]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/amd64/vmm/intel/vmx.c
Update mandoc to 1.13.2
[FreeBSD/FreeBSD.git] / sys / amd64 / vmm / intel / vmx.c
1 /*-
2  * Copyright (c) 2011 NetApp, Inc.
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  *
26  * $FreeBSD$
27  */
28
29 #include <sys/cdefs.h>
30 __FBSDID("$FreeBSD$");
31
32 #include <sys/param.h>
33 #include <sys/systm.h>
34 #include <sys/smp.h>
35 #include <sys/kernel.h>
36 #include <sys/malloc.h>
37 #include <sys/pcpu.h>
38 #include <sys/proc.h>
39 #include <sys/sysctl.h>
40
41 #include <vm/vm.h>
42 #include <vm/pmap.h>
43
44 #include <machine/psl.h>
45 #include <machine/cpufunc.h>
46 #include <machine/md_var.h>
47 #include <machine/segments.h>
48 #include <machine/smp.h>
49 #include <machine/specialreg.h>
50 #include <machine/vmparam.h>
51
52 #include <machine/vmm.h>
53 #include <machine/vmm_dev.h>
54 #include <machine/vmm_instruction_emul.h>
55 #include "vmm_lapic.h"
56 #include "vmm_host.h"
57 #include "vmm_ioport.h"
58 #include "vmm_ipi.h"
59 #include "vmm_ktr.h"
60 #include "vmm_stat.h"
61 #include "vatpic.h"
62 #include "vlapic.h"
63 #include "vlapic_priv.h"
64
65 #include "ept.h"
66 #include "vmx_cpufunc.h"
67 #include "vmx.h"
68 #include "vmx_msr.h"
69 #include "x86.h"
70 #include "vmx_controls.h"
71
72 #define PINBASED_CTLS_ONE_SETTING                                       \
73         (PINBASED_EXTINT_EXITING        |                               \
74          PINBASED_NMI_EXITING           |                               \
75          PINBASED_VIRTUAL_NMI)
76 #define PINBASED_CTLS_ZERO_SETTING      0
77
78 #define PROCBASED_CTLS_WINDOW_SETTING                                   \
79         (PROCBASED_INT_WINDOW_EXITING   |                               \
80          PROCBASED_NMI_WINDOW_EXITING)
81
82 #define PROCBASED_CTLS_ONE_SETTING                                      \
83         (PROCBASED_SECONDARY_CONTROLS   |                               \
84          PROCBASED_MWAIT_EXITING        |                               \
85          PROCBASED_MONITOR_EXITING      |                               \
86          PROCBASED_IO_EXITING           |                               \
87          PROCBASED_MSR_BITMAPS          |                               \
88          PROCBASED_CTLS_WINDOW_SETTING  |                               \
89          PROCBASED_CR8_LOAD_EXITING     |                               \
90          PROCBASED_CR8_STORE_EXITING)
91 #define PROCBASED_CTLS_ZERO_SETTING     \
92         (PROCBASED_CR3_LOAD_EXITING |   \
93         PROCBASED_CR3_STORE_EXITING |   \
94         PROCBASED_IO_BITMAPS)
95
96 #define PROCBASED_CTLS2_ONE_SETTING     PROCBASED2_ENABLE_EPT
97 #define PROCBASED_CTLS2_ZERO_SETTING    0
98
99 #define VM_EXIT_CTLS_ONE_SETTING                                        \
100         (VM_EXIT_HOST_LMA                       |                       \
101         VM_EXIT_SAVE_EFER                       |                       \
102         VM_EXIT_LOAD_EFER                       |                       \
103         VM_EXIT_ACKNOWLEDGE_INTERRUPT           |                       \
104         VM_EXIT_SAVE_PAT                        |                       \
105         VM_EXIT_LOAD_PAT)
106
107 #define VM_EXIT_CTLS_ZERO_SETTING       VM_EXIT_SAVE_DEBUG_CONTROLS
108
109 #define VM_ENTRY_CTLS_ONE_SETTING       (VM_ENTRY_LOAD_EFER | VM_ENTRY_LOAD_PAT)
110
111 #define VM_ENTRY_CTLS_ZERO_SETTING                                      \
112         (VM_ENTRY_LOAD_DEBUG_CONTROLS           |                       \
113         VM_ENTRY_INTO_SMM                       |                       \
114         VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
115
116 #define HANDLED         1
117 #define UNHANDLED       0
118
119 static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
120 static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
121
122 SYSCTL_DECL(_hw_vmm);
123 SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL);
124
125 int vmxon_enabled[MAXCPU];
126 static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE);
127
128 static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
129 static uint32_t exit_ctls, entry_ctls;
130
131 static uint64_t cr0_ones_mask, cr0_zeros_mask;
132 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
133              &cr0_ones_mask, 0, NULL);
134 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
135              &cr0_zeros_mask, 0, NULL);
136
137 static uint64_t cr4_ones_mask, cr4_zeros_mask;
138 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
139              &cr4_ones_mask, 0, NULL);
140 SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
141              &cr4_zeros_mask, 0, NULL);
142
143 static int vmx_initialized;
144 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
145            &vmx_initialized, 0, "Intel VMX initialized");
146
147 /*
148  * Optional capabilities
149  */
150 static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap, CTLFLAG_RW, NULL, NULL);
151
152 static int cap_halt_exit;
153 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
154     "HLT triggers a VM-exit");
155
156 static int cap_pause_exit;
157 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
158     0, "PAUSE triggers a VM-exit");
159
160 static int cap_unrestricted_guest;
161 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
162     &cap_unrestricted_guest, 0, "Unrestricted guests");
163
164 static int cap_monitor_trap;
165 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
166     &cap_monitor_trap, 0, "Monitor trap flag");
167
168 static int cap_invpcid;
169 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
170     0, "Guests are allowed to use INVPCID");
171
172 static int virtual_interrupt_delivery;
173 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD,
174     &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
175
176 static int posted_interrupts;
177 SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts, CTLFLAG_RD,
178     &posted_interrupts, 0, "APICv posted interrupt support");
179
180 static int pirvec;
181 SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
182     &pirvec, 0, "APICv posted interrupt vector");
183
184 static struct unrhdr *vpid_unr;
185 static u_int vpid_alloc_failed;
186 SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
187             &vpid_alloc_failed, 0, NULL);
188
189 /*
190  * Use the last page below 4GB as the APIC access address. This address is
191  * occupied by the boot firmware so it is guaranteed that it will not conflict
192  * with a page in system memory.
193  */
194 #define APIC_ACCESS_ADDRESS     0xFFFFF000
195
196 static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc);
197 static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval);
198 static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
199 static void vmx_inject_pir(struct vlapic *vlapic);
200
201 #ifdef KTR
202 static const char *
203 exit_reason_to_str(int reason)
204 {
205         static char reasonbuf[32];
206
207         switch (reason) {
208         case EXIT_REASON_EXCEPTION:
209                 return "exception";
210         case EXIT_REASON_EXT_INTR:
211                 return "extint";
212         case EXIT_REASON_TRIPLE_FAULT:
213                 return "triplefault";
214         case EXIT_REASON_INIT:
215                 return "init";
216         case EXIT_REASON_SIPI:
217                 return "sipi";
218         case EXIT_REASON_IO_SMI:
219                 return "iosmi";
220         case EXIT_REASON_SMI:
221                 return "smi";
222         case EXIT_REASON_INTR_WINDOW:
223                 return "intrwindow";
224         case EXIT_REASON_NMI_WINDOW:
225                 return "nmiwindow";
226         case EXIT_REASON_TASK_SWITCH:
227                 return "taskswitch";
228         case EXIT_REASON_CPUID:
229                 return "cpuid";
230         case EXIT_REASON_GETSEC:
231                 return "getsec";
232         case EXIT_REASON_HLT:
233                 return "hlt";
234         case EXIT_REASON_INVD:
235                 return "invd";
236         case EXIT_REASON_INVLPG:
237                 return "invlpg";
238         case EXIT_REASON_RDPMC:
239                 return "rdpmc";
240         case EXIT_REASON_RDTSC:
241                 return "rdtsc";
242         case EXIT_REASON_RSM:
243                 return "rsm";
244         case EXIT_REASON_VMCALL:
245                 return "vmcall";
246         case EXIT_REASON_VMCLEAR:
247                 return "vmclear";
248         case EXIT_REASON_VMLAUNCH:
249                 return "vmlaunch";
250         case EXIT_REASON_VMPTRLD:
251                 return "vmptrld";
252         case EXIT_REASON_VMPTRST:
253                 return "vmptrst";
254         case EXIT_REASON_VMREAD:
255                 return "vmread";
256         case EXIT_REASON_VMRESUME:
257                 return "vmresume";
258         case EXIT_REASON_VMWRITE:
259                 return "vmwrite";
260         case EXIT_REASON_VMXOFF:
261                 return "vmxoff";
262         case EXIT_REASON_VMXON:
263                 return "vmxon";
264         case EXIT_REASON_CR_ACCESS:
265                 return "craccess";
266         case EXIT_REASON_DR_ACCESS:
267                 return "draccess";
268         case EXIT_REASON_INOUT:
269                 return "inout";
270         case EXIT_REASON_RDMSR:
271                 return "rdmsr";
272         case EXIT_REASON_WRMSR:
273                 return "wrmsr";
274         case EXIT_REASON_INVAL_VMCS:
275                 return "invalvmcs";
276         case EXIT_REASON_INVAL_MSR:
277                 return "invalmsr";
278         case EXIT_REASON_MWAIT:
279                 return "mwait";
280         case EXIT_REASON_MTF:
281                 return "mtf";
282         case EXIT_REASON_MONITOR:
283                 return "monitor";
284         case EXIT_REASON_PAUSE:
285                 return "pause";
286         case EXIT_REASON_MCE_DURING_ENTRY:
287                 return "mce-during-entry";
288         case EXIT_REASON_TPR:
289                 return "tpr";
290         case EXIT_REASON_APIC_ACCESS:
291                 return "apic-access";
292         case EXIT_REASON_GDTR_IDTR:
293                 return "gdtridtr";
294         case EXIT_REASON_LDTR_TR:
295                 return "ldtrtr";
296         case EXIT_REASON_EPT_FAULT:
297                 return "eptfault";
298         case EXIT_REASON_EPT_MISCONFIG:
299                 return "eptmisconfig";
300         case EXIT_REASON_INVEPT:
301                 return "invept";
302         case EXIT_REASON_RDTSCP:
303                 return "rdtscp";
304         case EXIT_REASON_VMX_PREEMPT:
305                 return "vmxpreempt";
306         case EXIT_REASON_INVVPID:
307                 return "invvpid";
308         case EXIT_REASON_WBINVD:
309                 return "wbinvd";
310         case EXIT_REASON_XSETBV:
311                 return "xsetbv";
312         case EXIT_REASON_APIC_WRITE:
313                 return "apic-write";
314         default:
315                 snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
316                 return (reasonbuf);
317         }
318 }
319 #endif  /* KTR */
320
321 static int
322 vmx_allow_x2apic_msrs(struct vmx *vmx)
323 {
324         int i, error;
325
326         error = 0;
327
328         /*
329          * Allow readonly access to the following x2APIC MSRs from the guest.
330          */
331         error += guest_msr_ro(vmx, MSR_APIC_ID);
332         error += guest_msr_ro(vmx, MSR_APIC_VERSION);
333         error += guest_msr_ro(vmx, MSR_APIC_LDR);
334         error += guest_msr_ro(vmx, MSR_APIC_SVR);
335
336         for (i = 0; i < 8; i++)
337                 error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
338
339         for (i = 0; i < 8; i++)
340                 error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
341         
342         for (i = 0; i < 8; i++)
343                 error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
344
345         error += guest_msr_ro(vmx, MSR_APIC_ESR);
346         error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
347         error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
348         error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
349         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
350         error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
351         error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
352         error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
353         error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
354         error += guest_msr_ro(vmx, MSR_APIC_ICR);
355
356         /*
357          * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
358          *
359          * These registers get special treatment described in the section
360          * "Virtualizing MSR-Based APIC Accesses".
361          */
362         error += guest_msr_rw(vmx, MSR_APIC_TPR);
363         error += guest_msr_rw(vmx, MSR_APIC_EOI);
364         error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
365
366         return (error);
367 }
368
369 u_long
370 vmx_fix_cr0(u_long cr0)
371 {
372
373         return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
374 }
375
376 u_long
377 vmx_fix_cr4(u_long cr4)
378 {
379
380         return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
381 }
382
383 static void
384 vpid_free(int vpid)
385 {
386         if (vpid < 0 || vpid > 0xffff)
387                 panic("vpid_free: invalid vpid %d", vpid);
388
389         /*
390          * VPIDs [0,VM_MAXCPU] are special and are not allocated from
391          * the unit number allocator.
392          */
393
394         if (vpid > VM_MAXCPU)
395                 free_unr(vpid_unr, vpid);
396 }
397
398 static void
399 vpid_alloc(uint16_t *vpid, int num)
400 {
401         int i, x;
402
403         if (num <= 0 || num > VM_MAXCPU)
404                 panic("invalid number of vpids requested: %d", num);
405
406         /*
407          * If the "enable vpid" execution control is not enabled then the
408          * VPID is required to be 0 for all vcpus.
409          */
410         if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) {
411                 for (i = 0; i < num; i++)
412                         vpid[i] = 0;
413                 return;
414         }
415
416         /*
417          * Allocate a unique VPID for each vcpu from the unit number allocator.
418          */
419         for (i = 0; i < num; i++) {
420                 x = alloc_unr(vpid_unr);
421                 if (x == -1)
422                         break;
423                 else
424                         vpid[i] = x;
425         }
426
427         if (i < num) {
428                 atomic_add_int(&vpid_alloc_failed, 1);
429
430                 /*
431                  * If the unit number allocator does not have enough unique
432                  * VPIDs then we need to allocate from the [1,VM_MAXCPU] range.
