]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/amd64/vmm/intel/vmx.c
vmm: Make pmap_invalidate_ept() wait synchronously for guest exits
[FreeBSD/FreeBSD.git] / sys / amd64 / vmm / intel / vmx.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  * Copyright (c) 2018 Joyent, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_bhyve_snapshot.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/smp.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/smr.h>
45 #include <sys/sysctl.h>
46
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49
50 #include <machine/psl.h>
51 #include <machine/cpufunc.h>
52 #include <machine/md_var.h>
53 #include <machine/reg.h>
54 #include <machine/segments.h>
55 #include <machine/smp.h>
56 #include <machine/specialreg.h>
57 #include <machine/vmparam.h>
58
59 #include <machine/vmm.h>
60 #include <machine/vmm_dev.h>
61 #include <machine/vmm_instruction_emul.h>
62 #include <machine/vmm_snapshot.h>
63
64 #include "vmm_lapic.h"
65 #include "vmm_host.h"
66 #include "vmm_ioport.h"
67 #include "vmm_ktr.h"
68 #include "vmm_stat.h"
69 #include "vatpic.h"
70 #include "vlapic.h"
71 #include "vlapic_priv.h"
72
73 #include "ept.h"
74 #include "vmx_cpufunc.h"
75 #include "vmx.h"
76 #include "vmx_msr.h"
77 #include "x86.h"
78 #include "vmx_controls.h"
79
80 #define PINBASED_CTLS_ONE_SETTING                                       \
81         (PINBASED_EXTINT_EXITING        |                               \
82          PINBASED_NMI_EXITING           |                               \
83          PINBASED_VIRTUAL_NMI)
84 #define PINBASED_CTLS_ZERO_SETTING      0
85
86 #define PROCBASED_CTLS_WINDOW_SETTING                                   \
87         (PROCBASED_INT_WINDOW_EXITING   |                               \
88          PROCBASED_NMI_WINDOW_EXITING)
89
90 #define PROCBASED_CTLS_ONE_SETTING                                      \
91         (PROCBASED_SECONDARY_CONTROLS   |                               \
92          PROCBASED_MWAIT_EXITING        |                               \
93          PROCBASED_MONITOR_EXITING      |                               \
94          PROCBASED_IO_EXITING           |                               \
95          PROCBASED_MSR_BITMAPS          |                               \
96          PROCBASED_CTLS_WINDOW_SETTING  |                               \
97          PROCBASED_CR8_LOAD_EXITING     |                               \
98          PROCBASED_CR8_STORE_EXITING)
99 #define PROCBASED_CTLS_ZERO_SETTING     \
100         (PROCBASED_CR3_LOAD_EXITING |   \
101         PROCBASED_CR3_STORE_EXITING |   \
102         PROCBASED_IO_BITMAPS)
103
104 #define PROCBASED_CTLS2_ONE_SETTING     PROCBASED2_ENABLE_EPT
105 #define PROCBASED_CTLS2_ZERO_SETTING    0
106
107 #define VM_EXIT_CTLS_ONE_SETTING                                        \
108         (VM_EXIT_SAVE_DEBUG_CONTROLS            |                       \
109         VM_EXIT_HOST_LMA                        |                       \
110         VM_EXIT_SAVE_EFER                       |                       \
111         VM_EXIT_LOAD_EFER                       |                       \
112         VM_EXIT_ACKNOWLEDGE_INTERRUPT)
113
114 #define VM_EXIT_CTLS_ZERO_SETTING       0
115
116 #define VM_ENTRY_CTLS_ONE_SETTING                                       \
117         (VM_ENTRY_LOAD_DEBUG_CONTROLS           |                       \
118         VM_ENTRY_LOAD_EFER)
119
120 #define VM_ENTRY_CTLS_ZERO_SETTING                                      \
121         (VM_ENTRY_INTO_SMM                      |                       \
122         VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
123
124 #define HANDLED         1
125 #define UNHANDLED       0
126
127 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
128 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
129
130 SYSCTL_DECL(_hw_vmm);
131 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
132     NULL);
133
134 int vmxon_enabled[MAXCPU];
135 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
136
137 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
138 static uint32_t exit_ctls, entry_ctls;
139
140 static uint64_t cr0_ones_mask, cr0_zeros_mask;
141 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
142              &cr0_ones_mask, 0, NULL);
143 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
144              &cr0_zeros_mask, 0, NULL);
145
146 static uint64_t cr4_ones_mask, cr4_zeros_mask;
147 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
148              &cr4_ones_mask, 0, NULL);
149 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
150              &cr4_zeros_mask, 0, NULL);
151
152 static int vmx_initialized;
153 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
154            &vmx_initialized, 0, "Intel VMX initialized");
155
156 /*
157  * Optional capabilities
158  */
159 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
160     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
161     NULL);
162
163 static int cap_halt_exit;
164 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
165     "HLT triggers a VM-exit");
166
167 static int cap_pause_exit;
168 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
169     0, "PAUSE triggers a VM-exit");
170
171 static int cap_rdpid;
172 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0,
173     "Guests are allowed to use RDPID");
174
175 static int cap_rdtscp;
176 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0,
177     "Guests are allowed to use RDTSCP");
178
179 static int cap_unrestricted_guest;
180 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
181     &cap_unrestricted_guest, 0, "Unrestricted guests");
182
183 static int cap_monitor_trap;
184 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
185     &cap_monitor_trap, 0, "Monitor trap flag");
186
187 static int cap_invpcid;
188 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
189     0, "Guests are allowed to use INVPCID");
190
191 static int tpr_shadowing;
192 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD,
193     &tpr_shadowing, 0, "TPR shadowing support");
194
195 static int virtual_interrupt_delivery;
196 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
197     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
198
199 static int posted_interrupts;
200 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
201     &posted_interrupts, 0, "APICv posted interrupt support");
202
203 static int pirvec = -1;
204 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
205     &pirvec, 0, "APICv posted interrupt vector");
206
207 static struct unrhdr *vpid_unr;
208 static u_int vpid_alloc_failed;
209 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
210             &vpid_alloc_failed, 0, NULL);
211
212 int guest_l1d_flush;
213 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD,
214     &guest_l1d_flush, 0, NULL);
215 int guest_l1d_flush_sw;
216 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD,
217     &guest_l1d_flush_sw, 0, NULL);
218
219 static struct msr_entry msr_load_list[1] __aligned(16);
220
221 /*
222  * The definitions of SDT probes for VMX.
223  */
224
225 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
226     "struct vmx *", "int", "struct vm_exit *");
227
228 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
229     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
230
231 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
232     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
233
234 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
235     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
236
237 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
238     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
239
240 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
241     "struct vmx *", "int", "struct vm_exit *");
242
243 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
244     "struct vmx *", "int", "struct vm_exit *");
245
246 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
247     "struct vmx *", "int", "struct vm_exit *");
248
249 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
250     "struct vmx *", "int", "struct vm_exit *");
251
252 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
253     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
254
255 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
256     "struct vmx *", "int", "struct vm_exit *");
257
258 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
259     "struct vmx *", "int", "struct vm_exit *");
260
261 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
262     "struct vmx *", "int", "struct vm_exit *");
263
264 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
265     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
266
267 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
268     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
269
270 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
271     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
272
273 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
274     "struct vmx *", "int", "struct vm_exit *");
275
276 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
277     "struct vmx *", "int", "struct vm_exit *");
278
279 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
280     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
281
282 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
283     "struct vmx *", "int", "struct vm_exit *");
284
285 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
286     "struct vmx *", "int", "struct vm_exit *");
287
288 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
289     "struct vmx *", "int", "struct vm_exit *");
290
291 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
292     "struct vmx *", "int", "struct vm_exit *");
293
294 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
295     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
296
297 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
298     "struct vmx *", "int", "struct vm_exit *", "int");
299
300 /*
301  * Use the last page below 4GB as the APIC access address. This address is
302  * occupied by the boot firmware so it is guaranteed that it will not conflict
303  * with a page in system memory.
304  */
305 #define APIC_ACCESS_ADDRESS     0xFFFFF000
306
307 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
308 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
309 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
310 static void vmx_inject_pir(struct vlapic *vlapic);
311 #ifdef BHYVE_SNAPSHOT
312 static int vmx_restore_tsc(void *arg, int vcpu, uint64_t now);
313 #endif
314
315 static inline bool
316 host_has_rdpid(void)
317 {
318         return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0);
319 }
320
321 static inline bool
322 host_has_rdtscp(void)
323 {
324         return ((amd_feature & AMDID_RDTSCP) != 0);
325 }
326
327 #ifdef KTR
328 static const char *
329 exit_reason_to_str(int reason)
330 {
331         static char reasonbuf[32];
332
333         switch (reason) {
334         case EXIT_REASON_EXCEPTION:
335                 return "exception";
336         case EXIT_REASON_EXT_INTR:
337                 return "extint";
338         case EXIT_REASON_TRIPLE_FAULT:
339                 return "triplefault";
340         case EXIT_REASON_INIT:
341                 return "init";
342         case EXIT_REASON_SIPI:
343                 return "sipi";
344         case EXIT_REASON_IO_SMI:
345                 return "iosmi";
346         case EXIT_REASON_SMI:
347                 return "smi";
348         case EXIT_REASON_INTR_WINDOW:
349                 return "intrwindow";
350         case EXIT_REASON_NMI_WINDOW:
351                 return "nmiwindow";
352         case EXIT_REASON_TASK_SWITCH:
353                 return "taskswitch";
354         case EXIT_REASON_CPUID:
355                 return "cpuid";
356         case EXIT_REASON_GETSEC:
357                 return "getsec";
358         case EXIT_REASON_HLT:
359                 return "hlt";
360         case EXIT_REASON_INVD:
361                 return "invd";
362         case EXIT_REASON_INVLPG:
363                 return "invlpg";
364         case EXIT_REASON_RDPMC:
365                 return "rdpmc";
366         case EXIT_REASON_RDTSC:
367                 return "rdtsc";
368         case EXIT_REASON_RSM:
369                 return "rsm";
370         case EXIT_REASON_VMCALL:
371                 return "vmcall";
372         case EXIT_REASON_VMCLEAR:
373                 return "vmclear";
374         case EXIT_REASON_VMLAUNCH:
375                 return "vmlaunch";
376         case EXIT_REASON_VMPTRLD:
377                 return "vmptrld";
378         case EXIT_REASON_VMPTRST:
379                 return "vmptrst";
380         case EXIT_REASON_VMREAD:
381                 return "vmread";
382         case EXIT_REASON_VMRESUME:
383                 return "vmresume";
384         case EXIT_REASON_VMWRITE:
385                 return "vmwrite";
386         case EXIT_REASON_VMXOFF:
387                 return "vmxoff";
388         case EXIT_REASON_VMXON:
389                 return "vmxon";
390         case EXIT_REASON_CR_ACCESS:
391                 return "craccess";
392         case EXIT_REASON_DR_ACCESS:
393                 return "draccess";
394         case EXIT_REASON_INOUT:
395                 return "inout";
396         case EXIT_REASON_RDMSR:
397                 return "rdmsr";
398         case EXIT_REASON_WRMSR:
399                 return "wrmsr";
400         case EXIT_REASON_INVAL_VMCS:
401                 return "invalvmcs";
402         case EXIT_REASON_INVAL_MSR:
403                 return "invalmsr";
404         case EXIT_REASON_MWAIT:
405                 return "mwait";
406         case EXIT_REASON_MTF:
407                 return "mtf";
408         case EXIT_REASON_MONITOR:
409                 return "monitor";
410         case EXIT_REASON_PAUSE:
411                 return "pause";
412         case EXIT_REASON_MCE_DURING_ENTRY:
413                 return "mce-during-entry";
414         case EXIT_REASON_TPR:
415                 return "tpr";
416         case EXIT_REASON_APIC_ACCESS:
417                 return "apic-access";
418         case EXIT_REASON_GDTR_IDTR:
419                 return "gdtridtr";
420         case EXIT_REASON_LDTR_TR:
421                 return "ldtrtr";
422         case EXIT_REASON_EPT_FAULT:
423                 return "eptfault";
424         case EXIT_REASON_EPT_MISCONFIG:
425                 return "eptmisconfig";
426         case EXIT_REASON_INVEPT:
427                 return "invept";
428         case EXIT_REASON_RDTSCP:
429                 return "rdtscp";
430         case EXIT_REASON_VMX_PREEMPT:
431                 return "vmxpreempt";
432         case EXIT_REASON_INVVPID:
433                 return "invvpid";
434         case EXIT_REASON_WBINVD:
435                 return "wbinvd";
436         case EXIT_REASON_XSETBV:
437                 return "xsetbv";
438         case EXIT_REASON_APIC_WRITE:
439                 return "apic-write";
440         default:
441                 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
442                 return (reasonbuf);
443         }
444 }
445 #endif  /* KTR */
446
447 static int
448 vmx_allow_x2apic_msrs(struct vmx *vmx)
449 {
450         int i, error;
451
452         error = 0;
453
454         /*
455          * Allow readonly access to the following x2APIC MSRs from the guest.
456          */
457         error += guest_msr_ro(vmx, MSR_APIC_ID);
458         error += guest_msr_ro(vmx, MSR_APIC_VERSION);
459         error += guest_msr_ro(vmx, MSR_APIC_LDR);
460         error += guest_msr_ro(vmx, MSR_APIC_SVR);
461
462         for (i = 0; i < 8; i++)
463                 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
464
465         for (i = 0; i < 8; i++)
466                 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
467
468         for (i = 0; i < 8; i++)
469                 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
470
471         error += guest_msr_ro(vmx, MSR_APIC_ESR);
472         error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
473         error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
474         error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
475         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
476         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
477         error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
478         error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
479         error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
480         error += guest_msr_ro(vmx, MSR_APIC_ICR);
481
482         /*
483          * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
484          *
485          * These registers get special treatment described in the section
486          * "Virtualizing MSR-Based APIC Accesses".
487          */
488         error += guest_msr_rw(vmx, MSR_APIC_TPR);
489         error += guest_msr_rw(vmx, MSR_APIC_EOI);
490         error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
491
492         return (error);
493 }
494
495 u_long
496 vmx_fix_cr0(u_long cr0)
497 {
498
499         return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
500 }
501
502 u_long
503 vmx_fix_cr4(u_long cr4)
504 {
505
506         return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
507 }
508
509 static void
510 vpid_free(int vpid)
511 {
512         if (vpid < 0 || vpid > 0xffff)
513                 panic("vpid_free: invalid vpid %d", vpid);
514
515         /*
516          * VPIDs [0,VM_MAXCPU] are special and are not allocated from
517          * the unit number allocator.
518          */
519
520         if (vpid > VM_MAXCPU)
521                 free_unr(vpid_unr, vpid);
522 }
523
524 static void
525 vpid_alloc(uint16_t *vpid, int num)
526 {
527         int i, x;
528
529         if (num <= 0 || num > VM_MAXCPU)
530                 panic("invalid number of vpids requested: %d", num);
531
532         /*
533          * If the "enable vpid" execution control is not enabled then the
534          * VPID is required to be 0 for all vcpus.
535          */
536         if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
537                 for (i = 0; i < num; i++)
538                         vpid[i] = 0;
539                 return;
540         }
541
542         /*
543          * Allocate a unique VPID for each vcpu from the unit number allocator.
544          */
545         for (i = 0; i < num; i++) {
546                 x = alloc_unr(vpid_unr);
547                 if (x == -1)
548                         break;
549                 else
550                         vpid[i] = x;
551         }
552
553         if (i < num) {
554                 atomic_add_int(&vpid_alloc_failed, 1);
555
556                 /*
557                  * If the unit number allocator does not have enough unique
558                  * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
559                  *
560                  * These VPIDs are not be unique across VMs but this does not
561                  * affect correctness because the combined mappings are also
562                  * tagged with the EP4TA which is unique for each VM.
563                  *
564                  * It is still sub-optimal because the invvpid will invalidate
565                  * combined mappings for a particular VPID across all EP4TAs.
