]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/arm/arm/mpcore_timer.c
MFH
[FreeBSD/FreeBSD.git] / sys / arm / arm / mpcore_timer.c
1 /*-
2  * Copyright (c) 2011 The FreeBSD Foundation
3  * All rights reserved.
4  *
5  * Developed by Ben Gray <ben.r.gray@gmail.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. The name of the company nor the name of the author may be used to
16  *    endorse or promote products derived from this software without specific
17  *    prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 /**
33  * The ARM Cortex-A9 core can support a global timer plus a private and
34  * watchdog timer per core.  This driver reserves memory and interrupt
35  * resources for accessing both timer register sets, these resources are
36  * stored globally and used to setup the timecount and eventtimer.
37  *
38  * The timecount timer uses the global 64-bit counter, whereas the
39  * per-CPU eventtimer uses the private 32-bit counters.
40  *
41  *
42  * REF: ARM Cortex-A9 MPCore, Technical Reference Manual (rev. r2p2)
43  */
44
45 #include <sys/cdefs.h>
46 __FBSDID("$FreeBSD$");
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/bus.h>
51 #include <sys/kernel.h>
52 #include <sys/module.h>
53 #include <sys/malloc.h>
54 #include <sys/rman.h>
55 #include <sys/timeet.h>
56 #include <sys/timetc.h>
57 #include <sys/watchdog.h>
58 #include <machine/bus.h>
59 #include <machine/cpu.h>
60 #include <machine/intr.h>
61
62 #include <dev/fdt/fdt_common.h>
63 #include <dev/ofw/openfirm.h>
64 #include <dev/ofw/ofw_bus.h>
65 #include <dev/ofw/ofw_bus_subr.h>
66
67 #include <machine/bus.h>
68
69 #include <arm/arm/mpcore_timervar.h>
70
71 /* Private (per-CPU) timer register map */
72 #define PRV_TIMER_LOAD                 0x0000
73 #define PRV_TIMER_COUNT                0x0004
74 #define PRV_TIMER_CTRL                 0x0008
75 #define PRV_TIMER_INTR                 0x000C
76
77 #define PRV_TIMER_CTR_PRESCALER_SHIFT  8
78 #define PRV_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
79 #define PRV_TIMER_CTRL_AUTO_RELOAD     (1UL << 1)
80 #define PRV_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
81
82 #define PRV_TIMER_INTR_EVENT           (1UL << 0)
83
84 /* Global timer register map */
85 #define GBL_TIMER_COUNT_LOW            0x0000
86 #define GBL_TIMER_COUNT_HIGH           0x0004
87 #define GBL_TIMER_CTRL                 0x0008
88 #define GBL_TIMER_INTR                 0x000C
89
90 #define GBL_TIMER_CTR_PRESCALER_SHIFT  8
91 #define GBL_TIMER_CTRL_AUTO_INC        (1UL << 3)
92 #define GBL_TIMER_CTRL_IRQ_ENABLE      (1UL << 2)
93 #define GBL_TIMER_CTRL_COMP_ENABLE     (1UL << 1)
94 #define GBL_TIMER_CTRL_TIMER_ENABLE    (1UL << 0)
95
96 #define GBL_TIMER_INTR_EVENT           (1UL << 0)
97
98 struct arm_tmr_softc {
99         device_t                dev;
100         int                     irqrid;
101         int                     memrid;
102         struct resource *       gbl_mem;
103         struct resource *       prv_mem;
104         struct resource *       prv_irq;
105         uint64_t                clkfreq;
106         struct eventtimer       et;
107 };
108
109 static struct eventtimer *arm_tmr_et;
110 static struct timecounter *arm_tmr_tc;
111 static uint64_t arm_tmr_freq;
112 static boolean_t arm_tmr_freq_varies;
113
114 #define tmr_prv_read_4(sc, reg)         bus_read_4((sc)->prv_mem, reg)
115 #define tmr_prv_write_4(sc, reg, val)   bus_write_4((sc)->prv_mem, reg, val)
116 #define tmr_gbl_read_4(sc, reg)         bus_read_4((sc)->gbl_mem, reg)
117 #define tmr_gbl_write_4(sc, reg, val)   bus_write_4((sc)->gbl_mem, reg, val)
118
119 static timecounter_get_t arm_tmr_get_timecount;
120
121 static struct timecounter arm_tmr_timecount = {
122         .tc_name           = "MPCore",
123         .tc_get_timecount  = arm_tmr_get_timecount,
124         .tc_poll_pps       = NULL,
125         .tc_counter_mask   = ~0u,
126         .tc_frequency      = 0,
127         .tc_quality        = 800,
128 };
129
130 #define TMR_GBL         0x01
131 #define TMR_PRV         0x02
132 #define TMR_BOTH        (TMR_GBL | TMR_PRV)
133 #define TMR_NONE        0
134
135 static struct ofw_compat_data compat_data[] = {
136         {"arm,mpcore-timers",           TMR_BOTH}, /* Non-standard, FreeBSD. */
137         {"arm,cortex-a9-global-timer",  TMR_GBL},
138         {"arm,cortex-a5-global-timer",  TMR_GBL},
139         {"arm,cortex-a9-twd-timer",     TMR_PRV},
140         {"arm,cortex-a5-twd-timer",     TMR_PRV},
141         {"arm,arm11mp-twd-timer",       TMR_PRV},
142         {NULL,                          TMR_NONE}
143 };
144
145 /**
146  *      arm_tmr_get_timecount - reads the timecount (global) timer
147  *      @tc: pointer to arm_tmr_timecount struct
148  *
149  *      We only read the lower 32-bits, the timecount stuff only uses 32-bits
150  *      so (for now?) ignore the upper 32-bits.
