]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/amd64/vmm/intel/vmx.c
Update llvm, clang and lldb to 3.7.0 release.
[FreeBSD/FreeBSD.git] / sys / amd64 / vmm / intel / vmx.c
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43
44 #include <machine/psl.h>
45 #include <machine/cpufunc.h>
46 #include <machine/md_var.h>
47 #include <machine/segments.h>
48 #include <machine/smp.h>
49 #include <machine/specialreg.h>
50 #include <machine/vmparam.h>
51
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include "vmm_lapic.h"
56 #include "vmm_host.h"
57 #include "vmm_ioport.h"
58 #include "vmm_ktr.h"
59 #include "vmm_stat.h"
60 #include "vatpic.h"
61 #include "vlapic.h"
62 #include "vlapic_priv.h"
63
64 #include "ept.h"
65 #include "vmx_cpufunc.h"
66 #include "vmx.h"
67 #include "vmx_msr.h"
68 #include "x86.h"
69 #include "vmx_controls.h"
70
71 #define PINBASED_CTLS_ONE_SETTING                                       \
72         (PINBASED_EXTINT_EXITING        |                               \
73          PINBASED_NMI_EXITING           |                               \
74          PINBASED_VIRTUAL_NMI)
75 #define PINBASED_CTLS_ZERO_SETTING      0
76
77 #define PROCBASED_CTLS_WINDOW_SETTING                                   \
78         (PROCBASED_INT_WINDOW_EXITING   |                               \
79          PROCBASED_NMI_WINDOW_EXITING)
80
81 #define PROCBASED_CTLS_ONE_SETTING                                      \
82         (PROCBASED_SECONDARY_CONTROLS   |                               \
83          PROCBASED_MWAIT_EXITING        |                               \
84          PROCBASED_MONITOR_EXITING      |                               \
85          PROCBASED_IO_EXITING           |                               \
86          PROCBASED_MSR_BITMAPS          |                               \
87          PROCBASED_CTLS_WINDOW_SETTING  |                               \
88          PROCBASED_CR8_LOAD_EXITING     |                               \
89          PROCBASED_CR8_STORE_EXITING)
90 #define PROCBASED_CTLS_ZERO_SETTING     \
91         (PROCBASED_CR3_LOAD_EXITING |   \
92         PROCBASED_CR3_STORE_EXITING |   \
93         PROCBASED_IO_BITMAPS)
94
95 #define PROCBASED_CTLS2_ONE_SETTING     PROCBASED2_ENABLE_EPT
96 #define PROCBASED_CTLS2_ZERO_SETTING    0
97
98 #define VM_EXIT_CTLS_ONE_SETTING                                        \
99         (VM_EXIT_HOST_LMA                       |                       \
100         VM_EXIT_SAVE_EFER                       |                       \
101         VM_EXIT_LOAD_EFER                       |                       \
102         VM_EXIT_ACKNOWLEDGE_INTERRUPT)
103
104 #define VM_EXIT_CTLS_ZERO_SETTING       VM_EXIT_SAVE_DEBUG_CONTROLS
105
106 #define VM_ENTRY_CTLS_ONE_SETTING       (VM_ENTRY_LOAD_EFER)
107
108 #define VM_ENTRY_CTLS_ZERO_SETTING                                      \
109         (VM_ENTRY_LOAD_DEBUG_CONTROLS           |                       \
110         VM_ENTRY_INTO_SMM                       |                       \
111         VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
112
113 #define HANDLED         1
114 #define UNHANDLED       0
115
116 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
117 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
118
119 SYSCTL_DECL(_hw_vmm);
120 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
121
122 int vmxon_enabled[MAXCPU];
123 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
124
125 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
126 static uint32_t exit_ctls, entry_ctls;
127
128 static uint64_t cr0_ones_mask, cr0_zeros_mask;
129 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
130              &cr0_ones_mask, 0, NULL);
131 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
132              &cr0_zeros_mask, 0, NULL);
133
134 static uint64_t cr4_ones_mask, cr4_zeros_mask;
135 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
136              &cr4_ones_mask, 0, NULL);
137 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
138              &cr4_zeros_mask, 0, NULL);
139
140 static int vmx_initialized;
141 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
142            &vmx_initialized, 0, "Intel VMX initialized");
143
144 /*
145  * Optional capabilities
146  */
147 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
148
149 static int cap_halt_exit;
150 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
151     "HLT triggers a VM-exit");
152
153 static int cap_pause_exit;
154 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
155     0, "PAUSE triggers a VM-exit");
156
157 static int cap_unrestricted_guest;
158 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
159     &cap_unrestricted_guest, 0, "Unrestricted guests");
160
161 static int cap_monitor_trap;
162 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
163     &cap_monitor_trap, 0, "Monitor trap flag");
164
165 static int cap_invpcid;
166 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
167     0, "Guests are allowed to use INVPCID");
168
169 static int virtual_interrupt_delivery;
170 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
171     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
172
173 static int posted_interrupts;
174 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
175     &posted_interrupts, 0, "APICv posted interrupt support");
176
177 static int pirvec = -1;
178 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
179     &pirvec, 0, "APICv posted interrupt vector");
180
181 static struct unrhdr *vpid_unr;
182 static u_int vpid_alloc_failed;
183 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
184             &vpid_alloc_failed, 0, NULL);
185
186 /*
187  * Use the last page below 4GB as the APIC access address. This address is
188  * occupied by the boot firmware so it is guaranteed that it will not conflict
189  * with a page in system memory.
190  */
191 #define APIC_ACCESS_ADDRESS     0xFFFFF000
192
193 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
194 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
195 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
196 static void vmx_inject_pir(struct vlapic *vlapic);
197
198 #ifdef KTR
199 static const char *
200 exit_reason_to_str(int reason)
201 {
202         static char reasonbuf[32];
203
204         switch (reason) {
205         case EXIT_REASON_EXCEPTION:
206                 return "exception";
207         case EXIT_REASON_EXT_INTR:
208                 return "extint";
209         case EXIT_REASON_TRIPLE_FAULT:
210                 return "triplefault";
211         case EXIT_REASON_INIT:
212                 return "init";
213         case EXIT_REASON_SIPI:
214                 return "sipi";
215         case EXIT_REASON_IO_SMI:
216                 return "iosmi";
217         case EXIT_REASON_SMI:
218                 return "smi";
219         case EXIT_REASON_INTR_WINDOW:
220                 return "intrwindow";
221         case EXIT_REASON_NMI_WINDOW:
222                 return "nmiwindow";
223         case EXIT_REASON_TASK_SWITCH:
224                 return "taskswitch";
225         case EXIT_REASON_CPUID:
226                 return "cpuid";
227         case EXIT_REASON_GETSEC:
228                 return "getsec";
229         case EXIT_REASON_HLT:
230                 return "hlt";
231         case EXIT_REASON_INVD:
232                 return "invd";
233         case EXIT_REASON_INVLPG:
234                 return "invlpg";
235         case EXIT_REASON_RDPMC:
236                 return "rdpmc";
237         case EXIT_REASON_RDTSC:
238                 return "rdtsc";
239         case EXIT_REASON_RSM:
240                 return "rsm";
241         case EXIT_REASON_VMCALL:
242                 return "vmcall";
243         case EXIT_REASON_VMCLEAR:
244                 return "vmclear";
245         case EXIT_REASON_VMLAUNCH:
246                 return "vmlaunch";
247         case EXIT_REASON_VMPTRLD:
248                 return "vmptrld";
249         case EXIT_REASON_VMPTRST:
250                 return "vmptrst";
251         case EXIT_REASON_VMREAD:
252                 return "vmread";
253         case EXIT_REASON_VMRESUME:
254                 return "vmresume";
255         case EXIT_REASON_VMWRITE:
256                 return "vmwrite";
257         case EXIT_REASON_VMXOFF:
258                 return "vmxoff";
259         case EXIT_REASON_VMXON:
260                 return "vmxon";
261         case EXIT_REASON_CR_ACCESS:
262                 return "craccess";
263         case EXIT_REASON_DR_ACCESS:
264                 return "draccess";
265         case EXIT_REASON_INOUT:
266                 return "inout";
267         case EXIT_REASON_RDMSR:
268                 return "rdmsr";
269         case EXIT_REASON_WRMSR:
270                 return "wrmsr";
271         case EXIT_REASON_INVAL_VMCS:
272                 return "invalvmcs";
273         case EXIT_REASON_INVAL_MSR:
274                 return "invalmsr";
275         case EXIT_REASON_MWAIT:
276                 return "mwait";
277         case EXIT_REASON_MTF:
278                 return "mtf";
279         case EXIT_REASON_MONITOR:
280                 return "monitor";
281         case EXIT_REASON_PAUSE:
282                 return "pause";
283         case EXIT_REASON_MCE_DURING_ENTRY:
284                 return "mce-during-entry";
285         case EXIT_REASON_TPR:
286                 return "tpr";
287         case EXIT_REASON_APIC_ACCESS:
288                 return "apic-access";
289         case EXIT_REASON_GDTR_IDTR:
290                 return "gdtridtr";
291         case EXIT_REASON_LDTR_TR:
292                 return "ldtrtr";
293         case EXIT_REASON_EPT_FAULT:
294                 return "eptfault";
295         case EXIT_REASON_EPT_MISCONFIG:
296                 return "eptmisconfig";
297         case EXIT_REASON_INVEPT:
298                 return "invept";
299         case EXIT_REASON_RDTSCP:
300                 return "rdtscp";
301         case EXIT_REASON_VMX_PREEMPT:
302                 return "vmxpreempt";
303         case EXIT_REASON_INVVPID:
304                 return "invvpid";
305         case EXIT_REASON_WBINVD:
306                 return "wbinvd";
307         case EXIT_REASON_XSETBV:
308                 return "xsetbv";
309         case EXIT_REASON_APIC_WRITE:
310                 return "apic-write";
311         default:
312                 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
313                 return (reasonbuf);
314         }
315 }
316 #endif  /* KTR */
317
318 static int
319 vmx_allow_x2apic_msrs(struct vmx *vmx)
320 {
321         int i, error;
322
323         error = 0;
324
325         /*
326          * Allow readonly access to the following x2APIC MSRs from the guest.
327          */
328         error += guest_msr_ro(vmx, MSR_APIC_ID);
329         error += guest_msr_ro(vmx, MSR_APIC_VERSION);
330         error += guest_msr_ro(vmx, MSR_APIC_LDR);
331         error += guest_msr_ro(vmx, MSR_APIC_SVR);
332
333         for (i = 0; i < 8; i++)
334                 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
335
336         for (i = 0; i < 8; i++)
337                 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
338         
339         for (i = 0; i < 8; i++)
340                 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
341
342         error += guest_msr_ro(vmx, MSR_APIC_ESR);
343         error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
344         error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
345         error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
346         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
347         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
348         error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
349         error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
350         error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
351         error += guest_msr_ro(vmx, MSR_APIC_ICR);
352
353         /*
354          * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
355          *
356          * These registers get special treatment described in the section
357          * "Virtualizing MSR-Based APIC Accesses".
358          */
359         error += guest_msr_rw(vmx, MSR_APIC_TPR);
360         error += guest_msr_rw(vmx, MSR_APIC_EOI);
361         error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
362
363         return (error);
364 }
365
366 u_long
367 vmx_fix_cr0(u_long cr0)
368 {
369
370         return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
371 }
372
373 u_long
374 vmx_fix_cr4(u_long cr4)
375 {
376
377         return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
378 }
379
380 static void
381 vpid_free(int vpid)
382 {
383         if (vpid < 0 || vpid > 0xffff)
384                 panic("vpid_free: invalid vpid %d", vpid);
385
386         /*
387          * VPIDs [0,VM_MAXCPU] are special and are not allocated from
388          * the unit number allocator.
389          */
390
391         if (vpid > VM_MAXCPU)
392                 free_unr(vpid_unr, vpid);
393 }
394
395 static void
396 vpid_alloc(uint16_t *vpid, int num)
397 {
398         int i, x;
399
400         if (num <= 0 || num > VM_MAXCPU)
401                 panic("invalid number of vpids requested: %d", num);
402
403         /*
404          * If the "enable vpid" execution control is not enabled then the
405          * VPID is required to be 0 for all vcpus.
406          */
407         if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
408                 for (i = 0; i < num; i++)
409                         vpid[i] = 0;
410                 return;
411         }
412
413         /*
414          * Allocate a unique VPID for each vcpu from the unit number allocator.
415          */
416         for (i = 0; i < num; i++) {
417                 x = alloc_unr(vpid_unr);
418                 if (x == -1)
419                         break;
420                 else
421                         vpid[i] = x;
422         }
423
424         if (i < num) {
425                 atomic_add_int(&vpid_alloc_failed, 1);
426
427                 /*
428                  * If the unit number allocator does not have enough unique
429                  * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
430                  *
431                  * These VPIDs are not be unique across VMs but this does not
432                  * affect correctness because the combined mappings are also
433                  * tagged with the EP4TA which is unique for each VM.
