]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/amd64/vmm/intel/vmx.c
THIS BRANCH IS OBSOLETE, PLEASE READ:
[FreeBSD/FreeBSD.git] / sys / amd64 / vmm / intel / vmx.c
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2011 NetApp, Inc.
5  * All rights reserved.
6  * Copyright (c) 2018 Joyent, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
18  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
21  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27  * SUCH DAMAGE.
28  *
29  * $FreeBSD$
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include "opt_bhyve_snapshot.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/smp.h>
40 #include <sys/kernel.h>
41 #include <sys/malloc.h>
42 #include <sys/pcpu.h>
43 #include <sys/proc.h>
44 #include <sys/smr.h>
45 #include <sys/sysctl.h>
46
47 #include <vm/vm.h>
48 #include <vm/pmap.h>
49
50 #include <machine/psl.h>
51 #include <machine/cpufunc.h>
52 #include <machine/md_var.h>
53 #include <machine/reg.h>
54 #include <machine/segments.h>
55 #include <machine/smp.h>
56 #include <machine/specialreg.h>
57 #include <machine/vmparam.h>
58
59 #include <machine/vmm.h>
60 #include <machine/vmm_dev.h>
61 #include <machine/vmm_instruction_emul.h>
62 #include <machine/vmm_snapshot.h>
63
64 #include "vmm_lapic.h"
65 #include "vmm_host.h"
66 #include "vmm_ioport.h"
67 #include "vmm_ktr.h"
68 #include "vmm_stat.h"
69 #include "vatpic.h"
70 #include "vlapic.h"
71 #include "vlapic_priv.h"
72
73 #include "ept.h"
74 #include "vmx_cpufunc.h"
75 #include "vmx.h"
76 #include "vmx_msr.h"
77 #include "x86.h"
78 #include "vmx_controls.h"
79
80 #define PINBASED_CTLS_ONE_SETTING                                       \
81         (PINBASED_EXTINT_EXITING        |                               \
82          PINBASED_NMI_EXITING           |                               \
83          PINBASED_VIRTUAL_NMI)
84 #define PINBASED_CTLS_ZERO_SETTING      0
85
86 #define PROCBASED_CTLS_WINDOW_SETTING                                   \
87         (PROCBASED_INT_WINDOW_EXITING   |                               \
88          PROCBASED_NMI_WINDOW_EXITING)
89
90 #define PROCBASED_CTLS_ONE_SETTING                                      \
91         (PROCBASED_SECONDARY_CONTROLS   |                               \
92          PROCBASED_MWAIT_EXITING        |                               \
93          PROCBASED_MONITOR_EXITING      |                               \
94          PROCBASED_IO_EXITING           |                               \
95          PROCBASED_MSR_BITMAPS          |                               \
96          PROCBASED_CTLS_WINDOW_SETTING  |                               \
97          PROCBASED_CR8_LOAD_EXITING     |                               \
98          PROCBASED_CR8_STORE_EXITING)
99 #define PROCBASED_CTLS_ZERO_SETTING     \
100         (PROCBASED_CR3_LOAD_EXITING |   \
101         PROCBASED_CR3_STORE_EXITING |   \
102         PROCBASED_IO_BITMAPS)
103
104 #define PROCBASED_CTLS2_ONE_SETTING     PROCBASED2_ENABLE_EPT
105 #define PROCBASED_CTLS2_ZERO_SETTING    0
106
107 #define VM_EXIT_CTLS_ONE_SETTING                                        \
108         (VM_EXIT_SAVE_DEBUG_CONTROLS            |                       \
109         VM_EXIT_HOST_LMA                        |                       \
110         VM_EXIT_SAVE_EFER                       |                       \
111         VM_EXIT_LOAD_EFER                       |                       \
112         VM_EXIT_ACKNOWLEDGE_INTERRUPT)
113
114 #define VM_EXIT_CTLS_ZERO_SETTING       0
115
116 #define VM_ENTRY_CTLS_ONE_SETTING                                       \
117         (VM_ENTRY_LOAD_DEBUG_CONTROLS           |                       \
118         VM_ENTRY_LOAD_EFER)
119
120 #define VM_ENTRY_CTLS_ZERO_SETTING                                      \
121         (VM_ENTRY_INTO_SMM                      |                       \
122         VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
123
124 #define HANDLED         1
125 #define UNHANDLED       0
126
127 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
128 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
129
130 SYSCTL_DECL(_hw_vmm);
131 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
132     NULL);
133
134 int vmxon_enabled[MAXCPU];
135 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
136
137 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
138 static uint32_t exit_ctls, entry_ctls;
139
140 static uint64_t cr0_ones_mask, cr0_zeros_mask;
141 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
142              &cr0_ones_mask, 0, NULL);
143 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
144              &cr0_zeros_mask, 0, NULL);
145
146 static uint64_t cr4_ones_mask, cr4_zeros_mask;
147 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
148              &cr4_ones_mask, 0, NULL);
149 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
150              &cr4_zeros_mask, 0, NULL);
151
152 static int vmx_initialized;
153 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
154            &vmx_initialized, 0, "Intel VMX initialized");
155
156 /*
157  * Optional capabilities
158  */
159 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
160     CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
161     NULL);
162
163 static int cap_halt_exit;
164 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
165     "HLT triggers a VM-exit");
166
167 static int cap_pause_exit;
168 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
169     0, "PAUSE triggers a VM-exit");
170
171 static int cap_rdpid;
172 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0,
173     "Guests are allowed to use RDPID");
174
175 static int cap_rdtscp;
176 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0,
177     "Guests are allowed to use RDTSCP");
178
179 static int cap_unrestricted_guest;
180 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
181     &cap_unrestricted_guest, 0, "Unrestricted guests");
182
183 static int cap_monitor_trap;
184 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
185     &cap_monitor_trap, 0, "Monitor trap flag");
186
187 static int cap_invpcid;
188 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
189     0, "Guests are allowed to use INVPCID");
190
191 static int tpr_shadowing;
192 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing, CTLFLAG_RD,
193     &tpr_shadowing, 0, "TPR shadowing support");
194
195 static int virtual_interrupt_delivery;
196 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
197     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
198
199 static int posted_interrupts;
200 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
201     &posted_interrupts, 0, "APICv posted interrupt support");
202
203 static int pirvec = -1;
204 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
205     &pirvec, 0, "APICv posted interrupt vector");
206
207 static struct unrhdr *vpid_unr;
208 static u_int vpid_alloc_failed;
209 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
210             &vpid_alloc_failed, 0, NULL);
211
212 int guest_l1d_flush;
213 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RD,
214     &guest_l1d_flush, 0, NULL);
215 int guest_l1d_flush_sw;
216 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RD,
217     &guest_l1d_flush_sw, 0, NULL);
218
219 static struct msr_entry msr_load_list[1] __aligned(16);
220
221 /*
222  * The definitions of SDT probes for VMX.
223  */
224
225 SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
226     "struct vmx *", "int", "struct vm_exit *");
227
228 SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
229     "struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
230
231 SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
232     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
233
234 SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
235     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
236
237 SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
238     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
239
240 SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
241     "struct vmx *", "int", "struct vm_exit *");
242
243 SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
244     "struct vmx *", "int", "struct vm_exit *");
245
246 SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
247     "struct vmx *", "int", "struct vm_exit *");
248
249 SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
250     "struct vmx *", "int", "struct vm_exit *");
251
252 SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
253     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
254
255 SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
256     "struct vmx *", "int", "struct vm_exit *");
257
258 SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
259     "struct vmx *", "int", "struct vm_exit *");
260
261 SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
262     "struct vmx *", "int", "struct vm_exit *");
263
264 SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
265     "struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
266
267 SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
268     "struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
269
270 SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
271     "struct vmx *", "int", "struct vm_exit *", "uint64_t");
272
273 SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
274     "struct vmx *", "int", "struct vm_exit *");
275
276 SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
277     "struct vmx *", "int", "struct vm_exit *");
278
279 SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
280     "struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
281
282 SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
283     "struct vmx *", "int", "struct vm_exit *");
284
285 SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
286     "struct vmx *", "int", "struct vm_exit *");
287
288 SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
289     "struct vmx *", "int", "struct vm_exit *");
290
291 SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
292     "struct vmx *", "int", "struct vm_exit *");
293
294 SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
295     "struct vmx *", "int", "struct vm_exit *", "uint32_t");
296
297 SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
298     "struct vmx *", "int", "struct vm_exit *", "int");
299
300 /*
301  * Use the last page below 4GB as the APIC access address. This address is
302  * occupied by the boot firmware so it is guaranteed that it will not conflict
303  * with a page in system memory.
304  */
305 #define APIC_ACCESS_ADDRESS     0xFFFFF000
306
307 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
308 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
309 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
310 static void vmx_inject_pir(struct vlapic *vlapic);
311 #ifdef BHYVE_SNAPSHOT
312 static int vmx_restore_tsc(void *arg, int vcpu, uint64_t now);
313 #endif
314
315 static inline bool
316 host_has_rdpid(void)
317 {
318         return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0);
319 }
320
321 static inline bool
322 host_has_rdtscp(void)
323 {
324         return ((amd_feature & AMDID_RDTSCP) != 0);
325 }
326
327 #ifdef KTR
328 static const char *
329 exit_reason_to_str(int reason)
330 {
331         static char reasonbuf[32];
332
333         switch (reason) {
334         case EXIT_REASON_EXCEPTION:
335                 return "exception";
336         case EXIT_REASON_EXT_INTR:
337                 return "extint";
338         case EXIT_REASON_TRIPLE_FAULT:
339                 return "triplefault";
340         case EXIT_REASON_INIT:
341                 return "init";
342         case EXIT_REASON_SIPI:
343                 return "sipi";
344         case EXIT_REASON_IO_SMI:
345                 return "iosmi";
346         case EXIT_REASON_SMI:
347                 return "smi";
348         case EXIT_REASON_INTR_WINDOW:
349                 return "intrwindow";
350         case EXIT_REASON_NMI_WINDOW:
351                 return "nmiwindow";
352         case EXIT_REASON_TASK_SWITCH:
353                 return "taskswitch";
354         case EXIT_REASON_CPUID:
355                 return "cpuid";
356         case EXIT_REASON_GETSEC:
357                 return "getsec";
358         case EXIT_REASON_HLT:
359                 return "hlt";
360         case EXIT_REASON_INVD:
361                 return "invd";
362         case EXIT_REASON_INVLPG:
363                 return "invlpg";
364         case EXIT_REASON_RDPMC:
365                 return "rdpmc";
366         case EXIT_REASON_RDTSC:
367                 return "rdtsc";
368         case EXIT_REASON_RSM:
369                 return "rsm";
370         case EXIT_REASON_VMCALL:
371                 return "vmcall";
372         case EXIT_REASON_VMCLEAR:
373                 return "vmclear";
374         case EXIT_REASON_VMLAUNCH:
375                 return "vmlaunch";
376         case EXIT_REASON_VMPTRLD:
377                 return "vmptrld";
378         case EXIT_REASON_VMPTRST:
379                 return "vmptrst";
380         case EXIT_REASON_VMREAD:
381                 return "vmread";
382         case EXIT_REASON_VMRESUME:
383                 return "vmresume";
384         case EXIT_REASON_VMWRITE:
385                 return "vmwrite";
386         case EXIT_REASON_VMXOFF:
387                 return "vmxoff";
388         case EXIT_REASON_VMXON:
389                 return "vmxon";
390         case EXIT_REASON_CR_ACCESS:
391                 return "craccess";
392         case EXIT_REASON_DR_ACCESS:
393                 return "draccess";
394         case EXIT_REASON_INOUT:
395                 return "inout";
396         case EXIT_REASON_RDMSR:
397                 return "rdmsr";
398         case EXIT_REASON_WRMSR:
399                 return "wrmsr";
400         case EXIT_REASON_INVAL_VMCS:
401                 return "invalvmcs";
402         case EXIT_REASON_INVAL_MSR:
403                 return "invalmsr";
404         case EXIT_REASON_MWAIT:
405                 return "mwait";
406         case EXIT_REASON_MTF:
407                 return "mtf";
408         case EXIT_REASON_MONITOR:
409                 return "monitor";
410         case EXIT_REASON_PAUSE:
411                 return "pause";
412         case EXIT_REASON_MCE_DURING_ENTRY:
413                 return "mce-during-entry";
414         case EXIT_REASON_TPR:
415                 return "tpr";
416         case EXIT_REASON_APIC_ACCESS:
417                 return "apic-access";
418         case EXIT_REASON_GDTR_IDTR:
419                 return "gdtridtr";
420         case EXIT_REASON_LDTR_TR:
421                 return "ldtrtr";
422         case EXIT_REASON_EPT_FAULT:
423                 return "eptfault";
424         case EXIT_REASON_EPT_MISCONFIG:
425                 return "eptmisconfig";
426         case EXIT_REASON_INVEPT:
427                 return "invept";
428         case EXIT_REASON_RDTSCP:
429                 return "rdtscp";
430         case EXIT_REASON_VMX_PREEMPT:
431                 return "vmxpreempt";
432         case EXIT_REASON_INVVPID:
433                 return "invvpid";
434         case EXIT_REASON_WBINVD:
435                 return "wbinvd";
436         case EXIT_REASON_XSETBV:
437                 return "xsetbv";
438         case EXIT_REASON_APIC_WRITE:
439                 return "apic-write";
440         default:
441                 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
442                 return (reasonbuf);
443         }
444 }
445 #endif  /* KTR */
446
447 static int
448 vmx_allow_x2apic_msrs(struct vmx *vmx)
449 {
450         int i, error;
451
452         error = 0;
453
454         /*
455          * Allow readonly access to the following x2APIC MSRs from the guest.
456          */
457         error += guest_msr_ro(vmx, MSR_APIC_ID);
458         error += guest_msr_ro(vmx, MSR_APIC_VERSION);
459         error += guest_msr_ro(vmx, MSR_APIC_LDR);
460         error += guest_msr_ro(vmx, MSR_APIC_SVR);
461
462         for (i = 0; i < 8; i++)
463                 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
464
465         for (i = 0; i < 8; i++)
466                 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
467
468         for (i = 0; i < 8; i++)
469                 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
470
471         error += guest_msr_ro(vmx, MSR_APIC_ESR);
472         error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
473         error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
474         error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
475         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
476         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
477         error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
478         error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
479         error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
480         error += guest_msr_ro(vmx, MSR_APIC_ICR);
481
482         /*
483          * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
484          *
485          * These registers get special treatment described in the section
486          * "Virtualizing MSR-Based APIC Accesses".
487          */
488         error += guest_msr_rw(vmx, MSR_APIC_TPR);
489         error += guest_msr_rw(vmx, MSR_APIC_EOI);
490         error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
491
492         return (error);
493 }
494
495 u_long
496 vmx_fix_cr0(u_long cr0)
497 {
498
499         return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
500 }
501
502 u_long
503 vmx_fix_cr4(u_long cr4)
504 {
505
506         return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
507 }
508
509 static void
510 vpid_free(int vpid)
511 {
512         if (vpid < 0 || vpid > 0xffff)
513                 panic("vpid_free: invalid vpid %d", vpid);
514
515         /*
516          * VPIDs [0,VM_MAXCPU] are special and are not allocated from
517          * the unit number allocator.
518          */
519
520         if (vpid > VM_MAXCPU)
521                 free_unr(vpid_unr, vpid);
522 }
523
524 static void
525 vpid_alloc(uint16_t *vpid, int num)
526 {
527         int i, x;
528
529         if (num <= 0 || num > VM_MAXCPU)
530                 panic("invalid number of vpids requested: %d", num);
531
532         /*
533          * If the "enable vpid" execution control is not enabled then the
534          * VPID is required to be 0 for all vcpus.
535          */
536         if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
537                 for (i = 0; i < num; i++)
538                         vpid[i] = 0;
539                 return;
540         }
541
542         /*
543          * Allocate a unique VPID for each vcpu from the unit number allocator.
544          */
545         for (i = 0; i < num; i++) {
546                 x = alloc_unr(vpid_unr);
547                 if (x == -1)
548                         break;
549                 else
550                         vpid[i] = x;
551         }
552
553         if (i < num) {
554                 atomic_add_int(&vpid_alloc_failed, 1);
555
556                 /*
557                  * If the unit number allocator does not have enough unique
558                  * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
559                  *
560                  * These VPIDs are not be unique across VMs but this does not
561                  * affect correctness because the combined mappings are also
562                  * tagged with the EP4TA which is unique for each VM.