566                  */
567                 while (i-- > 0)
568                         vpid_free(vpid[i]);
569
570                 for (i = 0; i < num; i++)
571                         vpid[i] = i + 1;
572         }
573 }
574
575 static void
576 vpid_init(void)
577 {
578         /*
579          * VPID 0 is required when the "enable VPID" execution control is
580          * disabled.
581          *
582          * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
583          * unit number allocator does not have sufficient unique VPIDs to
584          * satisfy the allocation.
585          *
586          * The remaining VPIDs are managed by the unit number allocator.
587          */
588         vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
589 }
590
591 static void
592 vmx_disable(void *arg __unused)
593 {
594         struct invvpid_desc invvpid_desc = { 0 };
595         struct invept_desc invept_desc = { 0 };
596
597         if (vmxon_enabled[curcpu]) {
598                 /*
599                  * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
600                  *
601                  * VMXON or VMXOFF are not required to invalidate any TLB
602                  * caching structures. This prevents potential retention of
603                  * cached information in the TLB between distinct VMX episodes.
604                  */
605                 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
606                 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
607                 vmxoff();
608         }
609         load_cr4(rcr4() & ~CR4_VMXE);
610 }
611
612 static int
613 vmx_cleanup(void)
614 {
615
616         if (pirvec >= 0)
617                 lapic_ipi_free(pirvec);
618
619         if (vpid_unr != NULL) {
620                 delete_unrhdr(vpid_unr);
621                 vpid_unr = NULL;
622         }
623
624         if (nmi_flush_l1d_sw == 1)
625                 nmi_flush_l1d_sw = 0;
626
627         smp_rendezvous(NULL, vmx_disable, NULL, NULL);
628
629         return (0);
630 }
631
632 static void
633 vmx_enable(void *arg __unused)
634 {
635         int error;
636         uint64_t feature_control;
637
638         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
639         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
640             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
641                 wrmsr(MSR_IA32_FEATURE_CONTROL,
642                     feature_control | IA32_FEATURE_CONTROL_VMX_EN |
643                     IA32_FEATURE_CONTROL_LOCK);
644         }
645
646         load_cr4(rcr4() | CR4_VMXE);
647
648         *(uint32_t *)vmxon_region[curcpu] = vmx_revision();
649         error = vmxon(vmxon_region[curcpu]);
650         if (error == 0)
651                 vmxon_enabled[curcpu] = 1;
652 }
653
654 static void
655 vmx_restore(void)
656 {
657
658         if (vmxon_enabled[curcpu])
659                 vmxon(vmxon_region[curcpu]);
660 }
661
662 static int
663 vmx_init(int ipinum)
664 {
665         int error;
666         uint64_t basic, fixed0, fixed1, feature_control;
667         uint32_t tmp, procbased2_vid_bits;
668
669         /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
670         if (!(cpu_feature2 & CPUID2_VMX)) {
671                 printf("vmx_init: processor does not support VMX operation\n");
672                 return (ENXIO);
673         }
674
675         /*
676          * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
677          * are set (bits 0 and 2 respectively).
678          */
679         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
680         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
681             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
682                 printf("vmx_init: VMX operation disabled by BIOS\n");
683                 return (ENXIO);
684         }
685
686         /*
687          * Verify capabilities MSR_VMX_BASIC:
688          * - bit 54 indicates support for INS/OUTS decoding
689          */
690         basic = rdmsr(MSR_VMX_BASIC);
691         if ((basic & (1UL << 54)) == 0) {
692                 printf("vmx_init: processor does not support desired basic "
693                     "capabilities\n");
694                 return (EINVAL);
695         }
696
697         /* Check support for primary processor-based VM-execution controls */
698         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
699                                MSR_VMX_TRUE_PROCBASED_CTLS,
700                                PROCBASED_CTLS_ONE_SETTING,
701                                PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
702         if (error) {
703                 printf("vmx_init: processor does not support desired primary "
704                        "processor-based controls\n");
705                 return (error);
706         }
707
708         /* Clear the processor-based ctl bits that are set on demand */
709         procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
710
711         /* Check support for secondary processor-based VM-execution controls */
712         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
713                                MSR_VMX_PROCBASED_CTLS2,
714                                PROCBASED_CTLS2_ONE_SETTING,
715                                PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
716         if (error) {
717                 printf("vmx_init: processor does not support desired secondary "
718                        "processor-based controls\n");
719                 return (error);
720         }
721
722         /* Check support for VPID */
723         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
724                                PROCBASED2_ENABLE_VPID, 0, &tmp);
725         if (error == 0)
726                 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
727
728         /* Check support for pin-based VM-execution controls */
729         error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
730                                MSR_VMX_TRUE_PINBASED_CTLS,
731                                PINBASED_CTLS_ONE_SETTING,
732                                PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
733         if (error) {
734                 printf("vmx_init: processor does not support desired "
735                        "pin-based controls\n");
736                 return (error);
737         }
738
739         /* Check support for VM-exit controls */
740         error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
741                                VM_EXIT_CTLS_ONE_SETTING,
742                                VM_EXIT_CTLS_ZERO_SETTING,
743                                &exit_ctls);
744         if (error) {
745                 printf("vmx_init: processor does not support desired "
746                     "exit controls\n");
747                 return (error);
748         }
749
750         /* Check support for VM-entry controls */
751         error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
752             VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
753             &entry_ctls);
754         if (error) {
755                 printf("vmx_init: processor does not support desired "
756                     "entry controls\n");
757                 return (error);
758         }
759
760         /*
761          * Check support for optional features by testing them
762          * as individual bits
763          */
764         cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
765                                         MSR_VMX_TRUE_PROCBASED_CTLS,
766                                         PROCBASED_HLT_EXITING, 0,
767                                         &tmp) == 0);
768
769         cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
770                                         MSR_VMX_PROCBASED_CTLS,
771                                         PROCBASED_MTF, 0,
772                                         &tmp) == 0);
773
774         cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
775                                          MSR_VMX_TRUE_PROCBASED_CTLS,
776                                          PROCBASED_PAUSE_EXITING, 0,
777                                          &tmp) == 0);
778
779         /*
780          * Check support for RDPID and/or RDTSCP.
781          *
782          * Support a pass-through-based implementation of these via the
783          * "enable RDTSCP" VM-execution control and the "RDTSC exiting"
784          * VM-execution control.
785          *
786          * The "enable RDTSCP" VM-execution control applies to both RDPID
787          * and RDTSCP (see SDM volume 3, section 25.3, "Changes to
788          * Instruction Behavior in VMX Non-root operation"); this is why
789          * only this VM-execution control needs to be enabled in order to
790          * enable passing through whichever of RDPID and/or RDTSCP are
791          * supported by the host.
792          *
793          * The "RDTSC exiting" VM-execution control applies to both RDTSC
794          * and RDTSCP (again, per SDM volume 3, section 25.3), and is
795          * already set up for RDTSC and RDTSCP pass-through by the current
796          * implementation of RDTSC.
797          *
798          * Although RDPID and RDTSCP are optional capabilities, since there
799          * does not currently seem to be a use case for enabling/disabling
800          * these via libvmmapi, choose not to support this and, instead,
801          * just statically always enable or always disable this support
802          * across all vCPUs on all VMs. (Note that there may be some
803          * complications to providing this functionality, e.g., the MSR
804          * bitmap is currently per-VM rather than per-vCPU while the
805          * capability API wants to be able to control capabilities on a
806          * per-vCPU basis).
807          */
808         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
809                                MSR_VMX_PROCBASED_CTLS2,
810                                PROCBASED2_ENABLE_RDTSCP, 0, &tmp);
811         cap_rdpid = error == 0 && host_has_rdpid();
812         cap_rdtscp = error == 0 && host_has_rdtscp();
813         if (cap_rdpid || cap_rdtscp)
814                 procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP;
815
816         cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
817                                         MSR_VMX_PROCBASED_CTLS2,
818                                         PROCBASED2_UNRESTRICTED_GUEST, 0,
819                                         &tmp) == 0);
820
821         cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
822             MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
823             &tmp) == 0);
824
825         /*
826          * Check support for TPR shadow.
827          */
828         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
829             MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
830             &tmp);
831         if (error == 0) {
832                 tpr_shadowing = 1;
833                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
834                     &tpr_shadowing);
835         }
836
837         if (tpr_shadowing) {
838                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
839                 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
840                 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
841         }
842
843         /*
844          * Check support for virtual interrupt delivery.
845          */
846         procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
847             PROCBASED2_VIRTUALIZE_X2APIC_MODE |
848             PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
849             PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
850
851         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
852             procbased2_vid_bits, 0, &tmp);
853         if (error == 0 && tpr_shadowing) {
854                 virtual_interrupt_delivery = 1;
855                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
856                     &virtual_interrupt_delivery);
857         }
858
859         if (virtual_interrupt_delivery) {
860                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
861                 procbased_ctls2 |= procbased2_vid_bits;
862                 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
863
864                 /*
865                  * Check for Posted Interrupts only if Virtual Interrupt
866                  * Delivery is enabled.
867                  */
868                 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
869                     MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
870                     &tmp);
871                 if (error == 0) {
872                         pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
873                             &IDTVEC(justreturn));
874                         if (pirvec < 0) {
875                                 if (bootverbose) {
876                                         printf("vmx_init: unable to allocate "
877                                             "posted interrupt vector\n");
878                                 }
879                         } else {
880                                 posted_interrupts = 1;
881                                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
882                                     &posted_interrupts);
883                         }
884                 }
885         }
886
887         if (posted_interrupts)
888                     pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
889
890         /* Initialize EPT */
891         error = ept_init(ipinum);
892         if (error) {
893                 printf("vmx_init: ept initialization failed (%d)\n", error);
894                 return (error);
895         }
896
897         guest_l1d_flush = (cpu_ia32_arch_caps &
898             IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
899         TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
900
901         /*
902          * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
903          * available.  Otherwise fall back to the software flush
904          * method which loads enough data from the kernel text to
905          * flush existing L1D content, both on VMX entry and on NMI
906          * return.
907          */
908         if (guest_l1d_flush) {
909                 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
910                         guest_l1d_flush_sw = 1;
911                         TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
912                             &guest_l1d_flush_sw);
913                 }
914                 if (guest_l1d_flush_sw) {
915                         if (nmi_flush_l1d_sw <= 1)
916                                 nmi_flush_l1d_sw = 1;
917                 } else {
918                         msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
919                         msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
920                 }
921         }
922
923         /*
924          * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
925          */
926         fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
927         fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
928         cr0_ones_mask = fixed0 & fixed1;
929         cr0_zeros_mask = ~fixed0 & ~fixed1;
930
931         /*
932          * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
933          * if unrestricted guest execution is allowed.
934          */
935         if (cap_unrestricted_guest)
936                 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
937
938         /*
939          * Do not allow the guest to set CR0_NW or CR0_CD.
940          */
941         cr0_zeros_mask |= (CR0_NW | CR0_CD);
942
943         fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
944         fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
945         cr4_ones_mask = fixed0 & fixed1;
946         cr4_zeros_mask = ~fixed0 & ~fixed1;
947
948         vpid_init();
949
950         vmx_msr_init();
951
952         /* enable VMX operation */
953         smp_rendezvous(NULL, vmx_enable, NULL, NULL);
954
955         vmx_initialized = 1;
956
957         return (0);
958 }
959
960 static void
961 vmx_trigger_hostintr(int vector)
962 {
963         uintptr_t func;
964         struct gate_descriptor *gd;
965
966         gd = &idt[vector];
967
968         KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
969             "invalid vector %d", vector));
970         KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
971             vector));
972         KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
973             "has invalid type %d", vector, gd->gd_type));
974         KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
975             "has invalid dpl %d", vector, gd->gd_dpl));
976         KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
977             "for vector %d has invalid selector %d", vector, gd->gd_selector));
978         KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
979             "IST %d", vector, gd->gd_ist));
980
981         func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
982         vmx_call_isr(func);
983 }
984
985 static int
986 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
987 {
988         int error, mask_ident, shadow_ident;
989         uint64_t mask_value;
990
991         if (which != 0 && which != 4)
992                 panic("vmx_setup_cr_shadow: unknown cr%d", which);
993
994         if (which == 0) {
995                 mask_ident = VMCS_CR0_MASK;
996                 mask_value = cr0_ones_mask | cr0_zeros_mask;
997                 shadow_ident = VMCS_CR0_SHADOW;
998         } else {
999                 mask_ident = VMCS_CR4_MASK;
1000                 mask_value = cr4_ones_mask | cr4_zeros_mask;
1001                 shadow_ident = VMCS_CR4_SHADOW;
1002         }
1003
1004         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
1005         if (error)
1006                 return (error);
1007
1008         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
1009         if (error)
1010                 return (error);
1011
1012         return (0);
1013 }
1014 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
1015 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
1016
1017 static void *
1018 vmx_vminit(struct vm *vm, pmap_t pmap)
1019 {
1020         uint16_t vpid[VM_MAXCPU];
1021         int i, error;
1022         struct vmx *vmx;
1023         struct vmcs *vmcs;
1024         uint32_t exc_bitmap;
1025         uint16_t maxcpus;
1026
1027         vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
1028         if ((uintptr_t)vmx & PAGE_MASK) {
1029                 panic("malloc of struct vmx not aligned on %d byte boundary",
1030                       PAGE_SIZE);
1031         }
1032         vmx->vm = vm;
1033
1034         vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop));
1035
1036         /*
1037          * Clean up EPTP-tagged guest physical and combined mappings
1038          *
1039          * VMX transitions are not required to invalidate any guest physical
1040          * mappings. So, it may be possible for stale guest physical mappings
1041          * to be present in the processor TLBs.
1042          *
1043          * Combined mappings for this EP4TA are also invalidated for all VPIDs.
1044          */
1045         ept_invalidate_mappings(vmx->eptp);
1046
1047         msr_bitmap_initialize(vmx->msr_bitmap);
1048
1049         /*
1050          * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
1051          * The guest FSBASE and GSBASE are saved and restored during
1052          * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
1053          * always restored from the vmcs host state area on vm-exit.
1054          *
1055          * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
1056          * how they are saved/restored so can be directly accessed by the
1057          * guest.
1058          *
1059          * MSR_EFER is saved and restored in the guest VMCS area on a
1060          * VM exit and entry respectively. It is also restored from the
1061          * host VMCS area on a VM exit.
1062          *
1063          * The TSC MSR is exposed read-only. Writes are disallowed as
1064          * that will impact the host TSC.  If the guest does a write
1065          * the "use TSC offsetting" execution control is enabled and the
1066          * difference between the host TSC and the guest TSC is written
1067          * into the TSC offset in the VMCS.
1068          *
1069          * Guest TSC_AUX support is enabled if any of guest RDPID and/or
1070          * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM
1071          * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are
1072          * supported). If guest TSC_AUX support is enabled, TSC_AUX is
1073          * exposed read-only so that the VMM can do one fewer MSR read per
1074          * exit than if this register were exposed read-write; the guest
1075          * restore value can be updated during guest writes (expected to be
1076          * rare) instead of during all exits (common).
