3520                         error = EOPNOTSUPP;
3521                 break;
3522         case VM_CAP_UNRESTRICTED_GUEST:
3523                 if (cap_unrestricted_guest) {
3524                         retval = 0;
3525                         pptr = &vmx->cap[vcpu].proc_ctls2;
3526                         baseval = *pptr;
3527                         flag = PROCBASED2_UNRESTRICTED_GUEST;
3528                         reg = VMCS_SEC_PROC_BASED_CTLS;
3529                 }
3530                 break;
3531         case VM_CAP_ENABLE_INVPCID:
3532                 if (cap_invpcid) {
3533                         retval = 0;
3534                         pptr = &vmx->cap[vcpu].proc_ctls2;
3535                         baseval = *pptr;
3536                         flag = PROCBASED2_ENABLE_INVPCID;
3537                         reg = VMCS_SEC_PROC_BASED_CTLS;
3538                 }
3539                 break;
3540         case VM_CAP_BPT_EXIT:
3541                 retval = 0;
3542
3543                 /* Don't change the bitmap if we are tracing all exceptions. */
3544                 if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3545                         pptr = &vmx->cap[vcpu].exc_bitmap;
3546                         baseval = *pptr;
3547                         flag = (1 << IDT_BP);
3548                         reg = VMCS_EXCEPTION_BITMAP;
3549                 }
3550                 break;
3551         default:
3552                 break;
3553         }
3554
3555         if (retval)
3556                 return (retval);
3557
3558         if (pptr != NULL) {
3559                 if (val) {
3560                         baseval |= flag;
3561                 } else {
3562                         baseval &= ~flag;
3563                 }
3564                 VMPTRLD(vmcs);
3565                 error = vmwrite(reg, baseval);
3566                 VMCLEAR(vmcs);
3567
3568                 if (error)
3569                         return (error);
3570
3571                 /*
3572                  * Update optional stored flags, and record
3573                  * setting
3574                  */
3575                 *pptr = baseval;
3576         }
3577
3578         if (val) {
3579                 vmx->cap[vcpu].set |= (1 << type);
3580         } else {
3581                 vmx->cap[vcpu].set &= ~(1 << type);
3582         }
3583
3584         return (0);
3585 }
3586
3587 struct vlapic_vtx {
3588         struct vlapic   vlapic;
3589         struct pir_desc *pir_desc;
3590         struct vmx      *vmx;
3591         u_int   pending_prio;
3592 };
3593
3594 #define VPR_PRIO_BIT(vpr)       (1 << ((vpr) >> 4))
3595
3596 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)   \
3597 do {                                                                    \
3598         VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",     \
3599             level ? "level" : "edge", vector);                          \
3600         VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);  \
3601         VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);  \
3602         VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);  \
3603         VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);  \
3604         VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3605 } while (0)
3606
3607 /*
3608  * vlapic->ops handlers that utilize the APICv hardware assist described in
3609  * Chapter 29 of the Intel SDM.
3610  */
3611 static int
3612 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3613 {
3614         struct vlapic_vtx *vlapic_vtx;
3615         struct pir_desc *pir_desc;
3616         uint64_t mask;
3617         int idx, notify = 0;
3618
3619         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3620         pir_desc = vlapic_vtx->pir_desc;
3621
3622         /*
3623          * Keep track of interrupt requests in the PIR descriptor. This is
3624          * because the virtual APIC page pointed to by the VMCS cannot be
3625          * modified if the vcpu is running.
3626          */
3627         idx = vector / 64;
3628         mask = 1UL << (vector % 64);
3629         atomic_set_long(&pir_desc->pir[idx], mask);
3630
3631         /*
3632          * A notification is required whenever the 'pending' bit makes a
3633          * transition from 0->1.
3634          *
3635          * Even if the 'pending' bit is already asserted, notification about
3636          * the incoming interrupt may still be necessary.  For example, if a
3637          * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3638          * the 0->1 'pending' transition with a notification, but the vCPU
3639          * would ignore the interrupt for the time being.  The same vCPU would
3640          * need to then be notified if a high-priority interrupt arrived which
3641          * satisfied the PPR.
