]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/amd64/vmm/intel/vmx.c
Merge llvm trunk r238337 from ^/vendor/llvm/dist, resolve conflicts, and
[FreeBSD/FreeBSD.git] / sys / amd64 / vmm / intel / vmx.c
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43
44 #include <machine/psl.h>
45 #include <machine/cpufunc.h>
46 #include <machine/md_var.h>
47 #include <machine/segments.h>
48 #include <machine/smp.h>
49 #include <machine/specialreg.h>
50 #include <machine/vmparam.h>
51
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include "vmm_lapic.h"
56 #include "vmm_host.h"
57 #include "vmm_ioport.h"
58 #include "vmm_ktr.h"
59 #include "vmm_stat.h"
60 #include "vatpic.h"
61 #include "vlapic.h"
62 #include "vlapic_priv.h"
63
64 #include "ept.h"
65 #include "vmx_cpufunc.h"
66 #include "vmx.h"
67 #include "vmx_msr.h"
68 #include "x86.h"
69 #include "vmx_controls.h"
70
71 #define PINBASED_CTLS_ONE_SETTING                                       \
72         (PINBASED_EXTINT_EXITING        |                               \
73          PINBASED_NMI_EXITING           |                               \
74          PINBASED_VIRTUAL_NMI)
75 #define PINBASED_CTLS_ZERO_SETTING      0
76
77 #define PROCBASED_CTLS_WINDOW_SETTING                                   \
78         (PROCBASED_INT_WINDOW_EXITING   |                               \
79          PROCBASED_NMI_WINDOW_EXITING)
80
81 #define PROCBASED_CTLS_ONE_SETTING                                      \
82         (PROCBASED_SECONDARY_CONTROLS   |                               \
83          PROCBASED_MWAIT_EXITING        |                               \
84          PROCBASED_MONITOR_EXITING      |                               \
85          PROCBASED_IO_EXITING           |                               \
86          PROCBASED_MSR_BITMAPS          |                               \
87          PROCBASED_CTLS_WINDOW_SETTING  |                               \
88          PROCBASED_CR8_LOAD_EXITING     |                               \
89          PROCBASED_CR8_STORE_EXITING)
90 #define PROCBASED_CTLS_ZERO_SETTING     \
91         (PROCBASED_CR3_LOAD_EXITING |   \
92         PROCBASED_CR3_STORE_EXITING |   \
93         PROCBASED_IO_BITMAPS)
94
95 #define PROCBASED_CTLS2_ONE_SETTING     PROCBASED2_ENABLE_EPT
96 #define PROCBASED_CTLS2_ZERO_SETTING    0
97
98 #define VM_EXIT_CTLS_ONE_SETTING                                        \
99         (VM_EXIT_HOST_LMA                       |                       \
100         VM_EXIT_SAVE_EFER                       |                       \
101         VM_EXIT_LOAD_EFER                       |                       \
102         VM_EXIT_ACKNOWLEDGE_INTERRUPT)
103
104 #define VM_EXIT_CTLS_ZERO_SETTING       VM_EXIT_SAVE_DEBUG_CONTROLS
105
106 #define VM_ENTRY_CTLS_ONE_SETTING       (VM_ENTRY_LOAD_EFER)
107
108 #define VM_ENTRY_CTLS_ZERO_SETTING                                      \
109         (VM_ENTRY_LOAD_DEBUG_CONTROLS           |                       \
110         VM_ENTRY_INTO_SMM                       |                       \
111         VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
112
113 #define HANDLED         1
114 #define UNHANDLED       0
115
116 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
117 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
118
119 SYSCTL_DECL(_hw_vmm);
120 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
121
122 int vmxon_enabled[MAXCPU];
123 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
124
125 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
126 static uint32_t exit_ctls, entry_ctls;
127
128 static uint64_t cr0_ones_mask, cr0_zeros_mask;
129 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
130              &cr0_ones_mask, 0, NULL);
131 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
132              &cr0_zeros_mask, 0, NULL);
133
134 static uint64_t cr4_ones_mask, cr4_zeros_mask;
135 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
136              &cr4_ones_mask, 0, NULL);
137 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
138              &cr4_zeros_mask, 0, NULL);
139
140 static int vmx_initialized;
141 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
142            &vmx_initialized, 0, "Intel VMX initialized");
143
144 /*
145  * Optional capabilities
146  */
147 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
148
149 static int cap_halt_exit;
150 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
151     "HLT triggers a VM-exit");
152
153 static int cap_pause_exit;
154 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
155     0, "PAUSE triggers a VM-exit");
156
157 static int cap_unrestricted_guest;
158 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
159     &cap_unrestricted_guest, 0, "Unrestricted guests");
160
161 static int cap_monitor_trap;
162 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
163     &cap_monitor_trap, 0, "Monitor trap flag");
164
165 static int cap_invpcid;
166 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
167     0, "Guests are allowed to use INVPCID");
168
169 static int virtual_interrupt_delivery;
170 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
171     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
172
173 static int posted_interrupts;
174 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
175     &posted_interrupts, 0, "APICv posted interrupt support");
176
177 static int pirvec = -1;
178 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
179     &pirvec, 0, "APICv posted interrupt vector");
180
181 static struct unrhdr *vpid_unr;
182 static u_int vpid_alloc_failed;
183 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
184             &vpid_alloc_failed, 0, NULL);
185
186 /*
187  * Use the last page below 4GB as the APIC access address. This address is
188  * occupied by the boot firmware so it is guaranteed that it will not conflict
189  * with a page in system memory.
190  */
191 #define APIC_ACCESS_ADDRESS     0xFFFFF000
192
193 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
194 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
195 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
196 static void vmx_inject_pir(struct vlapic *vlapic);
197
198 #ifdef KTR
199 static const char *
200 exit_reason_to_str(int reason)
201 {
202         static char reasonbuf[32];
203
204         switch (reason) {
205         case EXIT_REASON_EXCEPTION:
206                 return "exception";
207         case EXIT_REASON_EXT_INTR:
208                 return "extint";
209         case EXIT_REASON_TRIPLE_FAULT:
210                 return "triplefault";
211         case EXIT_REASON_INIT:
212                 return "init";
213         case EXIT_REASON_SIPI:
214                 return "sipi";
215         case EXIT_REASON_IO_SMI:
216                 return "iosmi";
217         case EXIT_REASON_SMI:
218                 return "smi";
219         case EXIT_REASON_INTR_WINDOW:
220                 return "intrwindow";
221         case EXIT_REASON_NMI_WINDOW:
222                 return "nmiwindow";
223         case EXIT_REASON_TASK_SWITCH:
224                 return "taskswitch";
225         case EXIT_REASON_CPUID:
226                 return "cpuid";
227         case EXIT_REASON_GETSEC:
228                 return "getsec";
229         case EXIT_REASON_HLT:
230                 return "hlt";
231         case EXIT_REASON_INVD:
232                 return "invd";
233         case EXIT_REASON_INVLPG:
234                 return "invlpg";
235         case EXIT_REASON_RDPMC:
236                 return "rdpmc";
237         case EXIT_REASON_RDTSC:
238                 return "rdtsc";
239         case EXIT_REASON_RSM:
240                 return "rsm";
241         case EXIT_REASON_VMCALL:
242                 return "vmcall";
243         case EXIT_REASON_VMCLEAR:
244                 return "vmclear";
245         case EXIT_REASON_VMLAUNCH:
246                 return "vmlaunch";
247         case EXIT_REASON_VMPTRLD:
248                 return "vmptrld";
249         case EXIT_REASON_VMPTRST:
250                 return "vmptrst";
251         case EXIT_REASON_VMREAD:
252                 return "vmread";
253         case EXIT_REASON_VMRESUME:
254                 return "vmresume";
255         case EXIT_REASON_VMWRITE:
256                 return "vmwrite";
257         case EXIT_REASON_VMXOFF:
258                 return "vmxoff";
259         case EXIT_REASON_VMXON:
260                 return "vmxon";
261         case EXIT_REASON_CR_ACCESS:
262                 return "craccess";
263         case EXIT_REASON_DR_ACCESS:
264                 return "draccess";
265         case EXIT_REASON_INOUT:
266                 return "inout";
267         case EXIT_REASON_RDMSR:
268                 return "rdmsr";
269         case EXIT_REASON_WRMSR:
270                 return "wrmsr";
271         case EXIT_REASON_INVAL_VMCS:
272                 return "invalvmcs";
273         case EXIT_REASON_INVAL_MSR:
274                 return "invalmsr";
275         case EXIT_REASON_MWAIT:
276                 return "mwait";
277         case EXIT_REASON_MTF:
278                 return "mtf";
279         case EXIT_REASON_MONITOR:
280                 return "monitor";
281         case EXIT_REASON_PAUSE:
282                 return "pause";
283         case EXIT_REASON_MCE_DURING_ENTRY:
284                 return "mce-during-entry";
285         case EXIT_REASON_TPR:
286                 return "tpr";
287         case EXIT_REASON_APIC_ACCESS:
288                 return "apic-access";
289         case EXIT_REASON_GDTR_IDTR:
290                 return "gdtridtr";
291         case EXIT_REASON_LDTR_TR:
292                 return "ldtrtr";
293         case EXIT_REASON_EPT_FAULT:
294                 return "eptfault";
295         case EXIT_REASON_EPT_MISCONFIG:
296                 return "eptmisconfig";
297         case EXIT_REASON_INVEPT:
298                 return "invept";
299         case EXIT_REASON_RDTSCP:
300                 return "rdtscp";
301         case EXIT_REASON_VMX_PREEMPT:
302                 return "vmxpreempt";
303         case EXIT_REASON_INVVPID:
304                 return "invvpid";
305         case EXIT_REASON_WBINVD:
306                 return "wbinvd";
307         case EXIT_REASON_XSETBV:
308                 return "xsetbv";
309         case EXIT_REASON_APIC_WRITE:
310                 return "apic-write";
311         default:
312                 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
313                 return (reasonbuf);
314         }
315 }
316 #endif  /* KTR */
317
318 static int
319 vmx_allow_x2apic_msrs(struct vmx *vmx)
320 {
321         int i, error;
322
323         error = 0;
324
325         /*
326          * Allow readonly access to the following x2APIC MSRs from the guest.
327          */
328         error += guest_msr_ro(vmx, MSR_APIC_ID);
329         error += guest_msr_ro(vmx, MSR_APIC_VERSION);
330         error += guest_msr_ro(vmx, MSR_APIC_LDR);
331         error += guest_msr_ro(vmx, MSR_APIC_SVR);
332
333         for (i = 0; i < 8; i++)
334                 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
335
336         for (i = 0; i < 8; i++)
337                 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
338         
339         for (i = 0; i < 8; i++)
340                 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
341
342         error += guest_msr_ro(vmx, MSR_APIC_ESR);
343         error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
344         error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
345         error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
346         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
347         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
348         error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
349         error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
350         error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
351         error += guest_msr_ro(vmx, MSR_APIC_ICR);
352
353         /*
354          * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
355          *
356          * These registers get special treatment described in the section
357          * "Virtualizing MSR-Based APIC Accesses".
358          */
359         error += guest_msr_rw(vmx, MSR_APIC_TPR);
360         error += guest_msr_rw(vmx, MSR_APIC_EOI);
361         error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
362
363         return (error);
364 }
365
366 u_long
367 vmx_fix_cr0(u_long cr0)
368 {
369
370         return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
371 }
372
373 u_long
374 vmx_fix_cr4(u_long cr4)
375 {
376
377         return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
378 }
379
380 static void
381 vpid_free(int vpid)
382 {
383         if (vpid < 0 || vpid > 0xffff)
384                 panic("vpid_free: invalid vpid %d", vpid);
385
386         /*
387          * VPIDs [0,VM_MAXCPU] are special and are not allocated from
388          * the unit number allocator.
389          */
390
391         if (vpid > VM_MAXCPU)
392                 free_unr(vpid_unr, vpid);
393 }
394
395 static void
396 vpid_alloc(uint16_t *vpid, int num)
397 {
398         int i, x;
399
400         if (num <= 0 || num > VM_MAXCPU)
401                 panic("invalid number of vpids requested: %d", num);
402
403         /*
404          * If the "enable vpid" execution control is not enabled then the
405          * VPID is required to be 0 for all vcpus.
406          */
407         if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
408                 for (i = 0; i < num; i++)
409                         vpid[i] = 0;
410                 return;
411         }
412
413         /*
414          * Allocate a unique VPID for each vcpu from the unit number allocator.