563                  *
564                  * It is still sub-optimal because the invvpid will invalidate
565                  * combined mappings for a particular VPID across all EP4TAs.
566                  */
567                 while (i-- > 0)
568                         vpid_free(vpid[i]);
569
570                 for (i = 0; i < num; i++)
571                         vpid[i] = i + 1;
572         }
573 }
574
575 static void
576 vpid_init(void)
577 {
578         /*
579          * VPID 0 is required when the "enable VPID" execution control is
580          * disabled.
581          *
582          * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
583          * unit number allocator does not have sufficient unique VPIDs to
584          * satisfy the allocation.
585          *
586          * The remaining VPIDs are managed by the unit number allocator.
587          */
588         vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
589 }
590
591 static void
592 vmx_disable(void *arg __unused)
593 {
594         struct invvpid_desc invvpid_desc = { 0 };
595         struct invept_desc invept_desc = { 0 };
596
597         if (vmxon_enabled[curcpu]) {
598                 /*
599                  * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
600                  *
601                  * VMXON or VMXOFF are not required to invalidate any TLB
602                  * caching structures. This prevents potential retention of
603                  * cached information in the TLB between distinct VMX episodes.
604                  */
605                 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
606                 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
607                 vmxoff();
608         }
609         load_cr4(rcr4() & ~CR4_VMXE);
610 }
611
612 static int
613 vmx_modcleanup(void)
614 {
615
616         if (pirvec >= 0)
617                 lapic_ipi_free(pirvec);
618
619         if (vpid_unr != NULL) {
620                 delete_unrhdr(vpid_unr);
621                 vpid_unr = NULL;
622         }
623
624         if (nmi_flush_l1d_sw == 1)
625                 nmi_flush_l1d_sw = 0;
626
627         smp_rendezvous(NULL, vmx_disable, NULL, NULL);
628
629         return (0);
630 }
631
632 static void
633 vmx_enable(void *arg __unused)
634 {
635         int error;
636         uint64_t feature_control;
637
638         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
639         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
640             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
641                 wrmsr(MSR_IA32_FEATURE_CONTROL,
642                     feature_control | IA32_FEATURE_CONTROL_VMX_EN |
643                     IA32_FEATURE_CONTROL_LOCK);
644         }
645
646         load_cr4(rcr4() | CR4_VMXE);
647
648         *(uint32_t *)vmxon_region[curcpu] = vmx_revision();
649         error = vmxon(vmxon_region[curcpu]);
650         if (error == 0)
651                 vmxon_enabled[curcpu] = 1;
652 }
653
654 static void
655 vmx_modresume(void)
656 {
657
658         if (vmxon_enabled[curcpu])
659                 vmxon(vmxon_region[curcpu]);
660 }
661
662 static int
663 vmx_modinit(int ipinum)
664 {
665         int error;
666         uint64_t basic, fixed0, fixed1, feature_control;
667         uint32_t tmp, procbased2_vid_bits;
668
669         /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
670         if (!(cpu_feature2 & CPUID2_VMX)) {
671                 printf("vmx_modinit: processor does not support VMX "
672                     "operation\n");
673                 return (ENXIO);
674         }
675
676         /*
677          * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
678          * are set (bits 0 and 2 respectively).
679          */
680         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
681         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
682             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
683                 printf("vmx_modinit: VMX operation disabled by BIOS\n");
684                 return (ENXIO);
685         }
686
687         /*
688          * Verify capabilities MSR_VMX_BASIC:
689          * - bit 54 indicates support for INS/OUTS decoding
690          */
691         basic = rdmsr(MSR_VMX_BASIC);
692         if ((basic & (1UL << 54)) == 0) {
693                 printf("vmx_modinit: processor does not support desired basic "
694                     "capabilities\n");
695                 return (EINVAL);
696         }
697
698         /* Check support for primary processor-based VM-execution controls */
699         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
700                                MSR_VMX_TRUE_PROCBASED_CTLS,
701                                PROCBASED_CTLS_ONE_SETTING,
702                                PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
703         if (error) {
704                 printf("vmx_modinit: processor does not support desired "
705                     "primary processor-based controls\n");
706                 return (error);
707         }
708
709         /* Clear the processor-based ctl bits that are set on demand */
710         procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
711
712         /* Check support for secondary processor-based VM-execution controls */
713         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
714                                MSR_VMX_PROCBASED_CTLS2,
715                                PROCBASED_CTLS2_ONE_SETTING,
716                                PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
717         if (error) {
718                 printf("vmx_modinit: processor does not support desired "
719                     "secondary processor-based controls\n");
720                 return (error);
721         }
722
723         /* Check support for VPID */
724         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
725                                PROCBASED2_ENABLE_VPID, 0, &tmp);
726         if (error == 0)
727                 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
728
729         /* Check support for pin-based VM-execution controls */
730         error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
731                                MSR_VMX_TRUE_PINBASED_CTLS,
732                                PINBASED_CTLS_ONE_SETTING,
733                                PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
734         if (error) {
735                 printf("vmx_modinit: processor does not support desired "
736                     "pin-based controls\n");
737                 return (error);
738         }
739
740         /* Check support for VM-exit controls */
741         error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
742                                VM_EXIT_CTLS_ONE_SETTING,
743                                VM_EXIT_CTLS_ZERO_SETTING,
744                                &exit_ctls);
745         if (error) {
746                 printf("vmx_modinit: processor does not support desired "
747                     "exit controls\n");
748                 return (error);
749         }
750
751         /* Check support for VM-entry controls */
752         error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
753             VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
754             &entry_ctls);
755         if (error) {
756                 printf("vmx_modinit: processor does not support desired "
757                     "entry controls\n");
758                 return (error);
759         }
760
761         /*
762          * Check support for optional features by testing them
763          * as individual bits
764          */
765         cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
766                                         MSR_VMX_TRUE_PROCBASED_CTLS,
767                                         PROCBASED_HLT_EXITING, 0,
768                                         &tmp) == 0);
769
770         cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
771                                         MSR_VMX_PROCBASED_CTLS,
772                                         PROCBASED_MTF, 0,
773                                         &tmp) == 0);
774
775         cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
776                                          MSR_VMX_TRUE_PROCBASED_CTLS,
777                                          PROCBASED_PAUSE_EXITING, 0,
778                                          &tmp) == 0);
779
780         /*
781          * Check support for RDPID and/or RDTSCP.
782          *
783          * Support a pass-through-based implementation of these via the
784          * "enable RDTSCP" VM-execution control and the "RDTSC exiting"
785          * VM-execution control.
786          *
787          * The "enable RDTSCP" VM-execution control applies to both RDPID
788          * and RDTSCP (see SDM volume 3, section 25.3, "Changes to
789          * Instruction Behavior in VMX Non-root operation"); this is why
790          * only this VM-execution control needs to be enabled in order to
791          * enable passing through whichever of RDPID and/or RDTSCP are
792          * supported by the host.
793          *
794          * The "RDTSC exiting" VM-execution control applies to both RDTSC
795          * and RDTSCP (again, per SDM volume 3, section 25.3), and is
796          * already set up for RDTSC and RDTSCP pass-through by the current
797          * implementation of RDTSC.
798          *
799          * Although RDPID and RDTSCP are optional capabilities, since there
800          * does not currently seem to be a use case for enabling/disabling
801          * these via libvmmapi, choose not to support this and, instead,
802          * just statically always enable or always disable this support
803          * across all vCPUs on all VMs. (Note that there may be some
804          * complications to providing this functionality, e.g., the MSR
805          * bitmap is currently per-VM rather than per-vCPU while the
806          * capability API wants to be able to control capabilities on a
807          * per-vCPU basis).
808          */
809         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
810                                MSR_VMX_PROCBASED_CTLS2,
811                                PROCBASED2_ENABLE_RDTSCP, 0, &tmp);
812         cap_rdpid = error == 0 && host_has_rdpid();
813         cap_rdtscp = error == 0 && host_has_rdtscp();
814         if (cap_rdpid || cap_rdtscp)
815                 procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP;
816
817         cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
818                                         MSR_VMX_PROCBASED_CTLS2,
819                                         PROCBASED2_UNRESTRICTED_GUEST, 0,
820                                         &tmp) == 0);
821
822         cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
823             MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
824             &tmp) == 0);
825
826         /*
827          * Check support for TPR shadow.
828          */
829         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
830             MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
831             &tmp);
832         if (error == 0) {
833                 tpr_shadowing = 1;
834                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
835                     &tpr_shadowing);
836         }
837
838         if (tpr_shadowing) {
839                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
840                 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
841                 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
842         }
843
844         /*
845          * Check support for virtual interrupt delivery.
846          */
847         procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
848             PROCBASED2_VIRTUALIZE_X2APIC_MODE |
849             PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
850             PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
851
852         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
853             procbased2_vid_bits, 0, &tmp);
854         if (error == 0 && tpr_shadowing) {
855                 virtual_interrupt_delivery = 1;
856                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
857                     &virtual_interrupt_delivery);
858         }
859
860         if (virtual_interrupt_delivery) {
861                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
862                 procbased_ctls2 |= procbased2_vid_bits;
863                 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
864
865                 /*
866                  * Check for Posted Interrupts only if Virtual Interrupt
867                  * Delivery is enabled.
868                  */
869                 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
870                     MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
871                     &tmp);
872                 if (error == 0) {
873                         pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
874                             &IDTVEC(justreturn));
875                         if (pirvec < 0) {
876                                 if (bootverbose) {
877                                         printf("vmx_modinit: unable to "
878                                             "allocate posted interrupt "
879                                             "vector\n");
880                                 }
881                         } else {
882                                 posted_interrupts = 1;
883                                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
884                                     &posted_interrupts);
885                         }
886                 }
887         }
888
889         if (posted_interrupts)
890                     pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
891
892         /* Initialize EPT */
893         error = ept_init(ipinum);
894         if (error) {
895                 printf("vmx_modinit: ept initialization failed (%d)\n", error);
896                 return (error);
897         }
898
899         guest_l1d_flush = (cpu_ia32_arch_caps &
900             IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
901         TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
902
903         /*
904          * L1D cache flush is enabled.  Use IA32_FLUSH_CMD MSR when
905          * available.  Otherwise fall back to the software flush
906          * method which loads enough data from the kernel text to
907          * flush existing L1D content, both on VMX entry and on NMI
908          * return.
909          */
910         if (guest_l1d_flush) {
911                 if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
912                         guest_l1d_flush_sw = 1;
913                         TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
914                             &guest_l1d_flush_sw);
915                 }
916                 if (guest_l1d_flush_sw) {
917                         if (nmi_flush_l1d_sw <= 1)
918                                 nmi_flush_l1d_sw = 1;
919                 } else {
920                         msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
921                         msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
922                 }
923         }
924
925         /*
926          * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
927          */
928         fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
929         fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
930         cr0_ones_mask = fixed0 & fixed1;
931         cr0_zeros_mask = ~fixed0 & ~fixed1;
932
933         /*
934          * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
935          * if unrestricted guest execution is allowed.
936          */
937         if (cap_unrestricted_guest)
938                 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
939
940         /*
941          * Do not allow the guest to set CR0_NW or CR0_CD.
942          */
943         cr0_zeros_mask |= (CR0_NW | CR0_CD);
944
945         fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
946         fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
947         cr4_ones_mask = fixed0 & fixed1;
948         cr4_zeros_mask = ~fixed0 & ~fixed1;
949
950         vpid_init();
951
952         vmx_msr_init();
953
954         /* enable VMX operation */
955         smp_rendezvous(NULL, vmx_enable, NULL, NULL);
956
957         vmx_initialized = 1;
958
959         return (0);
960 }
961
962 static void
963 vmx_trigger_hostintr(int vector)
964 {
965         uintptr_t func;
966         struct gate_descriptor *gd;
967
968         gd = &idt[vector];
969
970         KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
971             "invalid vector %d", vector));
972         KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
973             vector));
974         KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
975             "has invalid type %d", vector, gd->gd_type));
976         KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
977             "has invalid dpl %d", vector, gd->gd_dpl));
978         KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
979             "for vector %d has invalid selector %d", vector, gd->gd_selector));
980         KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
981             "IST %d", vector, gd->gd_ist));
982
983         func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
984         vmx_call_isr(func);
985 }
986
987 static int
988 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
989 {
990         int error, mask_ident, shadow_ident;
991         uint64_t mask_value;
992
993         if (which != 0 && which != 4)
994                 panic("vmx_setup_cr_shadow: unknown cr%d", which);
995
996         if (which == 0) {
997                 mask_ident = VMCS_CR0_MASK;
998                 mask_value = cr0_ones_mask | cr0_zeros_mask;
999                 shadow_ident = VMCS_CR0_SHADOW;
1000         } else {
1001                 mask_ident = VMCS_CR4_MASK;
1002                 mask_value = cr4_ones_mask | cr4_zeros_mask;
1003                 shadow_ident = VMCS_CR4_SHADOW;
1004         }
1005
1006         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
1007         if (error)
1008                 return (error);
1009
1010         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
1011         if (error)
1012                 return (error);
1013
1014         return (0);
1015 }
1016 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
1017 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
1018
1019 static void *
1020 vmx_init(struct vm *vm, pmap_t pmap)
1021 {
1022         uint16_t vpid[VM_MAXCPU];
1023         int i, error;
1024         struct vmx *vmx;
1025         struct vmcs *vmcs;
1026         uint32_t exc_bitmap;
1027         uint16_t maxcpus;
1028
1029         vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
1030         if ((uintptr_t)vmx & PAGE_MASK) {
1031                 panic("malloc of struct vmx not aligned on %d byte boundary",
1032                       PAGE_SIZE);
1033         }
1034         vmx->vm = vm;
1035
1036         vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop));
1037
1038         /*
1039          * Clean up EPTP-tagged guest physical and combined mappings
1040          *
1041          * VMX transitions are not required to invalidate any guest physical
1042          * mappings. So, it may be possible for stale guest physical mappings
1043          * to be present in the processor TLBs.
1044          *
1045          * Combined mappings for this EP4TA are also invalidated for all VPIDs.
1046          */
1047         ept_invalidate_mappings(vmx->eptp);
1048
1049         msr_bitmap_initialize(vmx->msr_bitmap);
1050
1051         /*
1052          * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
1053          * The guest FSBASE and GSBASE are saved and restored during
1054          * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
1055          * always restored from the vmcs host state area on vm-exit.
1056          *
1057          * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
1058          * how they are saved/restored so can be directly accessed by the
1059          * guest.
1060          *
1061          * MSR_EFER is saved and restored in the guest VMCS area on a
1062          * VM exit and entry respectively. It is also restored from the
1063          * host VMCS area on a VM exit.
1064          *
1065          * The TSC MSR is exposed read-only. Writes are disallowed as
1066          * that will impact the host TSC.  If the guest does a write
1067          * the "use TSC offsetting" execution control is enabled and the
1068          * difference between the host TSC and the guest TSC is written
1069          * into the TSC offset in the VMCS.
1070          *
1071          * Guest TSC_AUX support is enabled if any of guest RDPID and/or
1072          * guest RDTSCP support are enabled (since, as per Table 2-2 in SDM
1073          * volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are
1074          * supported). If guest TSC_AUX support is enabled, TSC_AUX is
1075          * exposed read-only so that the VMM can do one fewer MSR read per
1076          * exit than if this register were exposed read-write; the guest
1077          * restore value can be updated during guest writes (expected to be
1078          * rare) instead of during all exits (common).