3642          *
3643          * The priorities of interrupts injected while 'pending' is asserted
3644          * are tracked in a custom bitfield 'pending_prio'.  Should the
3645          * to-be-injected interrupt exceed the priorities already present, the
3646          * notification is sent.  The priorities recorded in 'pending_prio' are
3647          * cleared whenever the 'pending' bit makes another 0->1 transition.
3648          */
3649         if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3650                 notify = 1;
3651                 vlapic_vtx->pending_prio = 0;
3652         } else {
3653                 const u_int old_prio = vlapic_vtx->pending_prio;
3654                 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3655
3656                 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3657                         atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3658                         notify = 1;
3659                 }
3660         }
3661
3662         VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3663             level, "vmx_set_intr_ready");
3664         return (notify);
3665 }
3666
3667 static int
3668 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3669 {
3670         struct vlapic_vtx *vlapic_vtx;
3671         struct pir_desc *pir_desc;
3672         struct LAPIC *lapic;
3673         uint64_t pending, pirval;
3674         uint32_t ppr, vpr;
3675         int i;
3676
3677         /*
3678          * This function is only expected to be called from the 'HLT' exit
3679          * handler which does not care about the vector that is pending.
3680          */
3681         KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3682
3683         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3684         pir_desc = vlapic_vtx->pir_desc;
3685
3686         pending = atomic_load_acq_long(&pir_desc->pending);
3687         if (!pending) {
3688                 /*
3689                  * While a virtual interrupt may have already been
3690                  * processed the actual delivery maybe pending the
3691                  * interruptibility of the guest.  Recognize a pending
3692                  * interrupt by reevaluating virtual interrupts
3693                  * following Section 29.2.1 in the Intel SDM Volume 3.
3694                  */
3695                 struct vm_exit *vmexit;
3696                 uint8_t rvi, ppr;
3697
3698                 vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid);
3699                 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3700                     ("vmx_pending_intr: exitcode not 'HLT'"));
3701                 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3702                 lapic = vlapic->apic_page;
3703                 ppr = lapic->ppr & APIC_TPR_INT;
3704                 if (rvi > ppr) {
3705                         return (1);
3706                 }
3707
3708                 return (0);
3709         }
3710
3711         /*
3712          * If there is an interrupt pending then it will be recognized only
3713          * if its priority is greater than the processor priority.
3714          *
3715          * Special case: if the processor priority is zero then any pending
3716          * interrupt will be recognized.
3717          */
3718         lapic = vlapic->apic_page;
3719         ppr = lapic->ppr & APIC_TPR_INT;
3720         if (ppr == 0)
3721                 return (1);
3722
3723         VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3724             lapic->ppr);
3725
3726         vpr = 0;
3727         for (i = 3; i >= 0; i--) {
3728                 pirval = pir_desc->pir[i];
3729                 if (pirval != 0) {
3730                         vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3731                         break;
3732                 }
3733         }
3734
3735         /*
3736          * If the highest-priority pending interrupt falls short of the
3737          * processor priority of this vCPU, ensure that 'pending_prio' does not
3738          * have any stale bits which would preclude a higher-priority interrupt
3739          * from incurring a notification later.