434                  *
435                  * It is still sub-optimal because the invvpid will invalidate
436                  * combined mappings for a particular VPID across all EP4TAs.
437                  */
438                 while (i-- > 0)
439                         vpid_free(vpid[i]);
440
441                 for (i = 0; i < num; i++)
442                         vpid[i] = i + 1;
443         }
444 }
445
446 static void
447 vpid_init(void)
448 {
449         /*
450          * VPID 0 is required when the "enable VPID" execution control is
451          * disabled.
452          *
453          * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
454          * unit number allocator does not have sufficient unique VPIDs to
455          * satisfy the allocation.
456          *
457          * The remaining VPIDs are managed by the unit number allocator.
458          */
459         vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
460 }
461
462 static void
463 vmx_disable(void *arg __unused)
464 {
465         struct invvpid_desc invvpid_desc = { 0 };
466         struct invept_desc invept_desc = { 0 };
467
468         if (vmxon_enabled[curcpu]) {
469                 /*
470                  * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
471                  *
472                  * VMXON or VMXOFF are not required to invalidate any TLB
473                  * caching structures. This prevents potential retention of
474                  * cached information in the TLB between distinct VMX episodes.
475                  */
476                 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
477                 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
478                 vmxoff();
479         }
480         load_cr4(rcr4() & ~CR4_VMXE);
481 }
482
483 static int
484 vmx_cleanup(void)
485 {
486         
487         if (pirvec >= 0)
488                 lapic_ipi_free(pirvec);
489
490         if (vpid_unr != NULL) {
491                 delete_unrhdr(vpid_unr);
492                 vpid_unr = NULL;
493         }
494
495         smp_rendezvous(NULL, vmx_disable, NULL, NULL);
496
497         return (0);
498 }
499
500 static void
501 vmx_enable(void *arg __unused)
502 {
503         int error;
504         uint64_t feature_control;
505
506         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
507         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
508             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
509                 wrmsr(MSR_IA32_FEATURE_CONTROL,
510                     feature_control | IA32_FEATURE_CONTROL_VMX_EN |
511                     IA32_FEATURE_CONTROL_LOCK);
512         }
513
514         load_cr4(rcr4() | CR4_VMXE);
515
516         *(uint32_t *)vmxon_region[curcpu] = vmx_revision();
517         error = vmxon(vmxon_region[curcpu]);
518         if (error == 0)
519                 vmxon_enabled[curcpu] = 1;
520 }
521
522 static void
523 vmx_restore(void)
524 {
525
526         if (vmxon_enabled[curcpu])
527                 vmxon(vmxon_region[curcpu]);
528 }
529
530 static int
531 vmx_init(int ipinum)
532 {
533         int error, use_tpr_shadow;
534         uint64_t basic, fixed0, fixed1, feature_control;
535         uint32_t tmp, procbased2_vid_bits;
536
537         /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
538         if (!(cpu_feature2 & CPUID2_VMX)) {
539                 printf("vmx_init: processor does not support VMX operation\n");
540                 return (ENXIO);
541         }
542
543         /*
544          * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
545          * are set (bits 0 and 2 respectively).
546          */
547         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
548         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
549             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
550                 printf("vmx_init: VMX operation disabled by BIOS\n");
551                 return (ENXIO);
552         }
553
554         /*
555          * Verify capabilities MSR_VMX_BASIC:
556          * - bit 54 indicates support for INS/OUTS decoding
557          */
558         basic = rdmsr(MSR_VMX_BASIC);
559         if ((basic & (1UL << 54)) == 0) {
560                 printf("vmx_init: processor does not support desired basic "
561                     "capabilities\n");
562                 return (EINVAL);
563         }
564
565         /* Check support for primary processor-based VM-execution controls */
566         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
567                                MSR_VMX_TRUE_PROCBASED_CTLS,
568                                PROCBASED_CTLS_ONE_SETTING,
569                                PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
570         if (error) {
571                 printf("vmx_init: processor does not support desired primary "
572                        "processor-based controls\n");
573                 return (error);
574         }
575
576         /* Clear the processor-based ctl bits that are set on demand */
577         procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
578
579         /* Check support for secondary processor-based VM-execution controls */
580         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
581                                MSR_VMX_PROCBASED_CTLS2,
582                                PROCBASED_CTLS2_ONE_SETTING,
583                                PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
584         if (error) {
585                 printf("vmx_init: processor does not support desired secondary "
586                        "processor-based controls\n");
587                 return (error);
588         }
589
590         /* Check support for VPID */
591         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
592                                PROCBASED2_ENABLE_VPID, 0, &tmp);
593         if (error == 0)
594                 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
595
596         /* Check support for pin-based VM-execution controls */
597         error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
598                                MSR_VMX_TRUE_PINBASED_CTLS,
599                                PINBASED_CTLS_ONE_SETTING,
600                                PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
601         if (error) {
602                 printf("vmx_init: processor does not support desired "
603                        "pin-based controls\n");
604                 return (error);
605         }
606
607         /* Check support for VM-exit controls */
608         error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
609                                VM_EXIT_CTLS_ONE_SETTING,
610                                VM_EXIT_CTLS_ZERO_SETTING,
611                                &exit_ctls);
612         if (error) {
613                 printf("vmx_init: processor does not support desired "
614                     "exit controls\n");
615                 return (error);
616         }
617
618         /* Check support for VM-entry controls */
619         error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
620             VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
621             &entry_ctls);
622         if (error) {
623                 printf("vmx_init: processor does not support desired "
624                     "entry controls\n");
625                 return (error);
626         }
627
628         /*
629          * Check support for optional features by testing them
630          * as individual bits
631          */
632         cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
633                                         MSR_VMX_TRUE_PROCBASED_CTLS,
634                                         PROCBASED_HLT_EXITING, 0,
635                                         &tmp) == 0);
636
637         cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
638                                         MSR_VMX_PROCBASED_CTLS,
639                                         PROCBASED_MTF, 0,
640                                         &tmp) == 0);
641
642         cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
643                                          MSR_VMX_TRUE_PROCBASED_CTLS,
644                                          PROCBASED_PAUSE_EXITING, 0,
645                                          &tmp) == 0);
646
647         cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
648                                         MSR_VMX_PROCBASED_CTLS2,
649                                         PROCBASED2_UNRESTRICTED_GUEST, 0,
650                                         &tmp) == 0);
651
652         cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
653             MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
654             &tmp) == 0);
655
656         /*
657          * Check support for virtual interrupt delivery.
658          */
659         procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
660             PROCBASED2_VIRTUALIZE_X2APIC_MODE |
661             PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
662             PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
663
664         use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
665             MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
666             &tmp) == 0);
667
668         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
669             procbased2_vid_bits, 0, &tmp);
670         if (error == 0 && use_tpr_shadow) {
671                 virtual_interrupt_delivery = 1;
672                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
673                     &virtual_interrupt_delivery);
674         }
675
676         if (virtual_interrupt_delivery) {
677                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
678                 procbased_ctls2 |= procbased2_vid_bits;
679                 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
680
681                 /*
682                  * No need to emulate accesses to %CR8 if virtual
683                  * interrupt delivery is enabled.
684                  */
685                 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
686                 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
687
688                 /*
689                  * Check for Posted Interrupts only if Virtual Interrupt
690                  * Delivery is enabled.
691                  */
692                 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
693                     MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
694                     &tmp);
695                 if (error == 0) {
696                         pirvec = lapic_ipi_alloc(&IDTVEC(justreturn));
697                         if (pirvec < 0) {
698                                 if (bootverbose) {
699                                         printf("vmx_init: unable to allocate "
700                                             "posted interrupt vector\n");
701                                 }
702                         } else {
703                                 posted_interrupts = 1;
704                                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
705                                     &posted_interrupts);
706                         }
707                 }
708         }
709
710         if (posted_interrupts)
711                     pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
712
713         /* Initialize EPT */
714         error = ept_init(ipinum);
715         if (error) {
716                 printf("vmx_init: ept initialization failed (%d)\n", error);
717                 return (error);
718         }
719
720         /*
721          * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
722          */
723         fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
724         fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
725         cr0_ones_mask = fixed0 & fixed1;
726         cr0_zeros_mask = ~fixed0 & ~fixed1;
727
728         /*
729          * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
730          * if unrestricted guest execution is allowed.
731          */
732         if (cap_unrestricted_guest)
733                 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
734
735         /*
736          * Do not allow the guest to set CR0_NW or CR0_CD.
737          */
738         cr0_zeros_mask |= (CR0_NW | CR0_CD);
739
740         fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
741         fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
742         cr4_ones_mask = fixed0 & fixed1;
743         cr4_zeros_mask = ~fixed0 & ~fixed1;
744
745         vpid_init();
746
747         vmx_msr_init();
748
749         /* enable VMX operation */
750         smp_rendezvous(NULL, vmx_enable, NULL, NULL);
751
752         vmx_initialized = 1;
753
754         return (0);
755 }
756
757 static void
758 vmx_trigger_hostintr(int vector)
759 {
760         uintptr_t func;
761         struct gate_descriptor *gd;
762
763         gd = &idt[vector];
764
765         KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
766             "invalid vector %d", vector));
767         KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
768             vector));
769         KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
770             "has invalid type %d", vector, gd->gd_type));
771         KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
772             "has invalid dpl %d", vector, gd->gd_dpl));
773         KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
774             "for vector %d has invalid selector %d", vector, gd->gd_selector));
775         KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
776             "IST %d", vector, gd->gd_ist));
777
778         func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
779         vmx_call_isr(func);
780 }
781
782 static int
783 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
784 {
785         int error, mask_ident, shadow_ident;
786         uint64_t mask_value;
787
788         if (which != 0 && which != 4)
789                 panic("vmx_setup_cr_shadow: unknown cr%d", which);
790
791         if (which == 0) {
792                 mask_ident = VMCS_CR0_MASK;
793                 mask_value = cr0_ones_mask | cr0_zeros_mask;
794                 shadow_ident = VMCS_CR0_SHADOW;
795         } else {
796                 mask_ident = VMCS_CR4_MASK;
797                 mask_value = cr4_ones_mask | cr4_zeros_mask;
798                 shadow_ident = VMCS_CR4_SHADOW;
799         }
800
801         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
802         if (error)
803                 return (error);
804
805         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
806         if (error)
807                 return (error);
808
809         return (0);
810 }
811 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
812 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
813
814 static void *
815 vmx_vminit(struct vm *vm, pmap_t pmap)
816 {
817         uint16_t vpid[VM_MAXCPU];
818         int i, error;
819         struct vmx *vmx;
820         struct vmcs *vmcs;
821         uint32_t exc_bitmap;
822
823         vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
824         if ((uintptr_t)vmx & PAGE_MASK) {
825                 panic("malloc of struct vmx not aligned on %d byte boundary",
826                       PAGE_SIZE);
827         }
828         vmx->vm = vm;
829
830         vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
831
832         /*
833          * Clean up EPTP-tagged guest physical and combined mappings
834          *
835          * VMX transitions are not required to invalidate any guest physical
836          * mappings. So, it may be possible for stale guest physical mappings
837          * to be present in the processor TLBs.
838          *
839          * Combined mappings for this EP4TA are also invalidated for all VPIDs.
840          */
841         ept_invalidate_mappings(vmx->eptp);
842
843         msr_bitmap_initialize(vmx->msr_bitmap);
844
845         /*
846          * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
847          * The guest FSBASE and GSBASE are saved and restored during
848          * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
849          * always restored from the vmcs host state area on vm-exit.
850          *
851          * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
852          * how they are saved/restored so can be directly accessed by the
853          * guest.
854          *
855          * MSR_EFER is saved and restored in the guest VMCS area on a
856          * VM exit and entry respectively. It is also restored from the
857          * host VMCS area on a VM exit.
858          *
859          * The TSC MSR is exposed read-only. Writes are disallowed as
860          * that will impact the host TSC.  If the guest does a write
861          * the "use TSC offsetting" execution control is enabled and the
862          * difference between the host TSC and the guest TSC is written
863          * into the TSC offset in the VMCS.