1079          */
1080         if (guest_msr_rw(vmx, MSR_GSBASE) ||
1081             guest_msr_rw(vmx, MSR_FSBASE) ||
1082             guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
1083             guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
1084             guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
1085             guest_msr_rw(vmx, MSR_EFER) ||
1086             guest_msr_ro(vmx, MSR_TSC) ||
1087             ((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX)))
1088                 panic("vmx_init: error setting guest msr access");
1089
1090         vpid_alloc(vpid, VM_MAXCPU);
1091
1092         if (virtual_interrupt_delivery) {
1093                 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
1094                     APIC_ACCESS_ADDRESS);
1095                 /* XXX this should really return an error to the caller */
1096                 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
1097         }
1098
1099         maxcpus = vm_get_maxcpus(vm);
1100         for (i = 0; i < maxcpus; i++) {
1101                 vmcs = &vmx->vmcs[i];
1102                 vmcs->identifier = vmx_revision();
1103                 error = vmclear(vmcs);
1104                 if (error != 0) {
1105                         panic("vmx_init: vmclear error %d on vcpu %d\n",
1106                               error, i);
1107                 }
1108
1109                 vmx_msr_guest_init(vmx, i);
1110
1111                 error = vmcs_init(vmcs);
1112                 KASSERT(error == 0, ("vmcs_init error %d", error));
1113
1114                 VMPTRLD(vmcs);
1115                 error = 0;
1116                 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
1117                 error += vmwrite(VMCS_EPTP, vmx->eptp);
1118                 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
1119                 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
1120                 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
1121                 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
1122                 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
1123                 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
1124                 error += vmwrite(VMCS_VPID, vpid[i]);
1125
1126                 if (guest_l1d_flush && !guest_l1d_flush_sw) {
1127                         vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
1128                             (vm_offset_t)&msr_load_list[0]));
1129                         vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
1130                             nitems(msr_load_list));
1131                         vmcs_write(VMCS_EXIT_MSR_STORE, 0);
1132                         vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
1133                 }
1134
1135                 /* exception bitmap */
1136                 if (vcpu_trace_exceptions(vm, i))
1137                         exc_bitmap = 0xffffffff;
1138                 else
1139                         exc_bitmap = 1 << IDT_MC;
1140                 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
1141
1142                 vmx->ctx[i].guest_dr6 = DBREG_DR6_RESERVED1;
1143                 error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
1144
1145                 if (tpr_shadowing) {
1146                         error += vmwrite(VMCS_VIRTUAL_APIC,
1147                             vtophys(&vmx->apic_page[i]));
1148                 }
1149
1150                 if (virtual_interrupt_delivery) {
1151                         error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
1152                         error += vmwrite(VMCS_EOI_EXIT0, 0);
1153                         error += vmwrite(VMCS_EOI_EXIT1, 0);
1154                         error += vmwrite(VMCS_EOI_EXIT2, 0);
1155                         error += vmwrite(VMCS_EOI_EXIT3, 0);
1156                 }
1157                 if (posted_interrupts) {
1158                         error += vmwrite(VMCS_PIR_VECTOR, pirvec);
1159                         error += vmwrite(VMCS_PIR_DESC,
1160                             vtophys(&vmx->pir_desc[i]));
1161                 }
1162                 VMCLEAR(vmcs);
1163                 KASSERT(error == 0, ("vmx_init: error customizing the vmcs"));
1164
1165                 vmx->cap[i].set = 0;
1166                 vmx->cap[i].set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0;
1167                 vmx->cap[i].set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0;
1168                 vmx->cap[i].proc_ctls = procbased_ctls;
1169                 vmx->cap[i].proc_ctls2 = procbased_ctls2;
1170                 vmx->cap[i].exc_bitmap = exc_bitmap;
1171
1172                 vmx->state[i].nextrip = ~0;
1173                 vmx->state[i].lastcpu = NOCPU;
1174                 vmx->state[i].vpid = vpid[i];
1175
1176                 /*
1177                  * Set up the CR0/4 shadows, and init the read shadow
1178                  * to the power-on register value from the Intel Sys Arch.
1179                  *  CR0 - 0x60000010
1180                  *  CR4 - 0
1181                  */
1182                 error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
1183                 if (error != 0)
1184                         panic("vmx_setup_cr0_shadow %d", error);
1185
1186                 error = vmx_setup_cr4_shadow(vmcs, 0);
1187                 if (error != 0)
1188                         panic("vmx_setup_cr4_shadow %d", error);
1189
1190                 vmx->ctx[i].pmap = pmap;
1191         }
1192
1193         return (vmx);
1194 }
1195
1196 static int
1197 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
1198 {
1199         int handled;
1200
1201         handled = x86_emulate_cpuid(vm, vcpu, (uint64_t *)&vmxctx->guest_rax,
1202             (uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
1203             (uint64_t *)&vmxctx->guest_rdx);
1204         return (handled);
1205 }
1206
1207 static __inline void
1208 vmx_run_trace(struct vmx *vmx, int vcpu)
1209 {
1210 #ifdef KTR
1211         VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
1212 #endif
1213 }
1214
1215 static __inline void
1216 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
1217                int handled)
1218 {
1219 #ifdef KTR
1220         VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
1221                  handled ? "handled" : "unhandled",
1222                  exit_reason_to_str(exit_reason), rip);
1223 #endif
1224 }
1225
1226 static __inline void
1227 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1228 {
1229 #ifdef KTR
1230         VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1231 #endif
1232 }
1233
1234 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1235 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1236
1237 /*
1238  * Invalidate guest mappings identified by its vpid from the TLB.
1239  */
1240 static __inline void
1241 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1242 {
1243         struct vmxstate *vmxstate;
1244         struct invvpid_desc invvpid_desc;
1245
1246         vmxstate = &vmx->state[vcpu];
1247         if (vmxstate->vpid == 0)
1248                 return;
1249
1250         if (!running) {
1251                 /*
1252                  * Set the 'lastcpu' to an invalid host cpu.
1253                  *
1254                  * This will invalidate TLB entries tagged with the vcpu's
1255                  * vpid the next time it runs via vmx_set_pcpu_defaults().
1256                  */
1257                 vmxstate->lastcpu = NOCPU;
1258                 return;
1259         }
1260
1261         KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1262             "critical section", __func__, vcpu));
1263
1264         /*
1265          * Invalidate all mappings tagged with 'vpid'
1266          *
1267          * We do this because this vcpu was executing on a different host
1268          * cpu when it last ran. We do not track whether it invalidated
1269          * mappings associated with its 'vpid' during that run. So we must
1270          * assume that the mappings associated with 'vpid' on 'curcpu' are
1271          * stale and invalidate them.
1272          *
1273          * Note that we incur this penalty only when the scheduler chooses to
1274          * move the thread associated with this vcpu between host cpus.
1275          *
1276          * Note also that this will invalidate mappings tagged with 'vpid'
1277          * for "all" EP4TAs.
1278          */
1279         if (atomic_load_long(&pmap->pm_eptgen) == vmx->eptgen[curcpu]) {
1280                 invvpid_desc._res1 = 0;
1281                 invvpid_desc._res2 = 0;
1282                 invvpid_desc.vpid = vmxstate->vpid;
1283                 invvpid_desc.linear_addr = 0;
1284                 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1285                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1286         } else {
1287                 /*
1288                  * The invvpid can be skipped if an invept is going to
1289                  * be performed before entering the guest. The invept
1290                  * will invalidate combined mappings tagged with
1291                  * 'vmx->eptp' for all vpids.
1292                  */
1293                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1294         }
1295 }
1296
1297 static void
1298 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1299 {
1300         struct vmxstate *vmxstate;
1301
1302         vmxstate = &vmx->state[vcpu];
1303         if (vmxstate->lastcpu == curcpu)
1304                 return;
1305
1306         vmxstate->lastcpu = curcpu;
1307
1308         vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1309
1310         vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1311         vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1312         vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1313         vmx_invvpid(vmx, vcpu, pmap, 1);
1314 }
1315
1316 /*
1317  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1318  */
1319 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1320
1321 static void __inline
1322 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1323 {
1324
1325         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1326                 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1327                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1328                 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1329         }
1330 }
1331
1332 static void __inline
1333 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1334 {
1335
1336         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1337             ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1338         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1339         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1340         VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1341 }
1342
1343 static void __inline
1344 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1345 {
1346
1347         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1348                 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1349                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1350                 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1351         }
1352 }
1353
1354 static void __inline
1355 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1356 {
1357
1358         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1359             ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1360         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1361         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1362         VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1363 }
1364
1365 int
1366 vmx_set_tsc_offset(struct vmx *vmx, int vcpu, uint64_t offset)
1367 {
1368         int error;
1369
1370         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
1371                 vmx->cap[vcpu].proc_ctls |= PROCBASED_TSC_OFFSET;
1372                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1373                 VCPU_CTR0(vmx->vm, vcpu, "Enabling TSC offsetting");
1374         }
1375
1376         error = vmwrite(VMCS_TSC_OFFSET, offset);
1377 #ifdef BHYVE_SNAPSHOT
1378         if (error == 0)
1379                 error = vm_set_tsc_offset(vmx->vm, vcpu, offset);
1380 #endif
1381         return (error);
1382 }
1383
1384 #define NMI_BLOCKING    (VMCS_INTERRUPTIBILITY_NMI_BLOCKING |           \
1385                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1386 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING |           \
1387                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1388
1389 static void
1390 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1391 {
1392         uint32_t gi, info;
1393
1394         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1395         KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1396             "interruptibility-state %#x", gi));
1397
1398         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1399         KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1400             "VM-entry interruption information %#x", info));
1401
1402         /*
1403          * Inject the virtual NMI. The vector must be the NMI IDT entry
1404          * or the VMCS entry check will fail.
1405          */
1406         info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1407         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1408
1409         VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1410
1411         /* Clear the request */
1412         vm_nmi_clear(vmx->vm, vcpu);
1413 }
1414
1415 static void
1416 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic,
1417     uint64_t guestrip)
1418 {
1419         int vector, need_nmi_exiting, extint_pending;
1420         uint64_t rflags, entryinfo;
1421         uint32_t gi, info;
1422
1423         if (vmx->state[vcpu].nextrip != guestrip) {
1424                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1425                 if (gi & HWINTR_BLOCKING) {
1426                         VCPU_CTR2(vmx->vm, vcpu, "Guest interrupt blocking "
1427                             "cleared due to rip change: %#lx/%#lx",
1428                             vmx->state[vcpu].nextrip, guestrip);
1429                         gi &= ~HWINTR_BLOCKING;
1430                         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1431                 }
1432         }
1433
1434         if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1435                 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1436                     "intinfo is not valid: %#lx", __func__, entryinfo));
1437
1438                 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1439                 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1440                      "pending exception: %#lx/%#x", __func__, entryinfo, info));
1441
1442                 info = entryinfo;
1443                 vector = info & 0xff;
1444                 if (vector == IDT_BP || vector == IDT_OF) {
1445                         /*
1446                          * VT-x requires #BP and #OF to be injected as software
1447                          * exceptions.
1448                          */
1449                         info &= ~VMCS_INTR_T_MASK;
1450                         info |= VMCS_INTR_T_SWEXCEPTION;
1451                 }
1452
1453                 if (info & VMCS_INTR_DEL_ERRCODE)
1454                         vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1455
1456                 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1457         }
1458
1459         if (vm_nmi_pending(vmx->vm, vcpu)) {
1460                 /*
1461                  * If there are no conditions blocking NMI injection then
1462                  * inject it directly here otherwise enable "NMI window
1463                  * exiting" to inject it as soon as we can.
1464                  *
1465                  * We also check for STI_BLOCKING because some implementations
1466                  * don't allow NMI injection in this case. If we are running
1467                  * on a processor that doesn't have this restriction it will
1468                  * immediately exit and the NMI will be injected in the
1469                  * "NMI window exiting" handler.
1470                  */
1471                 need_nmi_exiting = 1;
1472                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1473                 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1474                         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1475                         if ((info & VMCS_INTR_VALID) == 0) {
1476                                 vmx_inject_nmi(vmx, vcpu);
1477                                 need_nmi_exiting = 0;
1478                         } else {
1479                                 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1480                                     "due to VM-entry intr info %#x", info);
1481                         }
1482                 } else {
1483                         VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1484                             "Guest Interruptibility-state %#x", gi);
1485                 }
1486
1487                 if (need_nmi_exiting)
1488                         vmx_set_nmi_window_exiting(vmx, vcpu);
1489         }
1490
1491         extint_pending = vm_extint_pending(vmx->vm, vcpu);
1492
1493         if (!extint_pending && virtual_interrupt_delivery) {
1494                 vmx_inject_pir(vlapic);
1495                 return;
1496         }
1497
1498         /*
1499          * If interrupt-window exiting is already in effect then don't bother
1500          * checking for pending interrupts. This is just an optimization and
1501          * not needed for correctness.
1502          */
1503         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1504                 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1505                     "pending int_window_exiting");
1506                 return;
1507         }
1508
1509         if (!extint_pending) {
1510                 /* Ask the local apic for a vector to inject */
1511                 if (!vlapic_pending_intr(vlapic, &vector))
1512                         return;
1513
1514                 /*
1515                  * From the Intel SDM, Volume 3, Section "Maskable
1516                  * Hardware Interrupts":
1517                  * - maskable interrupt vectors [16,255] can be delivered
1518                  *   through the local APIC.
1519                 */
1520                 KASSERT(vector >= 16 && vector <= 255,
1521                     ("invalid vector %d from local APIC", vector));
1522         } else {
1523                 /* Ask the legacy pic for a vector to inject */
1524                 vatpic_pending_intr(vmx->vm, &vector);
1525
1526                 /*
1527                  * From the Intel SDM, Volume 3, Section "Maskable
1528                  * Hardware Interrupts":
1529                  * - maskable interrupt vectors [0,255] can be delivered
1530                  *   through the INTR pin.
1531                  */
1532                 KASSERT(vector >= 0 && vector <= 255,
1533                     ("invalid vector %d from INTR", vector));
1534         }
1535
1536         /* Check RFLAGS.IF and the interruptibility state of the guest */
1537         rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1538         if ((rflags & PSL_I) == 0) {
1539                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1540                     "rflags %#lx", vector, rflags);
1541                 goto cantinject;
1542         }
1543
1544         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1545         if (gi & HWINTR_BLOCKING) {
1546                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1547                     "Guest Interruptibility-state %#x", vector, gi);
1548                 goto cantinject;
1549         }
1550
1551         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1552         if (info & VMCS_INTR_VALID) {
1553                 /*
1554                  * This is expected and could happen for multiple reasons:
1555                  * - A vectoring VM-entry was aborted due to astpending
1556                  * - A VM-exit happened during event injection.
1557                  * - An exception was injected above.
1558                  * - An NMI was injected above or after "NMI window exiting"
1559                  */
1560                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1561                     "VM-entry intr info %#x", vector, info);
1562                 goto cantinject;
1563         }
1564
1565         /* Inject the interrupt */
1566         info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1567         info |= vector;
1568         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1569
1570         if (!extint_pending) {
1571                 /* Update the Local APIC ISR */
1572                 vlapic_intr_accepted(vlapic, vector);
1573         } else {
1574                 vm_extint_clear(vmx->vm, vcpu);
1575                 vatpic_intr_accepted(vmx->vm, vector);
1576
1577                 /*
1578                  * After we accepted the current ExtINT the PIC may
1579                  * have posted another one.  If that is the case, set
1580                  * the Interrupt Window Exiting execution control so
1581                  * we can inject that one too.
1582                  *
1583                  * Also, interrupt window exiting allows us to inject any
1584                  * pending APIC vector that was preempted by the ExtINT
1585                  * as soon as possible. This applies both for the software
1586                  * emulated vlapic and the hardware assisted virtual APIC.
1587                  */
1588                 vmx_set_int_window_exiting(vmx, vcpu);
1589         }
1590
1591         VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1592
1593         return;
1594
1595 cantinject:
1596         /*
1597          * Set the Interrupt Window Exiting execution control so we can inject
1598          * the interrupt as soon as blocking condition goes away.
1599          */
1600         vmx_set_int_window_exiting(vmx, vcpu);
1601 }
1602
1603 /*
1604  * If the Virtual NMIs execution control is '1' then the logical processor
1605  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1606  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1607  * virtual-NMI blocking.
1608  *
1609  * This unblocking occurs even if the IRET causes a fault. In this case the
1610  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1611  */
1612 static void
1613 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1614 {
1615         uint32_t gi;
1616
1617         VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1618         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1619         gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1620         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1621 }
1622
1623 static void
1624 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1625 {
1626         uint32_t gi;
1627
1628         VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1629         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1630         gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1631         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1632 }
1633
1634 static void
1635 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1636 {
1637         uint32_t gi;
1638
1639         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1640         KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1641             ("NMI blocking is not in effect %#x", gi));
1642 }
1643
1644 static int
1645 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1646 {
1647         struct vmxctx *vmxctx;
1648         uint64_t xcrval;
1649         const struct xsave_limits *limits;
1650
1651         vmxctx = &vmx->ctx[vcpu];
1652         limits = vmm_get_xsave_limits();
1653
1654         /*
1655          * Note that the processor raises a GP# fault on its own if
1656          * xsetbv is executed for CPL != 0, so we do not have to
1657          * emulate that fault here.