3740          */
3741         if (vpr <= ppr) {
3742                 const u_int prio_bit = VPR_PRIO_BIT(vpr);
3743                 const u_int old = vlapic_vtx->pending_prio;
3744
3745                 if (old > prio_bit && (old & prio_bit) == 0) {
3746                         vlapic_vtx->pending_prio = prio_bit;
3747                 }
3748                 return (0);
3749         }
3750         return (1);
3751 }
3752
3753 static void
3754 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3755 {
3756
3757         panic("vmx_intr_accepted: not expected to be called");
3758 }
3759
3760 static void
3761 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3762 {
3763         struct vlapic_vtx *vlapic_vtx;
3764         struct vmx *vmx;
3765         struct vmcs *vmcs;
3766         uint64_t mask, val;
3767
3768         KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3769         KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3770             ("vmx_set_tmr: vcpu cannot be running"));
3771
3772         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3773         vmx = vlapic_vtx->vmx;
3774         vmcs = &vmx->vmcs[vlapic->vcpuid];
3775         mask = 1UL << (vector % 64);
3776
3777         VMPTRLD(vmcs);
3778         val = vmcs_read(VMCS_EOI_EXIT(vector));
3779         if (level)
3780                 val |= mask;
3781         else
3782                 val &= ~mask;
3783         vmcs_write(VMCS_EOI_EXIT(vector), val);
3784         VMCLEAR(vmcs);
3785 }
3786
3787 static void
3788 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3789 {
3790         struct vmx *vmx;
3791         struct vmcs *vmcs;
3792         uint32_t proc_ctls;
3793         int vcpuid;
3794
3795         vcpuid = vlapic->vcpuid;
3796         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3797         vmcs = &vmx->vmcs[vcpuid];
3798
3799         proc_ctls = vmx->cap[vcpuid].proc_ctls;
3800         proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3801         proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3802         proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3803         vmx->cap[vcpuid].proc_ctls = proc_ctls;
3804
3805         VMPTRLD(vmcs);
3806         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3807         VMCLEAR(vmcs);
3808 }
3809
3810 static void
3811 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3812 {
3813         struct vmx *vmx;
3814         struct vmcs *vmcs;
3815         uint32_t proc_ctls2;
3816         int vcpuid, error;
3817
3818         vcpuid = vlapic->vcpuid;
3819         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3820         vmcs = &vmx->vmcs[vcpuid];
3821
3822         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3823         KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3824             ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3825
3826         proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3827         proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3828         vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3829
3830         VMPTRLD(vmcs);
3831         vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3832         VMCLEAR(vmcs);
3833
3834         if (vlapic->vcpuid == 0) {
3835                 /*
3836                  * The nested page table mappings are shared by all vcpus
3837                  * so unmap the APIC access page just once.
3838                  */
3839                 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3840                 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3841                     __func__, error));
3842
3843                 /*
3844                  * The MSR bitmap is shared by all vcpus so modify it only
3845                  * once in the context of vcpu 0.
3846                  */
3847                 error = vmx_allow_x2apic_msrs(vmx);
3848                 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3849                     __func__, error));
3850         }
3851 }
3852
3853 static void
3854 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3855 {
3856
3857         ipi_cpu(hostcpu, pirvec);
3858 }
3859
3860 /*
3861  * Transfer the pending interrupts in the PIR descriptor to the IRR
3862  * in the virtual APIC page.
3863  */
3864 static void
3865 vmx_inject_pir(struct vlapic *vlapic)
3866 {
3867         struct vlapic_vtx *vlapic_vtx;
3868         struct pir_desc *pir_desc;
3869         struct LAPIC *lapic;
3870         uint64_t val, pirval;
3871         int rvi, pirbase = -1;
3872         uint16_t intr_status_old, intr_status_new;
3873
3874         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3875         pir_desc = vlapic_vtx->pir_desc;
3876         if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3877                 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3878                     "no posted interrupt pending");
3879                 return;
3880         }
3881
3882         pirval = 0;
3883         pirbase = -1;
3884         lapic = vlapic->apic_page;
3885
3886         val = atomic_readandclear_long(&pir_desc->pir[0]);
3887         if (val != 0) {
3888                 lapic->irr0 |= val;
3889                 lapic->irr1 |= val >> 32;
3890                 pirbase = 0;
3891                 pirval = val;
3892         }
3893
3894         val = atomic_readandclear_long(&pir_desc->pir[1]);
3895         if (val != 0) {
3896                 lapic->irr2 |= val;
3897                 lapic->irr3 |= val >> 32;
3898                 pirbase = 64;
3899                 pirval = val;
3900         }
3901
3902         val = atomic_readandclear_long(&pir_desc->pir[2]);
3903         if (val != 0) {
3904                 lapic->irr4 |= val;
3905                 lapic->irr5 |= val >> 32;
3906                 pirbase = 128;
3907                 pirval = val;
3908         }
3909
3910         val = atomic_readandclear_long(&pir_desc->pir[3]);
3911         if (val != 0) {
3912                 lapic->irr6 |= val;
3913                 lapic->irr7 |= val >> 32;
3914                 pirbase = 192;
3915                 pirval = val;
3916         }
3917
3918         VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3919
3920         /*
3921          * Update RVI so the processor can evaluate pending virtual
3922          * interrupts on VM-entry.