433                  *
434                  * These VPIDs are not be unique across VMs but this does not
435                  * affect correctness because the combined mappings are also
436                  * tagged with the EP4TA which is unique for each VM.
437                  *
438                  * It is still sub-optimal because the invvpid will invalidate
439                  * combined mappings for a particular VPID across all EP4TAs.
440                  */
441                 while (i-- > 0)
442                         vpid_free(vpid[i]);
443
444                 for (i = 0; i < num; i++)
445                         vpid[i] = i + 1;
446         }
447 }
448
449 static void
450 vpid_init(void)
451 {
452         /*
453          * VPID 0 is required when the "enable VPID" execution control is
454          * disabled.
455          *
456          * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the
457          * unit number allocator does not have sufficient unique VPIDs to
458          * satisfy the allocation.
459          *
460          * The remaining VPIDs are managed by the unit number allocator.
461          */
462         vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL);
463 }
464
465 static void
466 vmx_disable(void *arg __unused)
467 {
468         struct invvpid_desc invvpid_desc = { 0 };
469         struct invept_desc invept_desc = { 0 };
470
471         if (vmxon_enabled[curcpu]) {
472                 /*
473                  * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
474                  *
475                  * VMXON or VMXOFF are not required to invalidate any TLB
476                  * caching structures. This prevents potential retention of
477                  * cached information in the TLB between distinct VMX episodes.
478                  */
479                 invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
480                 invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
481                 vmxoff();
482         }
483         load_cr4(rcr4() & ~CR4_VMXE);
484 }
485
486 static int
487 vmx_cleanup(void)
488 {
489         
490         if (pirvec != 0)
491                 vmm_ipi_free(pirvec);
492
493         if (vpid_unr != NULL) {
494                 delete_unrhdr(vpid_unr);
495                 vpid_unr = NULL;
496         }
497
498         smp_rendezvous(NULL, vmx_disable, NULL, NULL);
499
500         return (0);
501 }
502
503 static void
504 vmx_enable(void *arg __unused)
505 {
506         int error;
507         uint64_t feature_control;
508
509         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
510         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
511             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
512                 wrmsr(MSR_IA32_FEATURE_CONTROL,
513                     feature_control | IA32_FEATURE_CONTROL_VMX_EN |
514                     IA32_FEATURE_CONTROL_LOCK);
515         }
516
517         load_cr4(rcr4() | CR4_VMXE);
518
519         *(uint32_t *)vmxon_region[curcpu] = vmx_revision();
520         error = vmxon(vmxon_region[curcpu]);
521         if (error == 0)
522                 vmxon_enabled[curcpu] = 1;
523 }
524
525 static void
526 vmx_restore(void)
527 {
528
529         if (vmxon_enabled[curcpu])
530                 vmxon(vmxon_region[curcpu]);
531 }
532
533 static int
534 vmx_init(int ipinum)
535 {
536         int error, use_tpr_shadow;
537         uint64_t basic, fixed0, fixed1, feature_control;
538         uint32_t tmp, procbased2_vid_bits;
539
540         /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
541         if (!(cpu_feature2 & CPUID2_VMX)) {
542                 printf("vmx_init: processor does not support VMX operation\n");
543                 return (ENXIO);
544         }
545
546         /*
547          * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
548          * are set (bits 0 and 2 respectively).
549          */
550         feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
551         if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
552             (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
553                 printf("vmx_init: VMX operation disabled by BIOS\n");
554                 return (ENXIO);
555         }
556
557         /*
558          * Verify capabilities MSR_VMX_BASIC:
559          * - bit 54 indicates support for INS/OUTS decoding
560          */
561         basic = rdmsr(MSR_VMX_BASIC);
562         if ((basic & (1UL << 54)) == 0) {
563                 printf("vmx_init: processor does not support desired basic "
564                     "capabilities\n");
565                 return (EINVAL);
566         }
567
568         /* Check support for primary processor-based VM-execution controls */
569         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
570                                MSR_VMX_TRUE_PROCBASED_CTLS,
571                                PROCBASED_CTLS_ONE_SETTING,
572                                PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
573         if (error) {
574                 printf("vmx_init: processor does not support desired primary "
575                        "processor-based controls\n");
576                 return (error);
577         }
578
579         /* Clear the processor-based ctl bits that are set on demand */
580         procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
581
582         /* Check support for secondary processor-based VM-execution controls */
583         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
584                                MSR_VMX_PROCBASED_CTLS2,
585                                PROCBASED_CTLS2_ONE_SETTING,
586                                PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
587         if (error) {
588                 printf("vmx_init: processor does not support desired secondary "
589                        "processor-based controls\n");
590                 return (error);
591         }
592
593         /* Check support for VPID */
594         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
595                                PROCBASED2_ENABLE_VPID, 0, &tmp);
596         if (error == 0)
597                 procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
598
599         /* Check support for pin-based VM-execution controls */
600         error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
601                                MSR_VMX_TRUE_PINBASED_CTLS,
602                                PINBASED_CTLS_ONE_SETTING,
603                                PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
604         if (error) {
605                 printf("vmx_init: processor does not support desired "
606                        "pin-based controls\n");
607                 return (error);
608         }
609
610         /* Check support for VM-exit controls */
611         error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
612                                VM_EXIT_CTLS_ONE_SETTING,
613                                VM_EXIT_CTLS_ZERO_SETTING,
614                                &exit_ctls);
615         if (error) {
616                 printf("vmx_init: processor does not support desired "
617                     "exit controls\n");
618                 return (error);
619         }
620
621         /* Check support for VM-entry controls */
622         error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
623             VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
624             &entry_ctls);
625         if (error) {
626                 printf("vmx_init: processor does not support desired "
627                     "entry controls\n");
628                 return (error);
629         }
630
631         /*
632          * Check support for optional features by testing them
633          * as individual bits
634          */
635         cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
636                                         MSR_VMX_TRUE_PROCBASED_CTLS,
637                                         PROCBASED_HLT_EXITING, 0,
638                                         &tmp) == 0);
639
640         cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
641                                         MSR_VMX_PROCBASED_CTLS,
642                                         PROCBASED_MTF, 0,
643                                         &tmp) == 0);
644
645         cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
646                                          MSR_VMX_TRUE_PROCBASED_CTLS,
647                                          PROCBASED_PAUSE_EXITING, 0,
648                                          &tmp) == 0);
649
650         cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
651                                         MSR_VMX_PROCBASED_CTLS2,
652                                         PROCBASED2_UNRESTRICTED_GUEST, 0,
653                                         &tmp) == 0);
654
655         cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
656             MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
657             &tmp) == 0);
658
659         /*
660          * Check support for virtual interrupt delivery.
661          */
662         procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
663             PROCBASED2_VIRTUALIZE_X2APIC_MODE |
664             PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
665             PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
666
667         use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
668             MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
669             &tmp) == 0);
670
671         error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
672             procbased2_vid_bits, 0, &tmp);
673         if (error == 0 && use_tpr_shadow) {
674                 virtual_interrupt_delivery = 1;
675                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
676                     &virtual_interrupt_delivery);
677         }
678
679         if (virtual_interrupt_delivery) {
680                 procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
681                 procbased_ctls2 |= procbased2_vid_bits;
682                 procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
683
684                 /*
685                  * No need to emulate accesses to %CR8 if virtual
686                  * interrupt delivery is enabled.
687                  */
688                 procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
689                 procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
690
691                 /*
692                  * Check for Posted Interrupts only if Virtual Interrupt
693                  * Delivery is enabled.
694                  */
695                 error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
696                     MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
697                     &tmp);
698                 if (error == 0) {
699                         pirvec = vmm_ipi_alloc();
700                         if (pirvec == 0) {
701                                 if (bootverbose) {
702                                         printf("vmx_init: unable to allocate "
703                                             "posted interrupt vector\n");
704                                 }
705                         } else {
706                                 posted_interrupts = 1;
707                                 TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
708                                     &posted_interrupts);
709                         }
710                 }
711         }
712
713         if (posted_interrupts)
714                     pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
715
716         /* Initialize EPT */
717         error = ept_init(ipinum);
718         if (error) {
719                 printf("vmx_init: ept initialization failed (%d)\n", error);
720                 return (error);
721         }
722
723         /*
724          * Stash the cr0 and cr4 bits that must be fixed to 0 or 1
725          */
726         fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
727         fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
728         cr0_ones_mask = fixed0 & fixed1;
729         cr0_zeros_mask = ~fixed0 & ~fixed1;
730
731         /*
732          * CR0_PE and CR0_PG can be set to zero in VMX non-root operation
733          * if unrestricted guest execution is allowed.
734          */
735         if (cap_unrestricted_guest)
736                 cr0_ones_mask &= ~(CR0_PG | CR0_PE);
737
738         /*
739          * Do not allow the guest to set CR0_NW or CR0_CD.
740          */
741         cr0_zeros_mask |= (CR0_NW | CR0_CD);
742
743         fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
744         fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
745         cr4_ones_mask = fixed0 & fixed1;
746         cr4_zeros_mask = ~fixed0 & ~fixed1;
747
748         vpid_init();
749
750         vmx_msr_init();
751
752         /* enable VMX operation */
753         smp_rendezvous(NULL, vmx_enable, NULL, NULL);
754
755         vmx_initialized = 1;
756
757         return (0);
758 }
759
760 static void
761 vmx_trigger_hostintr(int vector)
762 {
763         uintptr_t func;
764         struct gate_descriptor *gd;
765
766         gd = &idt[vector];
767
768         KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
769             "invalid vector %d", vector));
770         KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
771             vector));
772         KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
773             "has invalid type %d", vector, gd->gd_type));
774         KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
775             "has invalid dpl %d", vector, gd->gd_dpl));
776         KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
777             "for vector %d has invalid selector %d", vector, gd->gd_selector));
778         KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
779             "IST %d", vector, gd->gd_ist));
780
781         func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
782         vmx_call_isr(func);
783 }
784
785 static int
786 vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
787 {
788         int error, mask_ident, shadow_ident;
789         uint64_t mask_value;
790
791         if (which != 0 && which != 4)
792                 panic("vmx_setup_cr_shadow: unknown cr%d", which);
793
794         if (which == 0) {
795                 mask_ident = VMCS_CR0_MASK;
796                 mask_value = cr0_ones_mask | cr0_zeros_mask;
797                 shadow_ident = VMCS_CR0_SHADOW;
798         } else {
799                 mask_ident = VMCS_CR4_MASK;
800                 mask_value = cr4_ones_mask | cr4_zeros_mask;
801                 shadow_ident = VMCS_CR4_SHADOW;
802         }
803
804         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
805         if (error)
806                 return (error);
807
808         error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
809         if (error)
810                 return (error);
811
812         return (0);
813 }
814 #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
815 #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
816
817 static void *
818 vmx_vminit(struct vm *vm, pmap_t pmap)
819 {
820         uint16_t vpid[VM_MAXCPU];
821         int i, error;
822         struct vmx *vmx;
823         struct vmcs *vmcs;
824         uint32_t exc_bitmap;
825
826         vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
827         if ((uintptr_t)vmx & PAGE_MASK) {
828                 panic("malloc of struct vmx not aligned on %d byte boundary",
829                       PAGE_SIZE);
830         }
831         vmx->vm = vm;
832
833         vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4));
834
835         /*
836          * Clean up EPTP-tagged guest physical and combined mappings
837          *
838          * VMX transitions are not required to invalidate any guest physical
839          * mappings. So, it may be possible for stale guest physical mappings
840          * to be present in the processor TLBs.
841          *
842          * Combined mappings for this EP4TA are also invalidated for all VPIDs.
843          */
844         ept_invalidate_mappings(vmx->eptp);
845
846         msr_bitmap_initialize(vmx->msr_bitmap);
847
848         /*
849          * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
850          * The guest FSBASE and GSBASE are saved and restored during
851          * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
852          * always restored from the vmcs host state area on vm-exit.
853          *
854          * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
855          * how they are saved/restored so can be directly accessed by the
856          * guest.
857          *
858          * MSR_EFER is saved and restored in the guest VMCS area on a
859          * VM exit and entry respectively. It is also restored from the
860          * host VMCS area on a VM exit.
861          *
862          * MSR_PAT is saved and restored in the guest VMCS are on a VM exit
863          * and entry respectively. It is also restored from the host VMCS
864          * area on a VM exit.
865          *
866          * The TSC MSR is exposed read-only. Writes are disallowed as that
867          * will impact the host TSC.
868          * XXX Writes would be implemented with a wrmsr trap, and
869          * then modifying the TSC offset in the VMCS.