1077          */
1078         if (guest_msr_rw(vmx, MSR_GSBASE) ||
1079             guest_msr_rw(vmx, MSR_FSBASE) ||
1080             guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
1081             guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
1082             guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
1083             guest_msr_rw(vmx, MSR_EFER) ||
1084             guest_msr_ro(vmx, MSR_TSC) ||
1085             ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX)))
1086                 panic("vmx_vminit: error setting guest msr access");
1087
1088         vpid_alloc(vpid, VM_MAXCPU);
1089
1090         if (virtual_interrupt_delivery) {
1091                 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
1092                     APIC_ACCESS_ADDRESS);
1093                 /* XXX this should really return an error to the caller */
1094                 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
1095         }
1096
1097         maxcpus = vm_get_maxcpus(vm);
1098         for (i = 0; i < maxcpus; i++) {
1099                 vmcs = &vmx->vmcs[i];
1100                 vmcs->identifier = vmx_revision();
1101                 error = vmclear(vmcs);
1102                 if (error != 0) {
1103                         panic("vmx_vminit: vmclear error %d on vcpu %d\n",
1104                               error, i);
1105                 }
1106
1107                 vmx_msr_guest_init(vmx, i);
1108
1109                 error = vmcs_init(vmcs);
1110                 KASSERT(error == 0, ("vmcs_init error %d", error));
1111
1112                 VMPTRLD(vmcs);
1113                 error = 0;
1114                 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
1115                 error += vmwrite(VMCS_EPTP, vmx->eptp);
1116                 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
1117                 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
1118                 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
1119                 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
1120                 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1121                 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
1122                 error += vmwrite(VMCS_VPID, vpid[i]);
1123
1124                 if (guest_l1d_flush && !guest_l1d_flush_sw) {
1125                         vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
1126                             (vm_offset_t)&msr_load_list[0]));
1127                         vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
1128                             nitems(msr_load_list));
1129                         vmcs_write(VMCS_EXIT_MSR_STORE, 0);
1130                         vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
1131                 }
1132
1133                 /* exception bitmap */
1134                 if (vcpu_trace_exceptions(vm, i))
1135                         exc_bitmap = 0xffffffff;
1136                 else
1137                         exc_bitmap = 1 << IDT_MC;
1138                 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
1139
1140                 vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
1141                 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1142
1143                 if (tpr_shadowing) {
1144                         error += vmwrite(VMCS_VIRTUAL_APIC,
1145                             vtophys(&vmx->apic_page[i]));
1146                 }
1147
1148                 if (virtual_interrupt_delivery) {
1149                         error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1150                         error += vmwrite(VMCS_EOI_EXIT0, 0);
1151                         error += vmwrite(VMCS_EOI_EXIT1, 0);
1152                         error += vmwrite(VMCS_EOI_EXIT2, 0);
1153                         error += vmwrite(VMCS_EOI_EXIT3, 0);
1154                 }
1155                 if (posted_interrupts) {
1156                         error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1157                         error += vmwrite(VMCS_PIR_DESC,
1158                             vtophys(&vmx->pir_desc[i]));
1159                 }
1160                 VMCLEAR(vmcs);
1161                 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
1162
1163                 vmx->cap[i].set = 0;
1164                 vmx->cap[i].set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0;
1165                 vmx->cap[i].set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0;
1166                 vmx->cap[i].proc_ctls = procbased_ctls;
1167                 vmx->cap[i].proc_ctls2 = procbased_ctls2;
1168                 vmx->cap[i].exc_bitmap = exc_bitmap;
1169
1170                 vmx->state[i].nextrip = ~0;
1171                 vmx->state[i].lastcpu = NOCPU;
1172                 vmx->state[i].vpid = vpid[i];
1173
1174                 /*
1175                  * Set up the CR0/4 shadows, and init the read shadow
1176                  * to the power-on register value from the Intel Sys Arch.
1177                  *  CR0 - 0x60000010
1178                  *  CR4 - 0
1179                  */
1180                 error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1181                 if (error != 0)
1182                         panic("vmx_setup_cr0_shadow %d", error);
1183
1184                 error = vmx_setup_cr4_shadow(vmcs, 0);
1185                 if (error != 0)
1186                         panic("vmx_setup_cr4_shadow %d", error);
1187
1188                 vmx->ctx[i].pmap = pmap;
1189         }
1190
1191         return (vmx);
1192 }
1193
1194 static int
1195 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
1196 {
1197         int handled;
1198
1199         handled = x86_emulate_cpuid(vm, vcpu, (uint64_t *)&vmxctx->guest_rax,
1200             (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
1201             (uint64_t *)&vmxctx->guest_rdx);
1202         return (handled);
1203 }
1204
1205 static __inline void
1206 vmx_run_trace(struct vmx *vmx, int vcpu)
1207 {
1208 #ifdef KTR
1209         VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1210 #endif
1211 }
1212
1213 static __inline void
1214 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
1215                int handled)
1216 {
1217 #ifdef KTR
1218         VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
1219                  handled ? "handled" : "unhandled",
1220                  exit_reason_to_str(exit_reason), rip);
1221 #endif
1222 }
1223
1224 static __inline void
1225 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1226 {
1227 #ifdef KTR
1228         VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1229 #endif
1230 }
1231
1232 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1233 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1234
1235 /*
1236  * Invalidate guest mappings identified by its vpid from the TLB.
1237  */
1238 static __inline void
1239 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1240 {
1241         struct vmxstate *vmxstate;
1242         struct invvpid_desc invvpid_desc;
1243
1244         vmxstate = &vmx->state[vcpu];
1245         if (vmxstate->vpid == 0)
1246                 return;
1247
1248         if (!running) {
1249                 /*
1250                  * Set the 'lastcpu' to an invalid host cpu.
1251                  *
1252                  * This will invalidate TLB entries tagged with the vcpu's
1253                  * vpid the next time it runs via vmx_set_pcpu_defaults().
1254                  */
1255                 vmxstate->lastcpu = NOCPU;
1256                 return;
1257         }
1258
1259         KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1260             "critical section", __func__, vcpu));
1261
1262         /*
1263          * Invalidate all mappings tagged with 'vpid'
1264          *
1265          * We do this because this vcpu was executing on a different host
1266          * cpu when it last ran. We do not track whether it invalidated
1267          * mappings associated with its 'vpid' during that run. So we must
1268          * assume that the mappings associated with 'vpid' on 'curcpu' are
1269          * stale and invalidate them.
1270          *
1271          * Note that we incur this penalty only when the scheduler chooses to
1272          * move the thread associated with this vcpu between host cpus.
1273          *
1274          * Note also that this will invalidate mappings tagged with 'vpid'
1275          * for "all" EP4TAs.
1276          */
1277         if (atomic_load_long(&pmap->pm_eptgen) == vmx->eptgen[curcpu]) {
1278                 invvpid_desc._res1 = 0;
1279                 invvpid_desc._res2 = 0;
1280                 invvpid_desc.vpid = vmxstate->vpid;
1281                 invvpid_desc.linear_addr = 0;
1282                 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1283                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1284         } else {
1285                 /*
1286                  * The invvpid can be skipped if an invept is going to
1287                  * be performed before entering the guest. The invept
1288                  * will invalidate combined mappings tagged with
1289                  * 'vmx->eptp' for all vpids.
1290                  */
1291                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1292         }
1293 }
1294
1295 static void
1296 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1297 {
1298         struct vmxstate *vmxstate;
1299
1300         vmxstate = &vmx->state[vcpu];
1301         if (vmxstate->lastcpu == curcpu)
1302                 return;
1303
1304         vmxstate->lastcpu = curcpu;
1305
1306         vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1307
1308         vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1309         vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1310         vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1311         vmx_invvpid(vmx, vcpu, pmap, 1);
1312 }
1313
1314 /*
1315  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1316  */
1317 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1318
1319 static void __inline
1320 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1321 {
1322
1323         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1324                 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1325                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1326                 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1327         }
1328 }
1329
1330 static void __inline
1331 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1332 {
1333
1334         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1335             ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1336         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1337         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1338         VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1339 }
1340
1341 static void __inline
1342 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1343 {
1344
1345         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1346                 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1347                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1348                 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1349         }
1350 }
1351
1352 static void __inline
1353 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1354 {
1355
1356         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1357             ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1358         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1359         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1360         VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1361 }
1362
1363 int
1364 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1365 {
1366         int error;
1367
1368         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1369                 vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1370                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1371                 VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1372         }
1373
1374         error = vmwrite(VMCS_TSC_OFFSET, offset);
1375 #ifdef BHYVE_SNAPSHOT
1376         if (error == 0)
1377                 error = vm_set_tsc_offset(vmx->vm, vcpu, offset);
1378 #endif
1379         return (error);
1380 }
1381
1382 #define NMI_BLOCKING    (VMCS_INTERRUPTIBILITY_NMI_BLOCKING |           \
1383                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1384 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING |           \
1385                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1386
1387 static void
1388 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1389 {
1390         uint32_t gi, info;
1391
1392         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1393         KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1394             "interruptibility-state %#x", gi));
1395
1396         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1397         KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1398             "VM-entry interruption information %#x", info));
1399
1400         /*
1401          * Inject the virtual NMI. The vector must be the NMI IDT entry
1402          * or the VMCS entry check will fail.
1403          */
1404         info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1405         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1406
1407         VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1408
1409         /* Clear the request */
1410         vm_nmi_clear(vmx->vm, vcpu);
1411 }
1412
1413 static void
1414 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1415     uint64_t guestrip)
1416 {
1417         int vector, need_nmi_exiting, extint_pending;
1418         uint64_t rflags, entryinfo;
1419         uint32_t gi, info;
1420
1421         if (vmx->state[vcpu].nextrip != guestrip) {
1422                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1423                 if (gi & HWINTR_BLOCKING) {
1424                         VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1425                             "cleared due to rip change: %#lx/%#lx",
1426                             vmx->state[vcpu].nextrip, guestrip);
1427                         gi &= ~HWINTR_BLOCKING;
1428                         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1429                 }
1430         }
1431
1432         if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1433                 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1434                     "intinfo is not valid: %#lx", __func__, entryinfo));
1435
1436                 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1437                 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1438                      "pending exception: %#lx/%#x", __func__, entryinfo, info));
1439
1440                 info = entryinfo;
1441                 vector = info & 0xff;
1442                 if (vector == IDT_BP || vector == IDT_OF) {
1443                         /*
1444                          * VT-x requires #BP and #OF to be injected as software
1445                          * exceptions.
1446                          */
1447                         info &= ~VMCS_INTR_T_MASK;
1448                         info |= VMCS_INTR_T_SWEXCEPTION;
1449                 }
1450
1451                 if (info & VMCS_INTR_DEL_ERRCODE)
1452                         vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1453
1454                 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1455         }
1456
1457         if (vm_nmi_pending(vmx->vm, vcpu)) {
1458                 /*
1459                  * If there are no conditions blocking NMI injection then
1460                  * inject it directly here otherwise enable "NMI window
1461                  * exiting" to inject it as soon as we can.
1462                  *
1463                  * We also check for STI_BLOCKING because some implementations
1464                  * don't allow NMI injection in this case. If we are running
1465                  * on a processor that doesn't have this restriction it will
1466                  * immediately exit and the NMI will be injected in the
1467                  * "NMI window exiting" handler.
1468                  */
1469                 need_nmi_exiting = 1;
1470                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1471                 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1472                         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1473                         if ((info & VMCS_INTR_VALID) == 0) {
1474                                 vmx_inject_nmi(vmx, vcpu);
1475                                 need_nmi_exiting = 0;
1476                         } else {
1477                                 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1478                                     "due to VM-entry intr info %#x", info);
1479                         }
1480                 } else {
1481                         VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1482                             "Guest Interruptibility-state %#x", gi);
1483                 }
1484
1485                 if (need_nmi_exiting)
1486                         vmx_set_nmi_window_exiting(vmx, vcpu);
1487         }
1488
1489         extint_pending = vm_extint_pending(vmx->vm, vcpu);
1490
1491         if (!extint_pending && virtual_interrupt_delivery) {
1492                 vmx_inject_pir(vlapic);
1493                 return;
1494         }
1495
1496         /*
1497          * If interrupt-window exiting is already in effect then don't bother
1498          * checking for pending interrupts. This is just an optimization and
1499          * not needed for correctness.
1500          */
1501         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1502                 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1503                     "pending int_window_exiting");
1504                 return;
1505         }
1506
1507         if (!extint_pending) {
1508                 /* Ask the local apic for a vector to inject */
1509                 if (!vlapic_pending_intr(vlapic, &vector))
1510                         return;
1511
1512                 /*
1513                  * From the Intel SDM, Volume 3, Section "Maskable
1514                  * Hardware Interrupts":
1515                  * - maskable interrupt vectors [16,255] can be delivered
1516                  *   through the local APIC.
1517                 */
1518                 KASSERT(vector >= 16 && vector <= 255,
1519                     ("invalid vector %d from local APIC", vector));
1520         } else {
1521                 /* Ask the legacy pic for a vector to inject */
1522                 vatpic_pending_intr(vmx->vm, &vector);
1523
1524                 /*
1525                  * From the Intel SDM, Volume 3, Section "Maskable
1526                  * Hardware Interrupts":
1527                  * - maskable interrupt vectors [0,255] can be delivered
1528                  *   through the INTR pin.
1529                  */
1530                 KASSERT(vector >= 0 && vector <= 255,
1531                     ("invalid vector %d from INTR", vector));
1532         }
1533
1534         /* Check RFLAGS.IF and the interruptibility state of the guest */
1535         rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1536         if ((rflags & PSL_I) == 0) {
1537                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1538                     "rflags %#lx", vector, rflags);
1539                 goto cantinject;
1540         }
1541
1542         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1543         if (gi & HWINTR_BLOCKING) {
1544                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1545                     "Guest Interruptibility-state %#x", vector, gi);
1546                 goto cantinject;
1547         }
1548
1549         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1550         if (info & VMCS_INTR_VALID) {
1551                 /*
1552                  * This is expected and could happen for multiple reasons:
1553                  * - A vectoring VM-entry was aborted due to astpending
1554                  * - A VM-exit happened during event injection.
1555                  * - An exception was injected above.
1556                  * - An NMI was injected above or after "NMI window exiting"
1557                  */
1558                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1559                     "VM-entry intr info %#x", vector, info);
1560                 goto cantinject;
1561         }
1562
1563         /* Inject the interrupt */
1564         info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1565         info |= vector;
1566         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1567
1568         if (!extint_pending) {
1569                 /* Update the Local APIC ISR */
1570                 vlapic_intr_accepted(vlapic, vector);
1571         } else {
1572                 vm_extint_clear(vmx->vm, vcpu);
1573                 vatpic_intr_accepted(vmx->vm, vector);
1574
1575                 /*
1576                  * After we accepted the current ExtINT the PIC may
1577                  * have posted another one.  If that is the case, set
1578                  * the Interrupt Window Exiting execution control so
1579                  * we can inject that one too.
1580                  *
1581                  * Also, interrupt window exiting allows us to inject any
1582                  * pending APIC vector that was preempted by the ExtINT
1583                  * as soon as possible. This applies both for the software
1584                  * emulated vlapic and the hardware assisted virtual APIC.
1585                  */
1586                 vmx_set_int_window_exiting(vmx, vcpu);
1587         }
1588
1589         VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1590
1591         return;
1592
1593 cantinject:
1594         /*
1595          * Set the Interrupt Window Exiting execution control so we can inject
1596          * the interrupt as soon as blocking condition goes away.
1597          */
1598         vmx_set_int_window_exiting(vmx, vcpu);
1599 }
1600
1601 /*
1602  * If the Virtual NMIs execution control is '1' then the logical processor
1603  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1604  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1605  * virtual-NMI blocking.
1606  *
1607  * This unblocking occurs even if the IRET causes a fault. In this case the
1608  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1609  */
1610 static void
1611 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1612 {
1613         uint32_t gi;
1614
1615         VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1616         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1617         gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1618         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1619 }
1620
1621 static void
1622 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1623 {
1624         uint32_t gi;
1625
1626         VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1627         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1628         gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1629         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1630 }
1631
1632 static void
1633 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1634 {
1635         uint32_t gi;
1636
1637         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1638         KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1639             ("NMI blocking is not in effect %#x", gi));
1640 }
1641
1642 static int
1643 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1644 {
1645         struct vmxctx *vmxctx;
1646         uint64_t xcrval;
1647         const struct xsave_limits *limits;
1648
1649         vmxctx = &vmx->ctx[vcpu];
1650         limits = vmm_get_xsave_limits();
1651
1652         /*
1653          * Note that the processor raises a GP# fault on its own if
1654          * xsetbv is executed for CPL != 0, so we do not have to
1655          * emulate that fault here.