151  *
152  *      RETURNS
153  *      The lower 32-bits of the counter.
154  */
155 static unsigned
156 arm_tmr_get_timecount(struct timecounter *tc)
157 {
158         struct arm_tmr_softc *sc;
159
160         sc = tc->tc_priv;
161         return (tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW));
162 }
163
164 /**
165  *      arm_tmr_start - starts the eventtimer (private) timer
166  *      @et: pointer to eventtimer struct
167  *      @first: the number of seconds and fractional sections to trigger in
168  *      @period: the period (in seconds and fractional sections) to set
169  *
170  *      If the eventtimer is required to be in oneshot mode, period will be
171  *      NULL and first will point to the time to trigger.  If in periodic mode
172  *      period will contain the time period and first may optionally contain
173  *      the time for the first period.
174  *
175  *      RETURNS
176  *      Always returns 0
177  */
178 static int
179 arm_tmr_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
180 {
181         struct arm_tmr_softc *sc;
182         uint32_t load, count;
183         uint32_t ctrl;
184
185         sc = et->et_priv;
186         tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
187         tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
188
189         ctrl = PRV_TIMER_CTRL_IRQ_ENABLE | PRV_TIMER_CTRL_TIMER_ENABLE;
190
191         if (period != 0) {
192                 load = ((uint32_t)et->et_frequency * period) >> 32;
193                 ctrl |= PRV_TIMER_CTRL_AUTO_RELOAD;
194         } else
195                 load = 0;
196
197         if (first != 0)
198                 count = (uint32_t)((et->et_frequency * first) >> 32);
199         else
200                 count = load;
201
202         tmr_prv_write_4(sc, PRV_TIMER_LOAD, load);
203         tmr_prv_write_4(sc, PRV_TIMER_COUNT, count);
204         tmr_prv_write_4(sc, PRV_TIMER_CTRL, ctrl);
205
206         return (0);
207 }
208
209 /**
210  *      arm_tmr_stop - stops the eventtimer (private) timer
211  *      @et: pointer to eventtimer struct
212  *
213  *      Simply stops the private timer by clearing all bits in the ctrl register.
214  *
215  *      RETURNS
216  *      Always returns 0
217  */
218 static int
219 arm_tmr_stop(struct eventtimer *et)
220 {
221         struct arm_tmr_softc *sc;
222
223         sc = et->et_priv;
224         tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0);
225         tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
226         return (0);
227 }
228
229 /**
230  *      arm_tmr_intr - ISR for the eventtimer (private) timer
231  *      @arg: pointer to arm_tmr_softc struct
232  *
233  *      Clears the event register and then calls the eventtimer callback.
234  *
235  *      RETURNS
236  *      Always returns FILTER_HANDLED
237  */
238 static int
239 arm_tmr_intr(void *arg)
240 {
241         struct arm_tmr_softc *sc;
242
243         sc = arg;
244         tmr_prv_write_4(sc, PRV_TIMER_INTR, PRV_TIMER_INTR_EVENT);
245         if (sc->et.et_active)
246                 sc->et.et_event_cb(&sc->et, sc->et.et_arg);
247         return (FILTER_HANDLED);
248 }
249
250
251
252
253 /**
254  *      arm_tmr_probe - timer probe routine
255  *      @dev: new device
256  *
257  *      The probe function returns success when probed with the fdt compatible
258  *      string set to "arm,mpcore-timers".
259  *
260  *      RETURNS
261  *      BUS_PROBE_DEFAULT if the fdt device is compatible, otherwise ENXIO.