870          */
871         if (guest_msr_rw(vmx, MSR_GSBASE) ||
872             guest_msr_rw(vmx, MSR_FSBASE) ||
873             guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
874             guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
875             guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
876             guest_msr_rw(vmx, MSR_EFER) ||
877             guest_msr_rw(vmx, MSR_PAT) ||
878             guest_msr_ro(vmx, MSR_TSC))
879                 panic("vmx_vminit: error setting guest msr access");
880
881         vpid_alloc(vpid, VM_MAXCPU);
882
883         if (virtual_interrupt_delivery) {
884                 error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
885                     APIC_ACCESS_ADDRESS);
886                 /* XXX this should really return an error to the caller */
887                 KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
888         }
889
890         for (i = 0; i < VM_MAXCPU; i++) {
891                 vmcs = &vmx->vmcs[i];
892                 vmcs->identifier = vmx_revision();
893                 error = vmclear(vmcs);
894                 if (error != 0) {
895                         panic("vmx_vminit: vmclear error %d on vcpu %d\n",
896                               error, i);
897                 }
898
899                 vmx_msr_guest_init(vmx, i);
900
901                 error = vmcs_init(vmcs);
902                 KASSERT(error == 0, ("vmcs_init error %d", error));
903
904                 VMPTRLD(vmcs);
905                 error = 0;
906                 error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]);
907                 error += vmwrite(VMCS_EPTP, vmx->eptp);
908                 error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
909                 error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
910                 error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
911                 error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
912                 error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
913                 error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
914                 error += vmwrite(VMCS_VPID, vpid[i]);
915
916                 /* exception bitmap */
917                 if (vcpu_trace_exceptions(vm, i))
918                         exc_bitmap = 0xffffffff;
919                 else
920                         exc_bitmap = 1 << IDT_MC;
921                 error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
922
923                 if (virtual_interrupt_delivery) {
924                         error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
925                         error += vmwrite(VMCS_VIRTUAL_APIC,
926                             vtophys(&vmx->apic_page[i]));
927                         error += vmwrite(VMCS_EOI_EXIT0, 0);
928                         error += vmwrite(VMCS_EOI_EXIT1, 0);
929                         error += vmwrite(VMCS_EOI_EXIT2, 0);
930                         error += vmwrite(VMCS_EOI_EXIT3, 0);
931                 }
932                 if (posted_interrupts) {
933                         error += vmwrite(VMCS_PIR_VECTOR, pirvec);
934                         error += vmwrite(VMCS_PIR_DESC,
935                             vtophys(&vmx->pir_desc[i]));
936                 }
937                 VMCLEAR(vmcs);
938                 KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs"));
939
940                 vmx->cap[i].set = 0;
941                 vmx->cap[i].proc_ctls = procbased_ctls;
942                 vmx->cap[i].proc_ctls2 = procbased_ctls2;
943
944                 vmx->state[i].lastcpu = NOCPU;
945                 vmx->state[i].vpid = vpid[i];
946
947                 /*
948                  * Set up the CR0/4 shadows, and init the read shadow
949                  * to the power-on register value from the Intel Sys Arch.
950                  *  CR0 - 0x60000010
951                  *  CR4 - 0
952                  */
953                 error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
954                 if (error != 0)
955                         panic("vmx_setup_cr0_shadow %d", error);
956
957                 error = vmx_setup_cr4_shadow(vmcs, 0);
958                 if (error != 0)
959                         panic("vmx_setup_cr4_shadow %d", error);
960
961                 vmx->ctx[i].pmap = pmap;
962         }
963
964         return (vmx);
965 }
966
967 static int
968 vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx)
969 {
970         int handled, func;
971         
972         func = vmxctx->guest_rax;
973
974         handled = x86_emulate_cpuid(vm, vcpu,
975                                     (uint32_t*)(&vmxctx->guest_rax),
976                                     (uint32_t*)(&vmxctx->guest_rbx),
977                                     (uint32_t*)(&vmxctx->guest_rcx),
978                                     (uint32_t*)(&vmxctx->guest_rdx));
979         return (handled);
980 }
981
982 static __inline void
983 vmx_run_trace(struct vmx *vmx, int vcpu)
984 {
985 #ifdef KTR
986         VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip());
987 #endif
988 }
989
990 static __inline void
991 vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason,
992                int handled)
993 {
994 #ifdef KTR
995         VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx",
996                  handled ? "handled" : "unhandled",
997                  exit_reason_to_str(exit_reason), rip);
998 #endif
999 }
1000
1001 static __inline void
1002 vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip)
1003 {
1004 #ifdef KTR
1005         VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip);
1006 #endif
1007 }
1008
1009 static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
1010 static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
1011
1012 /*
1013  * Invalidate guest mappings identified by its vpid from the TLB.
1014  */
1015 static __inline void
1016 vmx_invvpid(struct vmx *vmx, int vcpu, pmap_t pmap, int running)
1017 {
1018         struct vmxstate *vmxstate;
1019         struct invvpid_desc invvpid_desc;
1020
1021         vmxstate = &vmx->state[vcpu];
1022         if (vmxstate->vpid == 0)
1023                 return;
1024
1025         if (!running) {
1026                 /*
1027                  * Set the 'lastcpu' to an invalid host cpu.
1028                  *
1029                  * This will invalidate TLB entries tagged with the vcpu's
1030                  * vpid the next time it runs via vmx_set_pcpu_defaults().
1031                  */
1032                 vmxstate->lastcpu = NOCPU;
1033                 return;
1034         }
1035
1036         KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
1037             "critical section", __func__, vcpu));
1038
1039         /*
1040          * Invalidate all mappings tagged with 'vpid'
1041          *
1042          * We do this because this vcpu was executing on a different host
1043          * cpu when it last ran. We do not track whether it invalidated
1044          * mappings associated with its 'vpid' during that run. So we must
1045          * assume that the mappings associated with 'vpid' on 'curcpu' are
1046          * stale and invalidate them.
1047          *
1048          * Note that we incur this penalty only when the scheduler chooses to
1049          * move the thread associated with this vcpu between host cpus.
1050          *
1051          * Note also that this will invalidate mappings tagged with 'vpid'
1052          * for "all" EP4TAs.
1053          */
1054         if (pmap->pm_eptgen == vmx->eptgen[curcpu]) {
1055                 invvpid_desc._res1 = 0;
1056                 invvpid_desc._res2 = 0;
1057                 invvpid_desc.vpid = vmxstate->vpid;
1058                 invvpid_desc.linear_addr = 0;
1059                 invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
1060                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_DONE, 1);
1061         } else {
1062                 /*
1063                  * The invvpid can be skipped if an invept is going to
1064                  * be performed before entering the guest. The invept
1065                  * will invalidate combined mappings tagged with
1066                  * 'vmx->eptp' for all vpids.
1067                  */
1068                 vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1);
1069         }
1070 }
1071
1072 static void
1073 vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap)
1074 {
1075         struct vmxstate *vmxstate;
1076
1077         vmxstate = &vmx->state[vcpu];
1078         if (vmxstate->lastcpu == curcpu)
1079                 return;
1080
1081         vmxstate->lastcpu = curcpu;
1082
1083         vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1);
1084
1085         vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
1086         vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
1087         vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
1088         vmx_invvpid(vmx, vcpu, pmap, 1);
1089 }
1090
1091 /*
1092  * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
1093  */
1094 CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
1095
1096 static void __inline
1097 vmx_set_int_window_exiting(struct vmx *vmx, int vcpu)
1098 {
1099
1100         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
1101                 vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
1102                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1103                 VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting");
1104         }
1105 }
1106
1107 static void __inline
1108 vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu)
1109 {
1110
1111         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
1112             ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls));
1113         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
1114         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1115         VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting");
1116 }
1117
1118 static void __inline
1119 vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu)
1120 {
1121
1122         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
1123                 vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
1124                 vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1125                 VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting");
1126         }
1127 }
1128
1129 static void __inline
1130 vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu)
1131 {
1132
1133         KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
1134             ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls));
1135         vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
1136         vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls);
1137         VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting");
1138 }
1139
1140 #define NMI_BLOCKING    (VMCS_INTERRUPTIBILITY_NMI_BLOCKING |           \
1141                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1142 #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING |           \
1143                          VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
1144
1145 static void
1146 vmx_inject_nmi(struct vmx *vmx, int vcpu)
1147 {
1148         uint32_t gi, info;
1149
1150         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1151         KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
1152             "interruptibility-state %#x", gi));
1153
1154         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1155         KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
1156             "VM-entry interruption information %#x", info));
1157
1158         /*
1159          * Inject the virtual NMI. The vector must be the NMI IDT entry
1160          * or the VMCS entry check will fail.
1161          */
1162         info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
1163         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1164
1165         VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI");
1166
1167         /* Clear the request */
1168         vm_nmi_clear(vmx->vm, vcpu);
1169 }
1170
1171 static void
1172 vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic)
1173 {
1174         int vector, need_nmi_exiting, extint_pending;
1175         uint64_t rflags, entryinfo;
1176         uint32_t gi, info;
1177
1178         if (vm_entry_intinfo(vmx->vm, vcpu, &entryinfo)) {
1179                 KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
1180                     "intinfo is not valid: %#lx", __func__, entryinfo));
1181
1182                 info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1183                 KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
1184                      "pending exception: %#lx/%#x", __func__, entryinfo, info));
1185
1186                 info = entryinfo;
1187                 vector = info & 0xff;
1188                 if (vector == IDT_BP || vector == IDT_OF) {
1189                         /*
1190                          * VT-x requires #BP and #OF to be injected as software
1191                          * exceptions.
1192                          */
1193                         info &= ~VMCS_INTR_T_MASK;
1194                         info |= VMCS_INTR_T_SWEXCEPTION;
1195                 }
1196
1197                 if (info & VMCS_INTR_DEL_ERRCODE)
1198                         vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
1199
1200                 vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1201         }
1202
1203         if (vm_nmi_pending(vmx->vm, vcpu)) {
1204                 /*
1205                  * If there are no conditions blocking NMI injection then
1206                  * inject it directly here otherwise enable "NMI window
1207                  * exiting" to inject it as soon as we can.
1208                  *
1209                  * We also check for STI_BLOCKING because some implementations
1210                  * don't allow NMI injection in this case. If we are running
1211                  * on a processor that doesn't have this restriction it will
1212                  * immediately exit and the NMI will be injected in the
1213                  * "NMI window exiting" handler.
1214                  */
1215                 need_nmi_exiting = 1;
1216                 gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1217                 if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
1218                         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1219                         if ((info & VMCS_INTR_VALID) == 0) {
1220                                 vmx_inject_nmi(vmx, vcpu);
1221                                 need_nmi_exiting = 0;
1222                         } else {
1223                                 VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI "
1224                                     "due to VM-entry intr info %#x", info);
1225                         }
1226                 } else {
1227                         VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to "
1228                             "Guest Interruptibility-state %#x", gi);
1229                 }
1230
1231                 if (need_nmi_exiting)
1232                         vmx_set_nmi_window_exiting(vmx, vcpu);
1233         }
1234
1235         extint_pending = vm_extint_pending(vmx->vm, vcpu);
1236
1237         if (!extint_pending && virtual_interrupt_delivery) {
1238                 vmx_inject_pir(vlapic);
1239                 return;
1240         }
1241
1242         /*
1243          * If interrupt-window exiting is already in effect then don't bother
1244          * checking for pending interrupts. This is just an optimization and
1245          * not needed for correctness.
1246          */
1247         if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
1248                 VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to "
1249                     "pending int_window_exiting");
1250                 return;
1251         }
1252
1253         if (!extint_pending) {
1254                 /* Ask the local apic for a vector to inject */
1255                 if (!vlapic_pending_intr(vlapic, &vector))
1256                         return;
1257
1258                 /*
1259                  * From the Intel SDM, Volume 3, Section "Maskable
1260                  * Hardware Interrupts":
1261                  * - maskable interrupt vectors [16,255] can be delivered
1262                  *   through the local APIC.
1263                 */
1264                 KASSERT(vector >= 16 && vector <= 255,
1265                     ("invalid vector %d from local APIC", vector));
1266         } else {
1267                 /* Ask the legacy pic for a vector to inject */
1268                 vatpic_pending_intr(vmx->vm, &vector);
1269
1270                 /*
1271                  * From the Intel SDM, Volume 3, Section "Maskable
1272                  * Hardware Interrupts":
1273                  * - maskable interrupt vectors [0,255] can be delivered
1274                  *   through the INTR pin.
1275                  */
1276                 KASSERT(vector >= 0 && vector <= 255,
1277                     ("invalid vector %d from INTR", vector));
1278         }
1279
1280         /* Check RFLAGS.IF and the interruptibility state of the guest */
1281         rflags = vmcs_read(VMCS_GUEST_RFLAGS);
1282         if ((rflags & PSL_I) == 0) {
1283                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1284                     "rflags %#lx", vector, rflags);
1285                 goto cantinject;
1286         }
1287
1288         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1289         if (gi & HWINTR_BLOCKING) {
1290                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1291                     "Guest Interruptibility-state %#x", vector, gi);
1292                 goto cantinject;
1293         }
1294
1295         info = vmcs_read(VMCS_ENTRY_INTR_INFO);
1296         if (info & VMCS_INTR_VALID) {
1297                 /*
1298                  * This is expected and could happen for multiple reasons:
1299                  * - A vectoring VM-entry was aborted due to astpending
1300                  * - A VM-exit happened during event injection.
1301                  * - An exception was injected above.
1302                  * - An NMI was injected above or after "NMI window exiting"
1303                  */
1304                 VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to "
1305                     "VM-entry intr info %#x", vector, info);
1306                 goto cantinject;
1307         }
1308
1309         /* Inject the interrupt */
1310         info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
1311         info |= vector;
1312         vmcs_write(VMCS_ENTRY_INTR_INFO, info);
1313
1314         if (!extint_pending) {
1315                 /* Update the Local APIC ISR */
1316                 vlapic_intr_accepted(vlapic, vector);
1317         } else {
1318                 vm_extint_clear(vmx->vm, vcpu);
1319                 vatpic_intr_accepted(vmx->vm, vector);
1320
1321                 /*
1322                  * After we accepted the current ExtINT the PIC may
1323                  * have posted another one.  If that is the case, set
1324                  * the Interrupt Window Exiting execution control so
1325                  * we can inject that one too.
1326                  *
1327                  * Also, interrupt window exiting allows us to inject any
1328                  * pending APIC vector that was preempted by the ExtINT
1329                  * as soon as possible. This applies both for the software
1330                  * emulated vlapic and the hardware assisted virtual APIC.
1331                  */
1332                 vmx_set_int_window_exiting(vmx, vcpu);
1333         }
1334
1335         VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector);
1336
1337         return;
1338
1339 cantinject:
1340         /*
1341          * Set the Interrupt Window Exiting execution control so we can inject
1342          * the interrupt as soon as blocking condition goes away.