1658          */
1659
1660         /* Only xcr0 is supported. */
1661         if (vmxctx->guest_rcx != 0) {
1662                 vm_inject_gp(vmx->vm, vcpu);
1663                 return (HANDLED);
1664         }
1665
1666         /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1667         if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1668                 vm_inject_ud(vmx->vm, vcpu);
1669                 return (HANDLED);
1670         }
1671
1672         xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1673         if ((xcrval & ~limits->xcr0_allowed) != 0) {
1674                 vm_inject_gp(vmx->vm, vcpu);
1675                 return (HANDLED);
1676         }
1677
1678         if (!(xcrval & XFEATURE_ENABLED_X87)) {
1679                 vm_inject_gp(vmx->vm, vcpu);
1680                 return (HANDLED);
1681         }
1682
1683         /* AVX (YMM_Hi128) requires SSE. */
1684         if (xcrval & XFEATURE_ENABLED_AVX &&
1685             (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1686                 vm_inject_gp(vmx->vm, vcpu);
1687                 return (HANDLED);
1688         }
1689
1690         /*
1691          * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1692          * ZMM_Hi256, and Hi16_ZMM.
1693          */
1694         if (xcrval & XFEATURE_AVX512 &&
1695             (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1696             (XFEATURE_AVX512 | XFEATURE_AVX)) {
1697                 vm_inject_gp(vmx->vm, vcpu);
1698                 return (HANDLED);
1699         }
1700
1701         /*
1702          * Intel MPX requires both bound register state flags to be
1703          * set.
1704          */
1705         if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1706             ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1707                 vm_inject_gp(vmx->vm, vcpu);
1708                 return (HANDLED);
1709         }
1710
1711         /*
1712          * This runs "inside" vmrun() with the guest's FPU state, so
1713          * modifying xcr0 directly modifies the guest's xcr0, not the
1714          * host's.
1715          */
1716         load_xcr(0, xcrval);
1717         return (HANDLED);
1718 }
1719
1720 static uint64_t
1721 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1722 {
1723         const struct vmxctx *vmxctx;
1724
1725         vmxctx = &vmx->ctx[vcpu];
1726
1727         switch (ident) {
1728         case 0:
1729                 return (vmxctx->guest_rax);
1730         case 1:
1731                 return (vmxctx->guest_rcx);
1732         case 2:
1733                 return (vmxctx->guest_rdx);
1734         case 3:
1735                 return (vmxctx->guest_rbx);
1736         case 4:
1737                 return (vmcs_read(VMCS_GUEST_RSP));
1738         case 5:
1739                 return (vmxctx->guest_rbp);
1740         case 6:
1741                 return (vmxctx->guest_rsi);
1742         case 7:
1743                 return (vmxctx->guest_rdi);
1744         case 8:
1745                 return (vmxctx->guest_r8);
1746         case 9:
1747                 return (vmxctx->guest_r9);
1748         case 10:
1749                 return (vmxctx->guest_r10);
1750         case 11:
1751                 return (vmxctx->guest_r11);
1752         case 12:
1753                 return (vmxctx->guest_r12);
1754         case 13:
1755                 return (vmxctx->guest_r13);
1756         case 14:
1757                 return (vmxctx->guest_r14);
1758         case 15:
1759                 return (vmxctx->guest_r15);
1760         default:
1761                 panic("invalid vmx register %d", ident);
1762         }
1763 }
1764
1765 static void
1766 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1767 {
1768         struct vmxctx *vmxctx;
1769
1770         vmxctx = &vmx->ctx[vcpu];
1771
1772         switch (ident) {
1773         case 0:
1774                 vmxctx->guest_rax = regval;
1775                 break;
1776         case 1:
1777                 vmxctx->guest_rcx = regval;
1778                 break;
1779         case 2:
1780                 vmxctx->guest_rdx = regval;
1781                 break;
1782         case 3:
1783                 vmxctx->guest_rbx = regval;
1784                 break;
1785         case 4:
1786                 vmcs_write(VMCS_GUEST_RSP, regval);
1787                 break;
1788         case 5:
1789                 vmxctx->guest_rbp = regval;
1790                 break;
1791         case 6:
1792                 vmxctx->guest_rsi = regval;
1793                 break;
1794         case 7:
1795                 vmxctx->guest_rdi = regval;
1796                 break;
1797         case 8:
1798                 vmxctx->guest_r8 = regval;
1799                 break;
1800         case 9:
1801                 vmxctx->guest_r9 = regval;
1802                 break;
1803         case 10:
1804                 vmxctx->guest_r10 = regval;
1805                 break;
1806         case 11:
1807                 vmxctx->guest_r11 = regval;
1808                 break;
1809         case 12:
1810                 vmxctx->guest_r12 = regval;
1811                 break;
1812         case 13:
1813                 vmxctx->guest_r13 = regval;
1814                 break;
1815         case 14:
1816                 vmxctx->guest_r14 = regval;
1817                 break;
1818         case 15:
1819                 vmxctx->guest_r15 = regval;
1820                 break;
1821         default:
1822                 panic("invalid vmx register %d", ident);
1823         }
1824 }
1825
1826 static int
1827 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1828 {
1829         uint64_t crval, regval;
1830
1831         /* We only handle mov to %cr0 at this time */
1832         if ((exitqual & 0xf0) != 0x00)
1833                 return (UNHANDLED);
1834
1835         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1836
1837         vmcs_write(VMCS_CR0_SHADOW, regval);
1838
1839         crval = regval | cr0_ones_mask;
1840         crval &= ~cr0_zeros_mask;
1841         vmcs_write(VMCS_GUEST_CR0, crval);
1842
1843         if (regval & CR0_PG) {
1844                 uint64_t efer, entry_ctls;
1845
1846                 /*
1847                  * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1848                  * the "IA-32e mode guest" bit in VM-entry control must be
1849                  * equal.
1850                  */
1851                 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1852                 if (efer & EFER_LME) {
1853                         efer |= EFER_LMA;
1854                         vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1855                         entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1856                         entry_ctls |= VM_ENTRY_GUEST_LMA;
1857                         vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1858                 }
1859         }
1860
1861         return (HANDLED);
1862 }
1863
1864 static int
1865 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1866 {
1867         uint64_t crval, regval;
1868
1869         /* We only handle mov to %cr4 at this time */
1870         if ((exitqual & 0xf0) != 0x00)
1871                 return (UNHANDLED);
1872
1873         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1874
1875         vmcs_write(VMCS_CR4_SHADOW, regval);
1876
1877         crval = regval | cr4_ones_mask;
1878         crval &= ~cr4_zeros_mask;
1879         vmcs_write(VMCS_GUEST_CR4, crval);
1880
1881         return (HANDLED);
1882 }
1883
1884 static int
1885 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1886 {
1887         struct vlapic *vlapic;
1888         uint64_t cr8;
1889         int regnum;
1890
1891         /* We only handle mov %cr8 to/from a register at this time. */
1892         if ((exitqual & 0xe0) != 0x00) {
1893                 return (UNHANDLED);
1894         }
1895
1896         vlapic = vm_lapic(vmx->vm, vcpu);
1897         regnum = (exitqual >> 8) & 0xf;
1898         if (exitqual & 0x10) {
1899                 cr8 = vlapic_get_cr8(vlapic);
1900                 vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1901         } else {
1902                 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1903                 vlapic_set_cr8(vlapic, cr8);
1904         }
1905
1906         return (HANDLED);
1907 }
1908
1909 /*
1910  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1911  */
1912 static int
1913 vmx_cpl(void)
1914 {
1915         uint32_t ssar;
1916
1917         ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1918         return ((ssar >> 5) & 0x3);
1919 }
1920
1921 static enum vm_cpu_mode
1922 vmx_cpu_mode(void)
1923 {
1924         uint32_t csar;
1925
1926         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1927                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1928                 if (csar & 0x2000)
1929                         return (CPU_MODE_64BIT);        /* CS.L = 1 */
1930                 else
1931                         return (CPU_MODE_COMPATIBILITY);
1932         } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1933                 return (CPU_MODE_PROTECTED);
1934         } else {
1935                 return (CPU_MODE_REAL);
1936         }
1937 }
1938
1939 static enum vm_paging_mode
1940 vmx_paging_mode(void)
1941 {
1942         uint64_t cr4;
1943
1944         if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1945                 return (PAGING_MODE_FLAT);
1946         cr4 = vmcs_read(VMCS_GUEST_CR4);
1947         if (!(cr4 & CR4_PAE))
1948                 return (PAGING_MODE_32);
1949         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) {
1950                 if (!(cr4 & CR4_LA57))
1951                         return (PAGING_MODE_64);
1952                 return (PAGING_MODE_64_LA57);
1953         } else
1954                 return (PAGING_MODE_PAE);
1955 }
1956
1957 static uint64_t
1958 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1959 {
1960         uint64_t val;
1961         int error;
1962         enum vm_reg_name reg;
1963
1964         reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1965         error = vmx_getreg(vmx, vcpuid, reg, &val);
1966         KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1967         return (val);
1968 }
1969
1970 static uint64_t
1971 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1972 {
1973         uint64_t val;
1974         int error;
1975
1976         if (rep) {
1977                 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1978                 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1979         } else {
1980                 val = 1;
1981         }
1982         return (val);
1983 }
1984
1985 static int
1986 inout_str_addrsize(uint32_t inst_info)
1987 {
1988         uint32_t size;
1989
1990         size = (inst_info >> 7) & 0x7;
1991         switch (size) {
1992         case 0:
1993                 return (2);     /* 16 bit */
1994         case 1:
1995                 return (4);     /* 32 bit */
1996         case 2:
1997                 return (8);     /* 64 bit */
1998         default:
1999                 panic("%s: invalid size encoding %d", __func__, size);
2000         }
2001 }
2002
2003 static void
2004 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
2005     struct vm_inout_str *vis)
2006 {
2007         int error, s;
2008
2009         if (in) {
2010                 vis->seg_name = VM_REG_GUEST_ES;
2011         } else {
2012                 s = (inst_info >> 15) & 0x7;
2013                 vis->seg_name = vm_segment_name(s);
2014         }
2015
2016         error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
2017         KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
2018 }
2019
2020 static void
2021 vmx_paging_info(struct vm_guest_paging *paging)
2022 {
2023         paging->cr3 = vmcs_guest_cr3();
2024         paging->cpl = vmx_cpl();
2025         paging->cpu_mode = vmx_cpu_mode();
2026         paging->paging_mode = vmx_paging_mode();
2027 }
2028
2029 static void
2030 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
2031 {
2032         struct vm_guest_paging *paging;
2033         uint32_t csar;
2034
2035         paging = &vmexit->u.inst_emul.paging;
2036
2037         vmexit->exitcode = VM_EXITCODE_INST_EMUL;
2038         vmexit->inst_length = 0;
2039         vmexit->u.inst_emul.gpa = gpa;
2040         vmexit->u.inst_emul.gla = gla;
2041         vmx_paging_info(paging);
2042         switch (paging->cpu_mode) {
2043         case CPU_MODE_REAL:
2044                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2045                 vmexit->u.inst_emul.cs_d = 0;
2046                 break;
2047         case CPU_MODE_PROTECTED:
2048         case CPU_MODE_COMPATIBILITY:
2049                 vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
2050                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
2051                 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
2052                 break;
2053         default:
2054                 vmexit->u.inst_emul.cs_base = 0;
2055                 vmexit->u.inst_emul.cs_d = 0;
2056                 break;
2057         }
2058         vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
2059 }
2060
2061 static int
2062 ept_fault_type(uint64_t ept_qual)
2063 {
2064         int fault_type;
2065
2066         if (ept_qual & EPT_VIOLATION_DATA_WRITE)
2067                 fault_type = VM_PROT_WRITE;
2068         else if (ept_qual & EPT_VIOLATION_INST_FETCH)
2069                 fault_type = VM_PROT_EXECUTE;
2070         else
2071                 fault_type= VM_PROT_READ;
2072
2073         return (fault_type);
2074 }
2075
2076 static bool
2077 ept_emulation_fault(uint64_t ept_qual)
2078 {
2079         int read, write;
2080
2081         /* EPT fault on an instruction fetch doesn't make sense here */
2082         if (ept_qual & EPT_VIOLATION_INST_FETCH)
2083                 return (false);
2084
2085         /* EPT fault must be a read fault or a write fault */
2086         read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
2087         write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
2088         if ((read | write) == 0)
2089                 return (false);
2090
2091         /*
2092          * The EPT violation must have been caused by accessing a
2093          * guest-physical address that is a translation of a guest-linear
2094          * address.
2095          */
2096         if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
2097             (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
2098                 return (false);
2099         }
2100
2101         return (true);
2102 }
2103
2104 static __inline int
2105 apic_access_virtualization(struct vmx *vmx, int vcpuid)
2106 {
2107         uint32_t proc_ctls2;
2108
2109         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2110         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
2111 }
2112
2113 static __inline int
2114 x2apic_virtualization(struct vmx *vmx, int vcpuid)
2115 {
2116         uint32_t proc_ctls2;
2117
2118         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
2119         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
2120 }
2121
2122 static int
2123 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
2124     uint64_t qual)
2125 {
2126         int error, handled, offset;
2127         uint32_t *apic_regs, vector;
2128         bool retu;
2129
2130         handled = HANDLED;
2131         offset = APIC_WRITE_OFFSET(qual);
2132
2133         if (!apic_access_virtualization(vmx, vcpuid)) {
2134                 /*
2135                  * In general there should not be any APIC write VM-exits
2136                  * unless APIC-access virtualization is enabled.
2137                  *
2138                  * However self-IPI virtualization can legitimately trigger
2139                  * an APIC-write VM-exit so treat it specially.
2140                  */
2141                 if (x2apic_virtualization(vmx, vcpuid) &&
2142                     offset == APIC_OFFSET_SELF_IPI) {
2143                         apic_regs = (uint32_t *)(vlapic->apic_page);
2144                         vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
2145                         vlapic_self_ipi_handler(vlapic, vector);
2146                         return (HANDLED);
2147                 } else
2148                         return (UNHANDLED);
2149         }
2150
2151         switch (offset) {
2152         case APIC_OFFSET_ID:
2153                 vlapic_id_write_handler(vlapic);
2154                 break;
2155         case APIC_OFFSET_LDR:
2156                 vlapic_ldr_write_handler(vlapic);
2157                 break;
2158         case APIC_OFFSET_DFR:
2159                 vlapic_dfr_write_handler(vlapic);
2160                 break;
2161         case APIC_OFFSET_SVR:
2162                 vlapic_svr_write_handler(vlapic);
2163                 break;
2164         case APIC_OFFSET_ESR:
2165                 vlapic_esr_write_handler(vlapic);
2166                 break;
2167         case APIC_OFFSET_ICR_LOW:
2168                 retu = false;
2169                 error = vlapic_icrlo_write_handler(vlapic, &retu);
2170                 if (error != 0 || retu)
2171                         handled = UNHANDLED;
2172                 break;
2173         case APIC_OFFSET_CMCI_LVT:
2174         case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
2175                 vlapic_lvt_write_handler(vlapic, offset);
2176                 break;
2177         case APIC_OFFSET_TIMER_ICR:
2178                 vlapic_icrtmr_write_handler(vlapic);
2179                 break;
2180         case APIC_OFFSET_TIMER_DCR:
2181                 vlapic_dcr_write_handler(vlapic);
2182                 break;
2183         default:
2184                 handled = UNHANDLED;
2185                 break;
2186         }
2187         return (handled);
2188 }
2189
2190 static bool
2191 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
2192 {
2193
2194         if (apic_access_virtualization(vmx, vcpuid) &&
2195             (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
2196                 return (true);
2197         else
2198                 return (false);
2199 }
2200
2201 static int
2202 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2203 {
2204         uint64_t qual;
2205         int access_type, offset, allowed;
2206
2207         if (!apic_access_virtualization(vmx, vcpuid))
2208                 return (UNHANDLED);
2209
2210         qual = vmexit->u.vmx.exit_qualification;
2211         access_type = APIC_ACCESS_TYPE(qual);
2212         offset = APIC_ACCESS_OFFSET(qual);
2213
2214         allowed = 0;
2215         if (access_type == 0) {
2216                 /*
2217                  * Read data access to the following registers is expected.