415          */
416         for (i = 0; i < num; i++) {
417                 x = alloc_unr(vpid_unr);
418                 if (x == -1)
419                         break;
420                 else
421                         vpid[i] = x;
422         }
423
424         if (i < num) {
425                 atomic_add_int(&vpid_alloc_failed, 1);
426
427                 /*
428                  * If the unit number allocator does not have enough unique
429                  * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
430                  *
431                  * These VPIDs are not be unique across VMs but this does not
432                  * affect correctness because the combined mappings are also
433                  * tagged with the EP4TA which is unique for each VM.
434                  *
435                  * It is still sub-optimal because the invvpid will invalidate
436                  * combined mappings for a particular VPID across all EP4TAs.
437                  */
438                 while (i-- > 0)
439                         vpid_free(vpid[i]);
440
441                 for (i = 0; i < num; i++)
442                         vpid[i] = i + 1;
443         }
444 }
445
446 static void
447 vpid_init(void)
448 {
449         /*
450          * VPID 0 is required when the "enable VPID" execution control is
451          * disabled.
452          *
453          * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
454          * unit number allocator does not have sufficient unique VPIDs to
455          * satisfy the allocation.
456          *
457          * The remaining VPIDs are managed by the unit number allocator.
458          */
459         vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
460 }
461
462 static void
463 vmx_disable(void *arg __unused)
464 {
465         struct invvpid_desc invvpid_desc = { 0 };
466         struct invept_desc invept_desc = { 0 };
467
468         if (vmxon_enabled[curcpu]) {
469                 /*
470                  * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
471                  *
472                  * VMXON or VMXOFF are not required to invalidate any TLB
473                  * caching structures. This prevents potential retention of
474                  * cached information in the TLB between distinct VMX episodes.
475                  */
476                 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
477                 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
478                 vmxoff();
479         }
480         load_cr4(rcr4() & ~CR4_VMXE);
481 }
482
483 static int
484 vmx_cleanup(void)
485 {
486         
487         if (pirvec >= 0)
488                 lapic_ipi_free(pirvec);
489
490         if (vpid_unr != NULL) {
491                 delete_unrhdr(vpid_unr);
492                 vpid_unr = NULL;
493         }
494
495         smp_rendezvous(NULL, vmx_disable, NULL, NULL);
496
497         return (0);
498 }
499
500 static void
501 vmx_enable(void *arg __unused)
502 {
503         int error;
504         uint64_t feature_control;
505
506         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
507         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
508             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
509                 wrmsr(MSR_IA32_FEATURE_CONTROL,
510                     feature_control | IA32_FEATURE_CONTROL_VMX_EN |
511                     IA32_FEATURE_CONTROL_LOCK);
512         }
513
514         load_cr4(rcr4() | CR4_VMXE);
515
516         *(uint32_t *)vmxon_region[curcpu] = vmx_revision();
517         error = vmxon(vmxon_region[curcpu]);
518         if (error == 0)
519                 vmxon_enabled[curcpu] = 1;
520 }
521
522 static void
523 vmx_restore(void)
524 {
525
526         if (vmxon_enabled[curcpu])
527                 vmxon(vmxon_region[curcpu]);
528 }
529
530 static int
531 vmx_init(int ipinum)
532 {
533         int error, use_tpr_shadow;
534         uint64_t basic, fixed0, fixed1, feature_control;
535         uint32_t tmp, procbased2_vid_bits;
536
537         /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
538         if (!(cpu_feature2 & CPUID2_VMX)) {
539                 printf("vmx_init: processor does not support VMX operation\n");
540                 return (ENXIO);
541         }
542
543         /*
544          * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
545          * are set (bits 0 and 2 respectively).
546          */
547         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
548         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
549             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
550                 printf("vmx_init: VMX operation disabled by BIOS\n");
551                 return (ENXIO);
552         }
553
554         /*
555          * Verify capabilities MSR_VMX_BASIC:
556          * - bit 54 indicates support for INS/OUTS decoding
557          */
558         basic = rdmsr(MSR_VMX_BASIC);
559         if ((basic & (1UL << 54)) == 0) {
560                 printf("vmx_init: processor does not support desired basic "
561                     "capabilities\n");
562                 return (EINVAL);
563         }
564
565         /* Check support for primary processor-based VM-execution controls */
566         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
567                                MSR_VMX_TRUE_PROCBASED_CTLS,
568                                PROCBASED_CTLS_ONE_SETTING,
569                                PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
570         if (error) {
571                 printf("vmx_init: processor does not support desired primary "
572                        "processor-based controls\n");
573                 return (error);
574         }
575
576         /* Clear the processor-based ctl bits that are set on demand */
577         procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
578
579         /* Check support for secondary processor-based VM-execution controls */
580         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
581                                MSR_VMX_PROCBASED_CTLS2,
582                                PROCBASED_CTLS2_ONE_SETTING,
583                                PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
584         if (error) {
585                 printf("vmx_init: processor does not support desired secondary "
586                        "processor-based controls\n");
587                 return (error);
588         }
589
590         /* Check support for VPID */
591         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
592                                PROCBASED2_ENABLE_VPID, 0, &tmp);
593         if (error == 0)
594                 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
595
596         /* Check support for pin-based VM-execution controls */
597         error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
598                                MSR_VMX_TRUE_PINBASED_CTLS,
599                                PINBASED_CTLS_ONE_SETTING,
600                                PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
601         if (error) {
602                 printf("vmx_init: processor does not support desired "
603                        "pin-based controls\n");
604                 return (error);
605         }
606
607         /* Check support for VM-exit controls */
608         error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
609                                VM_EXIT_CTLS_ONE_SETTING,
610                                VM_EXIT_CTLS_ZERO_SETTING,
611                                &exit_ctls);
612         if (error) {
613                 printf("vmx_init: processor does not support desired "
614                     "exit controls\n");
615                 return (error);
616         }
617
618         /* Check support for VM-entry controls */
619         error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
620             VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
621             &entry_ctls);
622         if (error) {
623                 printf("vmx_init: processor does not support desired "
624                     "entry controls\n");
625                 return (error);
626         }
627
628         /*
629          * Check support for optional features by testing them
630          * as individual bits
631          */
632         cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
633                                         MSR_VMX_TRUE_PROCBASED_CTLS,
634                                         PROCBASED_HLT_EXITING, 0,
635                                         &tmp) == 0);
636
637         cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
638                                         MSR_VMX_PROCBASED_CTLS,
639                                         PROCBASED_MTF, 0,
640                                         &tmp) == 0);
641
642         cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
643                                          MSR_VMX_TRUE_PROCBASED_CTLS,
644                                          PROCBASED_PAUSE_EXITING, 0,
645                                          &tmp) == 0);
646
647         cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
648                                         MSR_VMX_PROCBASED_CTLS2,
649                                         PROCBASED2_UNRESTRICTED_GUEST, 0,
650                                         &tmp) == 0);
651
652         cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
653             MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
654             &tmp) == 0);
655
656         /*
657          * Check support for virtual interrupt delivery.
658          */
659         procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
660             PROCBASED2_VIRTUALIZE_X2APIC_MODE |
661             PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
662             PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
663
664         use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
665             MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
666             &tmp) == 0);
667
668         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
669             procbased2_vid_bits, 0, &tmp);
670         if (error == 0 && use_tpr_shadow) {
671                 virtual_interrupt_delivery = 1;
672                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
673                     &virtual_interrupt_delivery);
674         }
675
676         if (virtual_interrupt_delivery) {
677                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
678                 procbased_ctls2 |= procbased2_vid_bits;
679                 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
680
681                 /*
682                  * No need to emulate accesses to %CR8 if virtual
683                  * interrupt delivery is enabled.
684                  */
685                 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
686                 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
687
688                 /*
689                  * Check for Posted Interrupts only if Virtual Interrupt
690                  * Delivery is enabled.
691                  */
692                 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
693                     MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
694                     &tmp);
695                 if (error == 0) {
696                         pirvec = lapic_ipi_alloc(&IDTVEC(justreturn));
697                         if (pirvec < 0) {
698                                 if (bootverbose) {
699                                         printf("vmx_init: unable to allocate "
700                                             "posted interrupt vector\n");
701                                 }
702                         } else {
703                                 posted_interrupts = 1;
704                                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
705                                     &posted_interrupts);
706                         }
707                 }
708         }
709
710         if (posted_interrupts)
711                     pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
712
713         /* Initialize EPT */
714         error = ept_init(ipinum);
715         if (error) {
716                 printf("vmx_init: ept initialization failed (%d)\n", error);
717                 return (error);
718         }
719
720         /*
721          * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
722          */
723         fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
724         fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
725         cr0_ones_mask = fixed0 & fixed1;
726         cr0_zeros_mask = ~fixed0 & ~fixed1;
727
728         /*
729          * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
730          * if unrestricted guest execution is allowed.
731          */
732         if (cap_unrestricted_guest)
733                 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
734
735         /*
736          * Do not allow the guest to set CR0_NW or CR0_CD.
737          */
738         cr0_zeros_mask |= (CR0_NW | CR0_CD);
739
740         fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
741         fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
742         cr4_ones_mask = fixed0 & fixed1;
743         cr4_zeros_mask = ~fixed0 & ~fixed1;
744
745         vpid_init();
746
747         vmx_msr_init();
748
749         /* enable VMX operation */
750         smp_rendezvous(NULL, vmx_enable, NULL, NULL);
751
752         vmx_initialized = 1;
753
754         return (0);
755 }
756
757 static void
758 vmx_trigger_hostintr(int vector)
759 {
760         uintptr_t func;
761         struct gate_descriptor *gd;
762
763         gd = &idt[vector];
764
765         KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
766             "invalid vector %d", vector));
767         KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
768             vector));
769         KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
770             "has invalid type %d", vector, gd->gd_type));
771         KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
772             "has invalid dpl %d", vector, gd->gd_dpl));
773         KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
774             "for vector %d has invalid selector %d", vector, gd->gd_selector));
775         KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
776             "IST %d", vector, gd->gd_ist));
777
778         func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
779         vmx_call_isr(func);
780 }
781
782 static int
783 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
784 {
785         int error, mask_ident, shadow_ident;
786         uint64_t mask_value;
787
788         if (which != 0 && which != 4)
789                 panic("vmx_setup_cr_shadow: unknown cr%d", which);
790
791         if (which == 0) {
792                 mask_ident = VMCS_CR0_MASK;
793                 mask_value = cr0_ones_mask | cr0_zeros_mask;
794                 shadow_ident = VMCS_CR0_SHADOW;
795         } else {
796                 mask_ident = VMCS_CR4_MASK;
797                 mask_value = cr4_ones_mask | cr4_zeros_mask;
798                 shadow_ident = VMCS_CR4_SHADOW;
799         }
800
801         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
802         if (error)
803                 return (error);
804
805         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
806         if (error)
807                 return (error);
808
809         return (0);
810 }
811 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
812 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
813
814 static void *
815 vmx_vminit(struct vm *vm, pmap_t pmap)
816 {
817         uint16_t vpid[VM_MAXCPU];
818         int i, error;
819         struct vmx *vmx;
820         struct vmcs *vmcs;
821         uint32_t exc_bitmap;
822
823         vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
824         if ((uintptr_t)vmx & PAGE_MASK) {
825                 panic("malloc of struct vmx not aligned on %d byte boundary",
826                       PAGE_SIZE);
827         }
828         vmx->vm = vm;
829
830         vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
831
832         /*
833          * Clean up EPTP-tagged guest physical and combined mappings
834          *
835          * VMX transitions are not required to invalidate any guest physical
836          * mappings. So, it may be possible for stale guest physical mappings
837          * to be present in the processor TLBs.
838          *
839          * Combined mappings for this EP4TA are also invalidated for all VPIDs.
840          */
841         ept_invalidate_mappings(vmx->eptp);
842
843         msr_bitmap_initialize(vmx->msr_bitmap);
844
845         /*
846          * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
847          * The guest FSBASE and GSBASE are saved and restored during
848          * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
849          * always restored from the vmcs host state area on vm-exit.
850          *
851          * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
852          * how they are saved/restored so can be directly accessed by the
853          * guest.
854          *
855          * MSR_EFER is saved and restored in the guest VMCS area on a
856          * VM exit and entry respectively. It is also restored from the
857          * host VMCS area on a VM exit.
858          *
859          * The TSC MSR is exposed read-only. Writes are disallowed as that
860          * will impact the host TSC.
861          * XXX Writes would be implemented with a wrmsr trap, and
862          * then modifying the TSC offset in the VMCS.