1343          */
1344         vmx_set_int_window_exiting(vmx, vcpu);
1345 }
1346
1347 /*
1348  * If the Virtual NMIs execution control is '1' then the logical processor
1349  * tracks virtual-NMI blocking in the Guest Interruptibility-state field of
1350  * the VMCS. An IRET instruction in VMX non-root operation will remove any
1351  * virtual-NMI blocking.
1352  *
1353  * This unblocking occurs even if the IRET causes a fault. In this case the
1354  * hypervisor needs to restore virtual-NMI blocking before resuming the guest.
1355  */
1356 static void
1357 vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid)
1358 {
1359         uint32_t gi;
1360
1361         VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking");
1362         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1363         gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1364         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1365 }
1366
1367 static void
1368 vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid)
1369 {
1370         uint32_t gi;
1371
1372         VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking");
1373         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1374         gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
1375         vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
1376 }
1377
1378 static void
1379 vmx_assert_nmi_blocking(struct vmx *vmx, int vcpuid)
1380 {
1381         uint32_t gi;
1382
1383         gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
1384         KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
1385             ("NMI blocking is not in effect %#x", gi));
1386 }
1387
1388 static int
1389 vmx_emulate_xsetbv(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
1390 {
1391         struct vmxctx *vmxctx;
1392         uint64_t xcrval;
1393         const struct xsave_limits *limits;
1394
1395         vmxctx = &vmx->ctx[vcpu];
1396         limits = vmm_get_xsave_limits();
1397
1398         /*
1399          * Note that the processor raises a GP# fault on its own if
1400          * xsetbv is executed for CPL != 0, so we do not have to
1401          * emulate that fault here.
1402          */
1403
1404         /* Only xcr0 is supported. */
1405         if (vmxctx->guest_rcx != 0) {
1406                 vm_inject_gp(vmx->vm, vcpu);
1407                 return (HANDLED);
1408         }
1409
1410         /* We only handle xcr0 if both the host and guest have XSAVE enabled. */
1411         if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
1412                 vm_inject_ud(vmx->vm, vcpu);
1413                 return (HANDLED);
1414         }
1415
1416         xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
1417         if ((xcrval & ~limits->xcr0_allowed) != 0) {
1418                 vm_inject_gp(vmx->vm, vcpu);
1419                 return (HANDLED);
1420         }
1421
1422         if (!(xcrval & XFEATURE_ENABLED_X87)) {
1423                 vm_inject_gp(vmx->vm, vcpu);
1424                 return (HANDLED);
1425         }
1426
1427         /* AVX (YMM_Hi128) requires SSE. */
1428         if (xcrval & XFEATURE_ENABLED_AVX &&
1429             (xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
1430                 vm_inject_gp(vmx->vm, vcpu);
1431                 return (HANDLED);
1432         }
1433
1434         /*
1435          * AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
1436          * ZMM_Hi256, and Hi16_ZMM.
1437          */
1438         if (xcrval & XFEATURE_AVX512 &&
1439             (xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
1440             (XFEATURE_AVX512 | XFEATURE_AVX)) {
1441                 vm_inject_gp(vmx->vm, vcpu);
1442                 return (HANDLED);
1443         }
1444
1445         /*
1446          * Intel MPX requires both bound register state flags to be
1447          * set.
1448          */
1449         if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
1450             ((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
1451                 vm_inject_gp(vmx->vm, vcpu);
1452                 return (HANDLED);
1453         }
1454
1455         /*
1456          * This runs "inside" vmrun() with the guest's FPU state, so
1457          * modifying xcr0 directly modifies the guest's xcr0, not the
1458          * host's.
1459          */
1460         load_xcr(0, xcrval);
1461         return (HANDLED);
1462 }
1463
1464 static uint64_t
1465 vmx_get_guest_reg(struct vmx *vmx, int vcpu, int ident)
1466 {
1467         const struct vmxctx *vmxctx;
1468
1469         vmxctx = &vmx->ctx[vcpu];
1470
1471         switch (ident) {
1472         case 0:
1473                 return (vmxctx->guest_rax);
1474         case 1:
1475                 return (vmxctx->guest_rcx);
1476         case 2:
1477                 return (vmxctx->guest_rdx);
1478         case 3:
1479                 return (vmxctx->guest_rbx);
1480         case 4:
1481                 return (vmcs_read(VMCS_GUEST_RSP));
1482         case 5:
1483                 return (vmxctx->guest_rbp);
1484         case 6:
1485                 return (vmxctx->guest_rsi);
1486         case 7:
1487                 return (vmxctx->guest_rdi);
1488         case 8:
1489                 return (vmxctx->guest_r8);
1490         case 9:
1491                 return (vmxctx->guest_r9);
1492         case 10:
1493                 return (vmxctx->guest_r10);
1494         case 11:
1495                 return (vmxctx->guest_r11);
1496         case 12:
1497                 return (vmxctx->guest_r12);
1498         case 13:
1499                 return (vmxctx->guest_r13);
1500         case 14:
1501                 return (vmxctx->guest_r14);
1502         case 15:
1503                 return (vmxctx->guest_r15);
1504         default:
1505                 panic("invalid vmx register %d", ident);
1506         }
1507 }
1508
1509 static void
1510 vmx_set_guest_reg(struct vmx *vmx, int vcpu, int ident, uint64_t regval)
1511 {
1512         struct vmxctx *vmxctx;
1513
1514         vmxctx = &vmx->ctx[vcpu];
1515
1516         switch (ident) {
1517         case 0:
1518                 vmxctx->guest_rax = regval;
1519                 break;
1520         case 1:
1521                 vmxctx->guest_rcx = regval;
1522                 break;
1523         case 2:
1524                 vmxctx->guest_rdx = regval;
1525                 break;
1526         case 3:
1527                 vmxctx->guest_rbx = regval;
1528                 break;
1529         case 4:
1530                 vmcs_write(VMCS_GUEST_RSP, regval);
1531                 break;
1532         case 5:
1533                 vmxctx->guest_rbp = regval;
1534                 break;
1535         case 6:
1536                 vmxctx->guest_rsi = regval;
1537                 break;
1538         case 7:
1539                 vmxctx->guest_rdi = regval;
1540                 break;
1541         case 8:
1542                 vmxctx->guest_r8 = regval;
1543                 break;
1544         case 9:
1545                 vmxctx->guest_r9 = regval;
1546                 break;
1547         case 10:
1548                 vmxctx->guest_r10 = regval;
1549                 break;
1550         case 11:
1551                 vmxctx->guest_r11 = regval;
1552                 break;
1553         case 12:
1554                 vmxctx->guest_r12 = regval;
1555                 break;
1556         case 13:
1557                 vmxctx->guest_r13 = regval;
1558                 break;
1559         case 14:
1560                 vmxctx->guest_r14 = regval;
1561                 break;
1562         case 15:
1563                 vmxctx->guest_r15 = regval;
1564                 break;
1565         default:
1566                 panic("invalid vmx register %d", ident);
1567         }
1568 }
1569
1570 static int
1571 vmx_emulate_cr0_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1572 {
1573         uint64_t crval, regval;
1574
1575         /* We only handle mov to %cr0 at this time */
1576         if ((exitqual & 0xf0) != 0x00)
1577                 return (UNHANDLED);
1578
1579         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1580
1581         vmcs_write(VMCS_CR0_SHADOW, regval);
1582
1583         crval = regval | cr0_ones_mask;
1584         crval &= ~cr0_zeros_mask;
1585         vmcs_write(VMCS_GUEST_CR0, crval);
1586
1587         if (regval & CR0_PG) {
1588                 uint64_t efer, entry_ctls;
1589
1590                 /*
1591                  * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
1592                  * the "IA-32e mode guest" bit in VM-entry control must be
1593                  * equal.
1594                  */
1595                 efer = vmcs_read(VMCS_GUEST_IA32_EFER);
1596                 if (efer & EFER_LME) {
1597                         efer |= EFER_LMA;
1598                         vmcs_write(VMCS_GUEST_IA32_EFER, efer);
1599                         entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
1600                         entry_ctls |= VM_ENTRY_GUEST_LMA;
1601                         vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
1602                 }
1603         }
1604
1605         return (HANDLED);
1606 }
1607
1608 static int
1609 vmx_emulate_cr4_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1610 {
1611         uint64_t crval, regval;
1612
1613         /* We only handle mov to %cr4 at this time */
1614         if ((exitqual & 0xf0) != 0x00)
1615                 return (UNHANDLED);
1616
1617         regval = vmx_get_guest_reg(vmx, vcpu, (exitqual >> 8) & 0xf);
1618
1619         vmcs_write(VMCS_CR4_SHADOW, regval);
1620
1621         crval = regval | cr4_ones_mask;
1622         crval &= ~cr4_zeros_mask;
1623         vmcs_write(VMCS_GUEST_CR4, crval);
1624
1625         return (HANDLED);
1626 }
1627
1628 static int
1629 vmx_emulate_cr8_access(struct vmx *vmx, int vcpu, uint64_t exitqual)
1630 {
1631         struct vlapic *vlapic;
1632         uint64_t cr8;
1633         int regnum;
1634
1635         /* We only handle mov %cr8 to/from a register at this time. */
1636         if ((exitqual & 0xe0) != 0x00) {
1637                 return (UNHANDLED);
1638         }
1639
1640         vlapic = vm_lapic(vmx->vm, vcpu);
1641         regnum = (exitqual >> 8) & 0xf;
1642         if (exitqual & 0x10) {
1643                 cr8 = vlapic_get_cr8(vlapic);
1644                 vmx_set_guest_reg(vmx, vcpu, regnum, cr8);
1645         } else {
1646                 cr8 = vmx_get_guest_reg(vmx, vcpu, regnum);
1647                 vlapic_set_cr8(vlapic, cr8);
1648         }
1649
1650         return (HANDLED);
1651 }
1652
1653 /*
1654  * From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
1655  */
1656 static int
1657 vmx_cpl(void)
1658 {
1659         uint32_t ssar;
1660
1661         ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
1662         return ((ssar >> 5) & 0x3);
1663 }
1664
1665 static enum vm_cpu_mode
1666 vmx_cpu_mode(void)
1667 {
1668         uint32_t csar;
1669
1670         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
1671                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1672                 if (csar & 0x2000)
1673                         return (CPU_MODE_64BIT);        /* CS.L = 1 */
1674                 else
1675                         return (CPU_MODE_COMPATIBILITY);
1676         } else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
1677                 return (CPU_MODE_PROTECTED);
1678         } else {
1679                 return (CPU_MODE_REAL);
1680         }
1681 }
1682
1683 static enum vm_paging_mode
1684 vmx_paging_mode(void)
1685 {
1686
1687         if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
1688                 return (PAGING_MODE_FLAT);
1689         if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE))
1690                 return (PAGING_MODE_32);
1691         if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME)
1692                 return (PAGING_MODE_64);
1693         else
1694                 return (PAGING_MODE_PAE);
1695 }
1696
1697 static uint64_t
1698 inout_str_index(struct vmx *vmx, int vcpuid, int in)
1699 {
1700         uint64_t val;
1701         int error;
1702         enum vm_reg_name reg;
1703
1704         reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
1705         error = vmx_getreg(vmx, vcpuid, reg, &val);
1706         KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
1707         return (val);
1708 }
1709
1710 static uint64_t
1711 inout_str_count(struct vmx *vmx, int vcpuid, int rep)
1712 {
1713         uint64_t val;
1714         int error;
1715
1716         if (rep) {
1717                 error = vmx_getreg(vmx, vcpuid, VM_REG_GUEST_RCX, &val);
1718                 KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
1719         } else {
1720                 val = 1;
1721         }
1722         return (val);
1723 }
1724
1725 static int
1726 inout_str_addrsize(uint32_t inst_info)
1727 {
1728         uint32_t size;
1729
1730         size = (inst_info >> 7) & 0x7;
1731         switch (size) {
1732         case 0:
1733                 return (2);     /* 16 bit */
1734         case 1:
1735                 return (4);     /* 32 bit */
1736         case 2:
1737                 return (8);     /* 64 bit */
1738         default:
1739                 panic("%s: invalid size encoding %d", __func__, size);
1740         }
1741 }
1742
1743 static void
1744 inout_str_seginfo(struct vmx *vmx, int vcpuid, uint32_t inst_info, int in,
1745     struct vm_inout_str *vis)
1746 {
1747         int error, s;
1748
1749         if (in) {
1750                 vis->seg_name = VM_REG_GUEST_ES;
1751         } else {
1752                 s = (inst_info >> 15) & 0x7;
1753                 vis->seg_name = vm_segment_name(s);
1754         }
1755
1756         error = vmx_getdesc(vmx, vcpuid, vis->seg_name, &vis->seg_desc);
1757         KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
1758 }
1759
1760 static void
1761 vmx_paging_info(struct vm_guest_paging *paging)
1762 {
1763         paging->cr3 = vmcs_guest_cr3();
1764         paging->cpl = vmx_cpl();
1765         paging->cpu_mode = vmx_cpu_mode();
1766         paging->paging_mode = vmx_paging_mode();
1767 }
1768
1769 static void
1770 vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
1771 {
1772         struct vm_guest_paging *paging;
1773         uint32_t csar;
1774         
1775         paging = &vmexit->u.inst_emul.paging;
1776
1777         vmexit->exitcode = VM_EXITCODE_INST_EMUL;
1778         vmexit->u.inst_emul.gpa = gpa;
1779         vmexit->u.inst_emul.gla = gla;
1780         vmx_paging_info(paging);
1781         switch (paging->cpu_mode) {
1782         case CPU_MODE_PROTECTED:
1783         case CPU_MODE_COMPATIBILITY:
1784                 csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
1785                 vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
1786                 break;
1787         default:
1788                 vmexit->u.inst_emul.cs_d = 0;
1789                 break;
1790         }
1791         vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
1792 }
1793
1794 static int
1795 ept_fault_type(uint64_t ept_qual)
1796 {
1797         int fault_type;
1798
1799         if (ept_qual & EPT_VIOLATION_DATA_WRITE)
1800                 fault_type = VM_PROT_WRITE;
1801         else if (ept_qual & EPT_VIOLATION_INST_FETCH)
1802                 fault_type = VM_PROT_EXECUTE;
1803         else
1804                 fault_type= VM_PROT_READ;
1805
1806         return (fault_type);
1807 }
1808
1809 static boolean_t
1810 ept_emulation_fault(uint64_t ept_qual)
1811 {
1812         int read, write;
1813
1814         /* EPT fault on an instruction fetch doesn't make sense here */
1815         if (ept_qual & EPT_VIOLATION_INST_FETCH)
1816                 return (FALSE);
1817
1818         /* EPT fault must be a read fault or a write fault */
1819         read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
1820         write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
1821         if ((read | write) == 0)
1822                 return (FALSE);
1823
1824         /*
1825          * The EPT violation must have been caused by accessing a
1826          * guest-physical address that is a translation of a guest-linear
1827          * address.