3923          *
3924          * It is possible for pirval to be 0 here, even though the
3925          * pending bit has been set. The scenario is:
3926          * CPU-Y is sending a posted interrupt to CPU-X, which
3927          * is running a guest and processing posted interrupts in h/w.
3928          * CPU-X will eventually exit and the state seen in s/w is
3929          * the pending bit set, but no PIR bits set.
3930          *
3931          *      CPU-X                      CPU-Y
3932          *   (vm running)                (host running)
3933          *   rx posted interrupt
3934          *   CLEAR pending bit
3935          *                               SET PIR bit
3936          *   READ/CLEAR PIR bits
3937          *                               SET pending bit
3938          *   (vm exit)
3939          *   pending bit set, PIR 0
3940          */
3941         if (pirval != 0) {
3942                 rvi = pirbase + flsl(pirval) - 1;
3943                 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3944                 intr_status_new = (intr_status_old & 0xFF00) | rvi;
3945                 if (intr_status_new > intr_status_old) {
3946                         vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3947                         VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3948                             "guest_intr_status changed from 0x%04x to 0x%04x",
3949                             intr_status_old, intr_status_new);
3950                 }
3951         }
3952 }
3953
3954 static struct vlapic *
3955 vmx_vlapic_init(void *arg, int vcpuid)
3956 {
3957         struct vmx *vmx;
3958         struct vlapic *vlapic;
3959         struct vlapic_vtx *vlapic_vtx;
3960
3961         vmx = arg;
3962
3963         vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3964         vlapic->vm = vmx->vm;
3965         vlapic->vcpuid = vcpuid;
3966         vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3967
3968         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3969         vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3970         vlapic_vtx->vmx = vmx;
3971
3972         if (tpr_shadowing) {
3973                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
3974         }
3975
3976         if (virtual_interrupt_delivery) {
3977                 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3978                 vlapic->ops.pending_intr = vmx_pending_intr;
3979                 vlapic->ops.intr_accepted = vmx_intr_accepted;
3980                 vlapic->ops.set_tmr = vmx_set_tmr;
3981                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
3982         }
3983
3984         if (posted_interrupts)
3985                 vlapic->ops.post_intr = vmx_post_intr;
3986
3987         vlapic_init(vlapic);
3988
3989         return (vlapic);
3990 }
3991
3992 static void
3993 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3994 {
3995
3996         vlapic_cleanup(vlapic);
3997         free(vlapic, M_VLAPIC);
3998 }
3999
4000 #ifdef BHYVE_SNAPSHOT
4001 static int
4002 vmx_snapshot_vmi(void *arg, struct vm_snapshot_meta *meta)
4003 {
4004         struct vmx *vmx;
4005         struct vmxctx *vmxctx;
4006         int i;
4007         int ret;
4008
4009         vmx = arg;
4010
4011         KASSERT(vmx != NULL, ("%s: arg was NULL", __func__));
4012
4013         for (i = 0; i < VM_MAXCPU; i++) {
4014                 SNAPSHOT_BUF_OR_LEAVE(vmx->guest_msrs[i],
4015                       sizeof(vmx->guest_msrs[i]), meta, ret, done);
4016
4017                 vmxctx = &vmx->ctx[i];
4018                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, ret, done);
4019                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, ret, done);
4020                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, ret, done);
4021                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, ret, done);
4022                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, ret, done);
4023                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, ret, done);
4024                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, ret, done);
4025                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, ret, done);
4026                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, ret, done);
4027                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, ret, done);
4028                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, ret, done);
4029                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, ret, done);
4030                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, ret, done);
4031                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, ret, done);
4032                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, ret, done);
4033                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, ret, done);
4034                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, ret, done);
4035                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, ret, done);
4036                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, ret, done);