863          */
864         if (guest_msr_rw(vmx, MSR_GSBASE) ||
865             guest_msr_rw(vmx, MSR_FSBASE) ||
866             guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
867             guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
868             guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
869             guest_msr_rw(vmx, MSR_EFER) ||
870             guest_msr_ro(vmx, MSR_TSC))
871                 panic("vmx_vminit: error setting guest msr access");
872
873         vpid_alloc(vpid, VM_MAXCPU);
874
875         if (virtual_interrupt_delivery) {
876                 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
877                     APIC_ACCESS_ADDRESS);
878                 /* XXX this should really return an error to the caller */
879                 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
880         }
881
882         for (i = 0; i < VM_MAXCPU; i++) {
883                 vmcs = &vmx->vmcs[i];
884                 vmcs->identifier = vmx_revision();
885                 error = vmclear(vmcs);
886                 if (error != 0) {
887                         panic("vmx_vminit: vmclear error %d on vcpu %d\n",
888                               error, i);
889                 }
890
891                 vmx_msr_guest_init(vmx, i);
892
893                 error = vmcs_init(vmcs);
894                 KASSERT(error == 0, ("vmcs_init error %d", error));
895
896                 VMPTRLD(vmcs);
897                 error = 0;
898                 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
899                 error += vmwrite(VMCS_EPTP, vmx->eptp);
900                 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
901                 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
902                 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
903                 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
904                 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
905                 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
906                 error += vmwrite(VMCS_VPID, vpid[i]);
907
908                 /* exception bitmap */
909                 if (vcpu_trace_exceptions(vm, i))
910                         exc_bitmap = 0xffffffff;
911                 else
912                         exc_bitmap = 1 << IDT_MC;
913                 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
914
915                 if (virtual_interrupt_delivery) {
916                         error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
917                         error += vmwrite(VMCS_VIRTUAL_APIC,
918                             vtophys(&vmx->apic_page[i]));
919                         error += vmwrite(VMCS_EOI_EXIT0, 0);
920                         error += vmwrite(VMCS_EOI_EXIT1, 0);
921                         error += vmwrite(VMCS_EOI_EXIT2, 0);
922                         error += vmwrite(VMCS_EOI_EXIT3, 0);
923                 }
924                 if (posted_interrupts) {
925                         error += vmwrite(VMCS_PIR_VECTOR, pirvec);
926                         error += vmwrite(VMCS_PIR_DESC,
927                             vtophys(&vmx->pir_desc[i]));
928                 }
929                 VMCLEAR(vmcs);
930                 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
931
932                 vmx->cap[i].set = 0;
933                 vmx->cap[i].proc_ctls = procbased_ctls;
934                 vmx->cap[i].proc_ctls2 = procbased_ctls2;
935
936                 vmx->state[i].nextrip = ~0;
937                 vmx->state[i].lastcpu = NOCPU;
938                 vmx->state[i].vpid = vpid[i];
939
940                 /*
941                  * Set up the CR0/4 shadows, and init the read shadow
942                  * to the power-on register value from the Intel Sys Arch.
943                  *  CR0 - 0x60000010
944                  *  CR4 - 0
945                  */
946                 error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
947                 if (error != 0)
948                         panic("vmx_setup_cr0_shadow %d", error);
949
950                 error = vmx_setup_cr4_shadow(vmcs, 0);
951                 if (error != 0)
952                         panic("vmx_setup_cr4_shadow %d", error);
953
954                 vmx->ctx[i].pmap = pmap;
955         }
956
957         return (vmx);
958 }
959
960 static int
961 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
962 {
963         int handled, func;
964         
965         func = vmxctx->guest_rax;
966
967         handled = x86_emulate_cpuid(vm, vcpu,
968                                     (uint32_t*)(&vmxctx->guest_rax),
969                                     (uint32_t*)(&vmxctx->guest_rbx),
970                                     (uint32_t*)(&vmxctx->guest_rcx),
971                                     (uint32_t*)(&vmxctx->guest_rdx));
972         return (handled);
973 }
974
975 static __inline void
976 vmx_run_trace(struct vmx *vmx, int vcpu)
977 {
978 #ifdef KTR
979         VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
980 #endif
981 }
982
983 static __inline void
984 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
985                int handled)
986 {
987 #ifdef KTR
988         VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
989                  handled ? "handled" : "unhandled",
990                  exit_reason_to_str(exit_reason), rip);
991 #endif
992 }
993
994 static __inline void
995 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
996 {
997 #ifdef KTR
998         VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
999 #endif
1000 }
1001
1002 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1003 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1004
1005 /*
1006  * Invalidate guest mappings identified by its vpid from the TLB.
1007  */
1008 static __inline void
1009 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1010 {
1011         struct vmxstate *vmxstate;
1012         struct invvpid_desc invvpid_desc;
1013
1014         vmxstate = &vmx->state[vcpu];
1015         if (vmxstate->vpid == 0)
1016                 return;
1017
1018         if (!running) {
1019                 /*
1020                  * Set the 'lastcpu' to an invalid host cpu.
1021                  *
1022                  * This will invalidate TLB entries tagged with the vcpu's
1023                  * vpid the next time it runs via vmx_set_pcpu_defaults().
1024                  */
1025                 vmxstate->lastcpu = NOCPU;
1026                 return;
1027         }
1028
1029         KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1030             "critical section", __func__, vcpu));
1031
1032         /*
1033          * Invalidate all mappings tagged with 'vpid'
1034          *
1035          * We do this because this vcpu was executing on a different host
1036          * cpu when it last ran. We do not track whether it invalidated
1037          * mappings associated with its 'vpid' during that run. So we must
1038          * assume that the mappings associated with 'vpid' on 'curcpu' are
1039          * stale and invalidate them.
1040          *
1041          * Note that we incur this penalty only when the scheduler chooses to
1042          * move the thread associated with this vcpu between host cpus.
1043          *
1044          * Note also that this will invalidate mappings tagged with 'vpid'
1045          * for "all" EP4TAs.
1046          */
1047         if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1048                 invvpid_desc._res1 = 0;
1049                 invvpid_desc._res2 = 0;
1050                 invvpid_desc.vpid = vmxstate->vpid;
1051                 invvpid_desc.linear_addr = 0;
1052                 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1053                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1054         } else {
1055                 /*
1056                  * The invvpid can be skipped if an invept is going to
1057                  * be performed before entering the guest. The invept
1058                  * will invalidate combined mappings tagged with
1059                  * 'vmx->eptp' for all vpids.
1060                  */
1061                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1062         }
1063 }
1064
1065 static void
1066 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1067 {
1068         struct vmxstate *vmxstate;
1069
1070         vmxstate = &vmx->state[vcpu];
1071         if (vmxstate->lastcpu == curcpu)
1072                 return;
1073
1074         vmxstate->lastcpu = curcpu;
1075
1076         vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1077
1078         vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1079         vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1080         vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1081         vmx_invvpid(vmx, vcpu, pmap, 1);
1082 }
1083
1084 /*
1085  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1086  */
1087 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1088
1089 static void __inline
1090 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1091 {
1092
1093         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1094                 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1095                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1096                 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1097         }
1098 }
1099
1100 static void __inline
1101 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1102 {
1103
1104         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1105             ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1106         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1107         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1108         VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1109 }
1110
1111 static void __inline
1112 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1113 {
1114
1115         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1116                 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1117                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1118                 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1119         }
1120 }
1121
1122 static void __inline
1123 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1124 {
1125
1126         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1127             ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1128         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1129         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1130         VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1131 }
1132
1133 #define NMI_BLOCKING    (VMCS_INTERRUPTIBILITY_NMI_BLOCKING |           \
1134                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1135 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING |           \
1136                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1137
1138 static void
1139 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1140 {
1141         uint32_t gi, info;
1142
1143         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1144         KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1145             "interruptibility-state %#x", gi));
1146
1147         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1148         KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1149             "VM-entry interruption information %#x", info));
1150
1151         /*
1152          * Inject the virtual NMI. The vector must be the NMI IDT entry
1153          * or the VMCS entry check will fail.
1154          */
1155         info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1156         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1157
1158         VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1159
1160         /* Clear the request */
1161         vm_nmi_clear(vmx->vm, vcpu);
1162 }
1163
1164 static void
1165 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1166     uint64_t guestrip)
1167 {
1168         int vector, need_nmi_exiting, extint_pending;
1169         uint64_t rflags, entryinfo;
1170         uint32_t gi, info;
1171
1172         if (vmx->state[vcpu].nextrip != guestrip) {
1173                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1174                 if (gi & HWINTR_BLOCKING) {
1175                         VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1176                             "cleared due to rip change: %#lx/%#lx",
1177                             vmx->state[vcpu].nextrip, guestrip);
1178                         gi &= ~HWINTR_BLOCKING;
1179                         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1180                 }
1181         }
1182
1183         if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1184                 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1185                     "intinfo is not valid: %#lx", __func__, entryinfo));
1186
1187                 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1188                 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1189                      "pending exception: %#lx/%#x", __func__, entryinfo, info));
1190
1191                 info = entryinfo;
1192                 vector = info & 0xff;
1193                 if (vector == IDT_BP || vector == IDT_OF) {
1194                         /*
1195                          * VT-x requires #BP and #OF to be injected as software
1196                          * exceptions.
1197                          */
1198                         info &= ~VMCS_INTR_T_MASK;
1199                         info |= VMCS_INTR_T_SWEXCEPTION;
1200                 }
1201
1202                 if (info & VMCS_INTR_DEL_ERRCODE)
1203                         vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1204
1205                 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1206         }
1207
1208         if (vm_nmi_pending(vmx->vm, vcpu)) {
1209                 /*
1210                  * If there are no conditions blocking NMI injection then
1211                  * inject it directly here otherwise enable "NMI window
1212                  * exiting" to inject it as soon as we can.
1213                  *
1214                  * We also check for STI_BLOCKING because some implementations
1215                  * don't allow NMI injection in this case. If we are running
1216                  * on a processor that doesn't have this restriction it will
1217                  * immediately exit and the NMI will be injected in the
1218                  * "NMI window exiting" handler.
1219                  */
1220                 need_nmi_exiting = 1;
1221                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1222                 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1223                         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1224                         if ((info & VMCS_INTR_VALID) == 0) {
1225                                 vmx_inject_nmi(vmx, vcpu);
1226                                 need_nmi_exiting = 0;
1227                         } else {
1228                                 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1229                                     "due to VM-entry intr info %#x", info);
1230                         }
1231                 } else {
1232                         VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1233                             "Guest Interruptibility-state %#x", gi);
1234                 }
1235
1236                 if (need_nmi_exiting)
1237                         vmx_set_nmi_window_exiting(vmx, vcpu);
1238         }
1239
1240         extint_pending = vm_extint_pending(vmx->vm, vcpu);
1241
1242         if (!extint_pending && virtual_interrupt_delivery) {
1243                 vmx_inject_pir(vlapic);
1244                 return;
1245         }
1246
1247         /*
1248          * If interrupt-window exiting is already in effect then don't bother
1249          * checking for pending interrupts. This is just an optimization and
1250          * not needed for correctness.
1251          */
1252         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1253                 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1254                     "pending int_window_exiting");
1255                 return;
1256         }
1257
1258         if (!extint_pending) {
1259                 /* Ask the local apic for a vector to inject */
1260                 if (!vlapic_pending_intr(vlapic, &vector))
1261                         return;
1262
1263                 /*
1264                  * From the Intel SDM, Volume 3, Section "Maskable
1265                  * Hardware Interrupts":
1266                  * - maskable interrupt vectors [16,255] can be delivered
1267                  *   through the local APIC.
1268                 */
1269                 KASSERT(vector >= 16 && vector <= 255,
1270                     ("invalid vector %d from local APIC", vector));
1271         } else {
1272                 /* Ask the legacy pic for a vector to inject */
1273                 vatpic_pending_intr(vmx->vm, &vector);
1274
1275                 /*
1276                  * From the Intel SDM, Volume 3, Section "Maskable
1277                  * Hardware Interrupts":
1278                  * - maskable interrupt vectors [0,255] can be delivered
1279                  *   through the INTR pin.
1280                  */
1281                 KASSERT(vector >= 0 && vector <= 255,
1282                     ("invalid vector %d from INTR", vector));
1283         }
1284
1285         /* Check RFLAGS.IF and the interruptibility state of the guest */
1286         rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1287         if ((rflags & PSL_I) == 0) {
1288                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1289                     "rflags %#lx", vector, rflags);
1290                 goto cantinject;
1291         }
1292
1293         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1294         if (gi & HWINTR_BLOCKING) {
1295                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1296                     "Guest Interruptibility-state %#x", vector, gi);
1297                 goto cantinject;
1298         }
1299
1300         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1301         if (info & VMCS_INTR_VALID) {
1302                 /*
1303                  * This is expected and could happen for multiple reasons:
1304                  * - A vectoring VM-entry was aborted due to astpending
1305                  * - A VM-exit happened during event injection.
1306                  * - An exception was injected above.