1828          */
1829         if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
1830             (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
1831                 return (FALSE);
1832         }
1833
1834         return (TRUE);
1835 }
1836
1837 static __inline int
1838 apic_access_virtualization(struct vmx *vmx, int vcpuid)
1839 {
1840         uint32_t proc_ctls2;
1841
1842         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1843         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
1844 }
1845
1846 static __inline int
1847 x2apic_virtualization(struct vmx *vmx, int vcpuid)
1848 {
1849         uint32_t proc_ctls2;
1850
1851         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
1852         return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
1853 }
1854
1855 static int
1856 vmx_handle_apic_write(struct vmx *vmx, int vcpuid, struct vlapic *vlapic,
1857     uint64_t qual)
1858 {
1859         int error, handled, offset;
1860         uint32_t *apic_regs, vector;
1861         bool retu;
1862
1863         handled = HANDLED;
1864         offset = APIC_WRITE_OFFSET(qual);
1865
1866         if (!apic_access_virtualization(vmx, vcpuid)) {
1867                 /*
1868                  * In general there should not be any APIC write VM-exits
1869                  * unless APIC-access virtualization is enabled.
1870                  *
1871                  * However self-IPI virtualization can legitimately trigger
1872                  * an APIC-write VM-exit so treat it specially.
1873                  */
1874                 if (x2apic_virtualization(vmx, vcpuid) &&
1875                     offset == APIC_OFFSET_SELF_IPI) {
1876                         apic_regs = (uint32_t *)(vlapic->apic_page);
1877                         vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
1878                         vlapic_self_ipi_handler(vlapic, vector);
1879                         return (HANDLED);
1880                 } else
1881                         return (UNHANDLED);
1882         }
1883
1884         switch (offset) {
1885         case APIC_OFFSET_ID:
1886                 vlapic_id_write_handler(vlapic);
1887                 break;
1888         case APIC_OFFSET_LDR:
1889                 vlapic_ldr_write_handler(vlapic);
1890                 break;
1891         case APIC_OFFSET_DFR:
1892                 vlapic_dfr_write_handler(vlapic);
1893                 break;
1894         case APIC_OFFSET_SVR:
1895                 vlapic_svr_write_handler(vlapic);
1896                 break;
1897         case APIC_OFFSET_ESR:
1898                 vlapic_esr_write_handler(vlapic);
1899                 break;
1900         case APIC_OFFSET_ICR_LOW:
1901                 retu = false;
1902                 error = vlapic_icrlo_write_handler(vlapic, &retu);
1903                 if (error != 0 || retu)
1904                         handled = UNHANDLED;
1905                 break;
1906         case APIC_OFFSET_CMCI_LVT:
1907         case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
1908                 vlapic_lvt_write_handler(vlapic, offset);
1909                 break;
1910         case APIC_OFFSET_TIMER_ICR:
1911                 vlapic_icrtmr_write_handler(vlapic);
1912                 break;
1913         case APIC_OFFSET_TIMER_DCR:
1914                 vlapic_dcr_write_handler(vlapic);
1915                 break;
1916         default:
1917                 handled = UNHANDLED;
1918                 break;
1919         }
1920         return (handled);
1921 }
1922
1923 static bool
1924 apic_access_fault(struct vmx *vmx, int vcpuid, uint64_t gpa)
1925 {
1926
1927         if (apic_access_virtualization(vmx, vcpuid) &&
1928             (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
1929                 return (true);
1930         else
1931                 return (false);
1932 }
1933
1934 static int
1935 vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
1936 {
1937         uint64_t qual;
1938         int access_type, offset, allowed;
1939
1940         if (!apic_access_virtualization(vmx, vcpuid))
1941                 return (UNHANDLED);
1942
1943         qual = vmexit->u.vmx.exit_qualification;
1944         access_type = APIC_ACCESS_TYPE(qual);
1945         offset = APIC_ACCESS_OFFSET(qual);
1946
1947         allowed = 0;
1948         if (access_type == 0) {
1949                 /*
1950                  * Read data access to the following registers is expected.
1951                  */
1952                 switch (offset) {
1953                 case APIC_OFFSET_APR:
1954                 case APIC_OFFSET_PPR:
1955                 case APIC_OFFSET_RRR:
1956                 case APIC_OFFSET_CMCI_LVT:
1957                 case APIC_OFFSET_TIMER_CCR:
1958                         allowed = 1;
1959                         break;
1960                 default:
1961                         break;
1962                 }
1963         } else if (access_type == 1) {
1964                 /*
1965                  * Write data access to the following registers is expected.
1966                  */
1967                 switch (offset) {
1968                 case APIC_OFFSET_VER:
1969                 case APIC_OFFSET_APR:
1970                 case APIC_OFFSET_PPR:
1971                 case APIC_OFFSET_RRR:
1972                 case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
1973                 case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
1974                 case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
1975                 case APIC_OFFSET_CMCI_LVT:
1976                 case APIC_OFFSET_TIMER_CCR:
1977                         allowed = 1;
1978                         break;
1979                 default:
1980                         break;
1981                 }
1982         }
1983
1984         if (allowed) {
1985                 vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
1986                     VIE_INVALID_GLA);
1987         }
1988
1989         /*
1990          * Regardless of whether the APIC-access is allowed this handler
1991          * always returns UNHANDLED:
1992          * - if the access is allowed then it is handled by emulating the
1993          *   instruction that caused the VM-exit (outside the critical section)
1994          * - if the access is not allowed then it will be converted to an
1995          *   exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
1996          */
1997         return (UNHANDLED);
1998 }
1999
2000 static enum task_switch_reason
2001 vmx_task_switch_reason(uint64_t qual)
2002 {
2003         int reason;
2004
2005         reason = (qual >> 30) & 0x3;
2006         switch (reason) {
2007         case 0:
2008                 return (TSR_CALL);
2009         case 1:
2010                 return (TSR_IRET);
2011         case 2:
2012                 return (TSR_JMP);
2013         case 3:
2014                 return (TSR_IDT_GATE);
2015         default:
2016                 panic("%s: invalid reason %d", __func__, reason);
2017         }
2018 }
2019
2020 static int
2021 emulate_wrmsr(struct vmx *vmx, int vcpuid, u_int num, uint64_t val, bool *retu)
2022 {
2023         int error;
2024
2025         if (lapic_msr(num))
2026                 error = lapic_wrmsr(vmx->vm, vcpuid, num, val, retu);
2027         else
2028                 error = vmx_wrmsr(vmx, vcpuid, num, val, retu);
2029
2030         return (error);
2031 }
2032
2033 static int
2034 emulate_rdmsr(struct vmx *vmx, int vcpuid, u_int num, bool *retu)
2035 {
2036         struct vmxctx *vmxctx;
2037         uint64_t result;
2038         uint32_t eax, edx;
2039         int error;
2040
2041         if (lapic_msr(num))
2042                 error = lapic_rdmsr(vmx->vm, vcpuid, num, &result, retu);
2043         else
2044                 error = vmx_rdmsr(vmx, vcpuid, num, &result, retu);
2045
2046         if (error == 0) {
2047                 eax = result;
2048                 vmxctx = &vmx->ctx[vcpuid];
2049                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
2050                 KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
2051
2052                 edx = result >> 32;
2053                 error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
2054                 KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
2055         }
2056
2057         return (error);
2058 }
2059
2060 static int
2061 vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit)
2062 {
2063         int error, handled, in;
2064         struct vmxctx *vmxctx;
2065         struct vlapic *vlapic;
2066         struct vm_inout_str *vis;
2067         struct vm_task_switch *ts;
2068         struct vm_exception vmexc;
2069         uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
2070         uint32_t intr_type, intr_vec, reason;
2071         uint64_t exitintinfo, qual, gpa;
2072         bool retu;
2073
2074         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
2075         CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
2076
2077         handled = UNHANDLED;
2078         vmxctx = &vmx->ctx[vcpu];
2079
2080         qual = vmexit->u.vmx.exit_qualification;
2081         reason = vmexit->u.vmx.exit_reason;
2082         vmexit->exitcode = VM_EXITCODE_BOGUS;
2083
2084         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1);
2085
2086         /*
2087          * VM-entry failures during or after loading guest state.
2088          *
2089          * These VM-exits are uncommon but must be handled specially
2090          * as most VM-exit fields are not populated as usual.
2091          */
2092         if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
2093                 VCPU_CTR0(vmx->vm, vcpu, "Handling MCE during VM-entry");
2094                 __asm __volatile("int $18");
2095                 return (1);
2096         }
2097
2098         /*
2099          * VM exits that can be triggered during event delivery need to
2100          * be handled specially by re-injecting the event if the IDT
2101          * vectoring information field's valid bit is set.
2102          *
2103          * See "Information for VM Exits During Event Delivery" in Intel SDM
2104          * for details.
2105          */
2106         idtvec_info = vmcs_idt_vectoring_info();
2107         if (idtvec_info & VMCS_IDT_VEC_VALID) {
2108                 idtvec_info &= ~(1 << 12); /* clear undefined bit */
2109                 exitintinfo = idtvec_info;
2110                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2111                         idtvec_err = vmcs_idt_vectoring_err();
2112                         exitintinfo |= (uint64_t)idtvec_err << 32;
2113                 }
2114                 error = vm_exit_intinfo(vmx->vm, vcpu, exitintinfo);
2115                 KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
2116                     __func__, error));
2117
2118                 /*
2119                  * If 'virtual NMIs' are being used and the VM-exit
2120                  * happened while injecting an NMI during the previous
2121                  * VM-entry, then clear "blocking by NMI" in the
2122                  * Guest Interruptibility-State so the NMI can be
2123                  * reinjected on the subsequent VM-entry.
2124                  *
2125                  * However, if the NMI was being delivered through a task
2126                  * gate, then the new task must start execution with NMIs
2127                  * blocked so don't clear NMI blocking in this case.
2128                  */
2129                 intr_type = idtvec_info & VMCS_INTR_T_MASK;
2130                 if (intr_type == VMCS_INTR_T_NMI) {
2131                         if (reason != EXIT_REASON_TASK_SWITCH)
2132                                 vmx_clear_nmi_blocking(vmx, vcpu);
2133                         else
2134                                 vmx_assert_nmi_blocking(vmx, vcpu);
2135                 }
2136
2137                 /*
2138                  * Update VM-entry instruction length if the event being
2139                  * delivered was a software interrupt or software exception.
2140                  */
2141                 if (intr_type == VMCS_INTR_T_SWINTR ||
2142                     intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
2143                     intr_type == VMCS_INTR_T_SWEXCEPTION) {
2144                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2145                 }
2146         }
2147
2148         switch (reason) {
2149         case EXIT_REASON_TASK_SWITCH:
2150                 ts = &vmexit->u.task_switch;
2151                 ts->tsssel = qual & 0xffff;
2152                 ts->reason = vmx_task_switch_reason(qual);
2153                 ts->ext = 0;
2154                 ts->errcode_valid = 0;
2155                 vmx_paging_info(&ts->paging);
2156                 /*
2157                  * If the task switch was due to a CALL, JMP, IRET, software
2158                  * interrupt (INT n) or software exception (INT3, INTO),
2159                  * then the saved %rip references the instruction that caused
2160                  * the task switch. The instruction length field in the VMCS
2161                  * is valid in this case.
2162                  *
2163                  * In all other cases (e.g., NMI, hardware exception) the
2164                  * saved %rip is one that would have been saved in the old TSS
2165                  * had the task switch completed normally so the instruction
2166                  * length field is not needed in this case and is explicitly
2167                  * set to 0.