1656          */
1657
1658         /* Only xcr0 is supported. */
1659         if (vmxctx->guest_rcx != 0) {
1660                 vm_inject_gp(vmx->vm, vcpu);
1661                 return (HANDLED);
1662         }
1663
1664         /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1665         if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1666                 vm_inject_ud(vmx->vm, vcpu);
1667                 return (HANDLED);
1668         }
1669
1670         xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1671         if ((xcrval & ~limits->xcr0_allowed) != 0) {
1672                 vm_inject_gp(vmx->vm, vcpu);
1673                 return (HANDLED);
1674         }
1675
1676         if (!(xcrval & XFEATURE_ENABLED_X87)) {
1677                 vm_inject_gp(vmx->vm, vcpu);
1678                 return (HANDLED);
1679         }
1680
1681         /* AVX (YMM_Hi128) requires SSE. */
1682         if (xcrval & XFEATURE_ENABLED_AVX &&
1683             (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1684                 vm_inject_gp(vmx->vm, vcpu);
1685                 return (HANDLED);
1686         }
1687
1688         /*
1689          * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1690          * ZMM_Hi256, and Hi16_ZMM.
1691          */
1692         if (xcrval & XFEATURE_AVX512 &&
1693             (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1694             (XFEATURE_AVX512 | XFEATURE_AVX)) {
1695                 vm_inject_gp(vmx->vm, vcpu);
1696                 return (HANDLED);
1697         }
1698
1699         /*
1700          * Intel MPX requires both bound register state flags to be
1701          * set.
1702          */
1703         if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1704             ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1705                 vm_inject_gp(vmx->vm, vcpu);
1706                 return (HANDLED);
1707         }
1708
1709         /*
1710          * This runs "inside" vmrun() with the guest's FPU state, so
1711          * modifying xcr0 directly modifies the guest's xcr0, not the
1712          * host's.
1713          */
1714         load_xcr(0, xcrval);
1715         return (HANDLED);
1716 }
1717
1718 static uint64_t
1719 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1720 {
1721         const struct vmxctx *vmxctx;
1722
1723         vmxctx = &vmx->ctx[vcpu];
1724
1725         switch (ident) {
1726         case 0:
1727                 return (vmxctx->guest_rax);
1728         case 1:
1729                 return (vmxctx->guest_rcx);
1730         case 2:
1731                 return (vmxctx->guest_rdx);
1732         case 3:
1733                 return (vmxctx->guest_rbx);
1734         case 4:
1735                 return (vmcs_read(VMCS_GUEST_RSP));
1736         case 5:
1737                 return (vmxctx->guest_rbp);
1738         case 6:
1739                 return (vmxctx->guest_rsi);
1740         case 7:
1741                 return (vmxctx->guest_rdi);
1742         case 8:
1743                 return (vmxctx->guest_r8);
1744         case 9:
1745                 return (vmxctx->guest_r9);
1746         case 10:
1747                 return (vmxctx->guest_r10);
1748         case 11:
1749                 return (vmxctx->guest_r11);
1750         case 12:
1751                 return (vmxctx->guest_r12);
1752         case 13:
1753                 return (vmxctx->guest_r13);
1754         case 14:
1755                 return (vmxctx->guest_r14);
1756         case 15:
1757                 return (vmxctx->guest_r15);
1758         default:
1759                 panic("invalid vmx register %d", ident);
1760         }
1761 }
1762
1763 static void
1764 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1765 {
1766         struct vmxctx *vmxctx;
1767
1768         vmxctx = &vmx->ctx[vcpu];
1769
1770         switch (ident) {
1771         case 0:
1772                 vmxctx->guest_rax = regval;
1773                 break;
1774         case 1:
1775                 vmxctx->guest_rcx = regval;
1776                 break;
1777         case 2:
1778                 vmxctx->guest_rdx = regval;
1779                 break;
1780         case 3:
1781                 vmxctx->guest_rbx = regval;
1782                 break;
1783         case 4:
1784                 vmcs_write(VMCS_GUEST_RSP, regval);
1785                 break;
1786         case 5:
1787                 vmxctx->guest_rbp = regval;
1788                 break;
1789         case 6:
1790                 vmxctx->guest_rsi = regval;
1791                 break;
1792         case 7:
1793                 vmxctx->guest_rdi = regval;
1794                 break;
1795         case 8:
1796                 vmxctx->guest_r8 = regval;
1797                 break;
1798         case 9:
1799                 vmxctx->guest_r9 = regval;
1800                 break;
1801         case 10:
1802                 vmxctx->guest_r10 = regval;
1803                 break;
1804         case 11:
1805                 vmxctx->guest_r11 = regval;
1806                 break;
1807         case 12:
1808                 vmxctx->guest_r12 = regval;
1809                 break;
1810         case 13:
1811                 vmxctx->guest_r13 = regval;
1812                 break;
1813         case 14:
1814                 vmxctx->guest_r14 = regval;
1815                 break;
1816         case 15:
1817                 vmxctx->guest_r15 = regval;
1818                 break;
1819         default:
1820                 panic("invalid vmx register %d", ident);
1821         }
1822 }
1823
1824 static int
1825 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1826 {
1827         uint64_t crval, regval;
1828
1829         /* We only handle mov to %cr0 at this time */
1830         if ((exitqual & 0xf0) != 0x00)
1831                 return (UNHANDLED);
1832
1833         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1834
1835         vmcs_write(VMCS_CR0_SHADOW, regval);
1836
1837         crval = regval | cr0_ones_mask;
1838         crval &= ~cr0_zeros_mask;
1839         vmcs_write(VMCS_GUEST_CR0, crval);
1840
1841         if (regval & CR0_PG) {
1842                 uint64_t efer, entry_ctls;
1843
1844                 /*
1845                  * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1846                  * the "IA-32e mode guest" bit in VM-entry control must be
1847                  * equal.
1848                  */
1849                 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1850                 if (efer & EFER_LME) {
1851                         efer |= EFER_LMA;
1852                         vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1853                         entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1854                         entry_ctls |= VM_ENTRY_GUEST_LMA;
1855                         vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1856                 }
1857         }
1858
1859         return (HANDLED);
1860 }
1861
1862 static int
1863 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1864 {
1865         uint64_t crval, regval;
1866
1867         /* We only handle mov to %cr4 at this time */
1868         if ((exitqual & 0xf0) != 0x00)
1869                 return (UNHANDLED);
1870
1871         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1872
1873         vmcs_write(VMCS_CR4_SHADOW, regval);
1874
1875         crval = regval | cr4_ones_mask;
1876         crval &= ~cr4_zeros_mask;
1877         vmcs_write(VMCS_GUEST_CR4, crval);
1878
1879         return (HANDLED);
1880 }
1881
1882 static int
1883 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1884 {
1885         struct vlapic *vlapic;
1886         uint64_t cr8;
1887         int regnum;
1888
1889         /* We only handle mov %cr8 to/from a register at this time. */
1890         if ((exitqual & 0xe0) != 0x00) {
1891                 return (UNHANDLED);
1892         }
1893
1894         vlapic = vm_lapic(vmx->vm, vcpu);
1895         regnum = (exitqual >> 8) & 0xf;
1896         if (exitqual & 0x10) {
1897                 cr8 = vlapic_get_cr8(vlapic);
1898                 vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1899         } else {
1900                 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1901                 vlapic_set_cr8(vlapic, cr8);
1902         }
1903
1904         return (HANDLED);
1905 }
1906
1907 /*
1908  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1909  */
1910 static int
1911 vmx_cpl(void)
1912 {
1913         uint32_t ssar;
1914
1915         ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1916         return ((ssar >> 5) & 0x3);
1917 }
1918
1919 static enum vm_cpu_mode
1920 vmx_cpu_mode(void)
1921 {
1922         uint32_t csar;
1923
1924         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1925                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1926                 if (csar & 0x2000)
1927                         return (CPU_MODE_64BIT);        /* CS.L = 1 */
1928                 else
1929                         return (CPU_MODE_COMPATIBILITY);
1930         } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1931                 return (CPU_MODE_PROTECTED);
1932         } else {
1933                 return (CPU_MODE_REAL);
1934         }
1935 }
1936
1937 static enum vm_paging_mode
1938 vmx_paging_mode(void)
1939 {
1940         uint64_t cr4;
1941
1942         if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1943                 return (PAGING_MODE_FLAT);
1944         cr4 = vmcs_read(VMCS_GUEST_CR4);
1945         if (!(cr4 & CR4_PAE))
1946                 return (PAGING_MODE_32);
1947         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) {
1948                 if (!(cr4 & CR4_LA57))
1949                         return (PAGING_MODE_64);
1950                 return (PAGING_MODE_64_LA57);
1951         } else
1952                 return (PAGING_MODE_PAE);
1953 }
1954
1955 static uint64_t
1956 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1957 {
1958         uint64_t val;
1959         int error;
1960         enum vm_reg_name reg;
1961
1962         reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1963         error = vmx_getreg(vmx, vcpuid, reg, &val);
1964         KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1965         return (val);
1966 }
1967
1968 static uint64_t
1969 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1970 {
1971         uint64_t val;
1972         int error;
1973
1974         if (rep) {
1975                 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1976                 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1977         } else {
1978                 val = 1;
1979         }
1980         return (val);
1981 }
1982
1983 static int
1984 inout_str_addrsize(uint32_t inst_info)
1985 {
1986         uint32_t size;
1987
1988         size = (inst_info >> 7) & 0x7;
1989         switch (size) {
1990         case 0:
1991                 return (2);     /* 16 bit */
1992         case 1:
1993                 return (4);     /* 32 bit */
1994         case 2:
1995                 return (8);     /* 64 bit */
1996         default:
1997                 panic("%s: invalid size encoding %d", __func__, size);
1998         }
1999 }
2000
2001 static void
2002 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
2003     struct vm_inout_str *vis)
2004 {
2005         int error, s;
2006
2007         if (in) {
2008                 vis->seg_name = VM_REG_GUEST_ES;
2009         } else {
2010                 s = (inst_info >> 15) & 0x7;
2011                 vis->seg_name = vm_segment_name(s);
2012         }
2013
2014         error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
2015         KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
2016 }
2017
2018 static void
2019 vmx_paging_info(struct vm_guest_paging *paging)
2020 {
2021         paging->cr3 = vmcs_guest_cr3();
2022         paging->cpl = vmx_cpl();
2023         paging->cpu_mode = vmx_cpu_mode();
2024         paging->paging_mode = vmx_paging_mode();
2025 }
2026
2027 static void
2028 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
2029 {
2030         struct vm_guest_paging *paging;
2031         uint32_t csar;
2032
2033         paging = &vmexit->u.inst_emul.paging;
2034
2035         vmexit->exitcode = VM_EXITCODE_INST_EMUL;
2036         vmexit->inst_length = 0;
2037         vmexit->u.inst_emul.gpa = gpa;
2038         vmexit->u.inst_emul.gla = gla;
2039         vmx_paging_info(paging);
2040         switch (paging->cpu_mode) {
2041         case CPU_MODE_REAL:
2042                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2043                 vmexit->u.inst_emul.cs_d = 0;
2044                 break;
2045         case CPU_MODE_PROTECTED:
2046         case CPU_MODE_COMPATIBILITY:
2047                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2048                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
2049                 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
2050                 break;
2051         default:
2052                 vmexit->u.inst_emul.cs_base = 0;
2053                 vmexit->u.inst_emul.cs_d = 0;
2054                 break;
2055         }
2056         vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
2057 }
2058
2059 static int
2060 ept_fault_type(uint64_t ept_qual)
2061 {
2062         int fault_type;
2063
2064         if (ept_qual & EPT_VIOLATION_DATA_WRITE)
2065                 fault_type = VM_PROT_WRITE;
2066         else if (ept_qual & EPT_VIOLATION_INST_FETCH)
2067                 fault_type = VM_PROT_EXECUTE;
2068         else
2069                 fault_type= VM_PROT_READ;
2070
2071         return (fault_type);
2072 }
2073
2074 static bool
2075 ept_emulation_fault(uint64_t ept_qual)
2076 {
2077         int read, write;
2078
2079         /* EPT fault on an instruction fetch doesn't make sense here */
2080         if (ept_qual & EPT_VIOLATION_INST_FETCH)
2081                 return (false);
2082
2083         /* EPT fault must be a read fault or a write fault */
2084         read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
2085         write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
2086         if ((read | write) == 0)
2087                 return (false);
2088
2089         /*
2090          * The EPT violation must have been caused by accessing a
2091          * guest-physical address that is a translation of a guest-linear
2092          * address.
2093          */
2094         if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
2095             (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
2096                 return (false);
2097         }
2098
2099         return (true);
2100 }
2101
2102 static __inline int
2103 apic_access_virtualization(struct vmx *vmx, int vcpuid)
2104 {
2105         uint32_t proc_ctls2;
2106
2107         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2108         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
2109 }
2110
2111 static __inline int
2112 x2apic_virtualization(struct vmx *vmx, int vcpuid)
2113 {
2114         uint32_t proc_ctls2;
2115
2116         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2117         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
2118 }
2119
2120 static int
2121 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
2122     uint64_t qual)
2123 {
2124         int error, handled, offset;
2125         uint32_t *apic_regs, vector;
2126         bool retu;
2127
2128         handled = HANDLED;
2129         offset = APIC_WRITE_OFFSET(qual);
2130
2131         if (!apic_access_virtualization(vmx, vcpuid)) {
2132                 /*
2133                  * In general there should not be any APIC write VM-exits
2134                  * unless APIC-access virtualization is enabled.
2135                  *
2136                  * However self-IPI virtualization can legitimately trigger
2137                  * an APIC-write VM-exit so treat it specially.
2138                  */
2139                 if (x2apic_virtualization(vmx, vcpuid) &&
2140                     offset == APIC_OFFSET_SELF_IPI) {
2141                         apic_regs = (uint32_t *)(vlapic->apic_page);
2142                         vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
2143                         vlapic_self_ipi_handler(vlapic, vector);
2144                         return (HANDLED);
2145                 } else
2146                         return (UNHANDLED);
2147         }
2148
2149         switch (offset) {
2150         case APIC_OFFSET_ID:
2151                 vlapic_id_write_handler(vlapic);
2152                 break;
2153         case APIC_OFFSET_LDR:
2154                 vlapic_ldr_write_handler(vlapic);
2155                 break;
2156         case APIC_OFFSET_DFR:
2157                 vlapic_dfr_write_handler(vlapic);
2158                 break;
2159         case APIC_OFFSET_SVR:
2160                 vlapic_svr_write_handler(vlapic);
2161                 break;
2162         case APIC_OFFSET_ESR:
2163                 vlapic_esr_write_handler(vlapic);
2164                 break;
2165         case APIC_OFFSET_ICR_LOW:
2166                 retu = false;
2167                 error = vlapic_icrlo_write_handler(vlapic, &retu);
2168                 if (error != 0 || retu)
2169                         handled = UNHANDLED;
2170                 break;
2171         case APIC_OFFSET_CMCI_LVT:
2172         case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2173                 vlapic_lvt_write_handler(vlapic, offset);
2174                 break;
2175         case APIC_OFFSET_TIMER_ICR:
2176                 vlapic_icrtmr_write_handler(vlapic);
2177                 break;
2178         case APIC_OFFSET_TIMER_DCR:
2179                 vlapic_dcr_write_handler(vlapic);
2180                 break;
2181         default:
2182                 handled = UNHANDLED;
2183                 break;
2184         }
2185         return (handled);
2186 }
2187
2188 static bool
2189 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2190 {
2191
2192         if (apic_access_virtualization(vmx, vcpuid) &&
2193             (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2194                 return (true);
2195         else
2196                 return (false);
2197 }
2198
2199 static int
2200 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2201 {
2202         uint64_t qual;
2203         int access_type, offset, allowed;
2204
2205         if (!apic_access_virtualization(vmx, vcpuid))
2206                 return (UNHANDLED);
2207
2208         qual = vmexit->u.vmx.exit_qualification;
2209         access_type = APIC_ACCESS_TYPE(qual);
2210         offset = APIC_ACCESS_OFFSET(qual);
2211
2212         allowed = 0;
2213         if (access_type == 0) {
2214                 /*
2215                  * Read data access to the following registers is expected.