864          */
865         if (guest_msr_rw(vmx, MSR_GSBASE) ||
866             guest_msr_rw(vmx, MSR_FSBASE) ||
867             guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
868             guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
869             guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
870             guest_msr_rw(vmx, MSR_EFER) ||
871             guest_msr_ro(vmx, MSR_TSC))
872                 panic("vmx_vminit: error setting guest msr access");
873
874         vpid_alloc(vpid, VM_MAXCPU);
875
876         if (virtual_interrupt_delivery) {
877                 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
878                     APIC_ACCESS_ADDRESS);
879                 /* XXX this should really return an error to the caller */
880                 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
881         }
882
883         for (i = 0; i < VM_MAXCPU; i++) {
884                 vmcs = &vmx->vmcs[i];
885                 vmcs->identifier = vmx_revision();
886                 error = vmclear(vmcs);
887                 if (error != 0) {
888                         panic("vmx_vminit: vmclear error %d on vcpu %d\n",
889                               error, i);
890                 }
891
892                 vmx_msr_guest_init(vmx, i);
893
894                 error = vmcs_init(vmcs);
895                 KASSERT(error == 0, ("vmcs_init error %d", error));
896
897                 VMPTRLD(vmcs);
898                 error = 0;
899                 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
900                 error += vmwrite(VMCS_EPTP, vmx->eptp);
901                 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
902                 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
903                 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
904                 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
905                 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
906                 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
907                 error += vmwrite(VMCS_VPID, vpid[i]);
908
909                 /* exception bitmap */
910                 if (vcpu_trace_exceptions(vm, i))
911                         exc_bitmap = 0xffffffff;
912                 else
913                         exc_bitmap = 1 << IDT_MC;
914                 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
915
916                 if (virtual_interrupt_delivery) {
917                         error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
918                         error += vmwrite(VMCS_VIRTUAL_APIC,
919                             vtophys(&vmx->apic_page[i]));
920                         error += vmwrite(VMCS_EOI_EXIT0, 0);
921                         error += vmwrite(VMCS_EOI_EXIT1, 0);
922                         error += vmwrite(VMCS_EOI_EXIT2, 0);
923                         error += vmwrite(VMCS_EOI_EXIT3, 0);
924                 }
925                 if (posted_interrupts) {
926                         error += vmwrite(VMCS_PIR_VECTOR, pirvec);
927                         error += vmwrite(VMCS_PIR_DESC,
928                             vtophys(&vmx->pir_desc[i]));
929                 }
930                 VMCLEAR(vmcs);
931                 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
932
933                 vmx->cap[i].set = 0;
934                 vmx->cap[i].proc_ctls = procbased_ctls;
935                 vmx->cap[i].proc_ctls2 = procbased_ctls2;
936
937                 vmx->state[i].nextrip = ~0;
938                 vmx->state[i].lastcpu = NOCPU;
939                 vmx->state[i].vpid = vpid[i];
940
941                 /*
942                  * Set up the CR0/4 shadows, and init the read shadow
943                  * to the power-on register value from the Intel Sys Arch.
944                  *  CR0 - 0x60000010
945                  *  CR4 - 0
946                  */
947                 error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
948                 if (error != 0)
949                         panic("vmx_setup_cr0_shadow %d", error);
950
951                 error = vmx_setup_cr4_shadow(vmcs, 0);
952                 if (error != 0)
953                         panic("vmx_setup_cr4_shadow %d", error);
954
955                 vmx->ctx[i].pmap = pmap;
956         }
957
958         return (vmx);
959 }
960
961 static int
962 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
963 {
964         int handled, func;
965         
966         func = vmxctx->guest_rax;
967
968         handled = x86_emulate_cpuid(vm, vcpu,
969                                     (uint32_t*)(&vmxctx->guest_rax),
970                                     (uint32_t*)(&vmxctx->guest_rbx),
971                                     (uint32_t*)(&vmxctx->guest_rcx),
972                                     (uint32_t*)(&vmxctx->guest_rdx));
973         return (handled);
974 }
975
976 static __inline void
977 vmx_run_trace(struct vmx *vmx, int vcpu)
978 {
979 #ifdef KTR
980         VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
981 #endif
982 }
983
984 static __inline void
985 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
986                int handled)
987 {
988 #ifdef KTR
989         VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
990                  handled ? "handled" : "unhandled",
991                  exit_reason_to_str(exit_reason), rip);
992 #endif
993 }
994
995 static __inline void
996 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
997 {
998 #ifdef KTR
999         VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1000 #endif
1001 }
1002
1003 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1004 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1005
1006 /*
1007  * Invalidate guest mappings identified by its vpid from the TLB.
1008  */
1009 static __inline void
1010 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1011 {
1012         struct vmxstate *vmxstate;
1013         struct invvpid_desc invvpid_desc;
1014
1015         vmxstate = &vmx->state[vcpu];
1016         if (vmxstate->vpid == 0)
1017                 return;
1018
1019         if (!running) {
1020                 /*
1021                  * Set the 'lastcpu' to an invalid host cpu.
1022                  *
1023                  * This will invalidate TLB entries tagged with the vcpu's
1024                  * vpid the next time it runs via vmx_set_pcpu_defaults().
1025                  */
1026                 vmxstate->lastcpu = NOCPU;
1027                 return;
1028         }
1029
1030         KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1031             "critical section", __func__, vcpu));
1032
1033         /*
1034          * Invalidate all mappings tagged with 'vpid'
1035          *
1036          * We do this because this vcpu was executing on a different host
1037          * cpu when it last ran. We do not track whether it invalidated
1038          * mappings associated with its 'vpid' during that run. So we must
1039          * assume that the mappings associated with 'vpid' on 'curcpu' are
1040          * stale and invalidate them.
1041          *
1042          * Note that we incur this penalty only when the scheduler chooses to
1043          * move the thread associated with this vcpu between host cpus.
1044          *
1045          * Note also that this will invalidate mappings tagged with 'vpid'
1046          * for "all" EP4TAs.
1047          */
1048         if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1049                 invvpid_desc._res1 = 0;
1050                 invvpid_desc._res2 = 0;
1051                 invvpid_desc.vpid = vmxstate->vpid;
1052                 invvpid_desc.linear_addr = 0;
1053                 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1054                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1055         } else {
1056                 /*
1057                  * The invvpid can be skipped if an invept is going to
1058                  * be performed before entering the guest. The invept
1059                  * will invalidate combined mappings tagged with
1060                  * 'vmx->eptp' for all vpids.
1061                  */
1062                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1063         }
1064 }
1065
1066 static void
1067 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1068 {
1069         struct vmxstate *vmxstate;
1070
1071         vmxstate = &vmx->state[vcpu];
1072         if (vmxstate->lastcpu == curcpu)
1073                 return;
1074
1075         vmxstate->lastcpu = curcpu;
1076
1077         vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1078
1079         vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1080         vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1081         vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1082         vmx_invvpid(vmx, vcpu, pmap, 1);
1083 }
1084
1085 /*
1086  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1087  */
1088 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1089
1090 static void __inline
1091 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1092 {
1093
1094         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1095                 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1096                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1097                 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1098         }
1099 }
1100
1101 static void __inline
1102 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1103 {
1104
1105         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1106             ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1107         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1108         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1109         VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1110 }
1111
1112 static void __inline
1113 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1114 {
1115
1116         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1117                 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1118                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1119                 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1120         }
1121 }
1122
1123 static void __inline
1124 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1125 {
1126
1127         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1128             ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1129         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1130         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1131         VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1132 }
1133
1134 int
1135 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1136 {
1137         int error;
1138
1139         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1140                 vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1141                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1142                 VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1143         }
1144
1145         error = vmwrite(VMCS_TSC_OFFSET, offset);
1146
1147         return (error);
1148 }
1149
1150 #define NMI_BLOCKING    (VMCS_INTERRUPTIBILITY_NMI_BLOCKING |           \
1151                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1152 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING |           \
1153                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1154
1155 static void
1156 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1157 {
1158         uint32_t gi, info;
1159
1160         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1161         KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1162             "interruptibility-state %#x", gi));
1163
1164         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1165         KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1166             "VM-entry interruption information %#x", info));
1167
1168         /*
1169          * Inject the virtual NMI. The vector must be the NMI IDT entry
1170          * or the VMCS entry check will fail.
1171          */
1172         info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1173         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1174
1175         VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1176
1177         /* Clear the request */
1178         vm_nmi_clear(vmx->vm, vcpu);
1179 }
1180
1181 static void
1182 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1183     uint64_t guestrip)
1184 {
1185         int vector, need_nmi_exiting, extint_pending;
1186         uint64_t rflags, entryinfo;
1187         uint32_t gi, info;
1188
1189         if (vmx->state[vcpu].nextrip != guestrip) {
1190                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1191                 if (gi & HWINTR_BLOCKING) {
1192                         VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1193                             "cleared due to rip change: %#lx/%#lx",
1194                             vmx->state[vcpu].nextrip, guestrip);
1195                         gi &= ~HWINTR_BLOCKING;
1196                         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1197                 }
1198         }
1199
1200         if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1201                 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1202                     "intinfo is not valid: %#lx", __func__, entryinfo));
1203
1204                 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1205                 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1206                      "pending exception: %#lx/%#x", __func__, entryinfo, info));
1207
1208                 info = entryinfo;
1209                 vector = info & 0xff;
1210                 if (vector == IDT_BP || vector == IDT_OF) {
1211                         /*
1212                          * VT-x requires #BP and #OF to be injected as software
1213                          * exceptions.
1214                          */
1215                         info &= ~VMCS_INTR_T_MASK;
1216                         info |= VMCS_INTR_T_SWEXCEPTION;
1217                 }
1218
1219                 if (info & VMCS_INTR_DEL_ERRCODE)
1220                         vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1221
1222                 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1223         }
1224
1225         if (vm_nmi_pending(vmx->vm, vcpu)) {
1226                 /*
1227                  * If there are no conditions blocking NMI injection then
1228                  * inject it directly here otherwise enable "NMI window
1229                  * exiting" to inject it as soon as we can.
1230                  *
1231                  * We also check for STI_BLOCKING because some implementations
1232                  * don't allow NMI injection in this case. If we are running
1233                  * on a processor that doesn't have this restriction it will
1234                  * immediately exit and the NMI will be injected in the
1235                  * "NMI window exiting" handler.
1236                  */
1237                 need_nmi_exiting = 1;
1238                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1239                 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1240                         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1241                         if ((info & VMCS_INTR_VALID) == 0) {
1242                                 vmx_inject_nmi(vmx, vcpu);
1243                                 need_nmi_exiting = 0;
1244                         } else {
1245                                 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1246                                     "due to VM-entry intr info %#x", info);
1247                         }
1248                 } else {
1249                         VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1250                             "Guest Interruptibility-state %#x", gi);
1251                 }
1252
1253                 if (need_nmi_exiting)
1254                         vmx_set_nmi_window_exiting(vmx, vcpu);
1255         }
1256
1257         extint_pending = vm_extint_pending(vmx->vm, vcpu);
1258
1259         if (!extint_pending && virtual_interrupt_delivery) {
1260                 vmx_inject_pir(vlapic);
1261                 return;
1262         }
1263
1264         /*
1265          * If interrupt-window exiting is already in effect then don't bother
1266          * checking for pending interrupts. This is just an optimization and
1267          * not needed for correctness.
1268          */
1269         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1270                 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1271                     "pending int_window_exiting");
1272                 return;
1273         }
1274
1275         if (!extint_pending) {
1276                 /* Ask the local apic for a vector to inject */
1277                 if (!vlapic_pending_intr(vlapic, &vector))
1278                         return;
1279
1280                 /*
1281                  * From the Intel SDM, Volume 3, Section "Maskable
1282                  * Hardware Interrupts":
1283                  * - maskable interrupt vectors [16,255] can be delivered
1284                  *   through the local APIC.
1285                 */
1286                 KASSERT(vector >= 16 && vector <= 255,
1287                     ("invalid vector %d from local APIC", vector));
1288         } else {
1289                 /* Ask the legacy pic for a vector to inject */
1290                 vatpic_pending_intr(vmx->vm, &vector);
1291
1292                 /*
1293                  * From the Intel SDM, Volume 3, Section "Maskable
1294                  * Hardware Interrupts":
1295                  * - maskable interrupt vectors [0,255] can be delivered
1296                  *   through the INTR pin.
1297                  */
1298                 KASSERT(vector >= 0 && vector <= 255,
1299                     ("invalid vector %d from INTR", vector));
1300         }
1301
1302         /* Check RFLAGS.IF and the interruptibility state of the guest */
1303         rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1304         if ((rflags & PSL_I) == 0) {
1305                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1306                     "rflags %#lx", vector, rflags);
1307                 goto cantinject;
1308         }
1309
1310         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1311         if (gi & HWINTR_BLOCKING) {
1312                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1313                     "Guest Interruptibility-state %#x", vector, gi);
1314                 goto cantinject;
1315         }
1316
1317         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1318         if (info & VMCS_INTR_VALID) {
1319                 /*
1320                  * This is expected and could happen for multiple reasons:
1321                  * - A vectoring VM-entry was aborted due to astpending
1322                  * - A VM-exit happened during event injection.
1323                  * - An exception was injected above.