2168                  */
2169                 if (ts->reason == TSR_IDT_GATE) {
2170                         KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
2171                             ("invalid idtvec_info %#x for IDT task switch",
2172                             idtvec_info));
2173                         intr_type = idtvec_info & VMCS_INTR_T_MASK;
2174                         if (intr_type != VMCS_INTR_T_SWINTR &&
2175                             intr_type != VMCS_INTR_T_SWEXCEPTION &&
2176                             intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
2177                                 /* Task switch triggered by external event */
2178                                 ts->ext = 1;
2179                                 vmexit->inst_length = 0;
2180                                 if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
2181                                         ts->errcode_valid = 1;
2182                                         ts->errcode = vmcs_idt_vectoring_err();
2183                                 }
2184                         }
2185                 }
2186                 vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
2187                 VCPU_CTR4(vmx->vm, vcpu, "task switch reason %d, tss 0x%04x, "
2188                     "%s errcode 0x%016lx", ts->reason, ts->tsssel,
2189                     ts->ext ? "external" : "internal",
2190                     ((uint64_t)ts->errcode << 32) | ts->errcode_valid);
2191                 break;
2192         case EXIT_REASON_CR_ACCESS:
2193                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1);
2194                 switch (qual & 0xf) {
2195                 case 0:
2196                         handled = vmx_emulate_cr0_access(vmx, vcpu, qual);
2197                         break;
2198                 case 4:
2199                         handled = vmx_emulate_cr4_access(vmx, vcpu, qual);
2200                         break;
2201                 case 8:
2202                         handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
2203                         break;
2204                 }
2205                 break;
2206         case EXIT_REASON_RDMSR:
2207                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1);
2208                 retu = false;
2209                 ecx = vmxctx->guest_rcx;
2210                 VCPU_CTR1(vmx->vm, vcpu, "rdmsr 0x%08x", ecx);
2211                 error = emulate_rdmsr(vmx, vcpu, ecx, &retu);
2212                 if (error) {
2213                         vmexit->exitcode = VM_EXITCODE_RDMSR;
2214                         vmexit->u.msr.code = ecx;
2215                 } else if (!retu) {
2216                         handled = HANDLED;
2217                 } else {
2218                         /* Return to userspace with a valid exitcode */
2219                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2220                             ("emulate_rdmsr retu with bogus exitcode"));
2221                 }
2222                 break;
2223         case EXIT_REASON_WRMSR:
2224                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1);
2225                 retu = false;
2226                 eax = vmxctx->guest_rax;
2227                 ecx = vmxctx->guest_rcx;
2228                 edx = vmxctx->guest_rdx;
2229                 VCPU_CTR2(vmx->vm, vcpu, "wrmsr 0x%08x value 0x%016lx",
2230                     ecx, (uint64_t)edx << 32 | eax);
2231                 error = emulate_wrmsr(vmx, vcpu, ecx,
2232                     (uint64_t)edx << 32 | eax, &retu);
2233                 if (error) {
2234                         vmexit->exitcode = VM_EXITCODE_WRMSR;
2235                         vmexit->u.msr.code = ecx;
2236                         vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
2237                 } else if (!retu) {
2238                         handled = HANDLED;
2239                 } else {
2240                         /* Return to userspace with a valid exitcode */
2241                         KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
2242                             ("emulate_wrmsr retu with bogus exitcode"));
2243                 }
2244                 break;
2245         case EXIT_REASON_HLT:
2246                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1);
2247                 vmexit->exitcode = VM_EXITCODE_HLT;
2248                 vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2249                 break;
2250         case EXIT_REASON_MTF:
2251                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1);
2252                 vmexit->exitcode = VM_EXITCODE_MTRAP;
2253                 break;
2254         case EXIT_REASON_PAUSE:
2255                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1);
2256                 vmexit->exitcode = VM_EXITCODE_PAUSE;
2257                 break;
2258         case EXIT_REASON_INTR_WINDOW:
2259                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1);
2260                 vmx_clear_int_window_exiting(vmx, vcpu);
2261                 return (1);
2262         case EXIT_REASON_EXT_INTR:
2263                 /*
2264                  * External interrupts serve only to cause VM exits and allow
2265                  * the host interrupt handler to run.
2266                  *
2267                  * If this external interrupt triggers a virtual interrupt
2268                  * to a VM, then that state will be recorded by the
2269                  * host interrupt handler in the VM's softc. We will inject
2270                  * this virtual interrupt during the subsequent VM enter.
2271                  */
2272                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2273
2274                 /*
2275                  * XXX: Ignore this exit if VMCS_INTR_VALID is not set.
2276                  * This appears to be a bug in VMware Fusion?
2277                  */
2278                 if (!(intr_info & VMCS_INTR_VALID))
2279                         return (1);
2280                 KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
2281                     (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
2282                     ("VM exit interruption info invalid: %#x", intr_info));
2283                 vmx_trigger_hostintr(intr_info & 0xff);
2284
2285                 /*
2286                  * This is special. We want to treat this as an 'handled'
2287                  * VM-exit but not increment the instruction pointer.
2288                  */
2289                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1);
2290                 return (1);
2291         case EXIT_REASON_NMI_WINDOW:
2292                 /* Exit to allow the pending virtual NMI to be injected */
2293                 if (vm_nmi_pending(vmx->vm, vcpu))
2294                         vmx_inject_nmi(vmx, vcpu);
2295                 vmx_clear_nmi_window_exiting(vmx, vcpu);
2296                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1);
2297                 return (1);
2298         case EXIT_REASON_INOUT:
2299                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1);
2300                 vmexit->exitcode = VM_EXITCODE_INOUT;
2301                 vmexit->u.inout.bytes = (qual & 0x7) + 1;
2302                 vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
2303                 vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
2304                 vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
2305                 vmexit->u.inout.port = (uint16_t)(qual >> 16);
2306                 vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
2307                 if (vmexit->u.inout.string) {
2308                         inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
2309                         vmexit->exitcode = VM_EXITCODE_INOUT_STR;
2310                         vis = &vmexit->u.inout_str;
2311                         vmx_paging_info(&vis->paging);
2312                         vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
2313                         vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
2314                         vis->index = inout_str_index(vmx, vcpu, in);
2315                         vis->count = inout_str_count(vmx, vcpu, vis->inout.rep);
2316                         vis->addrsize = inout_str_addrsize(inst_info);
2317                         inout_str_seginfo(vmx, vcpu, inst_info, in, vis);
2318                 }
2319                 break;
2320         case EXIT_REASON_CPUID:
2321                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1);
2322                 handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx);
2323                 break;
2324         case EXIT_REASON_EXCEPTION:
2325                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1);
2326                 intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2327                 KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2328                     ("VM exit interruption info invalid: %#x", intr_info));
2329
2330                 intr_vec = intr_info & 0xff;
2331                 intr_type = intr_info & VMCS_INTR_T_MASK;
2332
2333                 /*
2334                  * If Virtual NMIs control is 1 and the VM-exit is due to a
2335                  * fault encountered during the execution of IRET then we must
2336                  * restore the state of "virtual-NMI blocking" before resuming
2337                  * the guest.
2338                  *
2339                  * See "Resuming Guest Software after Handling an Exception".
2340                  * See "Information for VM Exits Due to Vectored Events".
2341                  */
2342                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2343                     (intr_vec != IDT_DF) &&
2344                     (intr_info & EXIT_QUAL_NMIUDTI) != 0)
2345                         vmx_restore_nmi_blocking(vmx, vcpu);
2346
2347                 /*
2348                  * The NMI has already been handled in vmx_exit_handle_nmi().
2349                  */
2350                 if (intr_type == VMCS_INTR_T_NMI)
2351                         return (1);
2352
2353                 /*
2354                  * Call the machine check handler by hand. Also don't reflect
2355                  * the machine check back into the guest.
2356                  */
2357                 if (intr_vec == IDT_MC) {
2358                         VCPU_CTR0(vmx->vm, vcpu, "Vectoring to MCE handler");
2359                         __asm __volatile("int $18");
2360                         return (1);
2361                 }
2362
2363                 if (intr_vec == IDT_PF) {
2364                         error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
2365                         KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
2366                             __func__, error));
2367                 }
2368
2369                 /*
2370                  * Software exceptions exhibit trap-like behavior. This in
2371                  * turn requires populating the VM-entry instruction length
2372                  * so that the %rip in the trap frame is past the INT3/INTO
2373                  * instruction.
2374                  */
2375                 if (intr_type == VMCS_INTR_T_SWEXCEPTION)
2376                         vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
2377
2378                 /* Reflect all other exceptions back into the guest */
2379                 bzero(&vmexc, sizeof(struct vm_exception));
2380                 vmexc.vector = intr_vec;
2381                 if (intr_info & VMCS_INTR_DEL_ERRCODE) {
2382                         vmexc.error_code_valid = 1;
2383                         vmexc.error_code = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
2384                 }
2385                 VCPU_CTR2(vmx->vm, vcpu, "Reflecting exception %d/%#x into "
2386                     "the guest", vmexc.vector, vmexc.error_code);
2387                 error = vm_inject_exception(vmx->vm, vcpu, &vmexc);
2388                 KASSERT(error == 0, ("%s: vm_inject_exception error %d",
2389                     __func__, error));
2390                 return (1);
2391
2392         case EXIT_REASON_EPT_FAULT:
2393                 /*
2394                  * If 'gpa' lies within the address space allocated to
2395                  * memory then this must be a nested page fault otherwise
2396                  * this must be an instruction that accesses MMIO space.
2397                  */
2398                 gpa = vmcs_gpa();
2399                 if (vm_mem_allocated(vmx->vm, gpa) ||
2400                     apic_access_fault(vmx, vcpu, gpa)) {
2401                         vmexit->exitcode = VM_EXITCODE_PAGING;
2402                         vmexit->u.paging.gpa = gpa;
2403                         vmexit->u.paging.fault_type = ept_fault_type(qual);
2404                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NESTED_FAULT, 1);
2405                 } else if (ept_emulation_fault(qual)) {
2406                         vmexit_inst_emul(vmexit, gpa, vmcs_gla());
2407                         vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INST_EMUL, 1);
2408                 }
2409                 /*
2410                  * If Virtual NMIs control is 1 and the VM-exit is due to an
2411                  * EPT fault during the execution of IRET then we must restore
2412                  * the state of "virtual-NMI blocking" before resuming.
2413                  *
2414                  * See description of "NMI unblocking due to IRET" in
2415                  * "Exit Qualification for EPT Violations".
2416                  */
2417                 if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
2418                     (qual & EXIT_QUAL_NMIUDTI) != 0)
2419                         vmx_restore_nmi_blocking(vmx, vcpu);
2420                 break;
2421         case EXIT_REASON_VIRTUALIZED_EOI:
2422                 vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
2423                 vmexit->u.ioapic_eoi.vector = qual & 0xFF;
2424                 vmexit->inst_length = 0;        /* trap-like */
2425                 break;
2426         case EXIT_REASON_APIC_ACCESS:
2427                 handled = vmx_handle_apic_access(vmx, vcpu, vmexit);
2428                 break;
2429         case EXIT_REASON_APIC_WRITE:
2430                 /*
2431                  * APIC-write VM exit is trap-like so the %rip is already
2432                  * pointing to the next instruction.
2433                  */
2434                 vmexit->inst_length = 0;
2435                 vlapic = vm_lapic(vmx->vm, vcpu);
2436                 handled = vmx_handle_apic_write(vmx, vcpu, vlapic, qual);
2437                 break;
2438         case EXIT_REASON_XSETBV:
2439                 handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
2440                 break;
2441         case EXIT_REASON_MONITOR:
2442                 vmexit->exitcode = VM_EXITCODE_MONITOR;
2443                 break;
2444         case EXIT_REASON_MWAIT:
2445                 vmexit->exitcode = VM_EXITCODE_MWAIT;
2446                 break;
2447         default:
2448                 vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1);
2449                 break;
2450         }
2451
2452         if (handled) {
2453                 /*
2454                  * It is possible that control is returned to userland
2455                  * even though we were able to handle the VM exit in the
2456                  * kernel.
2457                  *
2458                  * In such a case we want to make sure that the userland
2459                  * restarts guest execution at the instruction *after*
2460                  * the one we just processed. Therefore we update the
2461                  * guest rip in the VMCS and in 'vmexit'.
2462                  */
2463                 vmexit->rip += vmexit->inst_length;
2464                 vmexit->inst_length = 0;
2465                 vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
2466         } else {
2467                 if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
2468                         /*
2469                          * If this VM exit was not claimed by anybody then
2470                          * treat it as a generic VMX exit.
2471                          */
2472                         vmexit->exitcode = VM_EXITCODE_VMX;
2473                         vmexit->u.vmx.status = VM_SUCCESS;
2474                         vmexit->u.vmx.inst_type = 0;
2475                         vmexit->u.vmx.inst_error = 0;
2476                 } else {
2477                         /*
2478                          * The exitcode and collateral have been populated.
2479                          * The VM exit will be processed further in userland.
2480                          */
2481                 }
2482         }
2483         return (handled);
2484 }
2485
2486 static __inline void
2487 vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
2488 {
2489
2490         KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
2491             ("vmx_exit_inst_error: invalid inst_fail_status %d",
2492             vmxctx->inst_fail_status));
2493
2494         vmexit->inst_length = 0;
2495         vmexit->exitcode = VM_EXITCODE_VMX;
2496         vmexit->u.vmx.status = vmxctx->inst_fail_status;
2497         vmexit->u.vmx.inst_error = vmcs_instruction_error();
2498         vmexit->u.vmx.exit_reason = ~0;
2499         vmexit->u.vmx.exit_qualification = ~0;
2500
2501         switch (rc) {
2502         case VMX_VMRESUME_ERROR:
2503         case VMX_VMLAUNCH_ERROR:
2504         case VMX_INVEPT_ERROR:
2505                 vmexit->u.vmx.inst_type = rc;
2506                 break;
2507         default:
2508                 panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
2509         }
2510 }
2511
2512 /*
2513  * If the NMI-exiting VM execution control is set to '1' then an NMI in
2514  * non-root operation causes a VM-exit. NMI blocking is in effect so it is
2515  * sufficient to simply vector to the NMI handler via a software interrupt.
2516  * However, this must be done before maskable interrupts are enabled
2517  * otherwise the "iret" issued by an interrupt handler will incorrectly
2518  * clear NMI blocking.