2216                  */
2217                 switch (offset) {
2218                 case APIC_OFFSET_APR:
2219                 case APIC_OFFSET_PPR:
2220                 case APIC_OFFSET_RRR:
2221                 case APIC_OFFSET_CMCI_LVT:
2222                 case APIC_OFFSET_TIMER_CCR:
2223                         allowed = 1;
2224                         break;
2225                 default:
2226                         break;
2227                 }
2228         } else if (access_type == 1) {
2229                 /*
2230                  * Write data access to the following registers is expected.
2231                  */
2232                 switch (offset) {
2233                 case APIC_OFFSET_VER:
2234                 case APIC_OFFSET_APR:
2235                 case APIC_OFFSET_PPR:
2236                 case APIC_OFFSET_RRR:
2237                 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2238                 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2239                 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2240                 case APIC_OFFSET_CMCI_LVT:
2241                 case APIC_OFFSET_TIMER_CCR:
2242                         allowed = 1;
2243                         break;
2244                 default:
2245                         break;
2246                 }
2247         }
2248
2249         if (allowed) {
2250                 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2251                     VIE_INVALID_GLA);
2252         }
2253
2254         /*
2255          * Regardless of whether the APIC-access is allowed this handler
2256          * always returns UNHANDLED:
2257          * - if the access is allowed then it is handled by emulating the
2258          *   instruction that caused the VM-exit (outside the critical section)
2259          * - if the access is not allowed then it will be converted to an
2260          *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2261          */
2262         return (UNHANDLED);
2263 }
2264
2265 static enum task_switch_reason
2266 vmx_task_switch_reason(uint64_t qual)
2267 {
2268         int reason;
2269
2270         reason = (qual >> 30) & 0x3;
2271         switch (reason) {
2272         case 0:
2273                 return (TSR_CALL);
2274         case 1:
2275                 return (TSR_IRET);
2276         case 2:
2277                 return (TSR_JMP);
2278         case 3:
2279                 return (TSR_IDT_GATE);
2280         default:
2281                 panic("%s: invalid reason %d", __func__, reason);
2282         }
2283 }
2284
2285 static int
2286 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2287 {
2288         int error;
2289
2290         if (lapic_msr(num))
2291                 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2292         else
2293                 error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2294
2295         return (error);
2296 }
2297
2298 static int
2299 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2300 {
2301         struct vmxctx *vmxctx;
2302         uint64_t result;
2303         uint32_t eax, edx;
2304         int error;
2305
2306         if (lapic_msr(num))
2307                 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2308         else
2309                 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2310
2311         if (error == 0) {
2312                 eax = result;
2313                 vmxctx = &vmx->ctx[vcpuid];
2314                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2315                 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2316
2317                 edx = result >> 32;
2318                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2319                 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2320         }
2321
2322         return (error);
2323 }
2324
2325 static int
2326 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2327 {
2328         int error, errcode, errcode_valid, handled, in;
2329         struct vmxctx *vmxctx;
2330         struct vlapic *vlapic;
2331         struct vm_inout_str *vis;
2332         struct vm_task_switch *ts;
2333         uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2334         uint32_t intr_type, intr_vec, reason;
2335         uint64_t exitintinfo, qual, gpa;
2336         bool retu;
2337
2338         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2339         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2340
2341         handled = UNHANDLED;
2342         vmxctx = &vmx->ctx[vcpu];
2343
2344         qual = vmexit->u.vmx.exit_qualification;
2345         reason = vmexit->u.vmx.exit_reason;
2346         vmexit->exitcode = VM_EXITCODE_BOGUS;
2347
2348         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2349         SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2350
2351         /*
2352          * VM-entry failures during or after loading guest state.
2353          *
2354          * These VM-exits are uncommon but must be handled specially
2355          * as most VM-exit fields are not populated as usual.
2356          */
2357         if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2358                 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2359                 __asm __volatile("int $18");
2360                 return (1);
2361         }
2362
2363         /*
2364          * VM exits that can be triggered during event delivery need to
2365          * be handled specially by re-injecting the event if the IDT
2366          * vectoring information field's valid bit is set.
2367          *
2368          * See "Information for VM Exits During Event Delivery" in Intel SDM
2369          * for details.
2370          */
2371         idtvec_info = vmcs_idt_vectoring_info();
2372         if (idtvec_info & VMCS_IDT_VEC_VALID) {
2373                 idtvec_info &= ~(1 << 12); /* clear undefined bit */
2374                 exitintinfo = idtvec_info;
2375                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2376                         idtvec_err = vmcs_idt_vectoring_err();
2377                         exitintinfo |= (uint64_t)idtvec_err << 32;
2378                 }
2379                 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2380                 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2381                     __func__, error));
2382
2383                 /*
2384                  * If 'virtual NMIs' are being used and the VM-exit
2385                  * happened while injecting an NMI during the previous
2386                  * VM-entry, then clear "blocking by NMI" in the
2387                  * Guest Interruptibility-State so the NMI can be
2388                  * reinjected on the subsequent VM-entry.
2389                  *
2390                  * However, if the NMI was being delivered through a task
2391                  * gate, then the new task must start execution with NMIs
2392                  * blocked so don't clear NMI blocking in this case.
2393                  */
2394                 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2395                 if (intr_type == VMCS_INTR_T_NMI) {
2396                         if (reason != EXIT_REASON_TASK_SWITCH)
2397                                 vmx_clear_nmi_blocking(vmx, vcpu);
2398                         else
2399                                 vmx_assert_nmi_blocking(vmx, vcpu);
2400                 }
2401
2402                 /*
2403                  * Update VM-entry instruction length if the event being
2404                  * delivered was a software interrupt or software exception.
2405                  */
2406                 if (intr_type == VMCS_INTR_T_SWINTR ||
2407                     intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2408                     intr_type == VMCS_INTR_T_SWEXCEPTION) {
2409                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2410                 }
2411         }
2412
2413         switch (reason) {
2414         case EXIT_REASON_TASK_SWITCH:
2415                 ts = &vmexit->u.task_switch;
2416                 ts->tsssel = qual & 0xffff;
2417                 ts->reason = vmx_task_switch_reason(qual);
2418                 ts->ext = 0;
2419                 ts->errcode_valid = 0;
2420                 vmx_paging_info(&ts->paging);
2421                 /*
2422                  * If the task switch was due to a CALL, JMP, IRET, software
2423                  * interrupt (INT n) or software exception (INT3, INTO),
2424                  * then the saved %rip references the instruction that caused
2425                  * the task switch. The instruction length field in the VMCS
2426                  * is valid in this case.
2427                  *
2428                  * In all other cases (e.g., NMI, hardware exception) the
2429                  * saved %rip is one that would have been saved in the old TSS
2430                  * had the task switch completed normally so the instruction
2431                  * length field is not needed in this case and is explicitly
2432                  * set to 0.
2433                  */
2434                 if (ts->reason == TSR_IDT_GATE) {
2435                         KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2436                             ("invalid idtvec_info %#x for IDT task switch",
2437                             idtvec_info));
2438                         intr_type = idtvec_info & VMCS_INTR_T_MASK;
2439                         if (intr_type != VMCS_INTR_T_SWINTR &&
2440                             intr_type != VMCS_INTR_T_SWEXCEPTION &&
2441                             intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2442                                 /* Task switch triggered by external event */
2443                                 ts->ext = 1;
2444                                 vmexit->inst_length = 0;
2445                                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2446                                         ts->errcode_valid = 1;
2447                                         ts->errcode = vmcs_idt_vectoring_err();
2448                                 }
2449                         }
2450                 }
2451                 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2452                 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2453                 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2454                     "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2455                     ts->ext ? "external" : "internal",
2456                     ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2457                 break;
2458         case EXIT_REASON_CR_ACCESS:
2459                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2460                 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2461                 switch (qual & 0xf) {
2462                 case 0:
2463                         handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2464                         break;
2465                 case 4:
2466                         handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2467                         break;
2468                 case 8:
2469                         handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2470                         break;
2471                 }
2472                 break;
2473         case EXIT_REASON_RDMSR:
2474                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2475                 retu = false;
2476                 ecx = vmxctx->guest_rcx;
2477                 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2478                 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
2479                 error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2480                 if (error) {
2481                         vmexit->exitcode = VM_EXITCODE_RDMSR;
2482                         vmexit->u.msr.code = ecx;
2483                 } else if (!retu) {
2484                         handled = HANDLED;
2485                 } else {
2486                         /* Return to userspace with a valid exitcode */
2487                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2488                             ("emulate_rdmsr retu with bogus exitcode"));
2489                 }
2490                 break;
2491         case EXIT_REASON_WRMSR:
2492                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2493                 retu = false;
2494                 eax = vmxctx->guest_rax;
2495                 ecx = vmxctx->guest_rcx;
2496                 edx = vmxctx->guest_rdx;
2497                 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2498                     ecx, (uint64_t)edx << 32 | eax);
2499                 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
2500                     (uint64_t)edx << 32 | eax);
2501                 error = emulate_wrmsr(vmx, vcpu, ecx,
2502                     (uint64_t)edx << 32 | eax, &retu);
2503                 if (error) {
2504                         vmexit->exitcode = VM_EXITCODE_WRMSR;
2505                         vmexit->u.msr.code = ecx;
2506                         vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2507                 } else if (!retu) {
2508                         handled = HANDLED;
2509                 } else {
2510                         /* Return to userspace with a valid exitcode */
2511                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2512                             ("emulate_wrmsr retu with bogus exitcode"));
2513                 }
2514                 break;
2515         case EXIT_REASON_HLT:
2516                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2517                 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2518                 vmexit->exitcode = VM_EXITCODE_HLT;
2519                 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2520                 if (virtual_interrupt_delivery)
2521                         vmexit->u.hlt.intr_status =
2522                             vmcs_read(VMCS_GUEST_INTR_STATUS);
2523                 else
2524                         vmexit->u.hlt.intr_status = 0;
2525                 break;
2526         case EXIT_REASON_MTF:
2527                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2528                 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2529                 vmexit->exitcode = VM_EXITCODE_MTRAP;
2530                 vmexit->inst_length = 0;
2531                 break;
2532         case EXIT_REASON_PAUSE:
2533                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2534                 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2535                 vmexit->exitcode = VM_EXITCODE_PAUSE;
2536                 break;
2537         case EXIT_REASON_INTR_WINDOW:
2538                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2539                 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2540                 vmx_clear_int_window_exiting(vmx, vcpu);
2541                 return (1);
2542         case EXIT_REASON_EXT_INTR:
2543                 /*
2544                  * External interrupts serve only to cause VM exits and allow
2545                  * the host interrupt handler to run.
2546                  *
2547                  * If this external interrupt triggers a virtual interrupt
2548                  * to a VM, then that state will be recorded by the
2549                  * host interrupt handler in the VM's softc. We will inject
2550                  * this virtual interrupt during the subsequent VM enter.
2551                  */
2552                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2553                 SDT_PROBE4(vmm, vmx, exit, interrupt,
2554                     vmx, vcpu, vmexit, intr_info);
2555
2556                 /*
2557                  * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2558                  * This appears to be a bug in VMware Fusion?
2559                  */
2560                 if (!(intr_info & VMCS_INTR_VALID))
2561                         return (1);
2562                 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2563                     (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2564                     ("VM exit interruption info invalid: %#x", intr_info));
2565                 vmx_trigger_hostintr(intr_info & 0xff);
2566
2567                 /*
2568                  * This is special. We want to treat this as an 'handled'
2569                  * VM-exit but not increment the instruction pointer.
2570                  */
2571                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2572                 return (1);
2573         case EXIT_REASON_NMI_WINDOW:
2574                 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2575                 /* Exit to allow the pending virtual NMI to be injected */
2576                 if (vm_nmi_pending(vmx->vm, vcpu))
2577                         vmx_inject_nmi(vmx, vcpu);
2578                 vmx_clear_nmi_window_exiting(vmx, vcpu);
2579                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2580                 return (1);
2581         case EXIT_REASON_INOUT:
2582                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2583                 vmexit->exitcode = VM_EXITCODE_INOUT;
2584                 vmexit->u.inout.bytes = (qual & 0x7) + 1;
2585                 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2586                 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2587                 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2588                 vmexit->u.inout.port = (uint16_t)(qual >> 16);
2589                 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2590                 if (vmexit->u.inout.string) {
2591                         inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2592                         vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2593                         vis = &vmexit->u.inout_str;
2594                         vmx_paging_info(&vis->paging);
2595                         vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2596                         vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2597                         vis->index = inout_str_index(vmx, vcpu, in);
2598                         vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2599                         vis->addrsize = inout_str_addrsize(inst_info);
2600                         inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2601                 }
2602                 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2603                 break;
2604         case EXIT_REASON_CPUID:
2605                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2606                 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2607                 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2608                 break;
2609         case EXIT_REASON_EXCEPTION:
2610                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2611                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2612                 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2613                     ("VM exit interruption info invalid: %#x", intr_info));
2614
2615                 intr_vec = intr_info & 0xff;
2616                 intr_type = intr_info & VMCS_INTR_T_MASK;
2617
2618                 /*
2619                  * If Virtual NMIs control is 1 and the VM-exit is due to a
2620                  * fault encountered during the execution of IRET then we must
2621                  * restore the state of "virtual-NMI blocking" before resuming
2622                  * the guest.
2623                  *
2624                  * See "Resuming Guest Software after Handling an Exception".
2625                  * See "Information for VM Exits Due to Vectored Events".
2626                  */
2627                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2628                     (intr_vec != IDT_DF) &&
2629                     (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2630                         vmx_restore_nmi_blocking(vmx, vcpu);
2631
2632                 /*
2633                  * The NMI has already been handled in vmx_exit_handle_nmi().
2634                  */
2635                 if (intr_type == VMCS_INTR_T_NMI)
2636                         return (1);
2637
2638                 /*
2639                  * Call the machine check handler by hand. Also don't reflect
2640                  * the machine check back into the guest.
2641                  */
2642                 if (intr_vec == IDT_MC) {
2643                         VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2644                         __asm __volatile("int $18");
2645                         return (1);
2646                 }
2647
2648                 /*
2649                  * If the hypervisor has requested user exits for
2650                  * debug exceptions, bounce them out to userland.
2651                  */
2652                 if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
2653                     (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2654                         vmexit->exitcode = VM_EXITCODE_BPT;
2655                         vmexit->u.bpt.inst_length = vmexit->inst_length;
2656                         vmexit->inst_length = 0;
2657                         break;
2658                 }
2659
2660                 if (intr_vec == IDT_PF) {
2661                         error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2662                         KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2663                             __func__, error));
2664                 }
2665
2666                 /*
2667                  * Software exceptions exhibit trap-like behavior. This in
2668                  * turn requires populating the VM-entry instruction length
2669                  * so that the %rip in the trap frame is past the INT3/INTO
2670                  * instruction.
2671                  */
2672                 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2673                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2674
2675                 /* Reflect all other exceptions back into the guest */
2676                 errcode_valid = errcode = 0;
2677                 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2678                         errcode_valid = 1;
2679                         errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2680                 }
2681                 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2682                     "the guest", intr_vec, errcode);
2683                 SDT_PROBE5(vmm, vmx, exit, exception,
2684                     vmx, vcpu, vmexit, intr_vec, errcode);
2685                 error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2686                     errcode_valid, errcode, 0);
2687                 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2688                     __func__, error));
2689                 return (1);
2690
2691         case EXIT_REASON_EPT_FAULT:
2692                 /*
2693                  * If 'gpa' lies within the address space allocated to
2694                  * memory then this must be a nested page fault otherwise
2695                  * this must be an instruction that accesses MMIO space.