1324                  * - An NMI was injected above or after "NMI window exiting"
1325                  */
1326                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1327                     "VM-entry intr info %#x", vector, info);
1328                 goto cantinject;
1329         }
1330
1331         /* Inject the interrupt */
1332         info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1333         info |= vector;
1334         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1335
1336         if (!extint_pending) {
1337                 /* Update the Local APIC ISR */
1338                 vlapic_intr_accepted(vlapic, vector);
1339         } else {
1340                 vm_extint_clear(vmx->vm, vcpu);
1341                 vatpic_intr_accepted(vmx->vm, vector);
1342
1343                 /*
1344                  * After we accepted the current ExtINT the PIC may
1345                  * have posted another one.  If that is the case, set
1346                  * the Interrupt Window Exiting execution control so
1347                  * we can inject that one too.
1348                  *
1349                  * Also, interrupt window exiting allows us to inject any
1350                  * pending APIC vector that was preempted by the ExtINT
1351                  * as soon as possible. This applies both for the software
1352                  * emulated vlapic and the hardware assisted virtual APIC.
1353                  */
1354                 vmx_set_int_window_exiting(vmx, vcpu);
1355         }
1356
1357         VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1358
1359         return;
1360
1361 cantinject:
1362         /*
1363          * Set the Interrupt Window Exiting execution control so we can inject
1364          * the interrupt as soon as blocking condition goes away.
1365          */
1366         vmx_set_int_window_exiting(vmx, vcpu);
1367 }
1368
1369 /*
1370  * If the Virtual NMIs execution control is '1' then the logical processor
1371  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1372  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1373  * virtual-NMI blocking.
1374  *
1375  * This unblocking occurs even if the IRET causes a fault. In this case the
1376  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1377  */
1378 static void
1379 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1380 {
1381         uint32_t gi;
1382
1383         VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1384         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1385         gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1386         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1387 }
1388
1389 static void
1390 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1391 {
1392         uint32_t gi;
1393
1394         VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1395         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1396         gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1397         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1398 }
1399
1400 static void
1401 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1402 {
1403         uint32_t gi;
1404
1405         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1406         KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1407             ("NMI blocking is not in effect %#x", gi));
1408 }
1409
1410 static int
1411 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1412 {
1413         struct vmxctx *vmxctx;
1414         uint64_t xcrval;
1415         const struct xsave_limits *limits;
1416
1417         vmxctx = &vmx->ctx[vcpu];
1418         limits = vmm_get_xsave_limits();
1419
1420         /*
1421          * Note that the processor raises a GP# fault on its own if
1422          * xsetbv is executed for CPL != 0, so we do not have to
1423          * emulate that fault here.
1424          */
1425
1426         /* Only xcr0 is supported. */
1427         if (vmxctx->guest_rcx != 0) {
1428                 vm_inject_gp(vmx->vm, vcpu);
1429                 return (HANDLED);
1430         }
1431
1432         /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1433         if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1434                 vm_inject_ud(vmx->vm, vcpu);
1435                 return (HANDLED);
1436         }
1437
1438         xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1439         if ((xcrval & ~limits->xcr0_allowed) != 0) {
1440                 vm_inject_gp(vmx->vm, vcpu);
1441                 return (HANDLED);
1442         }
1443
1444         if (!(xcrval & XFEATURE_ENABLED_X87)) {
1445                 vm_inject_gp(vmx->vm, vcpu);
1446                 return (HANDLED);
1447         }
1448
1449         /* AVX (YMM_Hi128) requires SSE. */
1450         if (xcrval & XFEATURE_ENABLED_AVX &&
1451             (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1452                 vm_inject_gp(vmx->vm, vcpu);
1453                 return (HANDLED);
1454         }
1455
1456         /*
1457          * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1458          * ZMM_Hi256, and Hi16_ZMM.
1459          */
1460         if (xcrval & XFEATURE_AVX512 &&
1461             (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1462             (XFEATURE_AVX512 | XFEATURE_AVX)) {
1463                 vm_inject_gp(vmx->vm, vcpu);
1464                 return (HANDLED);
1465         }
1466
1467         /*
1468          * Intel MPX requires both bound register state flags to be
1469          * set.
1470          */
1471         if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1472             ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1473                 vm_inject_gp(vmx->vm, vcpu);
1474                 return (HANDLED);
1475         }
1476
1477         /*
1478          * This runs "inside" vmrun() with the guest's FPU state, so
1479          * modifying xcr0 directly modifies the guest's xcr0, not the
1480          * host's.
1481          */
1482         load_xcr(0, xcrval);
1483         return (HANDLED);
1484 }
1485
1486 static uint64_t
1487 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1488 {
1489         const struct vmxctx *vmxctx;
1490
1491         vmxctx = &vmx->ctx[vcpu];
1492
1493         switch (ident) {
1494         case 0:
1495                 return (vmxctx->guest_rax);
1496         case 1:
1497                 return (vmxctx->guest_rcx);
1498         case 2:
1499                 return (vmxctx->guest_rdx);
1500         case 3:
1501                 return (vmxctx->guest_rbx);
1502         case 4:
1503                 return (vmcs_read(VMCS_GUEST_RSP));
1504         case 5:
1505                 return (vmxctx->guest_rbp);
1506         case 6:
1507                 return (vmxctx->guest_rsi);
1508         case 7:
1509                 return (vmxctx->guest_rdi);
1510         case 8:
1511                 return (vmxctx->guest_r8);
1512         case 9:
1513                 return (vmxctx->guest_r9);
1514         case 10:
1515                 return (vmxctx->guest_r10);
1516         case 11:
1517                 return (vmxctx->guest_r11);
1518         case 12:
1519                 return (vmxctx->guest_r12);
1520         case 13:
1521                 return (vmxctx->guest_r13);
1522         case 14:
1523                 return (vmxctx->guest_r14);
1524         case 15:
1525                 return (vmxctx->guest_r15);
1526         default:
1527                 panic("invalid vmx register %d", ident);
1528         }
1529 }
1530
1531 static void
1532 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1533 {
1534         struct vmxctx *vmxctx;
1535
1536         vmxctx = &vmx->ctx[vcpu];
1537
1538         switch (ident) {
1539         case 0:
1540                 vmxctx->guest_rax = regval;
1541                 break;
1542         case 1:
1543                 vmxctx->guest_rcx = regval;
1544                 break;
1545         case 2:
1546                 vmxctx->guest_rdx = regval;
1547                 break;
1548         case 3:
1549                 vmxctx->guest_rbx = regval;
1550                 break;
1551         case 4:
1552                 vmcs_write(VMCS_GUEST_RSP, regval);
1553                 break;
1554         case 5:
1555                 vmxctx->guest_rbp = regval;
1556                 break;
1557         case 6:
1558                 vmxctx->guest_rsi = regval;
1559                 break;
1560         case 7:
1561                 vmxctx->guest_rdi = regval;
1562                 break;
1563         case 8:
1564                 vmxctx->guest_r8 = regval;
1565                 break;
1566         case 9:
1567                 vmxctx->guest_r9 = regval;
1568                 break;
1569         case 10:
1570                 vmxctx->guest_r10 = regval;
1571                 break;
1572         case 11:
1573                 vmxctx->guest_r11 = regval;
1574                 break;
1575         case 12:
1576                 vmxctx->guest_r12 = regval;
1577                 break;
1578         case 13:
1579                 vmxctx->guest_r13 = regval;
1580                 break;
1581         case 14:
1582                 vmxctx->guest_r14 = regval;
1583                 break;
1584         case 15:
1585                 vmxctx->guest_r15 = regval;
1586                 break;
1587         default:
1588                 panic("invalid vmx register %d", ident);
1589         }
1590 }
1591
1592 static int
1593 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1594 {
1595         uint64_t crval, regval;
1596
1597         /* We only handle mov to %cr0 at this time */
1598         if ((exitqual & 0xf0) != 0x00)
1599                 return (UNHANDLED);
1600
1601         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1602
1603         vmcs_write(VMCS_CR0_SHADOW, regval);
1604
1605         crval = regval | cr0_ones_mask;
1606         crval &= ~cr0_zeros_mask;
1607         vmcs_write(VMCS_GUEST_CR0, crval);
1608
1609         if (regval & CR0_PG) {
1610                 uint64_t efer, entry_ctls;
1611
1612                 /*
1613                  * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1614                  * the "IA-32e mode guest" bit in VM-entry control must be
1615                  * equal.
1616                  */
1617                 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1618                 if (efer & EFER_LME) {
1619                         efer |= EFER_LMA;
1620                         vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1621                         entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1622                         entry_ctls |= VM_ENTRY_GUEST_LMA;
1623                         vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1624                 }
1625         }
1626
1627         return (HANDLED);
1628 }
1629
1630 static int
1631 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1632 {
1633         uint64_t crval, regval;
1634
1635         /* We only handle mov to %cr4 at this time */
1636         if ((exitqual & 0xf0) != 0x00)
1637                 return (UNHANDLED);
1638
1639         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1640
1641         vmcs_write(VMCS_CR4_SHADOW, regval);
1642
1643         crval = regval | cr4_ones_mask;
1644         crval &= ~cr4_zeros_mask;
1645         vmcs_write(VMCS_GUEST_CR4, crval);
1646
1647         return (HANDLED);
1648 }
1649
1650 static int
1651 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1652 {
1653         struct vlapic *vlapic;
1654         uint64_t cr8;
1655         int regnum;
1656
1657         /* We only handle mov %cr8 to/from a register at this time. */
1658         if ((exitqual & 0xe0) != 0x00) {
1659                 return (UNHANDLED);
1660         }
1661
1662         vlapic = vm_lapic(vmx->vm, vcpu);
1663         regnum = (exitqual >> 8) & 0xf;
1664         if (exitqual & 0x10) {
1665                 cr8 = vlapic_get_cr8(vlapic);
1666                 vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1667         } else {
1668                 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1669                 vlapic_set_cr8(vlapic, cr8);
1670         }
1671
1672         return (HANDLED);
1673 }
1674
1675 /*
1676  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1677  */
1678 static int
1679 vmx_cpl(void)
1680 {
1681         uint32_t ssar;
1682
1683         ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1684         return ((ssar >> 5) & 0x3);
1685 }
1686
1687 static enum vm_cpu_mode
1688 vmx_cpu_mode(void)
1689 {
1690         uint32_t csar;
1691
1692         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1693                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1694                 if (csar & 0x2000)
1695                         return (CPU_MODE_64BIT);        /* CS.L = 1 */
1696                 else
1697                         return (CPU_MODE_COMPATIBILITY);
1698         } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1699                 return (CPU_MODE_PROTECTED);
1700         } else {
1701                 return (CPU_MODE_REAL);
1702         }
1703 }
1704
1705 static enum vm_paging_mode
1706 vmx_paging_mode(void)
1707 {
1708
1709         if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1710                 return (PAGING_MODE_FLAT);
1711         if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1712                 return (PAGING_MODE_32);
1713         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1714                 return (PAGING_MODE_64);
1715         else
1716                 return (PAGING_MODE_PAE);
1717 }
1718
1719 static uint64_t
1720 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1721 {
1722         uint64_t val;
1723         int error;
1724         enum vm_reg_name reg;
1725
1726         reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1727         error = vmx_getreg(vmx, vcpuid, reg, &val);
1728         KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1729         return (val);
1730 }
1731
1732 static uint64_t
1733 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1734 {
1735         uint64_t val;
1736         int error;
1737
1738         if (rep) {
1739                 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1740                 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1741         } else {
1742                 val = 1;
1743         }
1744         return (val);
1745 }
1746
1747 static int
1748 inout_str_addrsize(uint32_t inst_info)
1749 {
1750         uint32_t size;
1751
1752         size = (inst_info >> 7) & 0x7;
1753         switch (size) {
1754         case 0:
1755                 return (2);     /* 16 bit */
1756         case 1:
1757                 return (4);     /* 32 bit */
1758         case 2:
1759                 return (8);     /* 64 bit */
1760         default:
1761                 panic("%s: invalid size encoding %d", __func__, size);
1762         }
1763 }
1764
1765 static void
1766 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1767     struct vm_inout_str *vis)
1768 {
1769         int error, s;
1770
1771         if (in) {
1772                 vis->seg_name = VM_REG_GUEST_ES;
1773         } else {
1774                 s = (inst_info >> 15) & 0x7;
1775                 vis->seg_name = vm_segment_name(s);
1776         }
1777
1778         error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1779         KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1780 }
1781
1782 static void
1783 vmx_paging_info(struct vm_guest_paging *paging)
1784 {
1785         paging->cr3 = vmcs_guest_cr3();
1786         paging->cpl = vmx_cpl();
1787         paging->cpu_mode = vmx_cpu_mode();
1788         paging->paging_mode = vmx_paging_mode();
1789 }
1790
1791 static void
1792 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1793 {
1794         struct vm_guest_paging *paging;
1795         uint32_t csar;
1796
1797         paging = &vmexit->u.inst_emul.paging;
1798
1799         vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1800         vmexit->inst_length = 0;
1801         vmexit->u.inst_emul.gpa = gpa;
1802         vmexit->u.inst_emul.gla = gla;
1803         vmx_paging_info(paging);
1804         switch (paging->cpu_mode) {
1805         case CPU_MODE_REAL:
1806                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1807                 vmexit->u.inst_emul.cs_d = 0;
1808                 break;
1809         case CPU_MODE_PROTECTED:
1810         case CPU_MODE_COMPATIBILITY:
1811                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1812                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1813                 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1814                 break;
1815         default:
1816                 vmexit->u.inst_emul.cs_base = 0;
1817                 vmexit->u.inst_emul.cs_d = 0;
1818                 break;
1819         }
1820         vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
1821 }
1822
1823 static int
1824 ept_fault_type(uint64_t ept_qual)
1825 {
1826         int fault_type;
1827
1828         if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1829                 fault_type = VM_PROT_WRITE;
1830         else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1831                 fault_type = VM_PROT_EXECUTE;
1832         else
1833                 fault_type= VM_PROT_READ;
1834
1835         return (fault_type);
1836 }
1837
1838 static boolean_t
1839 ept_emulation_fault(uint64_t ept_qual)
1840 {
1841         int read, write;
1842
1843         /* EPT fault on an instruction fetch doesn't make sense here */
1844         if (ept_qual & EPT_VIOLATION_INST_FETCH)
1845                 return (FALSE);
1846
1847         /* EPT fault must be a read fault or a write fault */
1848         read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1849         write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1850         if ((read | write) == 0)
1851                 return (FALSE);
1852
1853         /*
1854          * The EPT violation must have been caused by accessing a
1855          * guest-physical address that is a translation of a guest-linear
1856          * address.