1307                  * - An NMI was injected above or after "NMI window exiting"
1308                  */
1309                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1310                     "VM-entry intr info %#x", vector, info);
1311                 goto cantinject;
1312         }
1313
1314         /* Inject the interrupt */
1315         info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1316         info |= vector;
1317         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1318
1319         if (!extint_pending) {
1320                 /* Update the Local APIC ISR */
1321                 vlapic_intr_accepted(vlapic, vector);
1322         } else {
1323                 vm_extint_clear(vmx->vm, vcpu);
1324                 vatpic_intr_accepted(vmx->vm, vector);
1325
1326                 /*
1327                  * After we accepted the current ExtINT the PIC may
1328                  * have posted another one.  If that is the case, set
1329                  * the Interrupt Window Exiting execution control so
1330                  * we can inject that one too.
1331                  *
1332                  * Also, interrupt window exiting allows us to inject any
1333                  * pending APIC vector that was preempted by the ExtINT
1334                  * as soon as possible. This applies both for the software
1335                  * emulated vlapic and the hardware assisted virtual APIC.
1336                  */
1337                 vmx_set_int_window_exiting(vmx, vcpu);
1338         }
1339
1340         VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1341
1342         return;
1343
1344 cantinject:
1345         /*
1346          * Set the Interrupt Window Exiting execution control so we can inject
1347          * the interrupt as soon as blocking condition goes away.
1348          */
1349         vmx_set_int_window_exiting(vmx, vcpu);
1350 }
1351
1352 /*
1353  * If the Virtual NMIs execution control is '1' then the logical processor
1354  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1355  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1356  * virtual-NMI blocking.
1357  *
1358  * This unblocking occurs even if the IRET causes a fault. In this case the
1359  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1360  */
1361 static void
1362 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1363 {
1364         uint32_t gi;
1365
1366         VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1367         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1368         gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1369         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1370 }
1371
1372 static void
1373 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1374 {
1375         uint32_t gi;
1376
1377         VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1378         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1379         gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1380         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1381 }
1382
1383 static void
1384 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1385 {
1386         uint32_t gi;
1387
1388         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1389         KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1390             ("NMI blocking is not in effect %#x", gi));
1391 }
1392
1393 static int
1394 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1395 {
1396         struct vmxctx *vmxctx;
1397         uint64_t xcrval;
1398         const struct xsave_limits *limits;
1399
1400         vmxctx = &vmx->ctx[vcpu];
1401         limits = vmm_get_xsave_limits();
1402
1403         /*
1404          * Note that the processor raises a GP# fault on its own if
1405          * xsetbv is executed for CPL != 0, so we do not have to
1406          * emulate that fault here.
1407          */
1408
1409         /* Only xcr0 is supported. */
1410         if (vmxctx->guest_rcx != 0) {
1411                 vm_inject_gp(vmx->vm, vcpu);
1412                 return (HANDLED);
1413         }
1414
1415         /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1416         if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1417                 vm_inject_ud(vmx->vm, vcpu);
1418                 return (HANDLED);
1419         }
1420
1421         xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1422         if ((xcrval & ~limits->xcr0_allowed) != 0) {
1423                 vm_inject_gp(vmx->vm, vcpu);
1424                 return (HANDLED);
1425         }
1426
1427         if (!(xcrval & XFEATURE_ENABLED_X87)) {
1428                 vm_inject_gp(vmx->vm, vcpu);
1429                 return (HANDLED);
1430         }
1431
1432         /* AVX (YMM_Hi128) requires SSE. */
1433         if (xcrval & XFEATURE_ENABLED_AVX &&
1434             (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1435                 vm_inject_gp(vmx->vm, vcpu);
1436                 return (HANDLED);
1437         }
1438
1439         /*
1440          * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1441          * ZMM_Hi256, and Hi16_ZMM.
1442          */
1443         if (xcrval & XFEATURE_AVX512 &&
1444             (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1445             (XFEATURE_AVX512 | XFEATURE_AVX)) {
1446                 vm_inject_gp(vmx->vm, vcpu);
1447                 return (HANDLED);
1448         }
1449
1450         /*
1451          * Intel MPX requires both bound register state flags to be
1452          * set.
1453          */
1454         if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1455             ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1456                 vm_inject_gp(vmx->vm, vcpu);
1457                 return (HANDLED);
1458         }
1459
1460         /*
1461          * This runs "inside" vmrun() with the guest's FPU state, so
1462          * modifying xcr0 directly modifies the guest's xcr0, not the
1463          * host's.
1464          */
1465         load_xcr(0, xcrval);
1466         return (HANDLED);
1467 }
1468
1469 static uint64_t
1470 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1471 {
1472         const struct vmxctx *vmxctx;
1473
1474         vmxctx = &vmx->ctx[vcpu];
1475
1476         switch (ident) {
1477         case 0:
1478                 return (vmxctx->guest_rax);
1479         case 1:
1480                 return (vmxctx->guest_rcx);
1481         case 2:
1482                 return (vmxctx->guest_rdx);
1483         case 3:
1484                 return (vmxctx->guest_rbx);
1485         case 4:
1486                 return (vmcs_read(VMCS_GUEST_RSP));
1487         case 5:
1488                 return (vmxctx->guest_rbp);
1489         case 6:
1490                 return (vmxctx->guest_rsi);
1491         case 7:
1492                 return (vmxctx->guest_rdi);
1493         case 8:
1494                 return (vmxctx->guest_r8);
1495         case 9:
1496                 return (vmxctx->guest_r9);
1497         case 10:
1498                 return (vmxctx->guest_r10);
1499         case 11:
1500                 return (vmxctx->guest_r11);
1501         case 12:
1502                 return (vmxctx->guest_r12);
1503         case 13:
1504                 return (vmxctx->guest_r13);
1505         case 14:
1506                 return (vmxctx->guest_r14);
1507         case 15:
1508                 return (vmxctx->guest_r15);
1509         default:
1510                 panic("invalid vmx register %d", ident);
1511         }
1512 }
1513
1514 static void
1515 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1516 {
1517         struct vmxctx *vmxctx;
1518
1519         vmxctx = &vmx->ctx[vcpu];
1520
1521         switch (ident) {
1522         case 0:
1523                 vmxctx->guest_rax = regval;
1524                 break;
1525         case 1:
1526                 vmxctx->guest_rcx = regval;
1527                 break;
1528         case 2:
1529                 vmxctx->guest_rdx = regval;
1530                 break;
1531         case 3:
1532                 vmxctx->guest_rbx = regval;
1533                 break;
1534         case 4:
1535                 vmcs_write(VMCS_GUEST_RSP, regval);
1536                 break;
1537         case 5:
1538                 vmxctx->guest_rbp = regval;
1539                 break;
1540         case 6:
1541                 vmxctx->guest_rsi = regval;
1542                 break;
1543         case 7:
1544                 vmxctx->guest_rdi = regval;
1545                 break;
1546         case 8:
1547                 vmxctx->guest_r8 = regval;
1548                 break;
1549         case 9:
1550                 vmxctx->guest_r9 = regval;
1551                 break;
1552         case 10:
1553                 vmxctx->guest_r10 = regval;
1554                 break;
1555         case 11:
1556                 vmxctx->guest_r11 = regval;
1557                 break;
1558         case 12:
1559                 vmxctx->guest_r12 = regval;
1560                 break;
1561         case 13:
1562                 vmxctx->guest_r13 = regval;
1563                 break;
1564         case 14:
1565                 vmxctx->guest_r14 = regval;
1566                 break;
1567         case 15:
1568                 vmxctx->guest_r15 = regval;
1569                 break;
1570         default:
1571                 panic("invalid vmx register %d", ident);
1572         }
1573 }
1574
1575 static int
1576 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1577 {
1578         uint64_t crval, regval;
1579
1580         /* We only handle mov to %cr0 at this time */
1581         if ((exitqual & 0xf0) != 0x00)
1582                 return (UNHANDLED);
1583
1584         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1585
1586         vmcs_write(VMCS_CR0_SHADOW, regval);
1587
1588         crval = regval | cr0_ones_mask;
1589         crval &= ~cr0_zeros_mask;
1590         vmcs_write(VMCS_GUEST_CR0, crval);
1591
1592         if (regval & CR0_PG) {
1593                 uint64_t efer, entry_ctls;
1594
1595                 /*
1596                  * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1597                  * the "IA-32e mode guest" bit in VM-entry control must be
1598                  * equal.
1599                  */
1600                 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1601                 if (efer & EFER_LME) {
1602                         efer |= EFER_LMA;
1603                         vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1604                         entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1605                         entry_ctls |= VM_ENTRY_GUEST_LMA;
1606                         vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1607                 }
1608         }
1609
1610         return (HANDLED);
1611 }
1612
1613 static int
1614 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1615 {
1616         uint64_t crval, regval;
1617
1618         /* We only handle mov to %cr4 at this time */
1619         if ((exitqual & 0xf0) != 0x00)
1620                 return (UNHANDLED);
1621
1622         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1623
1624         vmcs_write(VMCS_CR4_SHADOW, regval);
1625
1626         crval = regval | cr4_ones_mask;
1627         crval &= ~cr4_zeros_mask;
1628         vmcs_write(VMCS_GUEST_CR4, crval);
1629
1630         return (HANDLED);
1631 }
1632
1633 static int
1634 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1635 {
1636         struct vlapic *vlapic;
1637         uint64_t cr8;
1638         int regnum;
1639
1640         /* We only handle mov %cr8 to/from a register at this time. */
1641         if ((exitqual & 0xe0) != 0x00) {
1642                 return (UNHANDLED);
1643         }
1644
1645         vlapic = vm_lapic(vmx->vm, vcpu);
1646         regnum = (exitqual >> 8) & 0xf;
1647         if (exitqual & 0x10) {
1648                 cr8 = vlapic_get_cr8(vlapic);
1649                 vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1650         } else {
1651                 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1652                 vlapic_set_cr8(vlapic, cr8);
1653         }
1654
1655         return (HANDLED);
1656 }
1657
1658 /*
1659  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1660  */
1661 static int
1662 vmx_cpl(void)
1663 {
1664         uint32_t ssar;
1665
1666         ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1667         return ((ssar >> 5) & 0x3);
1668 }
1669
1670 static enum vm_cpu_mode
1671 vmx_cpu_mode(void)
1672 {
1673         uint32_t csar;
1674
1675         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1676                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1677                 if (csar & 0x2000)
1678                         return (CPU_MODE_64BIT);        /* CS.L = 1 */
1679                 else
1680                         return (CPU_MODE_COMPATIBILITY);
1681         } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1682                 return (CPU_MODE_PROTECTED);
1683         } else {
1684                 return (CPU_MODE_REAL);
1685         }
1686 }
1687
1688 static enum vm_paging_mode
1689 vmx_paging_mode(void)
1690 {
1691
1692         if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1693                 return (PAGING_MODE_FLAT);
1694         if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1695                 return (PAGING_MODE_32);
1696         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1697                 return (PAGING_MODE_64);
1698         else
1699                 return (PAGING_MODE_PAE);
1700 }
1701
1702 static uint64_t
1703 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1704 {
1705         uint64_t val;
1706         int error;
1707         enum vm_reg_name reg;
1708
1709         reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1710         error = vmx_getreg(vmx, vcpuid, reg, &val);
1711         KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1712         return (val);
1713 }
1714
1715 static uint64_t
1716 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1717 {
1718         uint64_t val;
1719         int error;
1720
1721         if (rep) {
1722                 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1723                 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1724         } else {
1725                 val = 1;
1726         }
1727         return (val);
1728 }
1729
1730 static int
1731 inout_str_addrsize(uint32_t inst_info)
1732 {
1733         uint32_t size;
1734
1735         size = (inst_info >> 7) & 0x7;
1736         switch (size) {
1737         case 0:
1738                 return (2);     /* 16 bit */
1739         case 1:
1740                 return (4);     /* 32 bit */
1741         case 2:
1742                 return (8);     /* 64 bit */
1743         default:
1744                 panic("%s: invalid size encoding %d", __func__, size);
1745         }
1746 }
1747
1748 static void
1749 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1750     struct vm_inout_str *vis)
1751 {
1752         int error, s;
1753
1754         if (in) {
1755                 vis->seg_name = VM_REG_GUEST_ES;
1756         } else {
1757                 s = (inst_info >> 15) & 0x7;
1758                 vis->seg_name = vm_segment_name(s);
1759         }
1760
1761         error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1762         KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1763 }
1764
1765 static void
1766 vmx_paging_info(struct vm_guest_paging *paging)
1767 {
1768         paging->cr3 = vmcs_guest_cr3();
1769         paging->cpl = vmx_cpl();
1770         paging->cpu_mode = vmx_cpu_mode();
1771         paging->paging_mode = vmx_paging_mode();
1772 }
1773
1774 static void
1775 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1776 {
1777         struct vm_guest_paging *paging;
1778         uint32_t csar;
1779
1780         paging = &vmexit->u.inst_emul.paging;
1781
1782         vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1783         vmexit->inst_length = 0;
1784         vmexit->u.inst_emul.gpa = gpa;
1785         vmexit->u.inst_emul.gla = gla;
1786         vmx_paging_info(paging);
1787         switch (paging->cpu_mode) {
1788         case CPU_MODE_REAL:
1789                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1790                 vmexit->u.inst_emul.cs_d = 0;
1791                 break;
1792         case CPU_MODE_PROTECTED:
1793         case CPU_MODE_COMPATIBILITY:
1794                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
1795                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1796                 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1797                 break;
1798         default:
1799                 vmexit->u.inst_emul.cs_base = 0;
1800                 vmexit->u.inst_emul.cs_d = 0;
1801                 break;
1802         }
1803         vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
1804 }
1805
1806 static int
1807 ept_fault_type(uint64_t ept_qual)
1808 {
1809         int fault_type;
1810
1811         if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1812                 fault_type = VM_PROT_WRITE;
1813         else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1814                 fault_type = VM_PROT_EXECUTE;
1815         else
1816                 fault_type= VM_PROT_READ;
1817
1818         return (fault_type);
1819 }
1820
1821 static boolean_t
1822 ept_emulation_fault(uint64_t ept_qual)
1823 {
1824         int read, write;
1825
1826         /* EPT fault on an instruction fetch doesn't make sense here */
1827         if (ept_qual & EPT_VIOLATION_INST_FETCH)
1828                 return (FALSE);
1829
1830         /* EPT fault must be a read fault or a write fault */
1831         read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1832         write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1833         if ((read | write) == 0)
1834                 return (FALSE);
1835
1836         /*
1837          * The EPT violation must have been caused by accessing a
1838          * guest-physical address that is a translation of a guest-linear
1839          * address.