2696                  */
2697                 gpa = vmcs_gpa();
2698                 if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2699                     apic_access_fault(vmx, vcpu, gpa)) {
2700                         vmexit->exitcode = VM_EXITCODE_PAGING;
2701                         vmexit->inst_length = 0;
2702                         vmexit->u.paging.gpa = gpa;
2703                         vmexit->u.paging.fault_type = ept_fault_type(qual);
2704                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2705                         SDT_PROBE5(vmm, vmx, exit, nestedfault,
2706                             vmx, vcpu, vmexit, gpa, qual);
2707                 } else if (ept_emulation_fault(qual)) {
2708                         vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2709                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2710                         SDT_PROBE4(vmm, vmx, exit, mmiofault,
2711                             vmx, vcpu, vmexit, gpa);
2712                 }
2713                 /*
2714                  * If Virtual NMIs control is 1 and the VM-exit is due to an
2715                  * EPT fault during the execution of IRET then we must restore
2716                  * the state of "virtual-NMI blocking" before resuming.
2717                  *
2718                  * See description of "NMI unblocking due to IRET" in
2719                  * "Exit Qualification for EPT Violations".
2720                  */
2721                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2722                     (qual & EXIT_QUAL_NMIUDTI) != 0)
2723                         vmx_restore_nmi_blocking(vmx, vcpu);
2724                 break;
2725         case EXIT_REASON_VIRTUALIZED_EOI:
2726                 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2727                 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2728                 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2729                 vmexit->inst_length = 0;        /* trap-like */
2730                 break;
2731         case EXIT_REASON_APIC_ACCESS:
2732                 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2733                 handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2734                 break;
2735         case EXIT_REASON_APIC_WRITE:
2736                 /*
2737                  * APIC-write VM exit is trap-like so the %rip is already
2738                  * pointing to the next instruction.
2739                  */
2740                 vmexit->inst_length = 0;
2741                 vlapic = vm_lapic(vmx->vm, vcpu);
2742                 SDT_PROBE4(vmm, vmx, exit, apicwrite,
2743                     vmx, vcpu, vmexit, vlapic);
2744                 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2745                 break;
2746         case EXIT_REASON_XSETBV:
2747                 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2748                 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2749                 break;
2750         case EXIT_REASON_MONITOR:
2751                 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2752                 vmexit->exitcode = VM_EXITCODE_MONITOR;
2753                 break;
2754         case EXIT_REASON_MWAIT:
2755                 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2756                 vmexit->exitcode = VM_EXITCODE_MWAIT;
2757                 break;
2758         case EXIT_REASON_TPR:
2759                 vlapic = vm_lapic(vmx->vm, vcpu);
2760                 vlapic_sync_tpr(vlapic);
2761                 vmexit->inst_length = 0;
2762                 handled = HANDLED;
2763                 break;
2764         case EXIT_REASON_VMCALL:
2765         case EXIT_REASON_VMCLEAR:
2766         case EXIT_REASON_VMLAUNCH:
2767         case EXIT_REASON_VMPTRLD:
2768         case EXIT_REASON_VMPTRST:
2769         case EXIT_REASON_VMREAD:
2770         case EXIT_REASON_VMRESUME:
2771         case EXIT_REASON_VMWRITE:
2772         case EXIT_REASON_VMXOFF:
2773         case EXIT_REASON_VMXON:
2774                 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2775                 vmexit->exitcode = VM_EXITCODE_VMINSN;
2776                 break;
2777         default:
2778                 SDT_PROBE4(vmm, vmx, exit, unknown,
2779                     vmx, vcpu, vmexit, reason);
2780                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2781                 break;
2782         }
2783
2784         if (handled) {
2785                 /*
2786                  * It is possible that control is returned to userland
2787                  * even though we were able to handle the VM exit in the
2788                  * kernel.
2789                  *
2790                  * In such a case we want to make sure that the userland
2791                  * restarts guest execution at the instruction *after*
2792                  * the one we just processed. Therefore we update the
2793                  * guest rip in the VMCS and in 'vmexit'.
2794                  */
2795                 vmexit->rip += vmexit->inst_length;
2796                 vmexit->inst_length = 0;
2797                 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2798         } else {
2799                 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2800                         /*
2801                          * If this VM exit was not claimed by anybody then
2802                          * treat it as a generic VMX exit.
2803                          */
2804                         vmexit->exitcode = VM_EXITCODE_VMX;
2805                         vmexit->u.vmx.status = VM_SUCCESS;
2806                         vmexit->u.vmx.inst_type = 0;
2807                         vmexit->u.vmx.inst_error = 0;
2808                 } else {
2809                         /*
2810                          * The exitcode and collateral have been populated.
2811                          * The VM exit will be processed further in userland.
2812                          */
2813                 }
2814         }
2815
2816         SDT_PROBE4(vmm, vmx, exit, return,
2817             vmx, vcpu, vmexit, handled);
2818         return (handled);
2819 }
2820
2821 static __inline void
2822 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2823 {
2824
2825         KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2826             ("vmx_exit_inst_error: invalid inst_fail_status %d",
2827             vmxctx->inst_fail_status));
2828
2829         vmexit->inst_length = 0;
2830         vmexit->exitcode = VM_EXITCODE_VMX;
2831         vmexit->u.vmx.status = vmxctx->inst_fail_status;
2832         vmexit->u.vmx.inst_error = vmcs_instruction_error();
2833         vmexit->u.vmx.exit_reason = ~0;
2834         vmexit->u.vmx.exit_qualification = ~0;
2835
2836         switch (rc) {
2837         case VMX_VMRESUME_ERROR:
2838         case VMX_VMLAUNCH_ERROR:
2839                 vmexit->u.vmx.inst_type = rc;
2840                 break;
2841         default:
2842                 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2843         }
2844 }
2845
2846 /*
2847  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2848  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2849  * sufficient to simply vector to the NMI handler via a software interrupt.
2850  * However, this must be done before maskable interrupts are enabled
2851  * otherwise the "iret" issued by an interrupt handler will incorrectly
2852  * clear NMI blocking.
2853  */
2854 static __inline void
2855 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2856 {
2857         uint32_t intr_info;
2858
2859         KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2860
2861         if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2862                 return;
2863
2864         intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2865         KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2866             ("VM exit interruption info invalid: %#x", intr_info));
2867
2868         if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2869                 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2870                     "to NMI has invalid vector: %#x", intr_info));
2871                 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2872                 __asm __volatile("int $2");
2873         }
2874 }
2875
2876 static __inline void
2877 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2878 {
2879         register_t rflags;
2880
2881         /* Save host control debug registers. */
2882         vmxctx->host_dr7 = rdr7();
2883         vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2884
2885         /*
2886          * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2887          * exceptions in the host based on the guest DRx values.  The
2888          * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2889          */
2890         load_dr7(0);
2891         wrmsr(MSR_DEBUGCTLMSR, 0);
2892
2893         /*
2894          * Disable single stepping the kernel to avoid corrupting the
2895          * guest DR6.  A debugger might still be able to corrupt the
2896          * guest DR6 by setting a breakpoint after this point and then
2897          * single stepping.
2898          */
2899         rflags = read_rflags();
2900         vmxctx->host_tf = rflags & PSL_T;
2901         write_rflags(rflags & ~PSL_T);
2902
2903         /* Save host debug registers. */
2904         vmxctx->host_dr0 = rdr0();
2905         vmxctx->host_dr1 = rdr1();
2906         vmxctx->host_dr2 = rdr2();
2907         vmxctx->host_dr3 = rdr3();
2908         vmxctx->host_dr6 = rdr6();
2909
2910         /* Restore guest debug registers. */
2911         load_dr0(vmxctx->guest_dr0);
2912         load_dr1(vmxctx->guest_dr1);
2913         load_dr2(vmxctx->guest_dr2);
2914         load_dr3(vmxctx->guest_dr3);
2915         load_dr6(vmxctx->guest_dr6);
2916 }
2917
2918 static __inline void
2919 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2920 {
2921
2922         /* Save guest debug registers. */
2923         vmxctx->guest_dr0 = rdr0();
2924         vmxctx->guest_dr1 = rdr1();
2925         vmxctx->guest_dr2 = rdr2();
2926         vmxctx->guest_dr3 = rdr3();
2927         vmxctx->guest_dr6 = rdr6();
2928
2929         /*
2930          * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2931          * PSL_T last.
2932          */
2933         load_dr0(vmxctx->host_dr0);
2934         load_dr1(vmxctx->host_dr1);
2935         load_dr2(vmxctx->host_dr2);
2936         load_dr3(vmxctx->host_dr3);
2937         load_dr6(vmxctx->host_dr6);
2938         wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2939         load_dr7(vmxctx->host_dr7);
2940         write_rflags(read_rflags() | vmxctx->host_tf);
2941 }
2942
2943 static __inline void
2944 vmx_pmap_activate(struct vmx *vmx, pmap_t pmap)
2945 {
2946         long eptgen;
2947         int cpu;
2948
2949         cpu = curcpu;
2950
2951         CPU_SET_ATOMIC(cpu, &pmap->pm_active);
2952         smr_enter(pmap->pm_eptsmr);
2953         eptgen = atomic_load_long(&pmap->pm_eptgen);
2954         if (eptgen != vmx->eptgen[cpu]) {
2955                 vmx->eptgen[cpu] = eptgen;
2956                 invept(INVEPT_TYPE_SINGLE_CONTEXT,
2957                     (struct invept_desc){ .eptp = vmx->eptp, ._res = 0 });
2958         }
2959 }
2960
2961 static __inline void
2962 vmx_pmap_deactivate(struct vmx *vmx, pmap_t pmap)
2963 {
2964         smr_exit(pmap->pm_eptsmr);
2965         CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2966 }
2967
2968 static int
2969 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2970     struct vm_eventinfo *evinfo)
2971 {
2972         int rc, handled, launched;
2973         struct vmx *vmx;
2974         struct vm *vm;
2975         struct vmxctx *vmxctx;
2976         struct vmcs *vmcs;
2977         struct vm_exit *vmexit;
2978         struct vlapic *vlapic;
2979         uint32_t exit_reason;
2980         struct region_descriptor gdtr, idtr;
2981         uint16_t ldt_sel;
2982
2983         vmx = arg;
2984         vm = vmx->vm;
2985         vmcs = &vmx->vmcs[vcpu];
2986         vmxctx = &vmx->ctx[vcpu];
2987         vlapic = vm_lapic(vm, vcpu);
2988         vmexit = vm_exitinfo(vm, vcpu);
2989         launched = 0;
2990
2991         KASSERT(vmxctx->pmap == pmap,
2992             ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2993
2994         vmx_msr_guest_enter(vmx, vcpu);
2995
2996         VMPTRLD(vmcs);
2997
2998         /*
2999          * XXX
3000          * We do this every time because we may setup the virtual machine
3001          * from a different process than the one that actually runs it.
3002          *
3003          * If the life of a virtual machine was spent entirely in the context
3004          * of a single process we could do this once in vmx_vminit().
3005          */
3006         vmcs_write(VMCS_HOST_CR3, rcr3());
3007
3008         vmcs_write(VMCS_GUEST_RIP, rip);
3009         vmx_set_pcpu_defaults(vmx, vcpu, pmap);
3010         do {
3011                 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
3012                     "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
3013
3014                 handled = UNHANDLED;
3015                 /*
3016                  * Interrupts are disabled from this point on until the
3017                  * guest starts executing. This is done for the following
3018                  * reasons:
3019                  *
3020                  * If an AST is asserted on this thread after the check below,
3021                  * then the IPI_AST notification will not be lost, because it
3022                  * will cause a VM exit due to external interrupt as soon as
3023                  * the guest state is loaded.
3024                  *
3025                  * A posted interrupt after 'vmx_inject_interrupts()' will
3026                  * not be "lost" because it will be held pending in the host
3027                  * APIC because interrupts are disabled. The pending interrupt
3028                  * will be recognized as soon as the guest state is loaded.
3029                  *
3030                  * The same reasoning applies to the IPI generated by
3031                  * pmap_invalidate_ept().
3032                  */
3033                 disable_intr();
3034                 vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
3035
3036                 /*
3037                  * Check for vcpu suspension after injecting events because
3038                  * vmx_inject_interrupts() can suspend the vcpu due to a
3039                  * triple fault.
3040                  */
3041                 if (vcpu_suspended(evinfo)) {
3042                         enable_intr();
3043                         vm_exit_suspended(vmx->vm, vcpu, rip);
3044                         break;
3045                 }
3046
3047                 if (vcpu_rendezvous_pending(evinfo)) {
3048                         enable_intr();
3049                         vm_exit_rendezvous(vmx->vm, vcpu, rip);
3050                         break;
3051                 }
3052
3053                 if (vcpu_reqidle(evinfo)) {
3054                         enable_intr();
3055                         vm_exit_reqidle(vmx->vm, vcpu, rip);
3056                         break;
3057                 }
3058
3059                 if (vcpu_should_yield(vm, vcpu)) {
3060                         enable_intr();
3061                         vm_exit_astpending(vmx->vm, vcpu, rip);
3062                         vmx_astpending_trace(vmx, vcpu, rip);
3063                         handled = HANDLED;
3064                         break;
3065                 }
3066
3067                 if (vcpu_debugged(vm, vcpu)) {
3068                         enable_intr();
3069                         vm_exit_debug(vmx->vm, vcpu, rip);
3070                         break;
3071                 }
3072
3073                 /*
3074                  * If TPR Shadowing is enabled, the TPR Threshold
3075                  * must be updated right before entering the guest.
3076                  */
3077                 if (tpr_shadowing && !virtual_interrupt_delivery) {
3078                         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
3079                                 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3080                         }
3081                 }
3082
3083                 /*
3084                  * VM exits restore the base address but not the
3085                  * limits of GDTR and IDTR.  The VMCS only stores the
3086                  * base address, so VM exits set the limits to 0xffff.
3087                  * Save and restore the full GDTR and IDTR to restore
3088                  * the limits.
3089                  *
3090                  * The VMCS does not save the LDTR at all, and VM
3091                  * exits clear LDTR as if a NULL selector were loaded.
3092                  * The userspace hypervisor probably doesn't use a
3093                  * LDT, but save and restore it to be safe.
3094                  */
3095                 sgdt(&gdtr);
3096                 sidt(&idtr);
3097                 ldt_sel = sldt();
3098
3099                 /*
3100                  * The TSC_AUX MSR must be saved/restored while interrupts
3101                  * are disabled so that it is not possible for the guest
3102                  * TSC_AUX MSR value to be overwritten by the resume
3103                  * portion of the IPI_SUSPEND codepath. This is why the
3104                  * transition of this MSR is handled separately from those
3105                  * handled by vmx_msr_guest_{enter,exit}(), which are ok to
3106                  * be transitioned with preemption disabled but interrupts
3107                  * enabled.
3108                  *
3109                  * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be
3110                  * anywhere in this loop so long as they happen with
3111                  * interrupts disabled. This location is chosen for
3112                  * simplicity.
3113                  */
3114                 vmx_msr_guest_enter_tsc_aux(vmx, vcpu);
3115
3116                 vmx_dr_enter_guest(vmxctx);
3117
3118                 /*
3119                  * Mark the EPT as active on this host CPU and invalidate
3120                  * EPTP-tagged TLB entries if required.