1857          */
1858         if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1859             (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1860                 return (FALSE);
1861         }
1862
1863         return (TRUE);
1864 }
1865
1866 static __inline int
1867 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1868 {
1869         uint32_t proc_ctls2;
1870
1871         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1872         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1873 }
1874
1875 static __inline int
1876 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1877 {
1878         uint32_t proc_ctls2;
1879
1880         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1881         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1882 }
1883
1884 static int
1885 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1886     uint64_t qual)
1887 {
1888         int error, handled, offset;
1889         uint32_t *apic_regs, vector;
1890         bool retu;
1891
1892         handled = HANDLED;
1893         offset = APIC_WRITE_OFFSET(qual);
1894
1895         if (!apic_access_virtualization(vmx, vcpuid)) {
1896                 /*
1897                  * In general there should not be any APIC write VM-exits
1898                  * unless APIC-access virtualization is enabled.
1899                  *
1900                  * However self-IPI virtualization can legitimately trigger
1901                  * an APIC-write VM-exit so treat it specially.
1902                  */
1903                 if (x2apic_virtualization(vmx, vcpuid) &&
1904                     offset == APIC_OFFSET_SELF_IPI) {
1905                         apic_regs = (uint32_t *)(vlapic->apic_page);
1906                         vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1907                         vlapic_self_ipi_handler(vlapic, vector);
1908                         return (HANDLED);
1909                 } else
1910                         return (UNHANDLED);
1911         }
1912
1913         switch (offset) {
1914         case APIC_OFFSET_ID:
1915                 vlapic_id_write_handler(vlapic);
1916                 break;
1917         case APIC_OFFSET_LDR:
1918                 vlapic_ldr_write_handler(vlapic);
1919                 break;
1920         case APIC_OFFSET_DFR:
1921                 vlapic_dfr_write_handler(vlapic);
1922                 break;
1923         case APIC_OFFSET_SVR:
1924                 vlapic_svr_write_handler(vlapic);
1925                 break;
1926         case APIC_OFFSET_ESR:
1927                 vlapic_esr_write_handler(vlapic);
1928                 break;
1929         case APIC_OFFSET_ICR_LOW:
1930                 retu = false;
1931                 error = vlapic_icrlo_write_handler(vlapic, &retu);
1932                 if (error != 0 || retu)
1933                         handled = UNHANDLED;
1934                 break;
1935         case APIC_OFFSET_CMCI_LVT:
1936         case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1937                 vlapic_lvt_write_handler(vlapic, offset);
1938                 break;
1939         case APIC_OFFSET_TIMER_ICR:
1940                 vlapic_icrtmr_write_handler(vlapic);
1941                 break;
1942         case APIC_OFFSET_TIMER_DCR:
1943                 vlapic_dcr_write_handler(vlapic);
1944                 break;
1945         default:
1946                 handled = UNHANDLED;
1947                 break;
1948         }
1949         return (handled);
1950 }
1951
1952 static bool
1953 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1954 {
1955
1956         if (apic_access_virtualization(vmx, vcpuid) &&
1957             (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1958                 return (true);
1959         else
1960                 return (false);
1961 }
1962
1963 static int
1964 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1965 {
1966         uint64_t qual;
1967         int access_type, offset, allowed;
1968
1969         if (!apic_access_virtualization(vmx, vcpuid))
1970                 return (UNHANDLED);
1971
1972         qual = vmexit->u.vmx.exit_qualification;
1973         access_type = APIC_ACCESS_TYPE(qual);
1974         offset = APIC_ACCESS_OFFSET(qual);
1975
1976         allowed = 0;
1977         if (access_type == 0) {
1978                 /*
1979                  * Read data access to the following registers is expected.
1980                  */
1981                 switch (offset) {
1982                 case APIC_OFFSET_APR:
1983                 case APIC_OFFSET_PPR:
1984                 case APIC_OFFSET_RRR:
1985                 case APIC_OFFSET_CMCI_LVT:
1986                 case APIC_OFFSET_TIMER_CCR:
1987                         allowed = 1;
1988                         break;
1989                 default:
1990                         break;
1991                 }
1992         } else if (access_type == 1) {
1993                 /*
1994                  * Write data access to the following registers is expected.
1995                  */
1996                 switch (offset) {
1997                 case APIC_OFFSET_VER:
1998                 case APIC_OFFSET_APR:
1999                 case APIC_OFFSET_PPR:
2000                 case APIC_OFFSET_RRR:
2001                 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2002                 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2003                 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2004                 case APIC_OFFSET_CMCI_LVT:
2005                 case APIC_OFFSET_TIMER_CCR:
2006                         allowed = 1;
2007                         break;
2008                 default:
2009                         break;
2010                 }
2011         }
2012
2013         if (allowed) {
2014                 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2015                     VIE_INVALID_GLA);
2016         }
2017
2018         /*
2019          * Regardless of whether the APIC-access is allowed this handler
2020          * always returns UNHANDLED:
2021          * - if the access is allowed then it is handled by emulating the
2022          *   instruction that caused the VM-exit (outside the critical section)
2023          * - if the access is not allowed then it will be converted to an
2024          *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2025          */
2026         return (UNHANDLED);
2027 }
2028
2029 static enum task_switch_reason
2030 vmx_task_switch_reason(uint64_t qual)
2031 {
2032         int reason;
2033
2034         reason = (qual >> 30) & 0x3;
2035         switch (reason) {
2036         case 0:
2037                 return (TSR_CALL);
2038         case 1:
2039                 return (TSR_IRET);
2040         case 2:
2041                 return (TSR_JMP);
2042         case 3:
2043                 return (TSR_IDT_GATE);
2044         default:
2045                 panic("%s: invalid reason %d", __func__, reason);
2046         }
2047 }
2048
2049 static int
2050 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2051 {
2052         int error;
2053
2054         if (lapic_msr(num))
2055                 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2056         else
2057                 error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2058
2059         return (error);
2060 }
2061
2062 static int
2063 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2064 {
2065         struct vmxctx *vmxctx;
2066         uint64_t result;
2067         uint32_t eax, edx;
2068         int error;
2069
2070         if (lapic_msr(num))
2071                 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2072         else
2073                 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2074
2075         if (error == 0) {
2076                 eax = result;
2077                 vmxctx = &vmx->ctx[vcpuid];
2078                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2079                 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2080
2081                 edx = result >> 32;
2082                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2083                 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2084         }
2085
2086         return (error);
2087 }
2088
2089 static int
2090 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2091 {
2092         int error, errcode, errcode_valid, handled, in;
2093         struct vmxctx *vmxctx;
2094         struct vlapic *vlapic;
2095         struct vm_inout_str *vis;
2096         struct vm_task_switch *ts;
2097         uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2098         uint32_t intr_type, intr_vec, reason;
2099         uint64_t exitintinfo, qual, gpa;
2100         bool retu;
2101
2102         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2103         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2104
2105         handled = UNHANDLED;
2106         vmxctx = &vmx->ctx[vcpu];
2107
2108         qual = vmexit->u.vmx.exit_qualification;
2109         reason = vmexit->u.vmx.exit_reason;
2110         vmexit->exitcode = VM_EXITCODE_BOGUS;
2111
2112         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2113
2114         /*
2115          * VM-entry failures during or after loading guest state.
2116          *
2117          * These VM-exits are uncommon but must be handled specially
2118          * as most VM-exit fields are not populated as usual.
2119          */
2120         if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2121                 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2122                 __asm __volatile("int $18");
2123                 return (1);
2124         }
2125
2126         /*
2127          * VM exits that can be triggered during event delivery need to
2128          * be handled specially by re-injecting the event if the IDT
2129          * vectoring information field's valid bit is set.
2130          *
2131          * See "Information for VM Exits During Event Delivery" in Intel SDM
2132          * for details.
2133          */
2134         idtvec_info = vmcs_idt_vectoring_info();
2135         if (idtvec_info & VMCS_IDT_VEC_VALID) {
2136                 idtvec_info &= ~(1 << 12); /* clear undefined bit */
2137                 exitintinfo = idtvec_info;
2138                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2139                         idtvec_err = vmcs_idt_vectoring_err();
2140                         exitintinfo |= (uint64_t)idtvec_err << 32;
2141                 }
2142                 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2143                 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2144                     __func__, error));
2145
2146                 /*
2147                  * If 'virtual NMIs' are being used and the VM-exit
2148                  * happened while injecting an NMI during the previous
2149                  * VM-entry, then clear "blocking by NMI" in the
2150                  * Guest Interruptibility-State so the NMI can be
2151                  * reinjected on the subsequent VM-entry.
2152                  *
2153                  * However, if the NMI was being delivered through a task
2154                  * gate, then the new task must start execution with NMIs
2155                  * blocked so don't clear NMI blocking in this case.
2156                  */
2157                 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2158                 if (intr_type == VMCS_INTR_T_NMI) {
2159                         if (reason != EXIT_REASON_TASK_SWITCH)
2160                                 vmx_clear_nmi_blocking(vmx, vcpu);
2161                         else
2162                                 vmx_assert_nmi_blocking(vmx, vcpu);
2163                 }
2164
2165                 /*
2166                  * Update VM-entry instruction length if the event being
2167                  * delivered was a software interrupt or software exception.
2168                  */
2169                 if (intr_type == VMCS_INTR_T_SWINTR ||
2170                     intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2171                     intr_type == VMCS_INTR_T_SWEXCEPTION) {
2172                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2173                 }
2174         }
2175
2176         switch (reason) {
2177         case EXIT_REASON_TASK_SWITCH:
2178                 ts = &vmexit->u.task_switch;
2179                 ts->tsssel = qual & 0xffff;
2180                 ts->reason = vmx_task_switch_reason(qual);
2181                 ts->ext = 0;
2182                 ts->errcode_valid = 0;
2183                 vmx_paging_info(&ts->paging);
2184                 /*
2185                  * If the task switch was due to a CALL, JMP, IRET, software
2186                  * interrupt (INT n) or software exception (INT3, INTO),
2187                  * then the saved %rip references the instruction that caused
2188                  * the task switch. The instruction length field in the VMCS
2189                  * is valid in this case.
2190                  *
2191                  * In all other cases (e.g., NMI, hardware exception) the
2192                  * saved %rip is one that would have been saved in the old TSS
2193                  * had the task switch completed normally so the instruction
2194                  * length field is not needed in this case and is explicitly
2195                  * set to 0.