1840          */
1841         if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1842             (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1843                 return (FALSE);
1844         }
1845
1846         return (TRUE);
1847 }
1848
1849 static __inline int
1850 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1851 {
1852         uint32_t proc_ctls2;
1853
1854         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1855         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1856 }
1857
1858 static __inline int
1859 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1860 {
1861         uint32_t proc_ctls2;
1862
1863         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1864         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1865 }
1866
1867 static int
1868 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1869     uint64_t qual)
1870 {
1871         int error, handled, offset;
1872         uint32_t *apic_regs, vector;
1873         bool retu;
1874
1875         handled = HANDLED;
1876         offset = APIC_WRITE_OFFSET(qual);
1877
1878         if (!apic_access_virtualization(vmx, vcpuid)) {
1879                 /*
1880                  * In general there should not be any APIC write VM-exits
1881                  * unless APIC-access virtualization is enabled.
1882                  *
1883                  * However self-IPI virtualization can legitimately trigger
1884                  * an APIC-write VM-exit so treat it specially.
1885                  */
1886                 if (x2apic_virtualization(vmx, vcpuid) &&
1887                     offset == APIC_OFFSET_SELF_IPI) {
1888                         apic_regs = (uint32_t *)(vlapic->apic_page);
1889                         vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1890                         vlapic_self_ipi_handler(vlapic, vector);
1891                         return (HANDLED);
1892                 } else
1893                         return (UNHANDLED);
1894         }
1895
1896         switch (offset) {
1897         case APIC_OFFSET_ID:
1898                 vlapic_id_write_handler(vlapic);
1899                 break;
1900         case APIC_OFFSET_LDR:
1901                 vlapic_ldr_write_handler(vlapic);
1902                 break;
1903         case APIC_OFFSET_DFR:
1904                 vlapic_dfr_write_handler(vlapic);
1905                 break;
1906         case APIC_OFFSET_SVR:
1907                 vlapic_svr_write_handler(vlapic);
1908                 break;
1909         case APIC_OFFSET_ESR:
1910                 vlapic_esr_write_handler(vlapic);
1911                 break;
1912         case APIC_OFFSET_ICR_LOW:
1913                 retu = false;
1914                 error = vlapic_icrlo_write_handler(vlapic, &retu);
1915                 if (error != 0 || retu)
1916                         handled = UNHANDLED;
1917                 break;
1918         case APIC_OFFSET_CMCI_LVT:
1919         case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1920                 vlapic_lvt_write_handler(vlapic, offset);
1921                 break;
1922         case APIC_OFFSET_TIMER_ICR:
1923                 vlapic_icrtmr_write_handler(vlapic);
1924                 break;
1925         case APIC_OFFSET_TIMER_DCR:
1926                 vlapic_dcr_write_handler(vlapic);
1927                 break;
1928         default:
1929                 handled = UNHANDLED;
1930                 break;
1931         }
1932         return (handled);
1933 }
1934
1935 static bool
1936 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1937 {
1938
1939         if (apic_access_virtualization(vmx, vcpuid) &&
1940             (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1941                 return (true);
1942         else
1943                 return (false);
1944 }
1945
1946 static int
1947 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1948 {
1949         uint64_t qual;
1950         int access_type, offset, allowed;
1951
1952         if (!apic_access_virtualization(vmx, vcpuid))
1953                 return (UNHANDLED);
1954
1955         qual = vmexit->u.vmx.exit_qualification;
1956         access_type = APIC_ACCESS_TYPE(qual);
1957         offset = APIC_ACCESS_OFFSET(qual);
1958
1959         allowed = 0;
1960         if (access_type == 0) {
1961                 /*
1962                  * Read data access to the following registers is expected.
1963                  */
1964                 switch (offset) {
1965                 case APIC_OFFSET_APR:
1966                 case APIC_OFFSET_PPR:
1967                 case APIC_OFFSET_RRR:
1968                 case APIC_OFFSET_CMCI_LVT:
1969                 case APIC_OFFSET_TIMER_CCR:
1970                         allowed = 1;
1971                         break;
1972                 default:
1973                         break;
1974                 }
1975         } else if (access_type == 1) {
1976                 /*
1977                  * Write data access to the following registers is expected.
1978                  */
1979                 switch (offset) {
1980                 case APIC_OFFSET_VER:
1981                 case APIC_OFFSET_APR:
1982                 case APIC_OFFSET_PPR:
1983                 case APIC_OFFSET_RRR:
1984                 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
1985                 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
1986                 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
1987                 case APIC_OFFSET_CMCI_LVT:
1988                 case APIC_OFFSET_TIMER_CCR:
1989                         allowed = 1;
1990                         break;
1991                 default:
1992                         break;
1993                 }
1994         }
1995
1996         if (allowed) {
1997                 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
1998                     VIE_INVALID_GLA);
1999         }
2000
2001         /*
2002          * Regardless of whether the APIC-access is allowed this handler
2003          * always returns UNHANDLED:
2004          * - if the access is allowed then it is handled by emulating the
2005          *   instruction that caused the VM-exit (outside the critical section)
2006          * - if the access is not allowed then it will be converted to an
2007          *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2008          */
2009         return (UNHANDLED);
2010 }
2011
2012 static enum task_switch_reason
2013 vmx_task_switch_reason(uint64_t qual)
2014 {
2015         int reason;
2016
2017         reason = (qual >> 30) & 0x3;
2018         switch (reason) {
2019         case 0:
2020                 return (TSR_CALL);
2021         case 1:
2022                 return (TSR_IRET);
2023         case 2:
2024                 return (TSR_JMP);
2025         case 3:
2026                 return (TSR_IDT_GATE);
2027         default:
2028                 panic("%s: invalid reason %d", __func__, reason);
2029         }
2030 }
2031
2032 static int
2033 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2034 {
2035         int error;
2036
2037         if (lapic_msr(num))
2038                 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2039         else
2040                 error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2041
2042         return (error);
2043 }
2044
2045 static int
2046 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2047 {
2048         struct vmxctx *vmxctx;
2049         uint64_t result;
2050         uint32_t eax, edx;
2051         int error;
2052
2053         if (lapic_msr(num))
2054                 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2055         else
2056                 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2057
2058         if (error == 0) {
2059                 eax = result;
2060                 vmxctx = &vmx->ctx[vcpuid];
2061                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2062                 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2063
2064                 edx = result >> 32;
2065                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2066                 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2067         }
2068
2069         return (error);
2070 }
2071
2072 static int
2073 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2074 {
2075         int error, errcode, errcode_valid, handled, in;
2076         struct vmxctx *vmxctx;
2077         struct vlapic *vlapic;
2078         struct vm_inout_str *vis;
2079         struct vm_task_switch *ts;
2080         uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2081         uint32_t intr_type, intr_vec, reason;
2082         uint64_t exitintinfo, qual, gpa;
2083         bool retu;
2084
2085         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2086         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2087
2088         handled = UNHANDLED;
2089         vmxctx = &vmx->ctx[vcpu];
2090
2091         qual = vmexit->u.vmx.exit_qualification;
2092         reason = vmexit->u.vmx.exit_reason;
2093         vmexit->exitcode = VM_EXITCODE_BOGUS;
2094
2095         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2096
2097         /*
2098          * VM-entry failures during or after loading guest state.
2099          *
2100          * These VM-exits are uncommon but must be handled specially
2101          * as most VM-exit fields are not populated as usual.
2102          */
2103         if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2104                 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2105                 __asm __volatile("int $18");
2106                 return (1);
2107         }
2108
2109         /*
2110          * VM exits that can be triggered during event delivery need to
2111          * be handled specially by re-injecting the event if the IDT
2112          * vectoring information field's valid bit is set.
2113          *
2114          * See "Information for VM Exits During Event Delivery" in Intel SDM
2115          * for details.
2116          */
2117         idtvec_info = vmcs_idt_vectoring_info();
2118         if (idtvec_info & VMCS_IDT_VEC_VALID) {
2119                 idtvec_info &= ~(1 << 12); /* clear undefined bit */
2120                 exitintinfo = idtvec_info;
2121                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2122                         idtvec_err = vmcs_idt_vectoring_err();
2123                         exitintinfo |= (uint64_t)idtvec_err << 32;
2124                 }
2125                 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2126                 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2127                     __func__, error));
2128
2129                 /*
2130                  * If 'virtual NMIs' are being used and the VM-exit
2131                  * happened while injecting an NMI during the previous
2132                  * VM-entry, then clear "blocking by NMI" in the
2133                  * Guest Interruptibility-State so the NMI can be
2134                  * reinjected on the subsequent VM-entry.
2135                  *
2136                  * However, if the NMI was being delivered through a task
2137                  * gate, then the new task must start execution with NMIs
2138                  * blocked so don't clear NMI blocking in this case.
2139                  */
2140                 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2141                 if (intr_type == VMCS_INTR_T_NMI) {
2142                         if (reason != EXIT_REASON_TASK_SWITCH)
2143                                 vmx_clear_nmi_blocking(vmx, vcpu);
2144                         else
2145                                 vmx_assert_nmi_blocking(vmx, vcpu);
2146                 }
2147
2148                 /*
2149                  * Update VM-entry instruction length if the event being
2150                  * delivered was a software interrupt or software exception.
2151                  */
2152                 if (intr_type == VMCS_INTR_T_SWINTR ||
2153                     intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2154                     intr_type == VMCS_INTR_T_SWEXCEPTION) {
2155                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2156                 }
2157         }
2158
2159         switch (reason) {
2160         case EXIT_REASON_TASK_SWITCH:
2161                 ts = &vmexit->u.task_switch;
2162                 ts->tsssel = qual & 0xffff;
2163                 ts->reason = vmx_task_switch_reason(qual);
2164                 ts->ext = 0;
2165                 ts->errcode_valid = 0;
2166                 vmx_paging_info(&ts->paging);
2167                 /*
2168                  * If the task switch was due to a CALL, JMP, IRET, software
2169                  * interrupt (INT n) or software exception (INT3, INTO),
2170                  * then the saved %rip references the instruction that caused
2171                  * the task switch. The instruction length field in the VMCS
2172                  * is valid in this case.
2173                  *
2174                  * In all other cases (e.g., NMI, hardware exception) the
2175                  * saved %rip is one that would have been saved in the old TSS
2176                  * had the task switch completed normally so the instruction
2177                  * length field is not needed in this case and is explicitly
2178                  * set to 0.