3121                  */
3122                 vmx_pmap_activate(vmx, pmap);
3123
3124                 vmx_run_trace(vmx, vcpu);
3125                 rc = vmx_enter_guest(vmxctx, vmx, launched);
3126
3127                 vmx_pmap_deactivate(vmx, pmap);
3128                 vmx_dr_leave_guest(vmxctx);
3129                 vmx_msr_guest_exit_tsc_aux(vmx, vcpu);
3130
3131                 bare_lgdt(&gdtr);
3132                 lidt(&idtr);
3133                 lldt(ldt_sel);
3134
3135                 /* Collect some information for VM exit processing */
3136                 vmexit->rip = rip = vmcs_guest_rip();
3137                 vmexit->inst_length = vmexit_instruction_length();
3138                 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
3139                 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
3140
3141                 /* Update 'nextrip' */
3142                 vmx->state[vcpu].nextrip = rip;
3143
3144                 if (rc == VMX_GUEST_VMEXIT) {
3145                         vmx_exit_handle_nmi(vmx, vcpu, vmexit);
3146                         enable_intr();
3147                         handled = vmx_exit_process(vmx, vcpu, vmexit);
3148                 } else {
3149                         enable_intr();
3150                         vmx_exit_inst_error(vmxctx, rc, vmexit);
3151                 }
3152                 launched = 1;
3153                 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
3154                 rip = vmexit->rip;
3155         } while (handled);
3156
3157         /*
3158          * If a VM exit has been handled then the exitcode must be BOGUS
3159          * If a VM exit is not handled then the exitcode must not be BOGUS
3160          */
3161         if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
3162             (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
3163                 panic("Mismatch between handled (%d) and exitcode (%d)",
3164                       handled, vmexit->exitcode);
3165         }
3166
3167         if (!handled)
3168                 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
3169
3170         VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
3171             vmexit->exitcode);
3172
3173         VMCLEAR(vmcs);
3174         vmx_msr_guest_exit(vmx, vcpu);
3175
3176         return (0);
3177 }
3178
3179 static void
3180 vmx_vmcleanup(void *arg)
3181 {
3182         int i;
3183         struct vmx *vmx = arg;
3184         uint16_t maxcpus;
3185
3186         if (apic_access_virtualization(vmx, 0))
3187                 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3188
3189         maxcpus = vm_get_maxcpus(vmx->vm);
3190         for (i = 0; i < maxcpus; i++)
3191                 vpid_free(vmx->state[i].vpid);
3192
3193         free(vmx, M_VMX);
3194
3195         return;
3196 }
3197
3198 static register_t *
3199 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3200 {
3201
3202         switch (reg) {
3203         case VM_REG_GUEST_RAX:
3204                 return (&vmxctx->guest_rax);
3205         case VM_REG_GUEST_RBX:
3206                 return (&vmxctx->guest_rbx);
3207         case VM_REG_GUEST_RCX:
3208                 return (&vmxctx->guest_rcx);
3209         case VM_REG_GUEST_RDX:
3210                 return (&vmxctx->guest_rdx);
3211         case VM_REG_GUEST_RSI:
3212                 return (&vmxctx->guest_rsi);
3213         case VM_REG_GUEST_RDI:
3214                 return (&vmxctx->guest_rdi);
3215         case VM_REG_GUEST_RBP:
3216                 return (&vmxctx->guest_rbp);
3217         case VM_REG_GUEST_R8:
3218                 return (&vmxctx->guest_r8);
3219         case VM_REG_GUEST_R9:
3220                 return (&vmxctx->guest_r9);
3221         case VM_REG_GUEST_R10:
3222                 return (&vmxctx->guest_r10);
3223         case VM_REG_GUEST_R11:
3224                 return (&vmxctx->guest_r11);
3225         case VM_REG_GUEST_R12:
3226                 return (&vmxctx->guest_r12);
3227         case VM_REG_GUEST_R13:
3228                 return (&vmxctx->guest_r13);
3229         case VM_REG_GUEST_R14:
3230                 return (&vmxctx->guest_r14);
3231         case VM_REG_GUEST_R15:
3232                 return (&vmxctx->guest_r15);
3233         case VM_REG_GUEST_CR2:
3234                 return (&vmxctx->guest_cr2);
3235         case VM_REG_GUEST_DR0:
3236                 return (&vmxctx->guest_dr0);
3237         case VM_REG_GUEST_DR1:
3238                 return (&vmxctx->guest_dr1);
3239         case VM_REG_GUEST_DR2:
3240                 return (&vmxctx->guest_dr2);
3241         case VM_REG_GUEST_DR3:
3242                 return (&vmxctx->guest_dr3);
3243         case VM_REG_GUEST_DR6:
3244                 return (&vmxctx->guest_dr6);
3245         default:
3246                 break;
3247         }
3248         return (NULL);
3249 }
3250
3251 static int
3252 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
3253 {
3254         register_t *regp;
3255
3256         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3257                 *retval = *regp;
3258                 return (0);
3259         } else
3260                 return (EINVAL);
3261 }
3262
3263 static int
3264 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
3265 {
3266         register_t *regp;
3267
3268         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3269                 *regp = val;
3270                 return (0);
3271         } else
3272                 return (EINVAL);
3273 }
3274
3275 static int
3276 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
3277 {
3278         uint64_t gi;
3279         int error;
3280
3281         error = vmcs_getreg(&vmx->vmcs[vcpu], running,
3282             VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3283         *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3284         return (error);
3285 }
3286
3287 static int
3288 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
3289 {
3290         struct vmcs *vmcs;
3291         uint64_t gi;
3292         int error, ident;
3293
3294         /*
3295          * Forcing the vcpu into an interrupt shadow is not supported.
3296          */
3297         if (val) {
3298                 error = EINVAL;
3299                 goto done;
3300         }
3301
3302         vmcs = &vmx->vmcs[vcpu];
3303         ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3304         error = vmcs_getreg(vmcs, running, ident, &gi);
3305         if (error == 0) {
3306                 gi &= ~HWINTR_BLOCKING;
3307                 error = vmcs_setreg(vmcs, running, ident, gi);
3308         }
3309 done:
3310         VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
3311             error ? "failed" : "succeeded");
3312         return (error);
3313 }
3314
3315 static int
3316 vmx_shadow_reg(int reg)
3317 {
3318         int shreg;
3319
3320         shreg = -1;
3321
3322         switch (reg) {
3323         case VM_REG_GUEST_CR0:
3324                 shreg = VMCS_CR0_SHADOW;
3325                 break;
3326         case VM_REG_GUEST_CR4:
3327                 shreg = VMCS_CR4_SHADOW;
3328                 break;
3329         default:
3330                 break;
3331         }
3332
3333         return (shreg);
3334 }
3335
3336 static int
3337 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3338 {
3339         int running, hostcpu;
3340         struct vmx *vmx = arg;
3341
3342         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3343         if (running && hostcpu != curcpu)
3344                 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
3345
3346         if (reg == VM_REG_GUEST_INTR_SHADOW)
3347                 return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
3348
3349         if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
3350                 return (0);
3351
3352         return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
3353 }
3354
3355 static int
3356 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3357 {
3358         int error, hostcpu, running, shadow;
3359         uint64_t ctls;
3360         pmap_t pmap;
3361         struct vmx *vmx = arg;
3362
3363         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3364         if (running && hostcpu != curcpu)
3365                 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3366
3367         if (reg == VM_REG_GUEST_INTR_SHADOW)
3368                 return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
3369
3370         if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
3371                 return (0);
3372
3373         /* Do not permit user write access to VMCS fields by offset. */
3374         if (reg < 0)
3375                 return (EINVAL);
3376
3377         error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
3378
3379         if (error == 0) {
3380                 /*
3381                  * If the "load EFER" VM-entry control is 1 then the
3382                  * value of EFER.LMA must be identical to "IA-32e mode guest"
3383                  * bit in the VM-entry control.
3384                  */
3385                 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3386                     (reg == VM_REG_GUEST_EFER)) {
3387                         vmcs_getreg(&vmx->vmcs[vcpu], running,
3388                                     VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3389                         if (val & EFER_LMA)
3390                                 ctls |= VM_ENTRY_GUEST_LMA;
3391                         else
3392                                 ctls &= ~VM_ENTRY_GUEST_LMA;
3393                         vmcs_setreg(&vmx->vmcs[vcpu], running,
3394                                     VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3395                 }
3396
3397                 shadow = vmx_shadow_reg(reg);
3398                 if (shadow > 0) {
3399                         /*
3400                          * Store the unmodified value in the shadow
3401                          */
3402                         error = vmcs_setreg(&vmx->vmcs[vcpu], running,
3403                                     VMCS_IDENT(shadow), val);
3404                 }
3405
3406                 if (reg == VM_REG_GUEST_CR3) {
3407                         /*
3408                          * Invalidate the guest vcpu's TLB mappings to emulate
3409                          * the behavior of updating %cr3.
3410                          *
3411                          * XXX the processor retains global mappings when %cr3
3412                          * is updated but vmx_invvpid() does not.
3413                          */
3414                         pmap = vmx->ctx[vcpu].pmap;
3415                         vmx_invvpid(vmx, vcpu, pmap, running);
3416                 }
3417         }
3418
3419         return (error);
3420 }
3421
3422 static int
3423 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3424 {
3425         int hostcpu, running;
3426         struct vmx *vmx = arg;
3427
3428         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3429         if (running && hostcpu != curcpu)
3430                 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3431
3432         return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
3433 }
3434
3435 static int
3436 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3437 {
3438         int hostcpu, running;
3439         struct vmx *vmx = arg;
3440
3441         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3442         if (running && hostcpu != curcpu)
3443                 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3444
3445         return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
3446 }
3447
3448 static int
3449 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3450 {
3451         struct vmx *vmx = arg;
3452         int vcap;
3453         int ret;
3454
3455         ret = ENOENT;
3456
3457         vcap = vmx->cap[vcpu].set;
3458
3459         switch (type) {
3460         case VM_CAP_HALT_EXIT:
3461                 if (cap_halt_exit)
3462                         ret = 0;
3463                 break;
3464         case VM_CAP_PAUSE_EXIT:
3465                 if (cap_pause_exit)
3466                         ret = 0;
3467                 break;
3468         case VM_CAP_MTRAP_EXIT:
3469                 if (cap_monitor_trap)
3470                         ret = 0;
3471                 break;
3472         case VM_CAP_RDPID:
3473                 if (cap_rdpid)
3474                         ret = 0;
3475                 break;
3476         case VM_CAP_RDTSCP:
3477                 if (cap_rdtscp)
3478                         ret = 0;
3479                 break;
3480         case VM_CAP_UNRESTRICTED_GUEST:
3481                 if (cap_unrestricted_guest)
3482                         ret = 0;
3483                 break;
3484         case VM_CAP_ENABLE_INVPCID:
3485                 if (cap_invpcid)
3486                         ret = 0;
3487                 break;
3488         case VM_CAP_BPT_EXIT:
3489                 ret = 0;
3490                 break;
3491         default:
3492                 break;
3493         }
3494
3495         if (ret == 0)
3496                 *retval = (vcap & (1 << type)) ? 1 : 0;
3497
3498         return (ret);
3499 }
3500
3501 static int
3502 vmx_setcap(void *arg, int vcpu, int type, int val)
3503 {
3504         struct vmx *vmx = arg;
3505         struct vmcs *vmcs = &vmx->vmcs[vcpu];
3506         uint32_t baseval;
3507         uint32_t *pptr;
3508         int error;
3509         int flag;
3510         int reg;
3511         int retval;
3512
3513         retval = ENOENT;
3514         pptr = NULL;
3515
3516         switch (type) {
3517         case VM_CAP_HALT_EXIT:
3518                 if (cap_halt_exit) {
3519                         retval = 0;
3520                         pptr = &vmx->cap[vcpu].proc_ctls;
3521                         baseval = *pptr;
3522                         flag = PROCBASED_HLT_EXITING;
3523                         reg = VMCS_PRI_PROC_BASED_CTLS;
3524                 }
3525                 break;
3526         case VM_CAP_MTRAP_EXIT:
3527                 if (cap_monitor_trap) {
3528                         retval = 0;
3529                         pptr = &vmx->cap[vcpu].proc_ctls;
3530                         baseval = *pptr;
3531                         flag = PROCBASED_MTF;
3532                         reg = VMCS_PRI_PROC_BASED_CTLS;
3533                 }
3534                 break;
3535         case VM_CAP_PAUSE_EXIT:
3536                 if (cap_pause_exit) {
3537                         retval = 0;
3538                         pptr = &vmx->cap[vcpu].proc_ctls;
3539                         baseval = *pptr;
3540                         flag = PROCBASED_PAUSE_EXITING;
3541                         reg = VMCS_PRI_PROC_BASED_CTLS;
3542                 }
3543                 break;
3544         case VM_CAP_RDPID:
3545         case VM_CAP_RDTSCP:
3546                 if (cap_rdpid || cap_rdtscp)
3547                         /*
3548                          * Choose not to support enabling/disabling
3549                          * RDPID/RDTSCP via libvmmapi since, as per the
3550                          * discussion in vmx_init(), RDPID/RDTSCP are
3551                          * either always enabled or always disabled.
3552                          */
3553                         error = EOPNOTSUPP;
3554                 break;
3555         case VM_CAP_UNRESTRICTED_GUEST:
3556                 if (cap_unrestricted_guest) {
3557                         retval = 0;
3558                         pptr = &vmx->cap[vcpu].proc_ctls2;
3559                         baseval = *pptr;
3560                         flag = PROCBASED2_UNRESTRICTED_GUEST;
3561                         reg = VMCS_SEC_PROC_BASED_CTLS;
3562                 }
3563                 break;
3564         case VM_CAP_ENABLE_INVPCID:
3565                 if (cap_invpcid) {
3566                         retval = 0;
3567                         pptr = &vmx->cap[vcpu].proc_ctls2;
3568                         baseval = *pptr;
3569                         flag = PROCBASED2_ENABLE_INVPCID;
3570                         reg = VMCS_SEC_PROC_BASED_CTLS;
3571                 }
3572                 break;
3573         case VM_CAP_BPT_EXIT:
3574                 retval = 0;
3575
3576                 /* Don't change the bitmap if we are tracing all exceptions. */
3577                 if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3578                         pptr = &vmx->cap[vcpu].exc_bitmap;
3579                         baseval = *pptr;
3580                         flag = (1 << IDT_BP);
3581                         reg = VMCS_EXCEPTION_BITMAP;
3582                 }
3583                 break;
3584         default:
3585                 break;
3586         }
3587
3588         if (retval)
3589                 return (retval);
3590
3591         if (pptr != NULL) {
3592                 if (val) {
3593                         baseval |= flag;
3594                 } else {
3595                         baseval &= ~flag;
3596                 }
3597                 VMPTRLD(vmcs);
3598                 error = vmwrite(reg, baseval);
3599                 VMCLEAR(vmcs);
3600
3601                 if (error)
3602                         return (error);
3603
3604                 /*
3605                  * Update optional stored flags, and record
3606                  * setting
3607                  */
3608                 *pptr = baseval;
3609         }
3610
3611         if (val) {
3612                 vmx->cap[vcpu].set |= (1 << type);
3613         } else {
3614                 vmx->cap[vcpu].set &= ~(1 << type);
3615         }
3616
3617         return (0);
3618 }
3619
3620 struct vlapic_vtx {
3621         struct vlapic   vlapic;
3622         struct pir_desc *pir_desc;
3623         struct vmx      *vmx;
3624         u_int   pending_prio;
3625 };
3626
3627 #define VPR_PRIO_BIT(vpr)       (1 << ((vpr) >> 4))
3628
3629 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)   \
3630 do {                                                                    \
3631         VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",     \
3632             level ? "level" : "edge", vector);                          \
3633         VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);  \
3634         VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);  \
3635         VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);  \
3636         VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);  \
3637         VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3638 } while (0)
3639
3640 /*
3641  * vlapic->ops handlers that utilize the APICv hardware assist described in
3642  * Chapter 29 of the Intel SDM.
3643  */
3644 static int
3645 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3646 {
3647         struct vlapic_vtx *vlapic_vtx;
3648         struct pir_desc *pir_desc;
3649         uint64_t mask;
3650         int idx, notify = 0;
3651
3652         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3653         pir_desc = vlapic_vtx->pir_desc;
3654
3655         /*
3656          * Keep track of interrupt requests in the PIR descriptor. This is
3657          * because the virtual APIC page pointed to by the VMCS cannot be
3658          * modified if the vcpu is running.