2218                  */
2219                 switch (offset) {
2220                 case APIC_OFFSET_APR:
2221                 case APIC_OFFSET_PPR:
2222                 case APIC_OFFSET_RRR:
2223                 case APIC_OFFSET_CMCI_LVT:
2224                 case APIC_OFFSET_TIMER_CCR:
2225                         allowed = 1;
2226                         break;
2227                 default:
2228                         break;
2229                 }
2230         } else if (access_type == 1) {
2231                 /*
2232                  * Write data access to the following registers is expected.
2233                  */
2234                 switch (offset) {
2235                 case APIC_OFFSET_VER:
2236                 case APIC_OFFSET_APR:
2237                 case APIC_OFFSET_PPR:
2238                 case APIC_OFFSET_RRR:
2239                 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
2240                 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
2241                 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
2242                 case APIC_OFFSET_CMCI_LVT:
2243                 case APIC_OFFSET_TIMER_CCR:
2244                         allowed = 1;
2245                         break;
2246                 default:
2247                         break;
2248                 }
2249         }
2250
2251         if (allowed) {
2252                 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
2253                     VIE_INVALID_GLA);
2254         }
2255
2256         /*
2257          * Regardless of whether the APIC-access is allowed this handler
2258          * always returns UNHANDLED:
2259          * - if the access is allowed then it is handled by emulating the
2260          *   instruction that caused the VM-exit (outside the critical section)
2261          * - if the access is not allowed then it will be converted to an
2262          *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
2263          */
2264         return (UNHANDLED);
2265 }
2266
2267 static enum task_switch_reason
2268 vmx_task_switch_reason(uint64_t qual)
2269 {
2270         int reason;
2271
2272         reason = (qual >> 30) & 0x3;
2273         switch (reason) {
2274         case 0:
2275                 return (TSR_CALL);
2276         case 1:
2277                 return (TSR_IRET);
2278         case 2:
2279                 return (TSR_JMP);
2280         case 3:
2281                 return (TSR_IDT_GATE);
2282         default:
2283                 panic("%s: invalid reason %d", __func__, reason);
2284         }
2285 }
2286
2287 static int
2288 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2289 {
2290         int error;
2291
2292         if (lapic_msr(num))
2293                 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2294         else
2295                 error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2296
2297         return (error);
2298 }
2299
2300 static int
2301 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2302 {
2303         struct vmxctx *vmxctx;
2304         uint64_t result;
2305         uint32_t eax, edx;
2306         int error;
2307
2308         if (lapic_msr(num))
2309                 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2310         else
2311                 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2312
2313         if (error == 0) {
2314                 eax = result;
2315                 vmxctx = &vmx->ctx[vcpuid];
2316                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2317                 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2318
2319                 edx = result >> 32;
2320                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2321                 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2322         }
2323
2324         return (error);
2325 }
2326
2327 static int
2328 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2329 {
2330         int error, errcode, errcode_valid, handled, in;
2331         struct vmxctx *vmxctx;
2332         struct vlapic *vlapic;
2333         struct vm_inout_str *vis;
2334         struct vm_task_switch *ts;
2335         uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2336         uint32_t intr_type, intr_vec, reason;
2337         uint64_t exitintinfo, qual, gpa;
2338         bool retu;
2339
2340         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2341         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2342
2343         handled = UNHANDLED;
2344         vmxctx = &vmx->ctx[vcpu];
2345
2346         qual = vmexit->u.vmx.exit_qualification;
2347         reason = vmexit->u.vmx.exit_reason;
2348         vmexit->exitcode = VM_EXITCODE_BOGUS;
2349
2350         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2351         SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpu, vmexit);
2352
2353         /*
2354          * VM-entry failures during or after loading guest state.
2355          *
2356          * These VM-exits are uncommon but must be handled specially
2357          * as most VM-exit fields are not populated as usual.
2358          */
2359         if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2360                 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2361                 __asm __volatile("int $18");
2362                 return (1);
2363         }
2364
2365         /*
2366          * VM exits that can be triggered during event delivery need to
2367          * be handled specially by re-injecting the event if the IDT
2368          * vectoring information field's valid bit is set.
2369          *
2370          * See "Information for VM Exits During Event Delivery" in Intel SDM
2371          * for details.
2372          */
2373         idtvec_info = vmcs_idt_vectoring_info();
2374         if (idtvec_info & VMCS_IDT_VEC_VALID) {
2375                 idtvec_info &= ~(1 << 12); /* clear undefined bit */
2376                 exitintinfo = idtvec_info;
2377                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2378                         idtvec_err = vmcs_idt_vectoring_err();
2379                         exitintinfo |= (uint64_t)idtvec_err << 32;
2380                 }
2381                 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2382                 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2383                     __func__, error));
2384
2385                 /*
2386                  * If 'virtual NMIs' are being used and the VM-exit
2387                  * happened while injecting an NMI during the previous
2388                  * VM-entry, then clear "blocking by NMI" in the
2389                  * Guest Interruptibility-State so the NMI can be
2390                  * reinjected on the subsequent VM-entry.
2391                  *
2392                  * However, if the NMI was being delivered through a task
2393                  * gate, then the new task must start execution with NMIs
2394                  * blocked so don't clear NMI blocking in this case.
2395                  */
2396                 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2397                 if (intr_type == VMCS_INTR_T_NMI) {
2398                         if (reason != EXIT_REASON_TASK_SWITCH)
2399                                 vmx_clear_nmi_blocking(vmx, vcpu);
2400                         else
2401                                 vmx_assert_nmi_blocking(vmx, vcpu);
2402                 }
2403
2404                 /*
2405                  * Update VM-entry instruction length if the event being
2406                  * delivered was a software interrupt or software exception.
2407                  */
2408                 if (intr_type == VMCS_INTR_T_SWINTR ||
2409                     intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2410                     intr_type == VMCS_INTR_T_SWEXCEPTION) {
2411                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2412                 }
2413         }
2414
2415         switch (reason) {
2416         case EXIT_REASON_TASK_SWITCH:
2417                 ts = &vmexit->u.task_switch;
2418                 ts->tsssel = qual & 0xffff;
2419                 ts->reason = vmx_task_switch_reason(qual);
2420                 ts->ext = 0;
2421                 ts->errcode_valid = 0;
2422                 vmx_paging_info(&ts->paging);
2423                 /*
2424                  * If the task switch was due to a CALL, JMP, IRET, software
2425                  * interrupt (INT n) or software exception (INT3, INTO),
2426                  * then the saved %rip references the instruction that caused
2427                  * the task switch. The instruction length field in the VMCS
2428                  * is valid in this case.
2429                  *
2430                  * In all other cases (e.g., NMI, hardware exception) the
2431                  * saved %rip is one that would have been saved in the old TSS
2432                  * had the task switch completed normally so the instruction
2433                  * length field is not needed in this case and is explicitly
2434                  * set to 0.
2435                  */
2436                 if (ts->reason == TSR_IDT_GATE) {
2437                         KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2438                             ("invalid idtvec_info %#x for IDT task switch",
2439                             idtvec_info));
2440                         intr_type = idtvec_info & VMCS_INTR_T_MASK;
2441                         if (intr_type != VMCS_INTR_T_SWINTR &&
2442                             intr_type != VMCS_INTR_T_SWEXCEPTION &&
2443                             intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2444                                 /* Task switch triggered by external event */
2445                                 ts->ext = 1;
2446                                 vmexit->inst_length = 0;
2447                                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2448                                         ts->errcode_valid = 1;
2449                                         ts->errcode = vmcs_idt_vectoring_err();
2450                                 }
2451                         }
2452                 }
2453                 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2454                 SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpu, vmexit, ts);
2455                 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2456                     "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2457                     ts->ext ? "external" : "internal",
2458                     ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2459                 break;
2460         case EXIT_REASON_CR_ACCESS:
2461                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2462                 SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpu, vmexit, qual);
2463                 switch (qual & 0xf) {
2464                 case 0:
2465                         handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2466                         break;
2467                 case 4:
2468                         handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2469                         break;
2470                 case 8:
2471                         handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2472                         break;
2473                 }
2474                 break;
2475         case EXIT_REASON_RDMSR:
2476                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2477                 retu = false;
2478                 ecx = vmxctx->guest_rcx;
2479                 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2480                 SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpu, vmexit, ecx);
2481                 error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2482                 if (error) {
2483                         vmexit->exitcode = VM_EXITCODE_RDMSR;
2484                         vmexit->u.msr.code = ecx;
2485                 } else if (!retu) {
2486                         handled = HANDLED;
2487                 } else {
2488                         /* Return to userspace with a valid exitcode */
2489                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2490                             ("emulate_rdmsr retu with bogus exitcode"));
2491                 }
2492                 break;
2493         case EXIT_REASON_WRMSR:
2494                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2495                 retu = false;
2496                 eax = vmxctx->guest_rax;
2497                 ecx = vmxctx->guest_rcx;
2498                 edx = vmxctx->guest_rdx;
2499                 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2500                     ecx, (uint64_t)edx << 32 | eax);
2501                 SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpu, ecx,
2502                     (uint64_t)edx << 32 | eax);
2503                 error = emulate_wrmsr(vmx, vcpu, ecx,
2504                     (uint64_t)edx << 32 | eax, &retu);
2505                 if (error) {
2506                         vmexit->exitcode = VM_EXITCODE_WRMSR;
2507                         vmexit->u.msr.code = ecx;
2508                         vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2509                 } else if (!retu) {
2510                         handled = HANDLED;
2511                 } else {
2512                         /* Return to userspace with a valid exitcode */
2513                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2514                             ("emulate_wrmsr retu with bogus exitcode"));
2515                 }
2516                 break;
2517         case EXIT_REASON_HLT:
2518                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2519                 SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpu, vmexit);
2520                 vmexit->exitcode = VM_EXITCODE_HLT;
2521                 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2522                 if (virtual_interrupt_delivery)
2523                         vmexit->u.hlt.intr_status =
2524                             vmcs_read(VMCS_GUEST_INTR_STATUS);
2525                 else
2526                         vmexit->u.hlt.intr_status = 0;
2527                 break;
2528         case EXIT_REASON_MTF:
2529                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2530                 SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpu, vmexit);
2531                 vmexit->exitcode = VM_EXITCODE_MTRAP;
2532                 vmexit->inst_length = 0;
2533                 break;
2534         case EXIT_REASON_PAUSE:
2535                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2536                 SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpu, vmexit);
2537                 vmexit->exitcode = VM_EXITCODE_PAUSE;
2538                 break;
2539         case EXIT_REASON_INTR_WINDOW:
2540                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2541                 SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpu, vmexit);
2542                 vmx_clear_int_window_exiting(vmx, vcpu);
2543                 return (1);
2544         case EXIT_REASON_EXT_INTR:
2545                 /*
2546                  * External interrupts serve only to cause VM exits and allow
2547                  * the host interrupt handler to run.
2548                  *
2549                  * If this external interrupt triggers a virtual interrupt
2550                  * to a VM, then that state will be recorded by the
2551                  * host interrupt handler in the VM's softc. We will inject
2552                  * this virtual interrupt during the subsequent VM enter.
2553                  */
2554                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2555                 SDT_PROBE4(vmm, vmx, exit, interrupt,
2556                     vmx, vcpu, vmexit, intr_info);
2557
2558                 /*
2559                  * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2560                  * This appears to be a bug in VMware Fusion?
2561                  */
2562                 if (!(intr_info & VMCS_INTR_VALID))
2563                         return (1);
2564                 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2565                     (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2566                     ("VM exit interruption info invalid: %#x", intr_info));
2567                 vmx_trigger_hostintr(intr_info & 0xff);
2568
2569                 /*
2570                  * This is special. We want to treat this as an 'handled'
2571                  * VM-exit but not increment the instruction pointer.
2572                  */
2573                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2574                 return (1);
2575         case EXIT_REASON_NMI_WINDOW:
2576                 SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpu, vmexit);
2577                 /* Exit to allow the pending virtual NMI to be injected */
2578                 if (vm_nmi_pending(vmx->vm, vcpu))
2579                         vmx_inject_nmi(vmx, vcpu);
2580                 vmx_clear_nmi_window_exiting(vmx, vcpu);
2581                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2582                 return (1);
2583         case EXIT_REASON_INOUT:
2584                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2585                 vmexit->exitcode = VM_EXITCODE_INOUT;
2586                 vmexit->u.inout.bytes = (qual & 0x7) + 1;
2587                 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2588                 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2589                 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2590                 vmexit->u.inout.port = (uint16_t)(qual >> 16);
2591                 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2592                 if (vmexit->u.inout.string) {
2593                         inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2594                         vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2595                         vis = &vmexit->u.inout_str;
2596                         vmx_paging_info(&vis->paging);
2597                         vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2598                         vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2599                         vis->index = inout_str_index(vmx, vcpu, in);
2600                         vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2601                         vis->addrsize = inout_str_addrsize(inst_info);
2602                         inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2603                 }
2604                 SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpu, vmexit);
2605                 break;
2606         case EXIT_REASON_CPUID:
2607                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2608                 SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpu, vmexit);
2609                 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2610                 break;
2611         case EXIT_REASON_EXCEPTION:
2612                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2613                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2614                 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2615                     ("VM exit interruption info invalid: %#x", intr_info));
2616
2617                 intr_vec = intr_info & 0xff;
2618                 intr_type = intr_info & VMCS_INTR_T_MASK;
2619
2620                 /*
2621                  * If Virtual NMIs control is 1 and the VM-exit is due to a
2622                  * fault encountered during the execution of IRET then we must
2623                  * restore the state of "virtual-NMI blocking" before resuming
2624                  * the guest.
2625                  *
2626                  * See "Resuming Guest Software after Handling an Exception".
2627                  * See "Information for VM Exits Due to Vectored Events".
2628                  */
2629                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2630                     (intr_vec != IDT_DF) &&
2631                     (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2632                         vmx_restore_nmi_blocking(vmx, vcpu);
2633
2634                 /*
2635                  * The NMI has already been handled in vmx_exit_handle_nmi().
2636                  */
2637                 if (intr_type == VMCS_INTR_T_NMI)
2638                         return (1);
2639
2640                 /*
2641                  * Call the machine check handler by hand. Also don't reflect
2642                  * the machine check back into the guest.
2643                  */
2644                 if (intr_vec == IDT_MC) {
2645                         VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2646                         __asm __volatile("int $18");
2647                         return (1);
2648                 }
2649
2650                 /*
2651                  * If the hypervisor has requested user exits for
2652                  * debug exceptions, bounce them out to userland.
2653                  */
2654                 if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
2655                     (vmx->cap[vcpu].set & (1 << VM_CAP_BPT_EXIT))) {
2656                         vmexit->exitcode = VM_EXITCODE_BPT;
2657                         vmexit->u.bpt.inst_length = vmexit->inst_length;
2658                         vmexit->inst_length = 0;
2659                         break;
2660                 }
2661
2662                 if (intr_vec == IDT_PF) {
2663                         error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2664                         KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2665                             __func__, error));
2666                 }
2667
2668                 /*
2669                  * Software exceptions exhibit trap-like behavior. This in
2670                  * turn requires populating the VM-entry instruction length
2671                  * so that the %rip in the trap frame is past the INT3/INTO
2672                  * instruction.
2673                  */
2674                 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2675                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2676
2677                 /* Reflect all other exceptions back into the guest */
2678                 errcode_valid = errcode = 0;
2679                 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2680                         errcode_valid = 1;
2681                         errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2682                 }
2683                 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2684                     "the guest", intr_vec, errcode);
2685                 SDT_PROBE5(vmm, vmx, exit, exception,
2686                     vmx, vcpu, vmexit, intr_vec, errcode);
2687                 error = vm_inject_exception(vmx->vm, vcpu, intr_vec,
2688                     errcode_valid, errcode, 0);
2689                 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2690                     __func__, error));
2691                 return (1);
2692
2693         case EXIT_REASON_EPT_FAULT:
2694                 /*
2695                  * If 'gpa' lies within the address space allocated to
2696                  * memory then this must be a nested page fault otherwise
2697                  * this must be an instruction that accesses MMIO space.