2196                  */
2197                 if (ts->reason == TSR_IDT_GATE) {
2198                         KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2199                             ("invalid idtvec_info %#x for IDT task switch",
2200                             idtvec_info));
2201                         intr_type = idtvec_info & VMCS_INTR_T_MASK;
2202                         if (intr_type != VMCS_INTR_T_SWINTR &&
2203                             intr_type != VMCS_INTR_T_SWEXCEPTION &&
2204                             intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2205                                 /* Task switch triggered by external event */
2206                                 ts->ext = 1;
2207                                 vmexit->inst_length = 0;
2208                                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2209                                         ts->errcode_valid = 1;
2210                                         ts->errcode = vmcs_idt_vectoring_err();
2211                                 }
2212                         }
2213                 }
2214                 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2215                 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2216                     "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2217                     ts->ext ? "external" : "internal",
2218                     ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2219                 break;
2220         case EXIT_REASON_CR_ACCESS:
2221                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2222                 switch (qual & 0xf) {
2223                 case 0:
2224                         handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2225                         break;
2226                 case 4:
2227                         handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2228                         break;
2229                 case 8:
2230                         handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2231                         break;
2232                 }
2233                 break;
2234         case EXIT_REASON_RDMSR:
2235                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2236                 retu = false;
2237                 ecx = vmxctx->guest_rcx;
2238                 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2239                 error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2240                 if (error) {
2241                         vmexit->exitcode = VM_EXITCODE_RDMSR;
2242                         vmexit->u.msr.code = ecx;
2243                 } else if (!retu) {
2244                         handled = HANDLED;
2245                 } else {
2246                         /* Return to userspace with a valid exitcode */
2247                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2248                             ("emulate_rdmsr retu with bogus exitcode"));
2249                 }
2250                 break;
2251         case EXIT_REASON_WRMSR:
2252                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2253                 retu = false;
2254                 eax = vmxctx->guest_rax;
2255                 ecx = vmxctx->guest_rcx;
2256                 edx = vmxctx->guest_rdx;
2257                 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2258                     ecx, (uint64_t)edx << 32 | eax);
2259                 error = emulate_wrmsr(vmx, vcpu, ecx,
2260                     (uint64_t)edx << 32 | eax, &retu);
2261                 if (error) {
2262                         vmexit->exitcode = VM_EXITCODE_WRMSR;
2263                         vmexit->u.msr.code = ecx;
2264                         vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2265                 } else if (!retu) {
2266                         handled = HANDLED;
2267                 } else {
2268                         /* Return to userspace with a valid exitcode */
2269                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2270                             ("emulate_wrmsr retu with bogus exitcode"));
2271                 }
2272                 break;
2273         case EXIT_REASON_HLT:
2274                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2275                 vmexit->exitcode = VM_EXITCODE_HLT;
2276                 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2277                 break;
2278         case EXIT_REASON_MTF:
2279                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2280                 vmexit->exitcode = VM_EXITCODE_MTRAP;
2281                 vmexit->inst_length = 0;
2282                 break;
2283         case EXIT_REASON_PAUSE:
2284                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2285                 vmexit->exitcode = VM_EXITCODE_PAUSE;
2286                 break;
2287         case EXIT_REASON_INTR_WINDOW:
2288                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2289                 vmx_clear_int_window_exiting(vmx, vcpu);
2290                 return (1);
2291         case EXIT_REASON_EXT_INTR:
2292                 /*
2293                  * External interrupts serve only to cause VM exits and allow
2294                  * the host interrupt handler to run.
2295                  *
2296                  * If this external interrupt triggers a virtual interrupt
2297                  * to a VM, then that state will be recorded by the
2298                  * host interrupt handler in the VM's softc. We will inject
2299                  * this virtual interrupt during the subsequent VM enter.
2300                  */
2301                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2302
2303                 /*
2304                  * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2305                  * This appears to be a bug in VMware Fusion?
2306                  */
2307                 if (!(intr_info & VMCS_INTR_VALID))
2308                         return (1);
2309                 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2310                     (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2311                     ("VM exit interruption info invalid: %#x", intr_info));
2312                 vmx_trigger_hostintr(intr_info & 0xff);
2313
2314                 /*
2315                  * This is special. We want to treat this as an 'handled'
2316                  * VM-exit but not increment the instruction pointer.
2317                  */
2318                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2319                 return (1);
2320         case EXIT_REASON_NMI_WINDOW:
2321                 /* Exit to allow the pending virtual NMI to be injected */
2322                 if (vm_nmi_pending(vmx->vm, vcpu))
2323                         vmx_inject_nmi(vmx, vcpu);
2324                 vmx_clear_nmi_window_exiting(vmx, vcpu);
2325                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2326                 return (1);
2327         case EXIT_REASON_INOUT:
2328                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2329                 vmexit->exitcode = VM_EXITCODE_INOUT;
2330                 vmexit->u.inout.bytes = (qual & 0x7) + 1;
2331                 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2332                 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2333                 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2334                 vmexit->u.inout.port = (uint16_t)(qual >> 16);
2335                 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2336                 if (vmexit->u.inout.string) {
2337                         inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2338                         vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2339                         vis = &vmexit->u.inout_str;
2340                         vmx_paging_info(&vis->paging);
2341                         vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2342                         vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2343                         vis->index = inout_str_index(vmx, vcpu, in);
2344                         vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2345                         vis->addrsize = inout_str_addrsize(inst_info);
2346                         inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2347                 }
2348                 break;
2349         case EXIT_REASON_CPUID:
2350                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2351                 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2352                 break;
2353         case EXIT_REASON_EXCEPTION:
2354                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2355                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2356                 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2357                     ("VM exit interruption info invalid: %#x", intr_info));
2358
2359                 intr_vec = intr_info & 0xff;
2360                 intr_type = intr_info & VMCS_INTR_T_MASK;
2361
2362                 /*
2363                  * If Virtual NMIs control is 1 and the VM-exit is due to a
2364                  * fault encountered during the execution of IRET then we must
2365                  * restore the state of "virtual-NMI blocking" before resuming
2366                  * the guest.
2367                  *
2368                  * See "Resuming Guest Software after Handling an Exception".
2369                  * See "Information for VM Exits Due to Vectored Events".
2370                  */
2371                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2372                     (intr_vec != IDT_DF) &&
2373                     (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2374                         vmx_restore_nmi_blocking(vmx, vcpu);
2375
2376                 /*
2377                  * The NMI has already been handled in vmx_exit_handle_nmi().
2378                  */
2379                 if (intr_type == VMCS_INTR_T_NMI)
2380                         return (1);
2381
2382                 /*
2383                  * Call the machine check handler by hand. Also don't reflect
2384                  * the machine check back into the guest.
2385                  */
2386                 if (intr_vec == IDT_MC) {
2387                         VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2388                         __asm __volatile("int $18");
2389                         return (1);
2390                 }
2391
2392                 if (intr_vec == IDT_PF) {
2393                         error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2394                         KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2395                             __func__, error));
2396                 }
2397
2398                 /*
2399                  * Software exceptions exhibit trap-like behavior. This in
2400                  * turn requires populating the VM-entry instruction length
2401                  * so that the %rip in the trap frame is past the INT3/INTO
2402                  * instruction.
2403                  */
2404                 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2405                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2406
2407                 /* Reflect all other exceptions back into the guest */
2408                 errcode_valid = errcode = 0;
2409                 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2410                         errcode_valid = 1;
2411                         errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2412                 }
2413                 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2414                     "the guest", intr_vec, errcode);
2415                 error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2416                     errcode_valid, errcode, 0);
2417                 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2418                     __func__, error));
2419                 return (1);
2420
2421         case EXIT_REASON_EPT_FAULT:
2422                 /*
2423                  * If 'gpa' lies within the address space allocated to
2424                  * memory then this must be a nested page fault otherwise
2425                  * this must be an instruction that accesses MMIO space.
2426                  */
2427                 gpa = vmcs_gpa();
2428                 if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2429                     apic_access_fault(vmx, vcpu, gpa)) {
2430                         vmexit->exitcode = VM_EXITCODE_PAGING;
2431                         vmexit->inst_length = 0;
2432                         vmexit->u.paging.gpa = gpa;
2433                         vmexit->u.paging.fault_type = ept_fault_type(qual);
2434                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2435                 } else if (ept_emulation_fault(qual)) {
2436                         vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2437                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2438                 }
2439                 /*
2440                  * If Virtual NMIs control is 1 and the VM-exit is due to an
2441                  * EPT fault during the execution of IRET then we must restore
2442                  * the state of "virtual-NMI blocking" before resuming.
2443                  *
2444                  * See description of "NMI unblocking due to IRET" in
2445                  * "Exit Qualification for EPT Violations".
2446                  */
2447                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2448                     (qual & EXIT_QUAL_NMIUDTI) != 0)
2449                         vmx_restore_nmi_blocking(vmx, vcpu);
2450                 break;
2451         case EXIT_REASON_VIRTUALIZED_EOI:
2452                 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2453                 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2454                 vmexit->inst_length = 0;        /* trap-like */
2455                 break;
2456         case EXIT_REASON_APIC_ACCESS:
2457                 handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2458                 break;
2459         case EXIT_REASON_APIC_WRITE:
2460                 /*
2461                  * APIC-write VM exit is trap-like so the %rip is already
2462                  * pointing to the next instruction.
2463                  */
2464                 vmexit->inst_length = 0;
2465                 vlapic = vm_lapic(vmx->vm, vcpu);
2466                 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2467                 break;
2468         case EXIT_REASON_XSETBV:
2469                 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2470                 break;
2471         case EXIT_REASON_MONITOR:
2472                 vmexit->exitcode = VM_EXITCODE_MONITOR;
2473                 break;
2474         case EXIT_REASON_MWAIT:
2475                 vmexit->exitcode = VM_EXITCODE_MWAIT;
2476                 break;
2477         default:
2478                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2479                 break;
2480         }
2481
2482         if (handled) {
2483                 /*
2484                  * It is possible that control is returned to userland
2485                  * even though we were able to handle the VM exit in the
2486                  * kernel.
2487                  *
2488                  * In such a case we want to make sure that the userland
2489                  * restarts guest execution at the instruction *after*
2490                  * the one we just processed. Therefore we update the
2491                  * guest rip in the VMCS and in 'vmexit'.
2492                  */
2493                 vmexit->rip += vmexit->inst_length;
2494                 vmexit->inst_length = 0;
2495                 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2496         } else {
2497                 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2498                         /*
2499                          * If this VM exit was not claimed by anybody then
2500                          * treat it as a generic VMX exit.
2501                          */
2502                         vmexit->exitcode = VM_EXITCODE_VMX;
2503                         vmexit->u.vmx.status = VM_SUCCESS;
2504                         vmexit->u.vmx.inst_type = 0;
2505                         vmexit->u.vmx.inst_error = 0;
2506                 } else {
2507                         /*
2508                          * The exitcode and collateral have been populated.
2509                          * The VM exit will be processed further in userland.
2510                          */
2511                 }
2512         }
2513         return (handled);
2514 }
2515
2516 static __inline void
2517 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2518 {
2519
2520         KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2521             ("vmx_exit_inst_error: invalid inst_fail_status %d",
2522             vmxctx->inst_fail_status));
2523
2524         vmexit->inst_length = 0;
2525         vmexit->exitcode = VM_EXITCODE_VMX;
2526         vmexit->u.vmx.status = vmxctx->inst_fail_status;
2527         vmexit->u.vmx.inst_error = vmcs_instruction_error();
2528         vmexit->u.vmx.exit_reason = ~0;
2529         vmexit->u.vmx.exit_qualification = ~0;
2530
2531         switch (rc) {
2532         case VMX_VMRESUME_ERROR:
2533         case VMX_VMLAUNCH_ERROR:
2534         case VMX_INVEPT_ERROR:
2535                 vmexit->u.vmx.inst_type = rc;
2536                 break;
2537         default:
2538                 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2539         }
2540 }
2541
2542 /*
2543  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2544  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2545  * sufficient to simply vector to the NMI handler via a software interrupt.
2546  * However, this must be done before maskable interrupts are enabled
2547  * otherwise the "iret" issued by an interrupt handler will incorrectly
2548  * clear NMI blocking.
2549  */
2550 static __inline void
2551 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2552 {
2553         uint32_t intr_info;
2554
2555         KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2556
2557         if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2558                 return;
2559
2560         intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2561         KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2562             ("VM exit interruption info invalid: %#x", intr_info));
2563
2564         if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2565                 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2566                     "to NMI has invalid vector: %#x", intr_info));
2567                 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2568                 __asm __volatile("int $2");
2569         }
2570 }
2571
2572 static int
2573 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2574     struct vm_eventinfo *evinfo)
2575 {
2576         int rc, handled, launched;
2577         struct vmx *vmx;
2578         struct vm *vm;
2579         struct vmxctx *vmxctx;
2580         struct vmcs *vmcs;
2581         struct vm_exit *vmexit;
2582         struct vlapic *vlapic;
2583         uint32_t exit_reason;
2584
2585         vmx = arg;
2586         vm = vmx->vm;
2587         vmcs = &vmx->vmcs[vcpu];
2588         vmxctx = &vmx->ctx[vcpu];
2589         vlapic = vm_lapic(vm, vcpu);
2590         vmexit = vm_exitinfo(vm, vcpu);
2591         launched = 0;
2592
2593         KASSERT(vmxctx->pmap == pmap,
2594             ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2595
2596         vmx_msr_guest_enter(vmx, vcpu);
2597
2598         VMPTRLD(vmcs);
2599
2600         /*
2601          * XXX
2602          * We do this every time because we may setup the virtual machine
2603          * from a different process than the one that actually runs it.