2179                  */
2180                 if (ts->reason == TSR_IDT_GATE) {
2181                         KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2182                             ("invalid idtvec_info %#x for IDT task switch",
2183                             idtvec_info));
2184                         intr_type = idtvec_info & VMCS_INTR_T_MASK;
2185                         if (intr_type != VMCS_INTR_T_SWINTR &&
2186                             intr_type != VMCS_INTR_T_SWEXCEPTION &&
2187                             intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2188                                 /* Task switch triggered by external event */
2189                                 ts->ext = 1;
2190                                 vmexit->inst_length = 0;
2191                                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2192                                         ts->errcode_valid = 1;
2193                                         ts->errcode = vmcs_idt_vectoring_err();
2194                                 }
2195                         }
2196                 }
2197                 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2198                 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2199                     "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2200                     ts->ext ? "external" : "internal",
2201                     ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2202                 break;
2203         case EXIT_REASON_CR_ACCESS:
2204                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2205                 switch (qual & 0xf) {
2206                 case 0:
2207                         handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2208                         break;
2209                 case 4:
2210                         handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2211                         break;
2212                 case 8:
2213                         handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2214                         break;
2215                 }
2216                 break;
2217         case EXIT_REASON_RDMSR:
2218                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2219                 retu = false;
2220                 ecx = vmxctx->guest_rcx;
2221                 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2222                 error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2223                 if (error) {
2224                         vmexit->exitcode = VM_EXITCODE_RDMSR;
2225                         vmexit->u.msr.code = ecx;
2226                 } else if (!retu) {
2227                         handled = HANDLED;
2228                 } else {
2229                         /* Return to userspace with a valid exitcode */
2230                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2231                             ("emulate_rdmsr retu with bogus exitcode"));
2232                 }
2233                 break;
2234         case EXIT_REASON_WRMSR:
2235                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2236                 retu = false;
2237                 eax = vmxctx->guest_rax;
2238                 ecx = vmxctx->guest_rcx;
2239                 edx = vmxctx->guest_rdx;
2240                 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2241                     ecx, (uint64_t)edx << 32 | eax);
2242                 error = emulate_wrmsr(vmx, vcpu, ecx,
2243                     (uint64_t)edx << 32 | eax, &retu);
2244                 if (error) {
2245                         vmexit->exitcode = VM_EXITCODE_WRMSR;
2246                         vmexit->u.msr.code = ecx;
2247                         vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2248                 } else if (!retu) {
2249                         handled = HANDLED;
2250                 } else {
2251                         /* Return to userspace with a valid exitcode */
2252                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2253                             ("emulate_wrmsr retu with bogus exitcode"));
2254                 }
2255                 break;
2256         case EXIT_REASON_HLT:
2257                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2258                 vmexit->exitcode = VM_EXITCODE_HLT;
2259                 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2260                 break;
2261         case EXIT_REASON_MTF:
2262                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2263                 vmexit->exitcode = VM_EXITCODE_MTRAP;
2264                 vmexit->inst_length = 0;
2265                 break;
2266         case EXIT_REASON_PAUSE:
2267                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2268                 vmexit->exitcode = VM_EXITCODE_PAUSE;
2269                 break;
2270         case EXIT_REASON_INTR_WINDOW:
2271                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2272                 vmx_clear_int_window_exiting(vmx, vcpu);
2273                 return (1);
2274         case EXIT_REASON_EXT_INTR:
2275                 /*
2276                  * External interrupts serve only to cause VM exits and allow
2277                  * the host interrupt handler to run.
2278                  *
2279                  * If this external interrupt triggers a virtual interrupt
2280                  * to a VM, then that state will be recorded by the
2281                  * host interrupt handler in the VM's softc. We will inject
2282                  * this virtual interrupt during the subsequent VM enter.
2283                  */
2284                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2285
2286                 /*
2287                  * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2288                  * This appears to be a bug in VMware Fusion?
2289                  */
2290                 if (!(intr_info & VMCS_INTR_VALID))
2291                         return (1);
2292                 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2293                     (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2294                     ("VM exit interruption info invalid: %#x", intr_info));
2295                 vmx_trigger_hostintr(intr_info & 0xff);
2296
2297                 /*
2298                  * This is special. We want to treat this as an 'handled'
2299                  * VM-exit but not increment the instruction pointer.
2300                  */
2301                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2302                 return (1);
2303         case EXIT_REASON_NMI_WINDOW:
2304                 /* Exit to allow the pending virtual NMI to be injected */
2305                 if (vm_nmi_pending(vmx->vm, vcpu))
2306                         vmx_inject_nmi(vmx, vcpu);
2307                 vmx_clear_nmi_window_exiting(vmx, vcpu);
2308                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2309                 return (1);
2310         case EXIT_REASON_INOUT:
2311                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2312                 vmexit->exitcode = VM_EXITCODE_INOUT;
2313                 vmexit->u.inout.bytes = (qual & 0x7) + 1;
2314                 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2315                 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2316                 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2317                 vmexit->u.inout.port = (uint16_t)(qual >> 16);
2318                 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2319                 if (vmexit->u.inout.string) {
2320                         inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2321                         vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2322                         vis = &vmexit->u.inout_str;
2323                         vmx_paging_info(&vis->paging);
2324                         vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2325                         vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2326                         vis->index = inout_str_index(vmx, vcpu, in);
2327                         vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2328                         vis->addrsize = inout_str_addrsize(inst_info);
2329                         inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2330                 }
2331                 break;
2332         case EXIT_REASON_CPUID:
2333                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2334                 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2335                 break;
2336         case EXIT_REASON_EXCEPTION:
2337                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2338                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2339                 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2340                     ("VM exit interruption info invalid: %#x", intr_info));
2341
2342                 intr_vec = intr_info & 0xff;
2343                 intr_type = intr_info & VMCS_INTR_T_MASK;
2344
2345                 /*
2346                  * If Virtual NMIs control is 1 and the VM-exit is due to a
2347                  * fault encountered during the execution of IRET then we must
2348                  * restore the state of "virtual-NMI blocking" before resuming
2349                  * the guest.
2350                  *
2351                  * See "Resuming Guest Software after Handling an Exception".
2352                  * See "Information for VM Exits Due to Vectored Events".
2353                  */
2354                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2355                     (intr_vec != IDT_DF) &&
2356                     (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2357                         vmx_restore_nmi_blocking(vmx, vcpu);
2358
2359                 /*
2360                  * The NMI has already been handled in vmx_exit_handle_nmi().
2361                  */
2362                 if (intr_type == VMCS_INTR_T_NMI)
2363                         return (1);
2364
2365                 /*
2366                  * Call the machine check handler by hand. Also don't reflect
2367                  * the machine check back into the guest.
2368                  */
2369                 if (intr_vec == IDT_MC) {
2370                         VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2371                         __asm __volatile("int $18");
2372                         return (1);
2373                 }
2374
2375                 if (intr_vec == IDT_PF) {
2376                         error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2377                         KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2378                             __func__, error));
2379                 }
2380
2381                 /*
2382                  * Software exceptions exhibit trap-like behavior. This in
2383                  * turn requires populating the VM-entry instruction length
2384                  * so that the %rip in the trap frame is past the INT3/INTO
2385                  * instruction.
2386                  */
2387                 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2388                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2389
2390                 /* Reflect all other exceptions back into the guest */
2391                 errcode_valid = errcode = 0;
2392                 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2393                         errcode_valid = 1;
2394                         errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2395                 }
2396                 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2397                     "the guest", intr_vec, errcode);
2398                 error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2399                     errcode_valid, errcode, 0);
2400                 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2401                     __func__, error));
2402                 return (1);
2403
2404         case EXIT_REASON_EPT_FAULT:
2405                 /*
2406                  * If 'gpa' lies within the address space allocated to
2407                  * memory then this must be a nested page fault otherwise
2408                  * this must be an instruction that accesses MMIO space.
2409                  */
2410                 gpa = vmcs_gpa();
2411                 if (vm_mem_allocated(vmx->vm, gpa) ||
2412                     apic_access_fault(vmx, vcpu, gpa)) {
2413                         vmexit->exitcode = VM_EXITCODE_PAGING;
2414                         vmexit->inst_length = 0;
2415                         vmexit->u.paging.gpa = gpa;
2416                         vmexit->u.paging.fault_type = ept_fault_type(qual);
2417                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2418                 } else if (ept_emulation_fault(qual)) {
2419                         vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2420                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2421                 }
2422                 /*
2423                  * If Virtual NMIs control is 1 and the VM-exit is due to an
2424                  * EPT fault during the execution of IRET then we must restore
2425                  * the state of "virtual-NMI blocking" before resuming.
2426                  *
2427                  * See description of "NMI unblocking due to IRET" in
2428                  * "Exit Qualification for EPT Violations".
2429                  */
2430                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2431                     (qual & EXIT_QUAL_NMIUDTI) != 0)
2432                         vmx_restore_nmi_blocking(vmx, vcpu);
2433                 break;
2434         case EXIT_REASON_VIRTUALIZED_EOI:
2435                 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2436                 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2437                 vmexit->inst_length = 0;        /* trap-like */
2438                 break;
2439         case EXIT_REASON_APIC_ACCESS:
2440                 handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2441                 break;
2442         case EXIT_REASON_APIC_WRITE:
2443                 /*
2444                  * APIC-write VM exit is trap-like so the %rip is already
2445                  * pointing to the next instruction.
2446                  */
2447                 vmexit->inst_length = 0;
2448                 vlapic = vm_lapic(vmx->vm, vcpu);
2449                 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2450                 break;
2451         case EXIT_REASON_XSETBV:
2452                 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2453                 break;
2454         case EXIT_REASON_MONITOR:
2455                 vmexit->exitcode = VM_EXITCODE_MONITOR;
2456                 break;
2457         case EXIT_REASON_MWAIT:
2458                 vmexit->exitcode = VM_EXITCODE_MWAIT;
2459                 break;
2460         default:
2461                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2462                 break;
2463         }
2464
2465         if (handled) {
2466                 /*
2467                  * It is possible that control is returned to userland
2468                  * even though we were able to handle the VM exit in the
2469                  * kernel.
2470                  *
2471                  * In such a case we want to make sure that the userland
2472                  * restarts guest execution at the instruction *after*
2473                  * the one we just processed. Therefore we update the
2474                  * guest rip in the VMCS and in 'vmexit'.
2475                  */
2476                 vmexit->rip += vmexit->inst_length;
2477                 vmexit->inst_length = 0;
2478                 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2479         } else {
2480                 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2481                         /*
2482                          * If this VM exit was not claimed by anybody then
2483                          * treat it as a generic VMX exit.
2484                          */
2485                         vmexit->exitcode = VM_EXITCODE_VMX;
2486                         vmexit->u.vmx.status = VM_SUCCESS;
2487                         vmexit->u.vmx.inst_type = 0;
2488                         vmexit->u.vmx.inst_error = 0;
2489                 } else {
2490                         /*
2491                          * The exitcode and collateral have been populated.
2492                          * The VM exit will be processed further in userland.
2493                          */
2494                 }
2495         }
2496         return (handled);
2497 }
2498
2499 static __inline void
2500 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2501 {
2502
2503         KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2504             ("vmx_exit_inst_error: invalid inst_fail_status %d",
2505             vmxctx->inst_fail_status));
2506
2507         vmexit->inst_length = 0;
2508         vmexit->exitcode = VM_EXITCODE_VMX;
2509         vmexit->u.vmx.status = vmxctx->inst_fail_status;
2510         vmexit->u.vmx.inst_error = vmcs_instruction_error();
2511         vmexit->u.vmx.exit_reason = ~0;
2512         vmexit->u.vmx.exit_qualification = ~0;
2513
2514         switch (rc) {
2515         case VMX_VMRESUME_ERROR:
2516         case VMX_VMLAUNCH_ERROR:
2517         case VMX_INVEPT_ERROR:
2518                 vmexit->u.vmx.inst_type = rc;
2519                 break;
2520         default:
2521                 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2522         }
2523 }
2524
2525 /*
2526  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2527  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2528  * sufficient to simply vector to the NMI handler via a software interrupt.
2529  * However, this must be done before maskable interrupts are enabled
2530  * otherwise the "iret" issued by an interrupt handler will incorrectly
2531  * clear NMI blocking.
2532  */
2533 static __inline void
2534 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2535 {
2536         uint32_t intr_info;
2537
2538         KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2539
2540         if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2541                 return;
2542
2543         intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2544         KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2545             ("VM exit interruption info invalid: %#x", intr_info));
2546
2547         if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2548                 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2549                     "to NMI has invalid vector: %#x", intr_info));
2550                 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2551                 __asm __volatile("int $2");
2552         }
2553 }
2554
2555 static int
2556 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2557     void *rendezvous_cookie, void *suspend_cookie)
2558 {
2559         int rc, handled, launched;
2560         struct vmx *vmx;
2561         struct vm *vm;
2562         struct vmxctx *vmxctx;
2563         struct vmcs *vmcs;
2564         struct vm_exit *vmexit;
2565         struct vlapic *vlapic;
2566         uint32_t exit_reason;
2567
2568         vmx = arg;
2569         vm = vmx->vm;
2570         vmcs = &vmx->vmcs[vcpu];
2571         vmxctx = &vmx->ctx[vcpu];
2572         vlapic = vm_lapic(vm, vcpu);
2573         vmexit = vm_exitinfo(vm, vcpu);
2574         launched = 0;
2575
2576         KASSERT(vmxctx->pmap == pmap,
2577             ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2578
2579         vmx_msr_guest_enter(vmx, vcpu);
2580
2581         VMPTRLD(vmcs);
2582
2583         /*
2584          * XXX
2585          * We do this every time because we may setup the virtual machine
2586          * from a different process than the one that actually runs it.