2698                  */
2699                 gpa = vmcs_gpa();
2700                 if (vm_mem_allocated(vmx->vm, vcpu, gpa) ||
2701                     apic_access_fault(vmx, vcpu, gpa)) {
2702                         vmexit->exitcode = VM_EXITCODE_PAGING;
2703                         vmexit->inst_length = 0;
2704                         vmexit->u.paging.gpa = gpa;
2705                         vmexit->u.paging.fault_type = ept_fault_type(qual);
2706                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2707                         SDT_PROBE5(vmm, vmx, exit, nestedfault,
2708                             vmx, vcpu, vmexit, gpa, qual);
2709                 } else if (ept_emulation_fault(qual)) {
2710                         vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2711                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2712                         SDT_PROBE4(vmm, vmx, exit, mmiofault,
2713                             vmx, vcpu, vmexit, gpa);
2714                 }
2715                 /*
2716                  * If Virtual NMIs control is 1 and the VM-exit is due to an
2717                  * EPT fault during the execution of IRET then we must restore
2718                  * the state of "virtual-NMI blocking" before resuming.
2719                  *
2720                  * See description of "NMI unblocking due to IRET" in
2721                  * "Exit Qualification for EPT Violations".
2722                  */
2723                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2724                     (qual & EXIT_QUAL_NMIUDTI) != 0)
2725                         vmx_restore_nmi_blocking(vmx, vcpu);
2726                 break;
2727         case EXIT_REASON_VIRTUALIZED_EOI:
2728                 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2729                 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2730                 SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpu, vmexit);
2731                 vmexit->inst_length = 0;        /* trap-like */
2732                 break;
2733         case EXIT_REASON_APIC_ACCESS:
2734                 SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpu, vmexit);
2735                 handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2736                 break;
2737         case EXIT_REASON_APIC_WRITE:
2738                 /*
2739                  * APIC-write VM exit is trap-like so the %rip is already
2740                  * pointing to the next instruction.
2741                  */
2742                 vmexit->inst_length = 0;
2743                 vlapic = vm_lapic(vmx->vm, vcpu);
2744                 SDT_PROBE4(vmm, vmx, exit, apicwrite,
2745                     vmx, vcpu, vmexit, vlapic);
2746                 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2747                 break;
2748         case EXIT_REASON_XSETBV:
2749                 SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpu, vmexit);
2750                 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2751                 break;
2752         case EXIT_REASON_MONITOR:
2753                 SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpu, vmexit);
2754                 vmexit->exitcode = VM_EXITCODE_MONITOR;
2755                 break;
2756         case EXIT_REASON_MWAIT:
2757                 SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpu, vmexit);
2758                 vmexit->exitcode = VM_EXITCODE_MWAIT;
2759                 break;
2760         case EXIT_REASON_TPR:
2761                 vlapic = vm_lapic(vmx->vm, vcpu);
2762                 vlapic_sync_tpr(vlapic);
2763                 vmexit->inst_length = 0;
2764                 handled = HANDLED;
2765                 break;
2766         case EXIT_REASON_VMCALL:
2767         case EXIT_REASON_VMCLEAR:
2768         case EXIT_REASON_VMLAUNCH:
2769         case EXIT_REASON_VMPTRLD:
2770         case EXIT_REASON_VMPTRST:
2771         case EXIT_REASON_VMREAD:
2772         case EXIT_REASON_VMRESUME:
2773         case EXIT_REASON_VMWRITE:
2774         case EXIT_REASON_VMXOFF:
2775         case EXIT_REASON_VMXON:
2776                 SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpu, vmexit);
2777                 vmexit->exitcode = VM_EXITCODE_VMINSN;
2778                 break;
2779         default:
2780                 SDT_PROBE4(vmm, vmx, exit, unknown,
2781                     vmx, vcpu, vmexit, reason);
2782                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2783                 break;
2784         }
2785
2786         if (handled) {
2787                 /*
2788                  * It is possible that control is returned to userland
2789                  * even though we were able to handle the VM exit in the
2790                  * kernel.
2791                  *
2792                  * In such a case we want to make sure that the userland
2793                  * restarts guest execution at the instruction *after*
2794                  * the one we just processed. Therefore we update the
2795                  * guest rip in the VMCS and in 'vmexit'.
2796                  */
2797                 vmexit->rip += vmexit->inst_length;
2798                 vmexit->inst_length = 0;
2799                 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2800         } else {
2801                 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2802                         /*
2803                          * If this VM exit was not claimed by anybody then
2804                          * treat it as a generic VMX exit.
2805                          */
2806                         vmexit->exitcode = VM_EXITCODE_VMX;
2807                         vmexit->u.vmx.status = VM_SUCCESS;
2808                         vmexit->u.vmx.inst_type = 0;
2809                         vmexit->u.vmx.inst_error = 0;
2810                 } else {
2811                         /*
2812                          * The exitcode and collateral have been populated.
2813                          * The VM exit will be processed further in userland.
2814                          */
2815                 }
2816         }
2817
2818         SDT_PROBE4(vmm, vmx, exit, return,
2819             vmx, vcpu, vmexit, handled);
2820         return (handled);
2821 }
2822
2823 static __inline void
2824 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2825 {
2826
2827         KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2828             ("vmx_exit_inst_error: invalid inst_fail_status %d",
2829             vmxctx->inst_fail_status));
2830
2831         vmexit->inst_length = 0;
2832         vmexit->exitcode = VM_EXITCODE_VMX;
2833         vmexit->u.vmx.status = vmxctx->inst_fail_status;
2834         vmexit->u.vmx.inst_error = vmcs_instruction_error();
2835         vmexit->u.vmx.exit_reason = ~0;
2836         vmexit->u.vmx.exit_qualification = ~0;
2837
2838         switch (rc) {
2839         case VMX_VMRESUME_ERROR:
2840         case VMX_VMLAUNCH_ERROR:
2841                 vmexit->u.vmx.inst_type = rc;
2842                 break;
2843         default:
2844                 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2845         }
2846 }
2847
2848 /*
2849  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2850  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2851  * sufficient to simply vector to the NMI handler via a software interrupt.
2852  * However, this must be done before maskable interrupts are enabled
2853  * otherwise the "iret" issued by an interrupt handler will incorrectly
2854  * clear NMI blocking.
2855  */
2856 static __inline void
2857 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2858 {
2859         uint32_t intr_info;
2860
2861         KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2862
2863         if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2864                 return;
2865
2866         intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2867         KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2868             ("VM exit interruption info invalid: %#x", intr_info));
2869
2870         if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2871                 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2872                     "to NMI has invalid vector: %#x", intr_info));
2873                 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2874                 __asm __volatile("int $2");
2875         }
2876 }
2877
2878 static __inline void
2879 vmx_dr_enter_guest(struct vmxctx *vmxctx)
2880 {
2881         register_t rflags;
2882
2883         /* Save host control debug registers. */
2884         vmxctx->host_dr7 = rdr7();
2885         vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
2886
2887         /*
2888          * Disable debugging in DR7 and DEBUGCTL to avoid triggering
2889          * exceptions in the host based on the guest DRx values.  The
2890          * guest DR7 and DEBUGCTL are saved/restored in the VMCS.
2891          */
2892         load_dr7(0);
2893         wrmsr(MSR_DEBUGCTLMSR, 0);
2894
2895         /*
2896          * Disable single stepping the kernel to avoid corrupting the
2897          * guest DR6.  A debugger might still be able to corrupt the
2898          * guest DR6 by setting a breakpoint after this point and then
2899          * single stepping.
2900          */
2901         rflags = read_rflags();
2902         vmxctx->host_tf = rflags & PSL_T;
2903         write_rflags(rflags & ~PSL_T);
2904
2905         /* Save host debug registers. */
2906         vmxctx->host_dr0 = rdr0();
2907         vmxctx->host_dr1 = rdr1();
2908         vmxctx->host_dr2 = rdr2();
2909         vmxctx->host_dr3 = rdr3();
2910         vmxctx->host_dr6 = rdr6();
2911
2912         /* Restore guest debug registers. */
2913         load_dr0(vmxctx->guest_dr0);
2914         load_dr1(vmxctx->guest_dr1);
2915         load_dr2(vmxctx->guest_dr2);
2916         load_dr3(vmxctx->guest_dr3);
2917         load_dr6(vmxctx->guest_dr6);
2918 }
2919
2920 static __inline void
2921 vmx_dr_leave_guest(struct vmxctx *vmxctx)
2922 {
2923
2924         /* Save guest debug registers. */
2925         vmxctx->guest_dr0 = rdr0();
2926         vmxctx->guest_dr1 = rdr1();
2927         vmxctx->guest_dr2 = rdr2();
2928         vmxctx->guest_dr3 = rdr3();
2929         vmxctx->guest_dr6 = rdr6();
2930
2931         /*
2932          * Restore host debug registers.  Restore DR7, DEBUGCTL, and
2933          * PSL_T last.
2934          */
2935         load_dr0(vmxctx->host_dr0);
2936         load_dr1(vmxctx->host_dr1);
2937         load_dr2(vmxctx->host_dr2);
2938         load_dr3(vmxctx->host_dr3);
2939         load_dr6(vmxctx->host_dr6);
2940         wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
2941         load_dr7(vmxctx->host_dr7);
2942         write_rflags(read_rflags() | vmxctx->host_tf);
2943 }
2944
2945 static __inline void
2946 vmx_pmap_activate(struct vmx *vmx, pmap_t pmap)
2947 {
2948         long eptgen;
2949         int cpu;
2950
2951         cpu = curcpu;
2952
2953         CPU_SET_ATOMIC(cpu, &pmap->pm_active);
2954         smr_enter(pmap->pm_eptsmr);
2955         eptgen = atomic_load_long(&pmap->pm_eptgen);
2956         if (eptgen != vmx->eptgen[cpu]) {
2957                 vmx->eptgen[cpu] = eptgen;
2958                 invept(INVEPT_TYPE_SINGLE_CONTEXT,
2959                     (struct invept_desc){ .eptp = vmx->eptp, ._res = 0 });
2960         }
2961 }
2962
2963 static __inline void
2964 vmx_pmap_deactivate(struct vmx *vmx, pmap_t pmap)
2965 {
2966         smr_exit(pmap->pm_eptsmr);
2967         CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
2968 }
2969
2970 static int
2971 vmx_run(void *arg, int vcpu, register_t rip, pmap_t pmap,
2972     struct vm_eventinfo *evinfo)
2973 {
2974         int rc, handled, launched;
2975         struct vmx *vmx;
2976         struct vm *vm;
2977         struct vmxctx *vmxctx;
2978         struct vmcs *vmcs;
2979         struct vm_exit *vmexit;
2980         struct vlapic *vlapic;
2981         uint32_t exit_reason;
2982         struct region_descriptor gdtr, idtr;
2983         uint16_t ldt_sel;
2984
2985         vmx = arg;
2986         vm = vmx->vm;
2987         vmcs = &vmx->vmcs[vcpu];
2988         vmxctx = &vmx->ctx[vcpu];
2989         vlapic = vm_lapic(vm, vcpu);
2990         vmexit = vm_exitinfo(vm, vcpu);
2991         launched = 0;
2992
2993         KASSERT(vmxctx->pmap == pmap,
2994             ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2995
2996         vmx_msr_guest_enter(vmx, vcpu);
2997
2998         VMPTRLD(vmcs);
2999
3000         /*
3001          * XXX
3002          * We do this every time because we may setup the virtual machine
3003          * from a different process than the one that actually runs it.
3004          *
3005          * If the life of a virtual machine was spent entirely in the context
3006          * of a single process we could do this once in vmx_init().
3007          */
3008         vmcs_write(VMCS_HOST_CR3, rcr3());
3009
3010         vmcs_write(VMCS_GUEST_RIP, rip);
3011         vmx_set_pcpu_defaults(vmx, vcpu, pmap);
3012         do {
3013                 KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
3014                     "%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
3015
3016                 handled = UNHANDLED;
3017                 /*
3018                  * Interrupts are disabled from this point on until the
3019                  * guest starts executing. This is done for the following
3020                  * reasons:
3021                  *
3022                  * If an AST is asserted on this thread after the check below,
3023                  * then the IPI_AST notification will not be lost, because it
3024                  * will cause a VM exit due to external interrupt as soon as
3025                  * the guest state is loaded.
3026                  *
3027                  * A posted interrupt after 'vmx_inject_interrupts()' will
3028                  * not be "lost" because it will be held pending in the host
3029                  * APIC because interrupts are disabled. The pending interrupt
3030                  * will be recognized as soon as the guest state is loaded.
3031                  *
3032                  * The same reasoning applies to the IPI generated by
3033                  * pmap_invalidate_ept().
3034                  */
3035                 disable_intr();
3036                 vmx_inject_interrupts(vmx, vcpu, vlapic, rip);
3037
3038                 /*
3039                  * Check for vcpu suspension after injecting events because
3040                  * vmx_inject_interrupts() can suspend the vcpu due to a
3041                  * triple fault.
3042                  */
3043                 if (vcpu_suspended(evinfo)) {
3044                         enable_intr();
3045                         vm_exit_suspended(vmx->vm, vcpu, rip);
3046                         break;
3047                 }
3048
3049                 if (vcpu_rendezvous_pending(evinfo)) {
3050                         enable_intr();
3051                         vm_exit_rendezvous(vmx->vm, vcpu, rip);
3052                         break;
3053                 }
3054
3055                 if (vcpu_reqidle(evinfo)) {
3056                         enable_intr();
3057                         vm_exit_reqidle(vmx->vm, vcpu, rip);
3058                         break;
3059                 }
3060
3061                 if (vcpu_should_yield(vm, vcpu)) {
3062                         enable_intr();
3063                         vm_exit_astpending(vmx->vm, vcpu, rip);
3064                         vmx_astpending_trace(vmx, vcpu, rip);
3065                         handled = HANDLED;
3066                         break;
3067                 }
3068
3069                 if (vcpu_debugged(vm, vcpu)) {
3070                         enable_intr();
3071                         vm_exit_debug(vmx->vm, vcpu, rip);
3072                         break;
3073                 }
3074
3075                 /*
3076                  * If TPR Shadowing is enabled, the TPR Threshold
3077                  * must be updated right before entering the guest.
3078                  */
3079                 if (tpr_shadowing && !virtual_interrupt_delivery) {
3080                         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
3081                                 vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
3082                         }
3083                 }
3084
3085                 /*
3086                  * VM exits restore the base address but not the
3087                  * limits of GDTR and IDTR.  The VMCS only stores the
3088                  * base address, so VM exits set the limits to 0xffff.
3089                  * Save and restore the full GDTR and IDTR to restore
3090                  * the limits.
3091                  *
3092                  * The VMCS does not save the LDTR at all, and VM
3093                  * exits clear LDTR as if a NULL selector were loaded.
3094                  * The userspace hypervisor probably doesn't use a
3095                  * LDT, but save and restore it to be safe.
3096                  */
3097                 sgdt(&gdtr);
3098                 sidt(&idtr);
3099                 ldt_sel = sldt();
3100
3101                 /*
3102                  * The TSC_AUX MSR must be saved/restored while interrupts
3103                  * are disabled so that it is not possible for the guest
3104                  * TSC_AUX MSR value to be overwritten by the resume
3105                  * portion of the IPI_SUSPEND codepath. This is why the
3106                  * transition of this MSR is handled separately from those
3107                  * handled by vmx_msr_guest_{enter,exit}(), which are ok to
3108                  * be transitioned with preemption disabled but interrupts
3109                  * enabled.
3110                  *
3111                  * These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be
3112                  * anywhere in this loop so long as they happen with
3113                  * interrupts disabled. This location is chosen for
3114                  * simplicity.
3115                  */
3116                 vmx_msr_guest_enter_tsc_aux(vmx, vcpu);
3117
3118                 vmx_dr_enter_guest(vmxctx);
3119
3120                 /*
3121                  * Mark the EPT as active on this host CPU and invalidate
3122                  * EPTP-tagged TLB entries if required.