2604          *
2605          * If the life of a virtual machine was spent entirely in the context
2606          * of a single process we could do this once in vmx_vminit().
2607          */
2608         vmcs_write(VMCS_HOST_CR3, rcr3());
2609
2610         vmcs_write(VMCS_GUEST_RIP, rip);
2611         vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2612         do {
2613                 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2614                     "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
2615
2616                 handled = UNHANDLED;
2617                 /*
2618                  * Interrupts are disabled from this point on until the
2619                  * guest starts executing. This is done for the following
2620                  * reasons:
2621                  *
2622                  * If an AST is asserted on this thread after the check below,
2623                  * then the IPI_AST notification will not be lost, because it
2624                  * will cause a VM exit due to external interrupt as soon as
2625                  * the guest state is loaded.
2626                  *
2627                  * A posted interrupt after 'vmx_inject_interrupts()' will
2628                  * not be "lost" because it will be held pending in the host
2629                  * APIC because interrupts are disabled. The pending interrupt
2630                  * will be recognized as soon as the guest state is loaded.
2631                  *
2632                  * The same reasoning applies to the IPI generated by
2633                  * pmap_invalidate_ept().
2634                  */
2635                 disable_intr();
2636                 vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
2637
2638                 /*
2639                  * Check for vcpu suspension after injecting events because
2640                  * vmx_inject_interrupts() can suspend the vcpu due to a
2641                  * triple fault.
2642                  */
2643                 if (vcpu_suspended(evinfo)) {
2644                         enable_intr();
2645                         vm_exit_suspended(vmx->vm, vcpu, rip);
2646                         break;
2647                 }
2648
2649                 if (vcpu_rendezvous_pending(evinfo)) {
2650                         enable_intr();
2651                         vm_exit_rendezvous(vmx->vm, vcpu, rip);
2652                         break;
2653                 }
2654
2655                 if (vcpu_reqidle(evinfo)) {
2656                         enable_intr();
2657                         vm_exit_reqidle(vmx->vm, vcpu, rip);
2658                         break;
2659                 }
2660
2661                 if (vcpu_should_yield(vm, vcpu)) {
2662                         enable_intr();
2663                         vm_exit_astpending(vmx->vm, vcpu, rip);
2664                         vmx_astpending_trace(vmx, vcpu, rip);
2665                         handled = HANDLED;
2666                         break;
2667                 }
2668
2669                 vmx_run_trace(vmx, vcpu);
2670                 rc = vmx_enter_guest(vmxctx, vmx, launched);
2671
2672                 /* Collect some information for VM exit processing */
2673                 vmexit->rip = rip = vmcs_guest_rip();
2674                 vmexit->inst_length = vmexit_instruction_length();
2675                 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2676                 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2677
2678                 /* Update 'nextrip' */
2679                 vmx->state[vcpu].nextrip = rip;
2680
2681                 if (rc == VMX_GUEST_VMEXIT) {
2682                         vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2683                         enable_intr();
2684                         handled = vmx_exit_process(vmx, vcpu, vmexit);
2685                 } else {
2686                         enable_intr();
2687                         vmx_exit_inst_error(vmxctx, rc, vmexit);
2688                 }
2689                 launched = 1;
2690                 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2691                 rip = vmexit->rip;
2692         } while (handled);
2693
2694         /*
2695          * If a VM exit has been handled then the exitcode must be BOGUS
2696          * If a VM exit is not handled then the exitcode must not be BOGUS
2697          */
2698         if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2699             (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2700                 panic("Mismatch between handled (%d) and exitcode (%d)",
2701                       handled, vmexit->exitcode);
2702         }
2703
2704         if (!handled)
2705                 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2706
2707         VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2708             vmexit->exitcode);
2709
2710         VMCLEAR(vmcs);
2711         vmx_msr_guest_exit(vmx, vcpu);
2712
2713         return (0);
2714 }
2715
2716 static void
2717 vmx_vmcleanup(void *arg)
2718 {
2719         int i;
2720         struct vmx *vmx = arg;
2721
2722         if (apic_access_virtualization(vmx, 0))
2723                 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2724
2725         for (i = 0; i < VM_MAXCPU; i++)
2726                 vpid_free(vmx->state[i].vpid);
2727
2728         free(vmx, M_VMX);
2729
2730         return;
2731 }
2732
2733 static register_t *
2734 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2735 {
2736
2737         switch (reg) {
2738         case VM_REG_GUEST_RAX:
2739                 return (&vmxctx->guest_rax);
2740         case VM_REG_GUEST_RBX:
2741                 return (&vmxctx->guest_rbx);
2742         case VM_REG_GUEST_RCX:
2743                 return (&vmxctx->guest_rcx);
2744         case VM_REG_GUEST_RDX:
2745                 return (&vmxctx->guest_rdx);
2746         case VM_REG_GUEST_RSI:
2747                 return (&vmxctx->guest_rsi);
2748         case VM_REG_GUEST_RDI:
2749                 return (&vmxctx->guest_rdi);
2750         case VM_REG_GUEST_RBP:
2751                 return (&vmxctx->guest_rbp);
2752         case VM_REG_GUEST_R8:
2753                 return (&vmxctx->guest_r8);
2754         case VM_REG_GUEST_R9:
2755                 return (&vmxctx->guest_r9);
2756         case VM_REG_GUEST_R10:
2757                 return (&vmxctx->guest_r10);
2758         case VM_REG_GUEST_R11:
2759                 return (&vmxctx->guest_r11);
2760         case VM_REG_GUEST_R12:
2761                 return (&vmxctx->guest_r12);
2762         case VM_REG_GUEST_R13:
2763                 return (&vmxctx->guest_r13);
2764         case VM_REG_GUEST_R14:
2765                 return (&vmxctx->guest_r14);
2766         case VM_REG_GUEST_R15:
2767                 return (&vmxctx->guest_r15);
2768         case VM_REG_GUEST_CR2:
2769                 return (&vmxctx->guest_cr2);
2770         default:
2771                 break;
2772         }
2773         return (NULL);
2774 }
2775
2776 static int
2777 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2778 {
2779         register_t *regp;
2780
2781         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2782                 *retval = *regp;
2783                 return (0);
2784         } else
2785                 return (EINVAL);
2786 }
2787
2788 static int
2789 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2790 {
2791         register_t *regp;
2792
2793         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2794                 *regp = val;
2795                 return (0);
2796         } else
2797                 return (EINVAL);
2798 }
2799
2800 static int
2801 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
2802 {
2803         uint64_t gi;
2804         int error;
2805
2806         error = vmcs_getreg(&vmx->vmcs[vcpu], running, 
2807             VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
2808         *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
2809         return (error);
2810 }
2811
2812 static int
2813 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
2814 {
2815         struct vmcs *vmcs;
2816         uint64_t gi;
2817         int error, ident;
2818
2819         /*
2820          * Forcing the vcpu into an interrupt shadow is not supported.
2821          */
2822         if (val) {
2823                 error = EINVAL;
2824                 goto done;
2825         }
2826
2827         vmcs = &vmx->vmcs[vcpu];
2828         ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
2829         error = vmcs_getreg(vmcs, running, ident, &gi);
2830         if (error == 0) {
2831                 gi &= ~HWINTR_BLOCKING;
2832                 error = vmcs_setreg(vmcs, running, ident, gi);
2833         }
2834 done:
2835         VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
2836             error ? "failed" : "succeeded");
2837         return (error);
2838 }
2839
2840 static int
2841 vmx_shadow_reg(int reg)
2842 {
2843         int shreg;
2844
2845         shreg = -1;
2846
2847         switch (reg) {
2848         case VM_REG_GUEST_CR0:
2849                 shreg = VMCS_CR0_SHADOW;
2850                 break;
2851         case VM_REG_GUEST_CR4:
2852                 shreg = VMCS_CR4_SHADOW;
2853                 break;
2854         default:
2855                 break;
2856         }
2857
2858         return (shreg);
2859 }
2860
2861 static int
2862 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2863 {
2864         int running, hostcpu;
2865         struct vmx *vmx = arg;
2866
2867         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2868         if (running && hostcpu != curcpu)
2869                 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2870
2871         if (reg == VM_REG_GUEST_INTR_SHADOW)
2872                 return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
2873
2874         if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2875                 return (0);
2876
2877         return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2878 }
2879
2880 static int
2881 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2882 {
2883         int error, hostcpu, running, shadow;
2884         uint64_t ctls;
2885         pmap_t pmap;
2886         struct vmx *vmx = arg;
2887
2888         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2889         if (running && hostcpu != curcpu)
2890                 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2891
2892         if (reg == VM_REG_GUEST_INTR_SHADOW)
2893                 return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
2894
2895         if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2896                 return (0);
2897
2898         error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2899
2900         if (error == 0) {
2901                 /*
2902                  * If the "load EFER" VM-entry control is 1 then the
2903                  * value of EFER.LMA must be identical to "IA-32e mode guest"
2904                  * bit in the VM-entry control.
2905                  */
2906                 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2907                     (reg == VM_REG_GUEST_EFER)) {
2908                         vmcs_getreg(&vmx->vmcs[vcpu], running,
2909                                     VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2910                         if (val & EFER_LMA)
2911                                 ctls |= VM_ENTRY_GUEST_LMA;
2912                         else
2913                                 ctls &= ~VM_ENTRY_GUEST_LMA;
2914                         vmcs_setreg(&vmx->vmcs[vcpu], running,
2915                                     VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2916                 }
2917
2918                 shadow = vmx_shadow_reg(reg);
2919                 if (shadow > 0) {
2920                         /*
2921                          * Store the unmodified value in the shadow
2922                          */                     
2923                         error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2924                                     VMCS_IDENT(shadow), val);
2925                 }
2926
2927                 if (reg == VM_REG_GUEST_CR3) {
2928                         /*
2929                          * Invalidate the guest vcpu's TLB mappings to emulate
2930                          * the behavior of updating %cr3.
2931                          *
2932                          * XXX the processor retains global mappings when %cr3
2933                          * is updated but vmx_invvpid() does not.