2519  */
2520 static __inline void
2521 vmx_exit_handle_nmi(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit)
2522 {
2523         uint32_t intr_info;
2524
2525         KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
2526
2527         if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
2528                 return;
2529
2530         intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
2531         KASSERT((intr_info & VMCS_INTR_VALID) != 0,
2532             ("VM exit interruption info invalid: %#x", intr_info));
2533
2534         if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
2535                 KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
2536                     "to NMI has invalid vector: %#x", intr_info));
2537                 VCPU_CTR0(vmx->vm, vcpuid, "Vectoring to NMI handler");
2538                 __asm __volatile("int $2");
2539         }
2540 }
2541
2542 static int
2543 vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap,
2544     void *rendezvous_cookie, void *suspend_cookie)
2545 {
2546         int rc, handled, launched;
2547         struct vmx *vmx;
2548         struct vm *vm;
2549         struct vmxctx *vmxctx;
2550         struct vmcs *vmcs;
2551         struct vm_exit *vmexit;
2552         struct vlapic *vlapic;
2553         uint64_t rip;
2554         uint32_t exit_reason;
2555
2556         vmx = arg;
2557         vm = vmx->vm;
2558         vmcs = &vmx->vmcs[vcpu];
2559         vmxctx = &vmx->ctx[vcpu];
2560         vlapic = vm_lapic(vm, vcpu);
2561         vmexit = vm_exitinfo(vm, vcpu);
2562         launched = 0;
2563
2564         KASSERT(vmxctx->pmap == pmap,
2565             ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
2566
2567         vmx_msr_guest_enter(vmx, vcpu);
2568
2569         VMPTRLD(vmcs);
2570
2571         /*
2572          * XXX
2573          * We do this every time because we may setup the virtual machine
2574          * from a different process than the one that actually runs it.
2575          *
2576          * If the life of a virtual machine was spent entirely in the context
2577          * of a single process we could do this once in vmx_vminit().
2578          */
2579         vmcs_write(VMCS_HOST_CR3, rcr3());
2580
2581         vmcs_write(VMCS_GUEST_RIP, startrip);
2582         vmx_set_pcpu_defaults(vmx, vcpu, pmap);
2583         do {
2584                 handled = UNHANDLED;
2585
2586                 /*
2587                  * Interrupts are disabled from this point on until the
2588                  * guest starts executing. This is done for the following
2589                  * reasons:
2590                  *
2591                  * If an AST is asserted on this thread after the check below,
2592                  * then the IPI_AST notification will not be lost, because it
2593                  * will cause a VM exit due to external interrupt as soon as
2594                  * the guest state is loaded.
2595                  *
2596                  * A posted interrupt after 'vmx_inject_interrupts()' will
2597                  * not be "lost" because it will be held pending in the host
2598                  * APIC because interrupts are disabled. The pending interrupt
2599                  * will be recognized as soon as the guest state is loaded.
2600                  *
2601                  * The same reasoning applies to the IPI generated by
2602                  * pmap_invalidate_ept().
2603                  */
2604                 disable_intr();
2605                 vmx_inject_interrupts(vmx, vcpu, vlapic);
2606
2607                 /*
2608                  * Check for vcpu suspension after injecting events because
2609                  * vmx_inject_interrupts() can suspend the vcpu due to a
2610                  * triple fault.
2611                  */
2612                 if (vcpu_suspended(suspend_cookie)) {
2613                         enable_intr();
2614                         vm_exit_suspended(vmx->vm, vcpu, vmcs_guest_rip());
2615                         break;
2616                 }
2617
2618                 if (vcpu_rendezvous_pending(rendezvous_cookie)) {
2619                         enable_intr();
2620                         vm_exit_rendezvous(vmx->vm, vcpu, vmcs_guest_rip());
2621                         break;
2622                 }
2623
2624                 if (vcpu_should_yield(vm, vcpu)) {
2625                         enable_intr();
2626                         vm_exit_astpending(vmx->vm, vcpu, vmcs_guest_rip());
2627                         vmx_astpending_trace(vmx, vcpu, vmexit->rip);
2628                         handled = HANDLED;
2629                         break;
2630                 }
2631
2632                 vmx_run_trace(vmx, vcpu);
2633                 rc = vmx_enter_guest(vmxctx, vmx, launched);
2634
2635                 /* Collect some information for VM exit processing */
2636                 vmexit->rip = rip = vmcs_guest_rip();
2637                 vmexit->inst_length = vmexit_instruction_length();
2638                 vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
2639                 vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
2640
2641                 if (rc == VMX_GUEST_VMEXIT) {
2642                         vmx_exit_handle_nmi(vmx, vcpu, vmexit);
2643                         enable_intr();
2644                         handled = vmx_exit_process(vmx, vcpu, vmexit);
2645                 } else {
2646                         enable_intr();
2647                         vmx_exit_inst_error(vmxctx, rc, vmexit);
2648                 }
2649                 launched = 1;
2650                 vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled);
2651         } while (handled);
2652
2653         /*
2654          * If a VM exit has been handled then the exitcode must be BOGUS
2655          * If a VM exit is not handled then the exitcode must not be BOGUS
2656          */
2657         if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
2658             (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
2659                 panic("Mismatch between handled (%d) and exitcode (%d)",
2660                       handled, vmexit->exitcode);
2661         }
2662
2663         if (!handled)
2664                 vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1);
2665
2666         VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d",
2667             vmexit->exitcode);
2668
2669         VMCLEAR(vmcs);
2670         vmx_msr_guest_exit(vmx, vcpu);
2671
2672         return (0);
2673 }
2674
2675 static void
2676 vmx_vmcleanup(void *arg)
2677 {
2678         int i;
2679         struct vmx *vmx = arg;
2680
2681         if (apic_access_virtualization(vmx, 0))
2682                 vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
2683
2684         for (i = 0; i < VM_MAXCPU; i++)
2685                 vpid_free(vmx->state[i].vpid);
2686
2687         free(vmx, M_VMX);
2688
2689         return;
2690 }
2691
2692 static register_t *
2693 vmxctx_regptr(struct vmxctx *vmxctx, int reg)
2694 {
2695
2696         switch (reg) {
2697         case VM_REG_GUEST_RAX:
2698                 return (&vmxctx->guest_rax);
2699         case VM_REG_GUEST_RBX:
2700                 return (&vmxctx->guest_rbx);
2701         case VM_REG_GUEST_RCX:
2702                 return (&vmxctx->guest_rcx);
2703         case VM_REG_GUEST_RDX:
2704                 return (&vmxctx->guest_rdx);
2705         case VM_REG_GUEST_RSI:
2706                 return (&vmxctx->guest_rsi);
2707         case VM_REG_GUEST_RDI:
2708                 return (&vmxctx->guest_rdi);
2709         case VM_REG_GUEST_RBP:
2710                 return (&vmxctx->guest_rbp);
2711         case VM_REG_GUEST_R8:
2712                 return (&vmxctx->guest_r8);
2713         case VM_REG_GUEST_R9:
2714                 return (&vmxctx->guest_r9);
2715         case VM_REG_GUEST_R10:
2716                 return (&vmxctx->guest_r10);
2717         case VM_REG_GUEST_R11:
2718                 return (&vmxctx->guest_r11);
2719         case VM_REG_GUEST_R12:
2720                 return (&vmxctx->guest_r12);
2721         case VM_REG_GUEST_R13:
2722                 return (&vmxctx->guest_r13);
2723         case VM_REG_GUEST_R14:
2724                 return (&vmxctx->guest_r14);
2725         case VM_REG_GUEST_R15:
2726                 return (&vmxctx->guest_r15);
2727         case VM_REG_GUEST_CR2:
2728                 return (&vmxctx->guest_cr2);
2729         default:
2730                 break;
2731         }
2732         return (NULL);
2733 }
2734
2735 static int
2736 vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
2737 {
2738         register_t *regp;
2739
2740         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2741                 *retval = *regp;
2742                 return (0);
2743         } else
2744                 return (EINVAL);
2745 }
2746
2747 static int
2748 vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
2749 {
2750         register_t *regp;
2751
2752         if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
2753                 *regp = val;
2754                 return (0);
2755         } else
2756                 return (EINVAL);
2757 }
2758
2759 static int
2760 vmx_get_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t *retval)
2761 {
2762         uint64_t gi;
2763         int error;
2764
2765         error = vmcs_getreg(&vmx->vmcs[vcpu], running, 
2766             VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
2767         *retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
2768         return (error);
2769 }
2770
2771 static int
2772 vmx_modify_intr_shadow(struct vmx *vmx, int vcpu, int running, uint64_t val)
2773 {
2774         struct vmcs *vmcs;
2775         uint64_t gi;
2776         int error, ident;
2777
2778         /*
2779          * Forcing the vcpu into an interrupt shadow is not supported.
2780          */
2781         if (val) {
2782                 error = EINVAL;
2783                 goto done;
2784         }
2785
2786         vmcs = &vmx->vmcs[vcpu];
2787         ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
2788         error = vmcs_getreg(vmcs, running, ident, &gi);
2789         if (error == 0) {
2790                 gi &= ~HWINTR_BLOCKING;
2791                 error = vmcs_setreg(vmcs, running, ident, gi);
2792         }
2793 done:
2794         VCPU_CTR2(vmx->vm, vcpu, "Setting intr_shadow to %#lx %s", val,
2795             error ? "failed" : "succeeded");
2796         return (error);
2797 }
2798
2799 static int
2800 vmx_shadow_reg(int reg)
2801 {
2802         int shreg;
2803
2804         shreg = -1;
2805
2806         switch (reg) {
2807         case VM_REG_GUEST_CR0:
2808                 shreg = VMCS_CR0_SHADOW;
2809                 break;
2810         case VM_REG_GUEST_CR4:
2811                 shreg = VMCS_CR4_SHADOW;
2812                 break;
2813         default:
2814                 break;
2815         }
2816
2817         return (shreg);
2818 }
2819
2820 static int
2821 vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval)
2822 {
2823         int running, hostcpu;
2824         struct vmx *vmx = arg;
2825
2826         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2827         if (running && hostcpu != curcpu)
2828                 panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu);
2829
2830         if (reg == VM_REG_GUEST_INTR_SHADOW)
2831                 return (vmx_get_intr_shadow(vmx, vcpu, running, retval));
2832
2833         if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0)
2834                 return (0);
2835
2836         return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval));
2837 }
2838
2839 static int
2840 vmx_setreg(void *arg, int vcpu, int reg, uint64_t val)
2841 {
2842         int error, hostcpu, running, shadow;
2843         uint64_t ctls;
2844         pmap_t pmap;
2845         struct vmx *vmx = arg;
2846
2847         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2848         if (running && hostcpu != curcpu)
2849                 panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu);
2850
2851         if (reg == VM_REG_GUEST_INTR_SHADOW)
2852                 return (vmx_modify_intr_shadow(vmx, vcpu, running, val));
2853
2854         if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0)
2855                 return (0);
2856
2857         error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val);
2858
2859         if (error == 0) {
2860                 /*
2861                  * If the "load EFER" VM-entry control is 1 then the
2862                  * value of EFER.LMA must be identical to "IA-32e mode guest"
2863                  * bit in the VM-entry control.
2864                  */
2865                 if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
2866                     (reg == VM_REG_GUEST_EFER)) {
2867                         vmcs_getreg(&vmx->vmcs[vcpu], running,
2868                                     VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
2869                         if (val & EFER_LMA)
2870                                 ctls |= VM_ENTRY_GUEST_LMA;
2871                         else
2872                                 ctls &= ~VM_ENTRY_GUEST_LMA;
2873                         vmcs_setreg(&vmx->vmcs[vcpu], running,
2874                                     VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
2875                 }
2876
2877                 shadow = vmx_shadow_reg(reg);
2878                 if (shadow > 0) {
2879                         /*
2880                          * Store the unmodified value in the shadow
2881                          */                     
2882                         error = vmcs_setreg(&vmx->vmcs[vcpu], running,
2883                                     VMCS_IDENT(shadow), val);
2884                 }
2885
2886                 if (reg == VM_REG_GUEST_CR3) {
2887                         /*
2888                          * Invalidate the guest vcpu's TLB mappings to emulate
2889                          * the behavior of updating %cr3.
2890                          *
2891                          * XXX the processor retains global mappings when %cr3
2892                          * is updated but vmx_invvpid() does not.