3123                  */
3124                 vmx_pmap_activate(vmx, pmap);
3125
3126                 vmx_run_trace(vmx, vcpu);
3127                 rc = vmx_enter_guest(vmxctx, vmx, launched);
3128
3129                 vmx_pmap_deactivate(vmx, pmap);
3130                 vmx_dr_leave_guest(vmxctx);
3131                 vmx_msr_guest_exit_tsc_aux(vmx, vcpu);
3132
3133                 bare_lgdt(&gdtr);
3134                 lidt(&idtr);
3135                 lldt(ldt_sel);
3136
3137                 /* Collect some information for VM exit processing */
3138                 vmexit->rip = rip = vmcs_guest_rip();
3139                 vmexit->inst_length = vmexit_instruction_length();
3140                 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
3141                 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
3142
3143                 /* Update 'nextrip' */
3144                 vmx->state[vcpu].nextrip = rip;
3145
3146                 if (rc == VMX_GUEST_VMEXIT) {
3147                         vmx_exit_handle_nmi(vmx, vcpu, vmexit);
3148                         enable_intr();
3149                         handled = vmx_exit_process(vmx, vcpu, vmexit);
3150                 } else {
3151                         enable_intr();
3152                         vmx_exit_inst_error(vmxctx, rc, vmexit);
3153                 }
3154                 launched = 1;
3155                 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
3156                 rip = vmexit->rip;
3157         } while (handled);
3158
3159         /*
3160          * If a VM exit has been handled then the exitcode must be BOGUS
3161          * If a VM exit is not handled then the exitcode must not be BOGUS
3162          */
3163         if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
3164             (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
3165                 panic("Mismatch between handled (%d) and exitcode (%d)",
3166                       handled, vmexit->exitcode);
3167         }
3168
3169         if (!handled)
3170                 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
3171
3172         VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
3173             vmexit->exitcode);
3174
3175         VMCLEAR(vmcs);
3176         vmx_msr_guest_exit(vmx, vcpu);
3177
3178         return (0);
3179 }
3180
3181 static void
3182 vmx_cleanup(void *arg)
3183 {
3184         int i;
3185         struct vmx *vmx = arg;
3186         uint16_t maxcpus;
3187
3188         if (apic_access_virtualization(vmx, 0))
3189                 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3190
3191         maxcpus = vm_get_maxcpus(vmx->vm);
3192         for (i = 0; i < maxcpus; i++)
3193                 vpid_free(vmx->state[i].vpid);
3194
3195         free(vmx, M_VMX);
3196
3197         return;
3198 }
3199
3200 static register_t *
3201 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
3202 {
3203
3204         switch (reg) {
3205         case VM_REG_GUEST_RAX:
3206                 return (&vmxctx->guest_rax);
3207         case VM_REG_GUEST_RBX:
3208                 return (&vmxctx->guest_rbx);
3209         case VM_REG_GUEST_RCX:
3210                 return (&vmxctx->guest_rcx);
3211         case VM_REG_GUEST_RDX:
3212                 return (&vmxctx->guest_rdx);
3213         case VM_REG_GUEST_RSI:
3214                 return (&vmxctx->guest_rsi);
3215         case VM_REG_GUEST_RDI:
3216                 return (&vmxctx->guest_rdi);
3217         case VM_REG_GUEST_RBP:
3218                 return (&vmxctx->guest_rbp);
3219         case VM_REG_GUEST_R8:
3220                 return (&vmxctx->guest_r8);
3221         case VM_REG_GUEST_R9:
3222                 return (&vmxctx->guest_r9);
3223         case VM_REG_GUEST_R10:
3224                 return (&vmxctx->guest_r10);
3225         case VM_REG_GUEST_R11:
3226                 return (&vmxctx->guest_r11);
3227         case VM_REG_GUEST_R12:
3228                 return (&vmxctx->guest_r12);
3229         case VM_REG_GUEST_R13:
3230                 return (&vmxctx->guest_r13);
3231         case VM_REG_GUEST_R14:
3232                 return (&vmxctx->guest_r14);
3233         case VM_REG_GUEST_R15:
3234                 return (&vmxctx->guest_r15);
3235         case VM_REG_GUEST_CR2:
3236                 return (&vmxctx->guest_cr2);
3237         case VM_REG_GUEST_DR0:
3238                 return (&vmxctx->guest_dr0);
3239         case VM_REG_GUEST_DR1:
3240                 return (&vmxctx->guest_dr1);
3241         case VM_REG_GUEST_DR2:
3242                 return (&vmxctx->guest_dr2);
3243         case VM_REG_GUEST_DR3:
3244                 return (&vmxctx->guest_dr3);
3245         case VM_REG_GUEST_DR6:
3246                 return (&vmxctx->guest_dr6);
3247         default:
3248                 break;
3249         }
3250         return (NULL);
3251 }
3252
3253 static int
3254 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
3255 {
3256         register_t *regp;
3257
3258         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3259                 *retval = *regp;
3260                 return (0);
3261         } else
3262                 return (EINVAL);
3263 }
3264
3265 static int
3266 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
3267 {
3268         register_t *regp;
3269
3270         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
3271                 *regp = val;
3272                 return (0);
3273         } else
3274                 return (EINVAL);
3275 }
3276
3277 static int
3278 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
3279 {
3280         uint64_t gi;
3281         int error;
3282
3283         error = vmcs_getreg(&vmx->vmcs[vcpu], running,
3284             VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
3285         *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
3286         return (error);
3287 }
3288
3289 static int
3290 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
3291 {
3292         struct vmcs *vmcs;
3293         uint64_t gi;
3294         int error, ident;
3295
3296         /*
3297          * Forcing the vcpu into an interrupt shadow is not supported.
3298          */
3299         if (val) {
3300                 error = EINVAL;
3301                 goto done;
3302         }
3303
3304         vmcs = &vmx->vmcs[vcpu];
3305         ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
3306         error = vmcs_getreg(vmcs, running, ident, &gi);
3307         if (error == 0) {
3308                 gi &= ~HWINTR_BLOCKING;
3309                 error = vmcs_setreg(vmcs, running, ident, gi);
3310         }
3311 done:
3312         VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
3313             error ? "failed" : "succeeded");
3314         return (error);
3315 }
3316
3317 static int
3318 vmx_shadow_reg(int reg)
3319 {
3320         int shreg;
3321
3322         shreg = -1;
3323
3324         switch (reg) {
3325         case VM_REG_GUEST_CR0:
3326                 shreg = VMCS_CR0_SHADOW;
3327                 break;
3328         case VM_REG_GUEST_CR4:
3329                 shreg = VMCS_CR4_SHADOW;
3330                 break;
3331         default:
3332                 break;
3333         }
3334
3335         return (shreg);
3336 }
3337
3338 static int
3339 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
3340 {
3341         int running, hostcpu;
3342         struct vmx *vmx = arg;
3343
3344         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3345         if (running && hostcpu != curcpu)
3346                 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
3347
3348         if (reg == VM_REG_GUEST_INTR_SHADOW)
3349                 return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
3350
3351         if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
3352                 return (0);
3353
3354         return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
3355 }
3356
3357 static int
3358 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
3359 {
3360         int error, hostcpu, running, shadow;
3361         uint64_t ctls;
3362         pmap_t pmap;
3363         struct vmx *vmx = arg;
3364
3365         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3366         if (running && hostcpu != curcpu)
3367                 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
3368
3369         if (reg == VM_REG_GUEST_INTR_SHADOW)
3370                 return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
3371
3372         if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
3373                 return (0);
3374
3375         /* Do not permit user write access to VMCS fields by offset. */
3376         if (reg < 0)
3377                 return (EINVAL);
3378
3379         error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
3380
3381         if (error == 0) {
3382                 /*
3383                  * If the "load EFER" VM-entry control is 1 then the
3384                  * value of EFER.LMA must be identical to "IA-32e mode guest"
3385                  * bit in the VM-entry control.
3386                  */
3387                 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
3388                     (reg == VM_REG_GUEST_EFER)) {
3389                         vmcs_getreg(&vmx->vmcs[vcpu], running,
3390                                     VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
3391                         if (val & EFER_LMA)
3392                                 ctls |= VM_ENTRY_GUEST_LMA;
3393                         else
3394                                 ctls &= ~VM_ENTRY_GUEST_LMA;
3395                         vmcs_setreg(&vmx->vmcs[vcpu], running,
3396                                     VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
3397                 }
3398
3399                 shadow = vmx_shadow_reg(reg);
3400                 if (shadow > 0) {
3401                         /*
3402                          * Store the unmodified value in the shadow
3403                          */
3404                         error = vmcs_setreg(&vmx->vmcs[vcpu], running,
3405                                     VMCS_IDENT(shadow), val);
3406                 }
3407
3408                 if (reg == VM_REG_GUEST_CR3) {
3409                         /*
3410                          * Invalidate the guest vcpu's TLB mappings to emulate
3411                          * the behavior of updating %cr3.
3412                          *
3413                          * XXX the processor retains global mappings when %cr3
3414                          * is updated but vmx_invvpid() does not.
3415                          */
3416                         pmap = vmx->ctx[vcpu].pmap;
3417                         vmx_invvpid(vmx, vcpu, pmap, running);
3418                 }
3419         }
3420
3421         return (error);
3422 }
3423
3424 static int
3425 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3426 {
3427         int hostcpu, running;
3428         struct vmx *vmx = arg;
3429
3430         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3431         if (running && hostcpu != curcpu)
3432                 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3433
3434         return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
3435 }
3436
3437 static int
3438 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
3439 {
3440         int hostcpu, running;
3441         struct vmx *vmx = arg;
3442
3443         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
3444         if (running && hostcpu != curcpu)
3445                 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
3446
3447         return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
3448 }
3449
3450 static int
3451 vmx_getcap(void *arg, int vcpu, int type, int *retval)
3452 {
3453         struct vmx *vmx = arg;
3454         int vcap;
3455         int ret;
3456
3457         ret = ENOENT;
3458
3459         vcap = vmx->cap[vcpu].set;
3460
3461         switch (type) {
3462         case VM_CAP_HALT_EXIT:
3463                 if (cap_halt_exit)
3464                         ret = 0;
3465                 break;
3466         case VM_CAP_PAUSE_EXIT:
3467                 if (cap_pause_exit)
3468                         ret = 0;
3469                 break;
3470         case VM_CAP_MTRAP_EXIT:
3471                 if (cap_monitor_trap)
3472                         ret = 0;
3473                 break;
3474         case VM_CAP_RDPID:
3475                 if (cap_rdpid)
3476                         ret = 0;
3477                 break;
3478         case VM_CAP_RDTSCP:
3479                 if (cap_rdtscp)
3480                         ret = 0;
3481                 break;
3482         case VM_CAP_UNRESTRICTED_GUEST:
3483                 if (cap_unrestricted_guest)
3484                         ret = 0;
3485                 break;
3486         case VM_CAP_ENABLE_INVPCID:
3487                 if (cap_invpcid)
3488                         ret = 0;
3489                 break;
3490         case VM_CAP_BPT_EXIT:
3491                 ret = 0;
3492                 break;
3493         default:
3494                 break;
3495         }
3496
3497         if (ret == 0)
3498                 *retval = (vcap & (1 << type)) ? 1 : 0;
3499
3500         return (ret);
3501 }
3502
3503 static int
3504 vmx_setcap(void *arg, int vcpu, int type, int val)
3505 {
3506         struct vmx *vmx = arg;
3507         struct vmcs *vmcs = &vmx->vmcs[vcpu];
3508         uint32_t baseval;
3509         uint32_t *pptr;
3510         int error;
3511         int flag;
3512         int reg;
3513         int retval;
3514
3515         retval = ENOENT;
3516         pptr = NULL;
3517
3518         switch (type) {
3519         case VM_CAP_HALT_EXIT:
3520                 if (cap_halt_exit) {
3521                         retval = 0;
3522                         pptr = &vmx->cap[vcpu].proc_ctls;
3523                         baseval = *pptr;
3524                         flag = PROCBASED_HLT_EXITING;
3525                         reg = VMCS_PRI_PROC_BASED_CTLS;
3526                 }
3527                 break;
3528         case VM_CAP_MTRAP_EXIT:
3529                 if (cap_monitor_trap) {
3530                         retval = 0;
3531                         pptr = &vmx->cap[vcpu].proc_ctls;
3532                         baseval = *pptr;
3533                         flag = PROCBASED_MTF;
3534                         reg = VMCS_PRI_PROC_BASED_CTLS;
3535                 }
3536                 break;
3537         case VM_CAP_PAUSE_EXIT:
3538                 if (cap_pause_exit) {
3539                         retval = 0;
3540                         pptr = &vmx->cap[vcpu].proc_ctls;
3541                         baseval = *pptr;
3542                         flag = PROCBASED_PAUSE_EXITING;
3543                         reg = VMCS_PRI_PROC_BASED_CTLS;
3544                 }
3545                 break;
3546         case VM_CAP_RDPID:
3547         case VM_CAP_RDTSCP:
3548                 if (cap_rdpid || cap_rdtscp)
3549                         /*
3550                          * Choose not to support enabling/disabling
3551                          * RDPID/RDTSCP via libvmmapi since, as per the
3552                          * discussion in vmx_modinit(), RDPID/RDTSCP are
3553                          * either always enabled or always disabled.
3554                          */
3555                         error = EOPNOTSUPP;
3556                 break;
3557         case VM_CAP_UNRESTRICTED_GUEST:
3558                 if (cap_unrestricted_guest) {
3559                         retval = 0;
3560                         pptr = &vmx->cap[vcpu].proc_ctls2;
3561                         baseval = *pptr;
3562                         flag = PROCBASED2_UNRESTRICTED_GUEST;
3563                         reg = VMCS_SEC_PROC_BASED_CTLS;
3564                 }
3565                 break;
3566         case VM_CAP_ENABLE_INVPCID:
3567                 if (cap_invpcid) {
3568                         retval = 0;
3569                         pptr = &vmx->cap[vcpu].proc_ctls2;
3570                         baseval = *pptr;
3571                         flag = PROCBASED2_ENABLE_INVPCID;
3572                         reg = VMCS_SEC_PROC_BASED_CTLS;
3573                 }
3574                 break;
3575         case VM_CAP_BPT_EXIT:
3576                 retval = 0;
3577
3578                 /* Don't change the bitmap if we are tracing all exceptions. */
3579                 if (vmx->cap[vcpu].exc_bitmap != 0xffffffff) {
3580                         pptr = &vmx->cap[vcpu].exc_bitmap;
3581                         baseval = *pptr;
3582                         flag = (1 << IDT_BP);
3583                         reg = VMCS_EXCEPTION_BITMAP;
3584                 }
3585                 break;
3586         default:
3587                 break;
3588         }
3589
3590         if (retval)
3591                 return (retval);
3592
3593         if (pptr != NULL) {
3594                 if (val) {
3595                         baseval |= flag;
3596                 } else {
3597                         baseval &= ~flag;
3598                 }
3599                 VMPTRLD(vmcs);
3600                 error = vmwrite(reg, baseval);
3601                 VMCLEAR(vmcs);
3602
3603                 if (error)
3604                         return (error);
3605
3606                 /*
3607                  * Update optional stored flags, and record
3608                  * setting
3609                  */
3610                 *pptr = baseval;
3611         }
3612
3613         if (val) {
3614                 vmx->cap[vcpu].set |= (1 << type);
3615         } else {
3616                 vmx->cap[vcpu].set &= ~(1 << type);
3617         }
3618
3619         return (0);
3620 }
3621
3622 static struct vmspace *
3623 vmx_vmspace_alloc(vm_offset_t min, vm_offset_t max)
3624 {
3625         return (ept_vmspace_alloc(min, max));
3626 }
3627
3628 static void
3629 vmx_vmspace_free(struct vmspace *vmspace)
3630 {
3631         ept_vmspace_free(vmspace);
3632 }
3633
3634 struct vlapic_vtx {
3635         struct vlapic   vlapic;
3636         struct pir_desc *pir_desc;
3637         struct vmx      *vmx;
3638         u_int   pending_prio;
3639 };
3640
3641 #define VPR_PRIO_BIT(vpr)       (1 << ((vpr) >> 4))
3642
3643 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)   \
3644 do {                                                                    \
3645         VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",     \
3646             level ? "level" : "edge", vector);                          \
3647         VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);  \
3648         VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);  \
3649         VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);  \
3650         VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);  \
3651         VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3652 } while (0)
3653
3654 /*
3655  * vlapic->ops handlers that utilize the APICv hardware assist described in
3656  * Chapter 29 of the Intel SDM.
3657  */
3658 static int
3659 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3660 {
3661         struct vlapic_vtx *vlapic_vtx;
3662         struct pir_desc *pir_desc;
3663         uint64_t mask;
3664         int idx, notify = 0;
3665
3666         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3667         pir_desc = vlapic_vtx->pir_desc;
3668
3669         /*
3670          * Keep track of interrupt requests in the PIR descriptor. This is
3671          * because the virtual APIC page pointed to by the VMCS cannot be
3672          * modified if the vcpu is running.