2934                          */
2935                         pmap = vmx->ctx[vcpu].pmap;
2936                         vmx_invvpid(vmx, vcpu, pmap, running);
2937                 }
2938         }
2939
2940         return (error);
2941 }
2942
2943 static int
2944 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2945 {
2946         int hostcpu, running;
2947         struct vmx *vmx = arg;
2948
2949         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2950         if (running && hostcpu != curcpu)
2951                 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2952
2953         return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
2954 }
2955
2956 static int
2957 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2958 {
2959         int hostcpu, running;
2960         struct vmx *vmx = arg;
2961
2962         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2963         if (running && hostcpu != curcpu)
2964                 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2965
2966         return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
2967 }
2968
2969 static int
2970 vmx_getcap(void *arg, int vcpu, int type, int *retval)
2971 {
2972         struct vmx *vmx = arg;
2973         int vcap;
2974         int ret;
2975
2976         ret = ENOENT;
2977
2978         vcap = vmx->cap[vcpu].set;
2979
2980         switch (type) {
2981         case VM_CAP_HALT_EXIT:
2982                 if (cap_halt_exit)
2983                         ret = 0;
2984                 break;
2985         case VM_CAP_PAUSE_EXIT:
2986                 if (cap_pause_exit)
2987                         ret = 0;
2988                 break;
2989         case VM_CAP_MTRAP_EXIT:
2990                 if (cap_monitor_trap)
2991                         ret = 0;
2992                 break;
2993         case VM_CAP_UNRESTRICTED_GUEST:
2994                 if (cap_unrestricted_guest)
2995                         ret = 0;
2996                 break;
2997         case VM_CAP_ENABLE_INVPCID:
2998                 if (cap_invpcid)
2999                         ret = 0;
3000                 break;
3001         default:
3002                 break;
3003         }
3004
3005         if (ret == 0)
3006                 *retval = (vcap & (1 << type)) ? 1 : 0;
3007
3008         return (ret);
3009 }
3010
3011 static int
3012 vmx_setcap(void *arg, int vcpu, int type, int val)
3013 {
3014         struct vmx *vmx = arg;
3015         struct vmcs *vmcs = &vmx->vmcs[vcpu];
3016         uint32_t baseval;
3017         uint32_t *pptr;
3018         int error;
3019         int flag;
3020         int reg;
3021         int retval;
3022
3023         retval = ENOENT;
3024         pptr = NULL;
3025
3026         switch (type) {
3027         case VM_CAP_HALT_EXIT:
3028                 if (cap_halt_exit) {
3029                         retval = 0;
3030                         pptr = &vmx->cap[vcpu].proc_ctls;
3031                         baseval = *pptr;
3032                         flag = PROCBASED_HLT_EXITING;
3033                         reg = VMCS_PRI_PROC_BASED_CTLS;
3034                 }
3035                 break;
3036         case VM_CAP_MTRAP_EXIT:
3037                 if (cap_monitor_trap) {
3038                         retval = 0;
3039                         pptr = &vmx->cap[vcpu].proc_ctls;
3040                         baseval = *pptr;
3041                         flag = PROCBASED_MTF;
3042                         reg = VMCS_PRI_PROC_BASED_CTLS;
3043                 }
3044                 break;
3045         case VM_CAP_PAUSE_EXIT:
3046                 if (cap_pause_exit) {
3047                         retval = 0;
3048                         pptr = &vmx->cap[vcpu].proc_ctls;
3049                         baseval = *pptr;
3050                         flag = PROCBASED_PAUSE_EXITING;
3051                         reg = VMCS_PRI_PROC_BASED_CTLS;
3052                 }
3053                 break;
3054         case VM_CAP_UNRESTRICTED_GUEST:
3055                 if (cap_unrestricted_guest) {
3056                         retval = 0;
3057                         pptr = &vmx->cap[vcpu].proc_ctls2;
3058                         baseval = *pptr;
3059                         flag = PROCBASED2_UNRESTRICTED_GUEST;
3060                         reg = VMCS_SEC_PROC_BASED_CTLS;
3061                 }
3062                 break;
3063         case VM_CAP_ENABLE_INVPCID:
3064                 if (cap_invpcid) {
3065                         retval = 0;
3066                         pptr = &vmx->cap[vcpu].proc_ctls2;
3067                         baseval = *pptr;
3068                         flag = PROCBASED2_ENABLE_INVPCID;
3069                         reg = VMCS_SEC_PROC_BASED_CTLS;
3070                 }
3071                 break;
3072         default:
3073                 break;
3074         }
3075
3076         if (retval == 0) {
3077                 if (val) {
3078                         baseval |= flag;
3079                 } else {
3080                         baseval &= ~flag;
3081                 }
3082                 VMPTRLD(vmcs);
3083                 error = vmwrite(reg, baseval);
3084                 VMCLEAR(vmcs);
3085
3086                 if (error) {
3087                         retval = error;
3088                 } else {
3089                         /*
3090                          * Update optional stored flags, and record
3091                          * setting
3092                          */
3093                         if (pptr != NULL) {
3094                                 *pptr = baseval;
3095                         }
3096
3097                         if (val) {
3098                                 vmx->cap[vcpu].set |= (1 << type);
3099                         } else {
3100                                 vmx->cap[vcpu].set &= ~(1 << type);
3101                         }
3102                 }
3103         }
3104
3105         return (retval);
3106 }
3107
3108 struct vlapic_vtx {
3109         struct vlapic   vlapic;
3110         struct pir_desc *pir_desc;
3111         struct vmx      *vmx;
3112 };
3113
3114 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)   \
3115 do {                                                                    \
3116         VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",     \
3117             level ? "level" : "edge", vector);                          \
3118         VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);  \
3119         VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);  \
3120         VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);  \
3121         VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);  \
3122         VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3123 } while (0)
3124
3125 /*
3126  * vlapic->ops handlers that utilize the APICv hardware assist described in
3127  * Chapter 29 of the Intel SDM.
3128  */
3129 static int
3130 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3131 {
3132         struct vlapic_vtx *vlapic_vtx;
3133         struct pir_desc *pir_desc;
3134         uint64_t mask;
3135         int idx, notify;
3136
3137         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3138         pir_desc = vlapic_vtx->pir_desc;
3139
3140         /*
3141          * Keep track of interrupt requests in the PIR descriptor. This is
3142          * because the virtual APIC page pointed to by the VMCS cannot be
3143          * modified if the vcpu is running.
3144          */
3145         idx = vector / 64;
3146         mask = 1UL << (vector % 64);
3147         atomic_set_long(&pir_desc->pir[idx], mask);
3148         notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
3149
3150         VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3151             level, "vmx_set_intr_ready");
3152         return (notify);
3153 }
3154
3155 static int
3156 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3157 {
3158         struct vlapic_vtx *vlapic_vtx;
3159         struct pir_desc *pir_desc;
3160         struct LAPIC *lapic;
3161         uint64_t pending, pirval;
3162         uint32_t ppr, vpr;
3163         int i;
3164
3165         /*
3166          * This function is only expected to be called from the 'HLT' exit
3167          * handler which does not care about the vector that is pending.
3168          */
3169         KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3170
3171         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3172         pir_desc = vlapic_vtx->pir_desc;
3173
3174         pending = atomic_load_acq_long(&pir_desc->pending);
3175         if (!pending)
3176                 return (0);     /* common case */
3177
3178         /*
3179          * If there is an interrupt pending then it will be recognized only
3180          * if its priority is greater than the processor priority.
3181          *
3182          * Special case: if the processor priority is zero then any pending
3183          * interrupt will be recognized.
3184          */
3185         lapic = vlapic->apic_page;
3186         ppr = lapic->ppr & 0xf0;
3187         if (ppr == 0)
3188                 return (1);
3189
3190         VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3191             lapic->ppr);
3192
3193         for (i = 3; i >= 0; i--) {
3194                 pirval = pir_desc->pir[i];
3195                 if (pirval != 0) {
3196                         vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
3197                         return (vpr > ppr);
3198                 }
3199         }
3200         return (0);
3201 }
3202
3203 static void
3204 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3205 {
3206
3207         panic("vmx_intr_accepted: not expected to be called");
3208 }
3209
3210 static void
3211 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3212 {
3213         struct vlapic_vtx *vlapic_vtx;
3214         struct vmx *vmx;
3215         struct vmcs *vmcs;
3216         uint64_t mask, val;
3217
3218         KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3219         KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3220             ("vmx_set_tmr: vcpu cannot be running"));
3221
3222         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3223         vmx = vlapic_vtx->vmx;
3224         vmcs = &vmx->vmcs[vlapic->vcpuid];
3225         mask = 1UL << (vector % 64);
3226
3227         VMPTRLD(vmcs);
3228         val = vmcs_read(VMCS_EOI_EXIT(vector));
3229         if (level)
3230                 val |= mask;
3231         else
3232                 val &= ~mask;
3233         vmcs_write(VMCS_EOI_EXIT(vector), val);
3234         VMCLEAR(vmcs);
3235 }
3236
3237 static void
3238 vmx_enable_x2apic_mode(struct vlapic *vlapic)
3239 {
3240         struct vmx *vmx;
3241         struct vmcs *vmcs;
3242         uint32_t proc_ctls2;
3243         int vcpuid, error;
3244
3245         vcpuid = vlapic->vcpuid;
3246         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3247         vmcs = &vmx->vmcs[vcpuid];
3248
3249         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3250         KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3251             ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3252
3253         proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3254         proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3255         vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3256
3257         VMPTRLD(vmcs);
3258         vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3259         VMCLEAR(vmcs);
3260
3261         if (vlapic->vcpuid == 0) {
3262                 /*
3263                  * The nested page table mappings are shared by all vcpus
3264                  * so unmap the APIC access page just once.
3265                  */
3266                 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3267                 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3268                     __func__, error));
3269
3270                 /*
3271                  * The MSR bitmap is shared by all vcpus so modify it only
3272                  * once in the context of vcpu 0.
3273                  */
3274                 error = vmx_allow_x2apic_msrs(vmx);
3275                 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3276                     __func__, error));
3277         }
3278 }
3279
3280 static void
3281 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3282 {
3283
3284         ipi_cpu(hostcpu, pirvec);
3285 }
3286
3287 /*
3288  * Transfer the pending interrupts in the PIR descriptor to the IRR
3289  * in the virtual APIC page.
3290  */
3291 static void
3292 vmx_inject_pir(struct vlapic *vlapic)
3293 {
3294         struct vlapic_vtx *vlapic_vtx;
3295         struct pir_desc *pir_desc;
3296         struct LAPIC *lapic;
3297         uint64_t val, pirval;
3298         int rvi, pirbase = -1;
3299         uint16_t intr_status_old, intr_status_new;
3300
3301         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3302         pir_desc = vlapic_vtx->pir_desc;
3303         if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3304                 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3305                     "no posted interrupt pending");
3306                 return;
3307         }
3308
3309         pirval = 0;
3310         pirbase = -1;
3311         lapic = vlapic->apic_page;
3312
3313         val = atomic_readandclear_long(&pir_desc->pir[0]);
3314         if (val != 0) {
3315                 lapic->irr0 |= val;
3316                 lapic->irr1 |= val >> 32;
3317                 pirbase = 0;
3318                 pirval = val;
3319         }
3320
3321         val = atomic_readandclear_long(&pir_desc->pir[1]);
3322         if (val != 0) {
3323                 lapic->irr2 |= val;
3324                 lapic->irr3 |= val >> 32;
3325                 pirbase = 64;
3326                 pirval = val;
3327         }
3328
3329         val = atomic_readandclear_long(&pir_desc->pir[2]);
3330         if (val != 0) {
3331                 lapic->irr4 |= val;
3332                 lapic->irr5 |= val >> 32;
3333                 pirbase = 128;
3334                 pirval = val;
3335         }
3336
3337         val = atomic_readandclear_long(&pir_desc->pir[3]);
3338         if (val != 0) {
3339                 lapic->irr6 |= val;
3340                 lapic->irr7 |= val >> 32;
3341                 pirbase = 192;
3342                 pirval = val;
3343         }
3344
3345         VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3346
3347         /*
3348          * Update RVI so the processor can evaluate pending virtual
3349          * interrupts on VM-entry.
3350          *
3351          * It is possible for pirval to be 0 here, even though the
3352          * pending bit has been set. The scenario is:
3353          * CPU-Y is sending a posted interrupt to CPU-X, which
3354          * is running a guest and processing posted interrupts in h/w.
3355          * CPU-X will eventually exit and the state seen in s/w is
3356          * the pending bit set, but no PIR bits set.
3357          *
3358          *      CPU-X                      CPU-Y
3359          *   (vm running)                (host running)
3360          *   rx posted interrupt
3361          *   CLEAR pending bit
3362          *                               SET PIR bit
3363          *   READ/CLEAR PIR bits
3364          *                               SET pending bit
3365          *   (vm exit)
3366          *   pending bit set, PIR 0
3367          */
3368         if (pirval != 0) {
3369                 rvi = pirbase + flsl(pirval) - 1;
3370                 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3371                 intr_status_new = (intr_status_old & 0xFF00) | rvi;
3372                 if (intr_status_new > intr_status_old) {
3373                         vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3374                         VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3375                             "guest_intr_status changed from 0x%04x to 0x%04x",
3376                             intr_status_old, intr_status_new);
3377                 }
3378         }
3379 }
3380
3381 static struct vlapic *
3382 vmx_vlapic_init(void *arg, int vcpuid)
3383 {
3384         struct vmx *vmx;
3385         struct vlapic *vlapic;
3386         struct vlapic_vtx *vlapic_vtx;
3387         
3388         vmx = arg;
3389
3390         vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3391         vlapic->vm = vmx->vm;
3392         vlapic->vcpuid = vcpuid;
3393         vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3394
3395         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3396         vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3397         vlapic_vtx->vmx = vmx;
3398
3399         if (virtual_interrupt_delivery) {
3400                 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3401                 vlapic->ops.pending_intr = vmx_pending_intr;
3402                 vlapic->ops.intr_accepted = vmx_intr_accepted;
3403                 vlapic->ops.set_tmr = vmx_set_tmr;
3404                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
3405         }
3406
3407         if (posted_interrupts)
3408                 vlapic->ops.post_intr = vmx_post_intr;
3409
3410         vlapic_init(vlapic);
3411
3412         return (vlapic);
3413 }
3414
3415 static void
3416 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3417 {
3418
3419         vlapic_cleanup(vlapic);
3420         free(vlapic, M_VLAPIC);
3421 }
3422
3423 struct vmm_ops vmm_ops_intel = {
3424         vmx_init,
3425         vmx_cleanup,
3426         vmx_restore,
3427         vmx_vminit,
3428         vmx_run,
3429         vmx_vmcleanup,
3430         vmx_getreg,
3431         vmx_setreg,
3432         vmx_getdesc,
3433         vmx_setdesc,
3434         vmx_getcap,
3435         vmx_setcap,
3436         ept_vmspace_alloc,
3437         ept_vmspace_free,
3438         vmx_vlapic_init,
3439         vmx_vlapic_cleanup,
3440 };