2893                          */
2894                         pmap = vmx->ctx[vcpu].pmap;
2895                         vmx_invvpid(vmx, vcpu, pmap, running);
2896                 }
2897         }
2898
2899         return (error);
2900 }
2901
2902 static int
2903 vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2904 {
2905         int hostcpu, running;
2906         struct vmx *vmx = arg;
2907
2908         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2909         if (running && hostcpu != curcpu)
2910                 panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2911
2912         return (vmcs_getdesc(&vmx->vmcs[vcpu], running, reg, desc));
2913 }
2914
2915 static int
2916 vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc)
2917 {
2918         int hostcpu, running;
2919         struct vmx *vmx = arg;
2920
2921         running = vcpu_is_running(vmx->vm, vcpu, &hostcpu);
2922         if (running && hostcpu != curcpu)
2923                 panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm), vcpu);
2924
2925         return (vmcs_setdesc(&vmx->vmcs[vcpu], running, reg, desc));
2926 }
2927
2928 static int
2929 vmx_getcap(void *arg, int vcpu, int type, int *retval)
2930 {
2931         struct vmx *vmx = arg;
2932         int vcap;
2933         int ret;
2934
2935         ret = ENOENT;
2936
2937         vcap = vmx->cap[vcpu].set;
2938
2939         switch (type) {
2940         case VM_CAP_HALT_EXIT:
2941                 if (cap_halt_exit)
2942                         ret = 0;
2943                 break;
2944         case VM_CAP_PAUSE_EXIT:
2945                 if (cap_pause_exit)
2946                         ret = 0;
2947                 break;
2948         case VM_CAP_MTRAP_EXIT:
2949                 if (cap_monitor_trap)
2950                         ret = 0;
2951                 break;
2952         case VM_CAP_UNRESTRICTED_GUEST:
2953                 if (cap_unrestricted_guest)
2954                         ret = 0;
2955                 break;
2956         case VM_CAP_ENABLE_INVPCID:
2957                 if (cap_invpcid)
2958                         ret = 0;
2959                 break;
2960         default:
2961                 break;
2962         }
2963
2964         if (ret == 0)
2965                 *retval = (vcap & (1 << type)) ? 1 : 0;
2966
2967         return (ret);
2968 }
2969
2970 static int
2971 vmx_setcap(void *arg, int vcpu, int type, int val)
2972 {
2973         struct vmx *vmx = arg;
2974         struct vmcs *vmcs = &vmx->vmcs[vcpu];
2975         uint32_t baseval;
2976         uint32_t *pptr;
2977         int error;
2978         int flag;
2979         int reg;
2980         int retval;
2981
2982         retval = ENOENT;
2983         pptr = NULL;
2984
2985         switch (type) {
2986         case VM_CAP_HALT_EXIT:
2987                 if (cap_halt_exit) {
2988                         retval = 0;
2989                         pptr = &vmx->cap[vcpu].proc_ctls;
2990                         baseval = *pptr;
2991                         flag = PROCBASED_HLT_EXITING;
2992                         reg = VMCS_PRI_PROC_BASED_CTLS;
2993                 }
2994                 break;
2995         case VM_CAP_MTRAP_EXIT:
2996                 if (cap_monitor_trap) {
2997                         retval = 0;
2998                         pptr = &vmx->cap[vcpu].proc_ctls;
2999                         baseval = *pptr;
3000                         flag = PROCBASED_MTF;
3001                         reg = VMCS_PRI_PROC_BASED_CTLS;
3002                 }
3003                 break;
3004         case VM_CAP_PAUSE_EXIT:
3005                 if (cap_pause_exit) {
3006                         retval = 0;
3007                         pptr = &vmx->cap[vcpu].proc_ctls;
3008                         baseval = *pptr;
3009                         flag = PROCBASED_PAUSE_EXITING;
3010                         reg = VMCS_PRI_PROC_BASED_CTLS;
3011                 }
3012                 break;
3013         case VM_CAP_UNRESTRICTED_GUEST:
3014                 if (cap_unrestricted_guest) {
3015                         retval = 0;
3016                         pptr = &vmx->cap[vcpu].proc_ctls2;
3017                         baseval = *pptr;
3018                         flag = PROCBASED2_UNRESTRICTED_GUEST;
3019                         reg = VMCS_SEC_PROC_BASED_CTLS;
3020                 }
3021                 break;
3022         case VM_CAP_ENABLE_INVPCID:
3023                 if (cap_invpcid) {
3024                         retval = 0;
3025                         pptr = &vmx->cap[vcpu].proc_ctls2;
3026                         baseval = *pptr;
3027                         flag = PROCBASED2_ENABLE_INVPCID;
3028                         reg = VMCS_SEC_PROC_BASED_CTLS;
3029                 }
3030                 break;
3031         default:
3032                 break;
3033         }
3034
3035         if (retval == 0) {
3036                 if (val) {
3037                         baseval |= flag;
3038                 } else {
3039                         baseval &= ~flag;
3040                 }
3041                 VMPTRLD(vmcs);
3042                 error = vmwrite(reg, baseval);
3043                 VMCLEAR(vmcs);
3044
3045                 if (error) {
3046                         retval = error;
3047                 } else {
3048                         /*
3049                          * Update optional stored flags, and record
3050                          * setting
3051                          */
3052                         if (pptr != NULL) {
3053                                 *pptr = baseval;
3054                         }
3055
3056                         if (val) {
3057                                 vmx->cap[vcpu].set |= (1 << type);
3058                         } else {
3059                                 vmx->cap[vcpu].set &= ~(1 << type);
3060                         }
3061                 }
3062         }
3063
3064         return (retval);
3065 }
3066
3067 struct vlapic_vtx {
3068         struct vlapic   vlapic;
3069         struct pir_desc *pir_desc;
3070         struct vmx      *vmx;
3071 };
3072
3073 #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg)   \
3074 do {                                                                    \
3075         VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d",     \
3076             level ? "level" : "edge", vector);                          \
3077         VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]);  \
3078         VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]);  \
3079         VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]);  \
3080         VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]);  \
3081         VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\
3082 } while (0)
3083
3084 /*
3085  * vlapic->ops handlers that utilize the APICv hardware assist described in
3086  * Chapter 29 of the Intel SDM.
3087  */
3088 static int
3089 vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
3090 {
3091         struct vlapic_vtx *vlapic_vtx;
3092         struct pir_desc *pir_desc;
3093         uint64_t mask;
3094         int idx, notify;
3095
3096         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3097         pir_desc = vlapic_vtx->pir_desc;
3098
3099         /*
3100          * Keep track of interrupt requests in the PIR descriptor. This is
3101          * because the virtual APIC page pointed to by the VMCS cannot be
3102          * modified if the vcpu is running.
3103          */
3104         idx = vector / 64;
3105         mask = 1UL << (vector % 64);
3106         atomic_set_long(&pir_desc->pir[idx], mask);
3107         notify = atomic_cmpset_long(&pir_desc->pending, 0, 1);
3108
3109         VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector,
3110             level, "vmx_set_intr_ready");
3111         return (notify);
3112 }
3113
3114 static int
3115 vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
3116 {
3117         struct vlapic_vtx *vlapic_vtx;
3118         struct pir_desc *pir_desc;
3119         struct LAPIC *lapic;
3120         uint64_t pending, pirval;
3121         uint32_t ppr, vpr;
3122         int i;
3123
3124         /*
3125          * This function is only expected to be called from the 'HLT' exit
3126          * handler which does not care about the vector that is pending.
3127          */
3128         KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
3129
3130         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3131         pir_desc = vlapic_vtx->pir_desc;
3132
3133         pending = atomic_load_acq_long(&pir_desc->pending);
3134         if (!pending)
3135                 return (0);     /* common case */
3136
3137         /*
3138          * If there is an interrupt pending then it will be recognized only
3139          * if its priority is greater than the processor priority.
3140          *
3141          * Special case: if the processor priority is zero then any pending
3142          * interrupt will be recognized.
3143          */
3144         lapic = vlapic->apic_page;
3145         ppr = lapic->ppr & 0xf0;
3146         if (ppr == 0)
3147                 return (1);
3148
3149         VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d",
3150             lapic->ppr);
3151
3152         for (i = 3; i >= 0; i--) {
3153                 pirval = pir_desc->pir[i];
3154                 if (pirval != 0) {
3155                         vpr = (i * 64 + flsl(pirval) - 1) & 0xf0;
3156                         return (vpr > ppr);
3157                 }
3158         }
3159         return (0);
3160 }
3161
3162 static void
3163 vmx_intr_accepted(struct vlapic *vlapic, int vector)
3164 {
3165
3166         panic("vmx_intr_accepted: not expected to be called");
3167 }
3168
3169 static void
3170 vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
3171 {
3172         struct vlapic_vtx *vlapic_vtx;
3173         struct vmx *vmx;
3174         struct vmcs *vmcs;
3175         uint64_t mask, val;
3176
3177         KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
3178         KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL),
3179             ("vmx_set_tmr: vcpu cannot be running"));
3180
3181         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3182         vmx = vlapic_vtx->vmx;
3183         vmcs = &vmx->vmcs[vlapic->vcpuid];
3184         mask = 1UL << (vector % 64);
3185
3186         VMPTRLD(vmcs);
3187         val = vmcs_read(VMCS_EOI_EXIT(vector));
3188         if (level)
3189                 val |= mask;
3190         else
3191                 val &= ~mask;
3192         vmcs_write(VMCS_EOI_EXIT(vector), val);
3193         VMCLEAR(vmcs);
3194 }
3195
3196 static void
3197 vmx_enable_x2apic_mode(struct vlapic *vlapic)
3198 {
3199         struct vmx *vmx;
3200         struct vmcs *vmcs;
3201         uint32_t proc_ctls2;
3202         int vcpuid, error;
3203
3204         vcpuid = vlapic->vcpuid;
3205         vmx = ((struct vlapic_vtx *)vlapic)->vmx;
3206         vmcs = &vmx->vmcs[vcpuid];
3207
3208         proc_ctls2 = vmx->cap[vcpuid].proc_ctls2;
3209         KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
3210             ("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
3211
3212         proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
3213         proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
3214         vmx->cap[vcpuid].proc_ctls2 = proc_ctls2;
3215
3216         VMPTRLD(vmcs);
3217         vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
3218         VMCLEAR(vmcs);
3219
3220         if (vlapic->vcpuid == 0) {
3221                 /*
3222                  * The nested page table mappings are shared by all vcpus
3223                  * so unmap the APIC access page just once.
3224                  */
3225                 error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
3226                 KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
3227                     __func__, error));
3228
3229                 /*
3230                  * The MSR bitmap is shared by all vcpus so modify it only
3231                  * once in the context of vcpu 0.
3232                  */
3233                 error = vmx_allow_x2apic_msrs(vmx);
3234                 KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
3235                     __func__, error));
3236         }
3237 }
3238
3239 static void
3240 vmx_post_intr(struct vlapic *vlapic, int hostcpu)
3241 {
3242
3243         ipi_cpu(hostcpu, pirvec);
3244 }
3245
3246 /*
3247  * Transfer the pending interrupts in the PIR descriptor to the IRR
3248  * in the virtual APIC page.
3249  */
3250 static void
3251 vmx_inject_pir(struct vlapic *vlapic)
3252 {
3253         struct vlapic_vtx *vlapic_vtx;
3254         struct pir_desc *pir_desc;
3255         struct LAPIC *lapic;
3256         uint64_t val, pirval;
3257         int rvi, pirbase = -1;
3258         uint16_t intr_status_old, intr_status_new;
3259
3260         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3261         pir_desc = vlapic_vtx->pir_desc;
3262         if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
3263                 VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3264                     "no posted interrupt pending");
3265                 return;
3266         }
3267
3268         pirval = 0;
3269         pirbase = -1;
3270         lapic = vlapic->apic_page;
3271
3272         val = atomic_readandclear_long(&pir_desc->pir[0]);
3273         if (val != 0) {
3274                 lapic->irr0 |= val;
3275                 lapic->irr1 |= val >> 32;
3276                 pirbase = 0;
3277                 pirval = val;
3278         }
3279
3280         val = atomic_readandclear_long(&pir_desc->pir[1]);
3281         if (val != 0) {
3282                 lapic->irr2 |= val;
3283                 lapic->irr3 |= val >> 32;
3284                 pirbase = 64;
3285                 pirval = val;
3286         }
3287
3288         val = atomic_readandclear_long(&pir_desc->pir[2]);
3289         if (val != 0) {
3290                 lapic->irr4 |= val;
3291                 lapic->irr5 |= val >> 32;
3292                 pirbase = 128;
3293                 pirval = val;
3294         }
3295
3296         val = atomic_readandclear_long(&pir_desc->pir[3]);
3297         if (val != 0) {
3298                 lapic->irr6 |= val;
3299                 lapic->irr7 |= val >> 32;
3300                 pirbase = 192;
3301                 pirval = val;
3302         }
3303
3304         VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
3305
3306         /*
3307          * Update RVI so the processor can evaluate pending virtual
3308          * interrupts on VM-entry.
3309          *
3310          * It is possible for pirval to be 0 here, even though the
3311          * pending bit has been set. The scenario is:
3312          * CPU-Y is sending a posted interrupt to CPU-X, which
3313          * is running a guest and processing posted interrupts in h/w.
3314          * CPU-X will eventually exit and the state seen in s/w is
3315          * the pending bit set, but no PIR bits set.
3316          *
3317          *      CPU-X                      CPU-Y
3318          *   (vm running)                (host running)
3319          *   rx posted interrupt
3320          *   CLEAR pending bit
3321          *                               SET PIR bit
3322          *   READ/CLEAR PIR bits
3323          *                               SET pending bit
3324          *   (vm exit)
3325          *   pending bit set, PIR 0
3326          */
3327         if (pirval != 0) {
3328                 rvi = pirbase + flsl(pirval) - 1;
3329                 intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
3330                 intr_status_new = (intr_status_old & 0xFF00) | rvi;
3331                 if (intr_status_new > intr_status_old) {
3332                         vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
3333                         VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: "
3334                             "guest_intr_status changed from 0x%04x to 0x%04x",
3335                             intr_status_old, intr_status_new);
3336                 }
3337         }
3338 }
3339
3340 static struct vlapic *
3341 vmx_vlapic_init(void *arg, int vcpuid)
3342 {
3343         struct vmx *vmx;
3344         struct vlapic *vlapic;
3345         struct vlapic_vtx *vlapic_vtx;
3346         
3347         vmx = arg;
3348
3349         vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
3350         vlapic->vm = vmx->vm;
3351         vlapic->vcpuid = vcpuid;
3352         vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid];
3353
3354         vlapic_vtx = (struct vlapic_vtx *)vlapic;
3355         vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid];
3356         vlapic_vtx->vmx = vmx;
3357
3358         if (virtual_interrupt_delivery) {
3359                 vlapic->ops.set_intr_ready = vmx_set_intr_ready;
3360                 vlapic->ops.pending_intr = vmx_pending_intr;
3361                 vlapic->ops.intr_accepted = vmx_intr_accepted;
3362                 vlapic->ops.set_tmr = vmx_set_tmr;
3363                 vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode;
3364         }
3365
3366         if (posted_interrupts)
3367                 vlapic->ops.post_intr = vmx_post_intr;
3368
3369         vlapic_init(vlapic);
3370
3371         return (vlapic);
3372 }
3373
3374 static void
3375 vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic)
3376 {
3377
3378         vlapic_cleanup(vlapic);
3379         free(vlapic, M_VLAPIC);
3380 }
3381
3382 struct vmm_ops vmm_ops_intel = {
3383         vmx_init,
3384         vmx_cleanup,
3385         vmx_restore,
3386         vmx_vminit,
3387         vmx_run,
3388         vmx_vmcleanup,
3389         vmx_getreg,
3390         vmx_setreg,
3391         vmx_getdesc,
3392         vmx_setdesc,
3393         vmx_getcap,
3394         vmx_setcap,
3395         ept_vmspace_alloc,
3396         ept_vmspace_free,
3397         vmx_vlapic_init,
3398         vmx_vlapic_cleanup,
3399 };