2587          *
2588          * If the life of a virtual machine was spent entirely in the context
2589          * of a single process we could do this once in vmx_vminit().
2590          */
2591         vmcs_write(VMCS_HOST_CR3, rcr3());
2592
2593         vmcs_write(VMCS_GUEST_RIP, rip);
2594         vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2595         do {
2596                 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
2597                     "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
2598
2599                 handled = UNHANDLED;
2600                 /*
2601                  * Interrupts are disabled from this point on until the
2602                  * guest starts executing. This is done for the following
2603                  * reasons:
2604                  *
2605                  * If an AST is asserted on this thread after the check below,
2606                  * then the IPI_AST notification will not be lost, because it
2607                  * will cause a VM exit due to external interrupt as soon as
2608                  * the guest state is loaded.
2609                  *
2610                  * A posted interrupt after 'vmx_inject_interrupts()' will
2611                  * not be "lost" because it will be held pending in the host
2612                  * APIC because interrupts are disabled. The pending interrupt
2613                  * will be recognized as soon as the guest state is loaded.
2614                  *
2615                  * The same reasoning applies to the IPI generated by
2616                  * pmap_invalidate_ept().
2617                  */
2618                 disable_intr();
2619                 vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
2620
2621                 /*
2622                  * Check for vcpu suspension after injecting events because
2623                  * vmx_inject_interrupts() can suspend the vcpu due to a
2624                  * triple fault.
2625                  */
2626                 if (vcpu_suspended(suspend_cookie)) {
2627                         enable_intr();
2628                         vm_exit_suspended(vmx->vm, vcpu, rip);
2629                         break;
2630                 }
2631
2632                 if (vcpu_rendezvous_pending(rendezvous_cookie)) {
2633                         enable_intr();
2634                         vm_exit_rendezvous(vmx->vm, vcpu, rip);
2635                         break;
2636                 }
2637
2638                 if (vcpu_should_yield(vm, vcpu)) {
2639                         enable_intr();
2640                         vm_exit_astpending(vmx->vm, vcpu, rip);
2641                         vmx_astpending_trace(vmx, vcpu, rip);
2642                         handled = HANDLED;
2643                         break;
2644                 }
2645
2646                 vmx_run_trace(vmx, vcpu);
2647                 rc = vmx_enter_guest(vmxctx, vmx, launched);
2648
2649                 /* Collect some information for VM exit processing */
2650                 vmexit->rip = rip = vmcs_guest_rip();
2651                 vmexit->inst_length = vmexit_instruction_length();
2652                 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2653                 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2654
2655                 /* Update 'nextrip' */
2656                 vmx->state[vcpu].nextrip = rip;
2657
2658                 if (rc == VMX_GUEST_VMEXIT) {
2659                         vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2660                         enable_intr();
2661                         handled = vmx_exit_process(vmx, vcpu, vmexit);
2662                 } else {
2663                         enable_intr();
2664                         vmx_exit_inst_error(vmxctx, rc, vmexit);
2665                 }
2666                 launched = 1;
2667                 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2668                 rip = vmexit->rip;
2669         } while (handled);
2670
2671         /*
2672          * If a VM exit has been handled then the exitcode must be BOGUS
2673          * If a VM exit is not handled then the exitcode must not be BOGUS
2674          */
2675         if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2676             (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2677                 panic("Mismatch between handled (%d) and exitcode (%d)",
2678                       handled, vmexit->exitcode);
2679         }
2680
2681         if (!handled)
2682                 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2683
2684         VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2685             vmexit->exitcode);
2686
2687         VMCLEAR(vmcs);
2688         vmx_msr_guest_exit(vmx, vcpu);
2689
2690         return (0);
2691 }
2692
2693 static void
2694 vmx_vmcleanup(void *arg)
2695 {
2696         int i;
2697         struct vmx *vmx = arg;
2698
2699         if (apic_access_virtualization(vmx, 0))
2700                 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2701
2702         for (i = 0; i < VM_MAXCPU; i++)
2703                 vpid_free(vmx->state[i].vpid);
2704
2705         free(vmx, M_VMX);
2706
2707         return;
2708 }
2709
2710 static register_t *
2711 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2712 {
2713
2714         switch (reg) {
2715         case VM_REG_GUEST_RAX:
2716                 return (&vmxctx->guest_rax);
2717         case VM_REG_GUEST_RBX:
2718                 return (&vmxctx->guest_rbx);
2719         case VM_REG_GUEST_RCX:
2720                 return (&vmxctx->guest_rcx);
2721         case VM_REG_GUEST_RDX:
2722                 return (&vmxctx->guest_rdx);
2723         case VM_REG_GUEST_RSI:
2724                 return (&vmxctx->guest_rsi);
2725         case VM_REG_GUEST_RDI:
2726                 return (&vmxctx->guest_rdi);
2727         case VM_REG_GUEST_RBP:
2728                 return (&vmxctx->guest_rbp);
2729         case VM_REG_GUEST_R8:
2730                 return (&vmxctx->guest_r8);
2731         case VM_REG_GUEST_R9:
2732                 return (&vmxctx->guest_r9);
2733         case VM_REG_GUEST_R10:
2734                 return (&vmxctx->guest_r10);
2735         case VM_REG_GUEST_R11:
2736                 return (&vmxctx->guest_r11);
2737         case VM_REG_GUEST_R12:
2738                 return (&vmxctx->guest_r12);
2739         case VM_REG_GUEST_R13:
2740                 return (&vmxctx->guest_r13);
2741         case VM_REG_GUEST_R14:
2742                 return (&vmxctx->guest_r14);
2743         case VM_REG_GUEST_R15:
2744                 return (&vmxctx->guest_r15);
2745         case VM_REG_GUEST_CR2:
2746                 return (&vmxctx->guest_cr2);
2747         default:
2748                 break;
2749         }
2750         return (NULL);
2751 }
2752
2753 static int
2754 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2755 {
2756         register_t *regp;
2757
2758         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2759                 *retval = *regp;
2760                 return (0);
2761         } else
2762                 return (EINVAL);
2763 }
2764
2765 static int
2766 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2767 {
2768         register_t *regp;
2769
2770         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2771                 *regp = val;
2772                 return (0);
2773         } else
2774                 return (EINVAL);
2775 }
2776
2777 static int
2778 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
2779 {
2780         uint64_t gi;
2781         int error;
2782
2783         error = vmcs_getreg(&vmx->vmcs[vcpu], running, 
2784             VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
2785         *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
2786         return (error);
2787 }
2788
2789 static int
2790 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
2791 {
2792         struct vmcs *vmcs;
2793         uint64_t gi;
2794         int error, ident;
2795
2796         /*
2797          * Forcing the vcpu into an interrupt shadow is not supported.
2798          */
2799         if (val) {
2800                 error = EINVAL;
2801                 goto done;
2802         }
2803
2804         vmcs = &vmx->vmcs[vcpu];
2805         ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
2806         error = vmcs_getreg(vmcs, running, ident, &gi);
2807         if (error == 0) {
2808                 gi &= ~HWINTR_BLOCKING;
2809                 error = vmcs_setreg(vmcs, running, ident, gi);
2810         }
2811 done:
2812         VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
2813             error ? "failed" : "succeeded");
2814         return (error);
2815 }
2816
2817 static int
2818 vmx_shadow_reg(int reg)
2819 {
2820         int shreg;
2821
2822         shreg = -1;
2823
2824         switch (reg) {
2825         case VM_REG_GUEST_CR0:
2826                 shreg = VMCS_CR0_SHADOW;
2827                 break;
2828         case VM_REG_GUEST_CR4:
2829                 shreg = VMCS_CR4_SHADOW;
2830                 break;
2831         default:
2832                 break;
2833         }
2834
2835         return (shreg);
2836 }
2837
2838 static int
2839 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2840 {
2841         int running, hostcpu;
2842         struct vmx *vmx = arg;
2843
2844         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2845         if (running && hostcpu != curcpu)
2846                 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2847
2848         if (reg == VM_REG_GUEST_INTR_SHADOW)
2849                 return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
2850
2851         if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2852                 return (0);
2853
2854         return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2855 }
2856
2857 static int
2858 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2859 {
2860         int error, hostcpu, running, shadow;
2861         uint64_t ctls;
2862         pmap_t pmap;
2863         struct vmx *vmx = arg;
2864
2865         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2866         if (running && hostcpu != curcpu)
2867                 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2868
2869         if (reg == VM_REG_GUEST_INTR_SHADOW)
2870                 return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
2871
2872         if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2873                 return (0);
2874
2875         error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2876
2877         if (error == 0) {
2878                 /*
2879                  * If the "load EFER" VM-entry control is 1 then the
2880                  * value of EFER.LMA must be identical to "IA-32e mode guest"
2881                  * bit in the VM-entry control.
2882                  */
2883                 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2884                     (reg == VM_REG_GUEST_EFER)) {
2885                         vmcs_getreg(&vmx->vmcs[vcpu], running,
2886                                     VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2887                         if (val & EFER_LMA)
2888                                 ctls |= VM_ENTRY_GUEST_LMA;
2889                         else
2890                                 ctls &= ~VM_ENTRY_GUEST_LMA;
2891                         vmcs_setreg(&vmx->vmcs[vcpu], running,
2892                                     VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2893                 }
2894
2895                 shadow = vmx_shadow_reg(reg);
2896                 if (shadow > 0) {
2897                         /*
2898                          * Store the unmodified value in the shadow
2899                          */                     
2900                         error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2901                                     VMCS_IDENT(shadow), val);
2902                 }
2903
2904                 if (reg == VM_REG_GUEST_CR3) {
2905                         /*
2906                          * Invalidate the guest vcpu's TLB mappings to emulate
2907                          * the behavior of updating %cr3.
2908                          *
2909                          * XXX the processor retains global mappings when %cr3
2910                          * is updated but vmx_invvpid() does not.