3673          */
3674         idx = vector / 64;
3675         mask = 1UL << (vector % 64);
3676         atomic_set_long(&pir_desc->pir[idx], mask);
3677
3678         /*
3679          * A notification is required whenever the 'pending' bit makes a
3680          * transition from 0->1.
3681          *
3682          * Even if the 'pending' bit is already asserted, notification about
3683          * the incoming interrupt may still be necessary.  For example, if a
3684          * vCPU is HLTed with a high PPR, a low priority interrupt would cause
3685          * the 0->1 'pending' transition with a notification, but the vCPU
3686          * would ignore the interrupt for the time being.  The same vCPU would
3687          * need to then be notified if a high-priority interrupt arrived which
3688          * satisfied the PPR.
3689          *
3690          * The priorities of interrupts injected while 'pending' is asserted
3691          * are tracked in a custom bitfield 'pending_prio'.  Should the
3692          * to-be-injected interrupt exceed the priorities already present, the
3693          * notification is sent.  The priorities recorded in 'pending_prio' are
3694          * cleared whenever the 'pending' bit makes another 0->1 transition.
3695          */
3696         if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
3697                 notify = 1;
3698                 vlapic_vtx->pending_prio = 0;
3699         } else {
3700                 const u_int old_prio = vlapic_vtx->pending_prio;
3701                 const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
3702
3703                 if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
3704                         atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
3705                         notify = 1;
3706                 }
3707         }
3708
3709         VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3710             level, "vmx_set_intr_ready");
3711         return (notify);
3712 }
3713
3714 static int
3715 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3716 {
3717         struct vlapic_vtx *vlapic_vtx;
3718         struct pir_desc *pir_desc;
3719         struct LAPIC *lapic;
3720         uint64_t pending, pirval;
3721         uint32_t ppr, vpr;
3722         int i;
3723
3724         /*
3725          * This function is only expected to be called from the 'HLT' exit
3726          * handler which does not care about the vector that is pending.
3727          */
3728         KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3729
3730         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3731         pir_desc = vlapic_vtx->pir_desc;
3732
3733         pending = atomic_load_acq_long(&pir_desc->pending);
3734         if (!pending) {
3735                 /*
3736                  * While a virtual interrupt may have already been
3737                  * processed the actual delivery maybe pending the
3738                  * interruptibility of the guest.  Recognize a pending
3739                  * interrupt by reevaluating virtual interrupts
3740                  * following Section 29.2.1 in the Intel SDM Volume 3.
3741                  */
3742                 struct vm_exit *vmexit;
3743                 uint8_t rvi, ppr;
3744
3745                 vmexit = vm_exitinfo(vlapic->vm, vlapic->vcpuid);
3746                 KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
3747                     ("vmx_pending_intr: exitcode not 'HLT'"));
3748                 rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
3749                 lapic = vlapic->apic_page;
3750                 ppr = lapic->ppr & APIC_TPR_INT;
3751                 if (rvi > ppr) {
3752                         return (1);
3753                 }
3754
3755                 return (0);
3756         }
3757
3758         /*
3759          * If there is an interrupt pending then it will be recognized only
3760          * if its priority is greater than the processor priority.
3761          *
3762          * Special case: if the processor priority is zero then any pending
3763          * interrupt will be recognized.
3764          */
3765         lapic = vlapic->apic_page;
3766         ppr = lapic->ppr & APIC_TPR_INT;
3767         if (ppr == 0)
3768                 return (1);
3769
3770         VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3771             lapic->ppr);
3772
3773         vpr = 0;
3774         for (i = 3; i >= 0; i--) {
3775                 pirval = pir_desc->pir[i];
3776                 if (pirval != 0) {
3777                         vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
3778                         break;
3779                 }
3780         }
3781
3782         /*
3783          * If the highest-priority pending interrupt falls short of the
3784          * processor priority of this vCPU, ensure that 'pending_prio' does not
3785          * have any stale bits which would preclude a higher-priority interrupt
3786          * from incurring a notification later.
3787          */
3788         if (vpr <= ppr) {
3789                 const u_int prio_bit = VPR_PRIO_BIT(vpr);
3790                 const u_int old = vlapic_vtx->pending_prio;
3791
3792                 if (old > prio_bit && (old & prio_bit) == 0) {
3793                         vlapic_vtx->pending_prio = prio_bit;
3794                 }
3795                 return (0);
3796         }
3797         return (1);
3798 }
3799
3800 static void
3801 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3802 {
3803
3804         panic("vmx_intr_accepted: not expected to be called");
3805 }
3806
3807 static void
3808 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3809 {
3810         struct vlapic_vtx *vlapic_vtx;
3811         struct vmx *vmx;
3812         struct vmcs *vmcs;
3813         uint64_t mask, val;
3814
3815         KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3816         KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3817             ("vmx_set_tmr: vcpu cannot be running"));
3818
3819         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3820         vmx = vlapic_vtx->vmx;
3821         vmcs = &vmx->vmcs[vlapic->vcpuid];
3822         mask = 1UL << (vector % 64);
3823
3824         VMPTRLD(vmcs);
3825         val = vmcs_read(VMCS_EOI_EXIT(vector));
3826         if (level)
3827                 val |= mask;
3828         else
3829                 val &= ~mask;
3830         vmcs_write(VMCS_EOI_EXIT(vector), val);
3831         VMCLEAR(vmcs);
3832 }
3833
3834 static void
3835 vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
3836 {
3837         struct vmx *vmx;
3838         struct vmcs *vmcs;
3839         uint32_t proc_ctls;
3840         int vcpuid;
3841
3842         vcpuid = vlapic->vcpuid;
3843         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3844         vmcs = &vmx->vmcs[vcpuid];
3845
3846         proc_ctls = vmx->cap[vcpuid].proc_ctls;
3847         proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
3848         proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
3849         proc_ctls |= PROCBASED_CR8_STORE_EXITING;
3850         vmx->cap[vcpuid].proc_ctls = proc_ctls;
3851
3852         VMPTRLD(vmcs);
3853         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
3854         VMCLEAR(vmcs);
3855 }
3856
3857 static void
3858 vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
3859 {
3860         struct vmx *vmx;
3861         struct vmcs *vmcs;
3862         uint32_t proc_ctls2;
3863         int vcpuid, error;
3864
3865         vcpuid = vlapic->vcpuid;
3866         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3867         vmcs = &vmx->vmcs[vcpuid];
3868
3869         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3870         KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3871             ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3872
3873         proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3874         proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3875         vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3876
3877         VMPTRLD(vmcs);
3878         vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3879         VMCLEAR(vmcs);
3880
3881         if (vlapic->vcpuid == 0) {
3882                 /*
3883                  * The nested page table mappings are shared by all vcpus
3884                  * so unmap the APIC access page just once.
3885                  */
3886                 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3887                 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3888                     __func__, error));
3889
3890                 /*
3891                  * The MSR bitmap is shared by all vcpus so modify it only
3892                  * once in the context of vcpu 0.
3893                  */
3894                 error = vmx_allow_x2apic_msrs(vmx);
3895                 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3896                     __func__, error));
3897         }
3898 }
3899
3900 static void
3901 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3902 {
3903
3904         ipi_cpu(hostcpu, pirvec);
3905 }
3906
3907 /*
3908  * Transfer the pending interrupts in the PIR descriptor to the IRR
3909  * in the virtual APIC page.
3910  */
3911 static void
3912 vmx_inject_pir(struct vlapic *vlapic)
3913 {
3914         struct vlapic_vtx *vlapic_vtx;
3915         struct pir_desc *pir_desc;
3916         struct LAPIC *lapic;
3917         uint64_t val, pirval;
3918         int rvi, pirbase = -1;
3919         uint16_t intr_status_old, intr_status_new;
3920
3921         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3922         pir_desc = vlapic_vtx->pir_desc;
3923         if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3924                 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3925                     "no posted interrupt pending");
3926                 return;
3927         }
3928
3929         pirval = 0;
3930         pirbase = -1;
3931         lapic = vlapic->apic_page;
3932
3933         val = atomic_readandclear_long(&pir_desc->pir[0]);
3934         if (val != 0) {
3935                 lapic->irr0 |= val;
3936                 lapic->irr1 |= val >> 32;
3937                 pirbase = 0;
3938                 pirval = val;
3939         }
3940
3941         val = atomic_readandclear_long(&pir_desc->pir[1]);
3942         if (val != 0) {
3943                 lapic->irr2 |= val;
3944                 lapic->irr3 |= val >> 32;
3945                 pirbase = 64;
3946                 pirval = val;
3947         }
3948
3949         val = atomic_readandclear_long(&pir_desc->pir[2]);
3950         if (val != 0) {
3951                 lapic->irr4 |= val;
3952                 lapic->irr5 |= val >> 32;
3953                 pirbase = 128;
3954                 pirval = val;
3955         }
3956
3957         val = atomic_readandclear_long(&pir_desc->pir[3]);
3958         if (val != 0) {
3959                 lapic->irr6 |= val;
3960                 lapic->irr7 |= val >> 32;
3961                 pirbase = 192;
3962                 pirval = val;
3963         }
3964
3965         VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3966
3967         /*
3968          * Update RVI so the processor can evaluate pending virtual
3969          * interrupts on VM-entry.
3970          *
3971          * It is possible for pirval to be 0 here, even though the
3972          * pending bit has been set. The scenario is:
3973          * CPU-Y is sending a posted interrupt to CPU-X, which
3974          * is running a guest and processing posted interrupts in h/w.
3975          * CPU-X will eventually exit and the state seen in s/w is
3976          * the pending bit set, but no PIR bits set.
3977          *
3978          *      CPU-X                      CPU-Y
3979          *   (vm running)                (host running)
3980          *   rx posted interrupt
3981          *   CLEAR pending bit
3982          *                               SET PIR bit
3983          *   READ/CLEAR PIR bits
3984          *                               SET pending bit
3985          *   (vm exit)
3986          *   pending bit set, PIR 0
3987          */
3988         if (pirval != 0) {
3989                 rvi = pirbase + flsl(pirval) - 1;
3990                 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3991                 intr_status_new = (intr_status_old & 0xFF00) | rvi;
3992                 if (intr_status_new > intr_status_old) {
3993                         vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3994                         VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3995                             "guest_intr_status changed from 0x%04x to 0x%04x",
3996                             intr_status_old, intr_status_new);
3997                 }
3998         }
3999 }
4000
4001 static struct vlapic *
4002 vmx_vlapic_init(void *arg, int vcpuid)
4003 {
4004         struct vmx *vmx;
4005         struct vlapic *vlapic;
4006         struct vlapic_vtx *vlapic_vtx;
4007
4008         vmx = arg;
4009
4010         vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
4011         vlapic->vm = vmx->vm;
4012         vlapic->vcpuid = vcpuid;
4013         vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
4014
4015         vlapic_vtx = (struct vlapic_vtx *)vlapic;
4016         vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
4017         vlapic_vtx->vmx = vmx;
4018
4019         if (tpr_shadowing) {
4020                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
4021         }
4022
4023         if (virtual_interrupt_delivery) {
4024                 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
4025                 vlapic->ops.pending_intr = vmx_pending_intr;
4026                 vlapic->ops.intr_accepted = vmx_intr_accepted;
4027                 vlapic->ops.set_tmr = vmx_set_tmr;
4028                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
4029         }
4030
4031         if (posted_interrupts)
4032                 vlapic->ops.post_intr = vmx_post_intr;
4033
4034         vlapic_init(vlapic);
4035
4036         return (vlapic);
4037 }
4038
4039 static void
4040 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
4041 {
4042
4043         vlapic_cleanup(vlapic);
4044         free(vlapic, M_VLAPIC);
4045 }
4046
4047 #ifdef BHYVE_SNAPSHOT
4048 static int
4049 vmx_snapshot(void *arg, struct vm_snapshot_meta *meta)
4050 {
4051         struct vmx *vmx;
4052         struct vmxctx *vmxctx;
4053         int i;
4054         int ret;
4055
4056         vmx = arg;
4057
4058         KASSERT(vmx != NULL, ("%s: arg was NULL", __func__));
4059
4060         for (i = 0; i < VM_MAXCPU; i++) {
4061                 SNAPSHOT_BUF_OR_LEAVE(vmx->guest_msrs[i],
4062                       sizeof(vmx->guest_msrs[i]), meta, ret, done);
4063
4064                 vmxctx = &vmx->ctx[i];
4065                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, ret, done);
4066                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, ret, done);
4067                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, ret, done);
4068                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, ret, done);
4069                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, ret, done);
4070                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, ret, done);
4071                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, ret, done);
4072                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, ret, done);
4073                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, ret, done);
4074                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, ret, done);
4075                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, ret, done);
4076                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, ret, done);
4077                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, ret, done);
4078                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, ret, done);
4079                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, ret, done);
4080                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, ret, done);
4081                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, ret, done);
4082                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, ret, done);
4083                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, ret, done);
4084                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, ret, done);
4085                 SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, ret, done);
4086         }
4087
4088 done:
4089         return (ret);
4090 }
4091
4092 static int
4093 vmx_vmcx_snapshot(void *arg, struct vm_snapshot_meta *meta, int vcpu)
4094 {
4095         struct vmcs *vmcs;
4096         struct vmx *vmx;
4097         int err, run, hostcpu;
4098
4099         vmx = (struct vmx *)arg;
4100         err = 0;
4101
4102         KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4103         vmcs = &vmx->vmcs[vcpu];
4104
4105         run = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4106         if (run && hostcpu != curcpu) {
4107                 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4108                 return (EINVAL);
4109         }
4110
4111         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
4112         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
4113         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
4114         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
4115         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
4116         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
4117         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
4118
4119         /* Guest segments */
4120         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
4121         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
4122
4123         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
4124         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
4125
4126         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
4127         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
4128
4129         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
4130         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
4131
4132         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
4133         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
4134
4135         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
4136         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
4137
4138         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
4139         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
4140
4141         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
4142         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
4143
4144         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
4145
4146         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
4147         err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
4148
4149         /* Guest page tables */
4150         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
4151         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
4152         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
4153         err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
4154
4155         /* Other guest state */
4156         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
4157         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
4158         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
4159         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
4160         err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
4161         err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
4162         err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
4163
4164         return (err);
4165 }
4166
4167 static int
4168 vmx_restore_tsc(void *arg, int vcpu, uint64_t offset)
4169 {
4170         struct vmcs *vmcs;
4171         struct vmx *vmx = (struct vmx *)arg;
4172         int error, running, hostcpu;
4173
4174         KASSERT(arg != NULL, ("%s: arg was NULL", __func__));
4175         vmcs = &vmx->vmcs[vcpu];
4176
4177         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
4178         if (running && hostcpu != curcpu) {
4179                 printf("%s: %s%d is running", __func__, vm_name(vmx->vm), vcpu);
4180                 return (EINVAL);
4181         }
4182
4183         if (!running)
4184                 VMPTRLD(vmcs);
4185
4186         error = vmx_set_tsc_offset(vmx, vcpu, offset);
4187
4188         if (!running)
4189                 VMCLEAR(vmcs);
4190         return (error);
4191 }
4192 #endif
4193
4194 const struct vmm_ops vmm_ops_intel = {
4195         .modinit        = vmx_modinit,
4196         .modcleanup     = vmx_modcleanup,
4197         .modresume      = vmx_modresume,
4198         .init           = vmx_init,
4199         .run            = vmx_run,
4200         .cleanup        = vmx_cleanup,
4201         .getreg         = vmx_getreg,
4202         .setreg         = vmx_setreg,
4203         .getdesc        = vmx_getdesc,
4204         .setdesc        = vmx_setdesc,
4205         .getcap         = vmx_getcap,
4206         .setcap         = vmx_setcap,
4207         .vmspace_alloc  = vmx_vmspace_alloc,
4208         .vmspace_free   = vmx_vmspace_free,
4209         .vlapic_init    = vmx_vlapic_init,
4210         .vlapic_cleanup = vmx_vlapic_cleanup,
4211 #ifdef BHYVE_SNAPSHOT
4212         .snapshot       = vmx_snapshot,
4213         .vmcx_snapshot  = vmx_vmcx_snapshot,
4214         .restore_tsc    = vmx_restore_tsc,
4215 #endif
4216 };