4037                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, ret, done);
4038                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, ret, done);
4039         }
4040
4041 done:
4042         return (ret);
4043 }
4044
4045 static int
4046 vmx_snapshot_vmcx(void *arg, struct vm_snapshot_meta *meta, int vcpu)
4047 {
4048         struct vmcs *vmcs;
4049         struct vmx *vmx;
4050         int err, run, hostcpu;
4051
4052         vmx = (struct vmx *)arg;
4053         err = 0;
4054
4055         KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4056         vmcs = &vmx->vmcs[vcpu];
4057
4058         run = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4059         if (run && hostcpu != curcpu) {
4060                 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4061                 return (EINVAL);
4062         }
4063
4064         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
4065         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
4066         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
4067         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
4068         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
4069         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
4070         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
4071
4072         /* Guest segments */
4073         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
4074         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
4075
4076         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
4077         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
4078
4079         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
4080         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
4081
4082         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
4083         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
4084
4085         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
4086         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
4087
4088         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
4089         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
4090
4091         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
4092         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
4093
4094         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
4095         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
4096
4097         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
4098
4099         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
4100         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
4101
4102         /* Guest page tables */
4103         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
4104         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
4105         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
4106         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
4107
4108         /* Other guest state */
4109         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
4110         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
4111         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
4112         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
4113         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
4114         err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
4115         err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
4116
4117         return (err);
4118 }
4119
4120 static int
4121 vmx_restore_tsc(void *arg, int vcpu, uint64_t offset)
4122 {
4123         struct vmcs *vmcs;
4124         struct vmx *vmx = (struct vmx *)arg;
4125         int error, running, hostcpu;
4126
4127         KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4128         vmcs = &vmx->vmcs[vcpu];
4129
4130         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4131         if (running && hostcpu != curcpu) {
4132                 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4133                 return (EINVAL);
4134         }
4135
4136         if (!running)
4137                 VMPTRLD(vmcs);
4138
4139         error = vmx_set_tsc_offset(vmx, vcpu, offset);
4140
4141         if (!running)
4142                 VMCLEAR(vmcs);
4143         return (error);
4144 }
4145 #endif
4146
4147 struct vmm_ops vmm_ops_intel = {
4148         .init           = vmx_init,
4149         .cleanup        = vmx_cleanup,
4150         .resume         = vmx_restore,
4151         .vminit         = vmx_vminit,
4152         .vmrun          = vmx_run,
4153         .vmcleanup      = vmx_vmcleanup,
4154         .vmgetreg       = vmx_getreg,
4155         .vmsetreg       = vmx_setreg,
4156         .vmgetdesc      = vmx_getdesc,
4157         .vmsetdesc      = vmx_setdesc,
4158         .vmgetcap       = vmx_getcap,
4159         .vmsetcap       = vmx_setcap,
4160         .vmspace_alloc  = ept_vmspace_alloc,
4161         .vmspace_free   = ept_vmspace_free,
4162         .vlapic_init    = vmx_vlapic_init,
4163         .vlapic_cleanup = vmx_vlapic_cleanup,
4164 #ifdef BHYVE_SNAPSHOT
4165         .vmsnapshot     = vmx_snapshot_vmi,
4166         .vmcx_snapshot  = vmx_snapshot_vmcx,
4167         .vm_restore_tsc = vmx_restore_tsc,
4168 #endif
4169 };