2911                          */
2912                         pmap = vmx->ctx[vcpu].pmap;
2913                         vmx_invvpid(vmx, vcpu, pmap, running);
2914                 }
2915         }
2916
2917         return (error);
2918 }
2919
2920 static int
2921 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2922 {
2923         int hostcpu, running;
2924         struct vmx *vmx = arg;
2925
2926         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2927         if (running && hostcpu != curcpu)
2928                 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2929
2930         return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
2931 }
2932
2933 static int
2934 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2935 {
2936         int hostcpu, running;
2937         struct vmx *vmx = arg;
2938
2939         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2940         if (running && hostcpu != curcpu)
2941                 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2942
2943         return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
2944 }
2945
2946 static int
2947 vmx_getcap(void *arg, int vcpu, int type, int *retval)
2948 {
2949         struct vmx *vmx = arg;
2950         int vcap;
2951         int ret;
2952
2953         ret = ENOENT;
2954
2955         vcap = vmx->cap[vcpu].set;
2956
2957         switch (type) {
2958         case VM_CAP_HALT_EXIT:
2959                 if (cap_halt_exit)
2960                         ret = 0;
2961                 break;
2962         case VM_CAP_PAUSE_EXIT:
2963                 if (cap_pause_exit)
2964                         ret = 0;
2965                 break;
2966         case VM_CAP_MTRAP_EXIT:
2967                 if (cap_monitor_trap)
2968                         ret = 0;
2969                 break;
2970         case VM_CAP_UNRESTRICTED_GUEST:
2971                 if (cap_unrestricted_guest)
2972                         ret = 0;
2973                 break;
2974         case VM_CAP_ENABLE_INVPCID:
2975                 if (cap_invpcid)
2976                         ret = 0;
2977                 break;
2978         default:
2979                 break;
2980         }
2981
2982         if (ret == 0)
2983                 *retval = (vcap & (1 << type)) ? 1 : 0;
2984
2985         return (ret);
2986 }
2987
2988 static int
2989 vmx_setcap(void *arg, int vcpu, int type, int val)
2990 {
2991         struct vmx *vmx = arg;
2992         struct vmcs *vmcs = &vmx->vmcs[vcpu];
2993         uint32_t baseval;
2994         uint32_t *pptr;
2995         int error;
2996         int flag;
2997         int reg;
2998         int retval;
2999
3000         retval = ENOENT;
3001         pptr = NULL;
3002
3003         switch (type) {
3004         case VM_CAP_HALT_EXIT:
3005                 if (cap_halt_exit) {
3006                         retval = 0;
3007                         pptr = &vmx->cap[vcpu].proc_ctls;
3008                         baseval = *pptr;
3009                         flag = PROCBASED_HLT_EXITING;
3010                         reg = VMCS_PRI_PROC_BASED_CTLS;
3011                 }
3012                 break;
3013         case VM_CAP_MTRAP_EXIT:
3014                 if (cap_monitor_trap) {
3015                         retval = 0;
3016                         pptr = &vmx->cap[vcpu].proc_ctls;
3017                         baseval = *pptr;
3018                         flag = PROCBASED_MTF;
3019                         reg = VMCS_PRI_PROC_BASED_CTLS;
3020                 }
3021                 break;
3022         case VM_CAP_PAUSE_EXIT:
3023                 if (cap_pause_exit) {
3024                         retval = 0;
3025                         pptr = &vmx->cap[vcpu].proc_ctls;
3026                         baseval = *pptr;
3027                         flag = PROCBASED_PAUSE_EXITING;
3028                         reg = VMCS_PRI_PROC_BASED_CTLS;
3029                 }
3030                 break;
3031         case VM_CAP_UNRESTRICTED_GUEST:
3032                 if (cap_unrestricted_guest) {
3033                         retval = 0;
3034                         pptr = &vmx->cap[vcpu].proc_ctls2;
3035                         baseval = *pptr;
3036                         flag = PROCBASED2_UNRESTRICTED_GUEST;
3037                         reg = VMCS_SEC_PROC_BASED_CTLS;
3038                 }
3039                 break;
3040         case VM_CAP_ENABLE_INVPCID:
3041                 if (cap_invpcid) {
3042                         retval = 0;
3043                         pptr = &vmx->cap[vcpu].proc_ctls2;
3044                         baseval = *pptr;
3045                         flag = PROCBASED2_ENABLE_INVPCID;
3046                         reg = VMCS_SEC_PROC_BASED_CTLS;
3047                 }
3048                 break;
3049         default:
3050                 break;
3051         }
3052
3053         if (retval == 0) {
3054                 if (val) {
3055                         baseval |= flag;
3056                 } else {
3057                         baseval &= ~flag;
3058                 }
3059                 VMPTRLD(vmcs);
3060                 error = vmwrite(reg, baseval);
3061                 VMCLEAR(vmcs);
3062
3063                 if (error) {
3064                         retval = error;
3065                 } else {
3066                         /*
3067                          * Update optional stored flags, and record
3068                          * setting
3069                          */
3070                         if (pptr != NULL) {
3071                                 *pptr = baseval;
3072                         }
3073
3074                         if (val) {
3075                                 vmx->cap[vcpu].set |= (1 << type);
3076                         } else {
3077                                 vmx->cap[vcpu].set &= ~(1 << type);
3078                         }
3079                 }
3080         }
3081
3082         return (retval);
3083 }
3084
3085 struct vlapic_vtx {
3086         struct vlapic   vlapic;
3087         struct pir_desc *pir_desc;
3088         struct vmx      *vmx;
3089 };
3090
3091 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)   \
3092 do {                                                                    \
3093         VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",     \
3094             level ? "level" : "edge", vector);                          \
3095         VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);  \
3096         VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);  \
3097         VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);  \
3098         VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);  \
3099         VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3100 } while (0)
3101
3102 /*
3103  * vlapic->ops handlers that utilize the APICv hardware assist described in
3104  * Chapter 29 of the Intel SDM.
3105  */
3106 static int
3107 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3108 {
3109         struct vlapic_vtx *vlapic_vtx;
3110         struct pir_desc *pir_desc;
3111         uint64_t mask;
3112         int idx, notify;
3113
3114         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3115         pir_desc = vlapic_vtx->pir_desc;
3116
3117         /*
3118          * Keep track of interrupt requests in the PIR descriptor. This is
3119          * because the virtual APIC page pointed to by the VMCS cannot be
3120          * modified if the vcpu is running.
3121          */
3122         idx = vector / 64;
3123         mask = 1UL << (vector % 64);
3124         atomic_set_long(&pir_desc->pir[idx], mask);
3125         notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
3126
3127         VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3128             level, "vmx_set_intr_ready");
3129         return (notify);
3130 }
3131
3132 static int
3133 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3134 {
3135         struct vlapic_vtx *vlapic_vtx;
3136         struct pir_desc *pir_desc;
3137         struct LAPIC *lapic;
3138         uint64_t pending, pirval;
3139         uint32_t ppr, vpr;
3140         int i;
3141
3142         /*
3143          * This function is only expected to be called from the 'HLT' exit
3144          * handler which does not care about the vector that is pending.
3145          */
3146         KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3147
3148         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3149         pir_desc = vlapic_vtx->pir_desc;
3150
3151         pending = atomic_load_acq_long(&pir_desc->pending);
3152         if (!pending)
3153                 return (0);     /* common case */
3154
3155         /*
3156          * If there is an interrupt pending then it will be recognized only
3157          * if its priority is greater than the processor priority.
3158          *
3159          * Special case: if the processor priority is zero then any pending
3160          * interrupt will be recognized.
3161          */
3162         lapic = vlapic->apic_page;
3163         ppr = lapic->ppr & 0xf0;
3164         if (ppr == 0)
3165                 return (1);
3166
3167         VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3168             lapic->ppr);
3169
3170         for (i = 3; i >= 0; i--) {
3171                 pirval = pir_desc->pir[i];
3172                 if (pirval != 0) {
3173                         vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
3174                         return (vpr > ppr);
3175                 }
3176         }
3177         return (0);
3178 }
3179
3180 static void
3181 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3182 {
3183
3184         panic("vmx_intr_accepted: not expected to be called");
3185 }
3186
3187 static void
3188 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3189 {
3190         struct vlapic_vtx *vlapic_vtx;
3191         struct vmx *vmx;
3192         struct vmcs *vmcs;
3193         uint64_t mask, val;
3194
3195         KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3196         KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3197             ("vmx_set_tmr: vcpu cannot be running"));
3198
3199         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3200         vmx = vlapic_vtx->vmx;
3201         vmcs = &vmx->vmcs[vlapic->vcpuid];
3202         mask = 1UL << (vector % 64);
3203
3204         VMPTRLD(vmcs);
3205         val = vmcs_read(VMCS_EOI_EXIT(vector));
3206         if (level)
3207                 val |= mask;
3208         else
3209                 val &= ~mask;
3210         vmcs_write(VMCS_EOI_EXIT(vector), val);
3211         VMCLEAR(vmcs);
3212 }
3213
3214 static void
3215 vmx_enable_x2apic_mode(struct vlapic *vlapic)
3216 {
3217         struct vmx *vmx;
3218         struct vmcs *vmcs;
3219         uint32_t proc_ctls2;
3220         int vcpuid, error;
3221
3222         vcpuid = vlapic->vcpuid;
3223         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3224         vmcs = &vmx->vmcs[vcpuid];
3225
3226         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3227         KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3228             ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3229
3230         proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3231         proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3232         vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3233
3234         VMPTRLD(vmcs);
3235         vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3236         VMCLEAR(vmcs);
3237
3238         if (vlapic->vcpuid == 0) {
3239                 /*
3240                  * The nested page table mappings are shared by all vcpus
3241                  * so unmap the APIC access page just once.
3242                  */
3243                 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3244                 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3245                     __func__, error));
3246
3247                 /*
3248                  * The MSR bitmap is shared by all vcpus so modify it only
3249                  * once in the context of vcpu 0.
3250                  */
3251                 error = vmx_allow_x2apic_msrs(vmx);
3252                 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3253                     __func__, error));
3254         }
3255 }
3256
3257 static void
3258 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3259 {
3260
3261         ipi_cpu(hostcpu, pirvec);
3262 }
3263
3264 /*
3265  * Transfer the pending interrupts in the PIR descriptor to the IRR
3266  * in the virtual APIC page.
3267  */
3268 static void
3269 vmx_inject_pir(struct vlapic *vlapic)
3270 {
3271         struct vlapic_vtx *vlapic_vtx;
3272         struct pir_desc *pir_desc;
3273         struct LAPIC *lapic;
3274         uint64_t val, pirval;
3275         int rvi, pirbase = -1;
3276         uint16_t intr_status_old, intr_status_new;
3277
3278         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3279         pir_desc = vlapic_vtx->pir_desc;
3280         if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3281                 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3282                     "no posted interrupt pending");
3283                 return;
3284         }
3285
3286         pirval = 0;
3287         pirbase = -1;
3288         lapic = vlapic->apic_page;
3289
3290         val = atomic_readandclear_long(&pir_desc->pir[0]);
3291         if (val != 0) {
3292                 lapic->irr0 |= val;
3293                 lapic->irr1 |= val >> 32;
3294                 pirbase = 0;
3295                 pirval = val;
3296         }
3297
3298         val = atomic_readandclear_long(&pir_desc->pir[1]);
3299         if (val != 0) {
3300                 lapic->irr2 |= val;
3301                 lapic->irr3 |= val >> 32;
3302                 pirbase = 64;
3303                 pirval = val;
3304         }
3305
3306         val = atomic_readandclear_long(&pir_desc->pir[2]);
3307         if (val != 0) {
3308                 lapic->irr4 |= val;
3309                 lapic->irr5 |= val >> 32;
3310                 pirbase = 128;
3311                 pirval = val;
3312         }
3313
3314         val = atomic_readandclear_long(&pir_desc->pir[3]);
3315         if (val != 0) {
3316                 lapic->irr6 |= val;
3317                 lapic->irr7 |= val >> 32;
3318                 pirbase = 192;
3319                 pirval = val;
3320         }
3321
3322         VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3323
3324         /*
3325          * Update RVI so the processor can evaluate pending virtual
3326          * interrupts on VM-entry.
3327          *
3328          * It is possible for pirval to be 0 here, even though the
3329          * pending bit has been set. The scenario is:
3330          * CPU-Y is sending a posted interrupt to CPU-X, which
3331          * is running a guest and processing posted interrupts in h/w.
3332          * CPU-X will eventually exit and the state seen in s/w is
3333          * the pending bit set, but no PIR bits set.
3334          *
3335          *      CPU-X                      CPU-Y
3336          *   (vm running)                (host running)
3337          *   rx posted interrupt
3338          *   CLEAR pending bit
3339          *                               SET PIR bit
3340          *   READ/CLEAR PIR bits
3341          *                               SET pending bit
3342          *   (vm exit)
3343          *   pending bit set, PIR 0
3344          */
3345         if (pirval != 0) {
3346                 rvi = pirbase + flsl(pirval) - 1;
3347                 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3348                 intr_status_new = (intr_status_old & 0xFF00) | rvi;
3349                 if (intr_status_new > intr_status_old) {
3350                         vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3351                         VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3352                             "guest_intr_status changed from 0x%04x to 0x%04x",
3353                             intr_status_old, intr_status_new);
3354                 }
3355         }
3356 }
3357
3358 static struct vlapic *
3359 vmx_vlapic_init(void *arg, int vcpuid)
3360 {
3361         struct vmx *vmx;
3362         struct vlapic *vlapic;
3363         struct vlapic_vtx *vlapic_vtx;
3364         
3365         vmx = arg;
3366
3367         vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3368         vlapic->vm = vmx->vm;
3369         vlapic->vcpuid = vcpuid;
3370         vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3371
3372         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3373         vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3374         vlapic_vtx->vmx = vmx;
3375
3376         if (virtual_interrupt_delivery) {
3377                 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3378                 vlapic->ops.pending_intr = vmx_pending_intr;
3379                 vlapic->ops.intr_accepted = vmx_intr_accepted;
3380                 vlapic->ops.set_tmr = vmx_set_tmr;
3381                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
3382         }
3383
3384         if (posted_interrupts)
3385                 vlapic->ops.post_intr = vmx_post_intr;
3386
3387         vlapic_init(vlapic);
3388
3389         return (vlapic);
3390 }
3391
3392 static void
3393 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3394 {
3395
3396         vlapic_cleanup(vlapic);
3397         free(vlapic, M_VLAPIC);
3398 }
3399
3400 struct vmm_ops vmm_ops_intel = {
3401         vmx_init,
3402         vmx_cleanup,
3403         vmx_restore,
3404         vmx_vminit,
3405         vmx_run,
3406         vmx_vmcleanup,
3407         vmx_getreg,
3408         vmx_setreg,
3409         vmx_getdesc,
3410         vmx_setdesc,
3411         vmx_getcap,
3412         vmx_setcap,
3413         ept_vmspace_alloc,
3414         ept_vmspace_free,
3415         vmx_vlapic_init,
3416         vmx_vlapic_cleanup,
3417 };