3659          */
3660         idx = vector / 64;
3661         mask = 1UL << (vector % 64);
3662         atomic_set_long(&pir_desc->pir[idx], mask);
3663
3664         /*
3665          * A notification is required whenever the 'pending' bit makes a
3666          * transition from 0->1.
3667          *
3668          * Even if the 'pending' bit is already asserted, notification about
3669          * the incoming interrupt may still be necessary.  For example, if a
3670          * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3671          * the 0->1 'pending' transition with a notification, but the vCPU
3672          * would ignore the interrupt for the time being.  The same vCPU would
3673          * need to then be notified if a high-priority interrupt arrived which
3674          * satisfied the PPR.
3675          *
3676          * The priorities of interrupts injected while 'pending' is asserted
3677          * are tracked in a custom bitfield 'pending_prio'.  Should the
3678          * to-be-injected interrupt exceed the priorities already present, the
3679          * notification is sent.  The priorities recorded in 'pending_prio' are
3680          * cleared whenever the 'pending' bit makes another 0->1 transition.
3681          */
3682         if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3683                 notify = 1;
3684                 vlapic_vtx->pending_prio = 0;
3685         } else {
3686                 const u_int old_prio = vlapic_vtx->pending_prio;
3687                 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3688
3689                 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3690                         atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3691                         notify = 1;
3692                 }
3693         }
3694
3695         VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3696             level, "vmx_set_intr_ready");
3697         return (notify);
3698 }
3699
3700 static int
3701 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3702 {
3703         struct vlapic_vtx *vlapic_vtx;
3704         struct pir_desc *pir_desc;
3705         struct LAPIC *lapic;
3706         uint64_t pending, pirval;
3707         uint32_t ppr, vpr;
3708         int i;
3709
3710         /*
3711          * This function is only expected to be called from the 'HLT' exit
3712          * handler which does not care about the vector that is pending.
3713          */
3714         KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3715
3716         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3717         pir_desc = vlapic_vtx->pir_desc;
3718
3719         pending = atomic_load_acq_long(&pir_desc->pending);
3720         if (!pending) {
3721                 /*
3722                  * While a virtual interrupt may have already been
3723                  * processed the actual delivery maybe pending the
3724                  * interruptibility of the guest.  Recognize a pending
3725                  * interrupt by reevaluating virtual interrupts
3726                  * following Section 29.2.1 in the Intel SDM Volume 3.
3727                  */
3728                 struct vm_exit *vmexit;
3729                 uint8_t rvi, ppr;
3730
3731                 vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid);
3732                 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3733                     ("vmx_pending_intr: exitcode not 'HLT'"));
3734                 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3735                 lapic = vlapic->apic_page;
3736                 ppr = lapic->ppr & APIC_TPR_INT;
3737                 if (rvi > ppr) {
3738                         return (1);
3739                 }
3740
3741                 return (0);
3742         }
3743
3744         /*
3745          * If there is an interrupt pending then it will be recognized only
3746          * if its priority is greater than the processor priority.
3747          *
3748          * Special case: if the processor priority is zero then any pending
3749          * interrupt will be recognized.
3750          */
3751         lapic = vlapic->apic_page;
3752         ppr = lapic->ppr & APIC_TPR_INT;
3753         if (ppr == 0)
3754                 return (1);
3755
3756         VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3757             lapic->ppr);
3758
3759         vpr = 0;
3760         for (i = 3; i >= 0; i--) {
3761                 pirval = pir_desc->pir[i];
3762                 if (pirval != 0) {
3763                         vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3764                         break;
3765                 }
3766         }
3767
3768         /*
3769          * If the highest-priority pending interrupt falls short of the
3770          * processor priority of this vCPU, ensure that 'pending_prio' does not
3771          * have any stale bits which would preclude a higher-priority interrupt
3772          * from incurring a notification later.
3773          */
3774         if (vpr <= ppr) {
3775                 const u_int prio_bit = VPR_PRIO_BIT(vpr);
3776                 const u_int old = vlapic_vtx->pending_prio;
3777
3778                 if (old > prio_bit && (old & prio_bit) == 0) {
3779                         vlapic_vtx->pending_prio = prio_bit;
3780                 }
3781                 return (0);
3782         }
3783         return (1);
3784 }
3785
3786 static void
3787 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3788 {
3789
3790         panic("vmx_intr_accepted: not expected to be called");
3791 }
3792
3793 static void
3794 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3795 {
3796         struct vlapic_vtx *vlapic_vtx;
3797         struct vmx *vmx;
3798         struct vmcs *vmcs;
3799         uint64_t mask, val;
3800
3801         KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3802         KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3803             ("vmx_set_tmr: vcpu cannot be running"));
3804
3805         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3806         vmx = vlapic_vtx->vmx;
3807         vmcs = &vmx->vmcs[vlapic->vcpuid];
3808         mask = 1UL << (vector % 64);
3809
3810         VMPTRLD(vmcs);
3811         val = vmcs_read(VMCS_EOI_EXIT(vector));
3812         if (level)
3813                 val |= mask;
3814         else
3815                 val &= ~mask;
3816         vmcs_write(VMCS_EOI_EXIT(vector), val);
3817         VMCLEAR(vmcs);
3818 }
3819
3820 static void
3821 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3822 {
3823         struct vmx *vmx;
3824         struct vmcs *vmcs;
3825         uint32_t proc_ctls;
3826         int vcpuid;
3827
3828         vcpuid = vlapic->vcpuid;
3829         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3830         vmcs = &vmx->vmcs[vcpuid];
3831
3832         proc_ctls = vmx->cap[vcpuid].proc_ctls;
3833         proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3834         proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3835         proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3836         vmx->cap[vcpuid].proc_ctls = proc_ctls;
3837
3838         VMPTRLD(vmcs);
3839         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3840         VMCLEAR(vmcs);
3841 }
3842
3843 static void
3844 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3845 {
3846         struct vmx *vmx;
3847         struct vmcs *vmcs;
3848         uint32_t proc_ctls2;
3849         int vcpuid, error;
3850
3851         vcpuid = vlapic->vcpuid;
3852         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3853         vmcs = &vmx->vmcs[vcpuid];
3854
3855         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3856         KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3857             ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3858
3859         proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3860         proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3861         vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3862
3863         VMPTRLD(vmcs);
3864         vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3865         VMCLEAR(vmcs);
3866
3867         if (vlapic->vcpuid == 0) {
3868                 /*
3869                  * The nested page table mappings are shared by all vcpus
3870                  * so unmap the APIC access page just once.
3871                  */
3872                 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3873                 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3874                     __func__, error));
3875
3876                 /*
3877                  * The MSR bitmap is shared by all vcpus so modify it only
3878                  * once in the context of vcpu 0.
3879                  */
3880                 error = vmx_allow_x2apic_msrs(vmx);
3881                 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3882                     __func__, error));
3883         }
3884 }
3885
3886 static void
3887 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3888 {
3889
3890         ipi_cpu(hostcpu, pirvec);
3891 }
3892
3893 /*
3894  * Transfer the pending interrupts in the PIR descriptor to the IRR
3895  * in the virtual APIC page.
3896  */
3897 static void
3898 vmx_inject_pir(struct vlapic *vlapic)
3899 {
3900         struct vlapic_vtx *vlapic_vtx;
3901         struct pir_desc *pir_desc;
3902         struct LAPIC *lapic;
3903         uint64_t val, pirval;
3904         int rvi, pirbase = -1;
3905         uint16_t intr_status_old, intr_status_new;
3906
3907         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3908         pir_desc = vlapic_vtx->pir_desc;
3909         if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3910                 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3911                     "no posted interrupt pending");
3912                 return;
3913         }
3914
3915         pirval = 0;
3916         pirbase = -1;
3917         lapic = vlapic->apic_page;
3918
3919         val = atomic_readandclear_long(&pir_desc->pir[0]);
3920         if (val != 0) {
3921                 lapic->irr0 |= val;
3922                 lapic->irr1 |= val >> 32;
3923                 pirbase = 0;
3924                 pirval = val;
3925         }
3926
3927         val = atomic_readandclear_long(&pir_desc->pir[1]);
3928         if (val != 0) {
3929                 lapic->irr2 |= val;
3930                 lapic->irr3 |= val >> 32;
3931                 pirbase = 64;
3932                 pirval = val;
3933         }
3934
3935         val = atomic_readandclear_long(&pir_desc->pir[2]);
3936         if (val != 0) {
3937                 lapic->irr4 |= val;
3938                 lapic->irr5 |= val >> 32;
3939                 pirbase = 128;
3940                 pirval = val;
3941         }
3942
3943         val = atomic_readandclear_long(&pir_desc->pir[3]);
3944         if (val != 0) {
3945                 lapic->irr6 |= val;
3946                 lapic->irr7 |= val >> 32;
3947                 pirbase = 192;
3948                 pirval = val;
3949         }
3950
3951         VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3952
3953         /*
3954          * Update RVI so the processor can evaluate pending virtual
3955          * interrupts on VM-entry.
3956          *
3957          * It is possible for pirval to be 0 here, even though the
3958          * pending bit has been set. The scenario is:
3959          * CPU-Y is sending a posted interrupt to CPU-X, which
3960          * is running a guest and processing posted interrupts in h/w.
3961          * CPU-X will eventually exit and the state seen in s/w is
3962          * the pending bit set, but no PIR bits set.
3963          *
3964          *      CPU-X                      CPU-Y
3965          *   (vm running)                (host running)
3966          *   rx posted interrupt
3967          *   CLEAR pending bit
3968          *                               SET PIR bit
3969          *   READ/CLEAR PIR bits
3970          *                               SET pending bit
3971          *   (vm exit)
3972          *   pending bit set, PIR 0
3973          */
3974         if (pirval != 0) {
3975                 rvi = pirbase + flsl(pirval) - 1;
3976                 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3977                 intr_status_new = (intr_status_old & 0xFF00) | rvi;
3978                 if (intr_status_new > intr_status_old) {
3979                         vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3980                         VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3981                             "guest_intr_status changed from 0x%04x to 0x%04x",
3982                             intr_status_old, intr_status_new);
3983                 }
3984         }
3985 }
3986
3987 static struct vlapic *
3988 vmx_vlapic_init(void *arg, int vcpuid)
3989 {
3990         struct vmx *vmx;
3991         struct vlapic *vlapic;
3992         struct vlapic_vtx *vlapic_vtx;
3993
3994         vmx = arg;
3995
3996         vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3997         vlapic->vm = vmx->vm;
3998         vlapic->vcpuid = vcpuid;
3999         vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
4000
4001         vlapic_vtx = (struct vlapic_vtx *)vlapic;
4002         vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
4003         vlapic_vtx->vmx = vmx;
4004
4005         if (tpr_shadowing) {
4006                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
4007         }
4008
4009         if (virtual_interrupt_delivery) {
4010                 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
4011                 vlapic->ops.pending_intr = vmx_pending_intr;
4012                 vlapic->ops.intr_accepted = vmx_intr_accepted;
4013                 vlapic->ops.set_tmr = vmx_set_tmr;
4014                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
4015         }
4016
4017         if (posted_interrupts)
4018                 vlapic->ops.post_intr = vmx_post_intr;
4019
4020         vlapic_init(vlapic);
4021
4022         return (vlapic);
4023 }
4024
4025 static void
4026 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
4027 {
4028
4029         vlapic_cleanup(vlapic);
4030         free(vlapic, M_VLAPIC);
4031 }
4032
4033 #ifdef BHYVE_SNAPSHOT
4034 static int
4035 vmx_snapshot_vmi(void *arg, struct vm_snapshot_meta *meta)
4036 {
4037         struct vmx *vmx;
4038         struct vmxctx *vmxctx;
4039         int i;
4040         int ret;
4041
4042         vmx = arg;
4043
4044         KASSERT(vmx != NULL, ("%s: arg was NULL", __func__));
4045
4046         for (i = 0; i < VM_MAXCPU; i++) {
4047                 SNAPSHOT_BUF_OR_LEAVE(vmx->guest_msrs[i],
4048                       sizeof(vmx->guest_msrs[i]), meta, ret, done);
4049
4050                 vmxctx = &vmx->ctx[i];
4051                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, ret, done);
4052                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, ret, done);
4053                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, ret, done);
4054                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, ret, done);
4055                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, ret, done);
4056                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, ret, done);
4057                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, ret, done);
4058                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, ret, done);
4059                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, ret, done);
4060                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, ret, done);
4061                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, ret, done);
4062                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, ret, done);
4063                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, ret, done);
4064                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, ret, done);
4065                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, ret, done);
4066                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, ret, done);
4067                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, ret, done);
4068                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, ret, done);
4069                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, ret, done);
4070                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, ret, done);
4071                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, ret, done);
4072         }
4073
4074 done:
4075         return (ret);
4076 }
4077
4078 static int
4079 vmx_snapshot_vmcx(void *arg, struct vm_snapshot_meta *meta, int vcpu)
4080 {
4081         struct vmcs *vmcs;
4082         struct vmx *vmx;
4083         int err, run, hostcpu;
4084
4085         vmx = (struct vmx *)arg;
4086         err = 0;
4087
4088         KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4089         vmcs = &vmx->vmcs[vcpu];
4090
4091         run = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4092         if (run && hostcpu != curcpu) {
4093                 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4094                 return (EINVAL);
4095         }
4096
4097         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
4098         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
4099         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
4100         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
4101         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
4102         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
4103         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
4104
4105         /* Guest segments */
4106         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
4107         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
4108
4109         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
4110         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
4111
4112         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
4113         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
4114
4115         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
4116         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
4117
4118         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
4119         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
4120
4121         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
4122         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
4123
4124         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
4125         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
4126
4127         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
4128         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
4129
4130         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
4131
4132         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
4133         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
4134
4135         /* Guest page tables */
4136         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
4137         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
4138         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
4139         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
4140
4141         /* Other guest state */
4142         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
4143         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
4144         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
4145         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
4146         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
4147         err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
4148         err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
4149
4150         return (err);
4151 }
4152
4153 static int
4154 vmx_restore_tsc(void *arg, int vcpu, uint64_t offset)
4155 {
4156         struct vmcs *vmcs;
4157         struct vmx *vmx = (struct vmx *)arg;
4158         int error, running, hostcpu;
4159
4160         KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4161         vmcs = &vmx->vmcs[vcpu];
4162
4163         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4164         if (running && hostcpu != curcpu) {
4165                 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4166                 return (EINVAL);
4167         }
4168
4169         if (!running)
4170                 VMPTRLD(vmcs);
4171
4172         error = vmx_set_tsc_offset(vmx, vcpu, offset);
4173
4174         if (!running)
4175                 VMCLEAR(vmcs);
4176         return (error);
4177 }
4178 #endif
4179
4180 struct vmm_ops vmm_ops_intel = {
4181         .init           = vmx_init,
4182         .cleanup        = vmx_cleanup,
4183         .resume         = vmx_restore,
4184         .vminit         = vmx_vminit,
4185         .vmrun          = vmx_run,
4186         .vmcleanup      = vmx_vmcleanup,
4187         .vmgetreg       = vmx_getreg,
4188         .vmsetreg       = vmx_setreg,
4189         .vmgetdesc      = vmx_getdesc,
4190         .vmsetdesc      = vmx_setdesc,
4191         .vmgetcap       = vmx_getcap,
4192         .vmsetcap       = vmx_setcap,
4193         .vmspace_alloc  = ept_vmspace_alloc,
4194         .vmspace_free   = ept_vmspace_free,
4195         .vlapic_init    = vmx_vlapic_init,
4196         .vlapic_cleanup = vmx_vlapic_cleanup,
4197 #ifdef BHYVE_SNAPSHOT
4198         .vmsnapshot     = vmx_snapshot_vmi,
4199         .vmcx_snapshot  = vmx_snapshot_vmcx,
4200         .vm_restore_tsc = vmx_restore_tsc,
4201 #endif
4202 };