262  */
263 static int
264 arm_tmr_probe(device_t dev)
265 {
266
267         if (!ofw_bus_status_okay(dev))
268                 return (ENXIO);
269
270         if (ofw_bus_search_compatible(dev, compat_data)->ocd_data == TMR_NONE)
271                 return (ENXIO);
272
273         device_set_desc(dev, "ARM MPCore Timers");
274         return (BUS_PROBE_DEFAULT);
275 }
276
277 static int
278 attach_tc(struct arm_tmr_softc *sc)
279 {
280         int rid;
281
282         if (arm_tmr_tc != NULL)
283                 return (EBUSY);
284
285         rid = sc->memrid;
286         sc->gbl_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &rid,
287             RF_ACTIVE);
288         if (sc->gbl_mem == NULL) {
289                 device_printf(sc->dev, "could not allocate gbl mem resources\n");
290                 return (ENXIO);
291         }
292         tmr_gbl_write_4(sc, GBL_TIMER_CTRL, 0x00000000);
293
294         arm_tmr_timecount.tc_frequency = sc->clkfreq;
295         arm_tmr_timecount.tc_priv = sc;
296         tc_init(&arm_tmr_timecount);
297         arm_tmr_tc = &arm_tmr_timecount;
298
299         tmr_gbl_write_4(sc, GBL_TIMER_CTRL, GBL_TIMER_CTRL_TIMER_ENABLE);
300
301         return (0);
302 }
303
304 static int
305 attach_et(struct arm_tmr_softc *sc)
306 {
307         void *ihl;
308         int irid, mrid;
309
310         if (arm_tmr_et != NULL)
311                 return (EBUSY);
312
313         mrid = sc->memrid;
314         sc->prv_mem = bus_alloc_resource_any(sc->dev, SYS_RES_MEMORY, &mrid,
315             RF_ACTIVE);
316         if (sc->prv_mem == NULL) {
317                 device_printf(sc->dev, "could not allocate prv mem resources\n");
318                 return (ENXIO);
319         }
320         tmr_prv_write_4(sc, PRV_TIMER_CTRL, 0x00000000);
321
322         irid = sc->irqrid;
323         sc->prv_irq = bus_alloc_resource_any(sc->dev, SYS_RES_IRQ, &irid, RF_ACTIVE);
324         if (sc->prv_irq == NULL) {
325                 bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
326                 device_printf(sc->dev, "could not allocate prv irq resources\n");
327                 return (ENXIO);
328         }
329
330         if (bus_setup_intr(sc->dev, sc->prv_irq, INTR_TYPE_CLK, arm_tmr_intr,
331                         NULL, sc, &ihl) != 0) {
332                 bus_release_resource(sc->dev, SYS_RES_MEMORY, mrid, sc->prv_mem);
333                 bus_release_resource(sc->dev, SYS_RES_IRQ, irid, sc->prv_irq);
334                 device_printf(sc->dev, "unable to setup the et irq handler.\n");
335                 return (ENXIO);
336         }
337
338         /*
339          * Setup and register the eventtimer.  Most event timers set their min
340          * and max period values to some value calculated from the clock
341          * frequency.  We might not know yet what our runtime clock frequency
342          * will be, so we just use some safe values.  A max of 2 seconds ensures
343          * that even if our base clock frequency is 2GHz (meaning a 4GHz CPU),
344          * we won't overflow our 32-bit timer count register.  A min of 20
345          * nanoseconds is pretty much completely arbitrary.
346          */
347         sc->et.et_name = "MPCore";
348         sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU;
349         sc->et.et_quality = 1000;
350         sc->et.et_frequency = sc->clkfreq;
351         sc->et.et_min_period = 20 * SBT_1NS;
352         sc->et.et_max_period =  2 * SBT_1S;
353         sc->et.et_start = arm_tmr_start;
354         sc->et.et_stop = arm_tmr_stop;
355         sc->et.et_priv = sc;
356         et_register(&sc->et);
357         arm_tmr_et = &sc->et;
358
359         return (0);
360 }
361
362 /**
363  *      arm_tmr_attach - attaches the timer to the simplebus
364  *      @dev: new device
365  *
366  *      Reserves memory and interrupt resources, stores the softc structure
367  *      globally and registers both the timecount and eventtimer objects.
368  *
369  *      RETURNS
370  *      Zero on sucess or ENXIO if an error occuried.
371  */
372 static int
373 arm_tmr_attach(device_t dev)
374 {
375         struct arm_tmr_softc *sc;
376         phandle_t node;
377         pcell_t clock;
378         int et_err, tc_err, tmrtype;
379
380         sc = device_get_softc(dev);
381         sc->dev = dev;
382
383         if (arm_tmr_freq_varies) {
384                 sc->clkfreq = arm_tmr_freq;
385         } else {
386                 if (arm_tmr_freq != 0) {
387                         sc->clkfreq = arm_tmr_freq;
388                 } else {
389                         /* Get the base clock frequency */
390                         node = ofw_bus_get_node(dev);
391                         if ((OF_getencprop(node, "clock-frequency", &clock,
392                             sizeof(clock))) <= 0) {
393                                 device_printf(dev, "missing clock-frequency "
394                                     "attribute in FDT\n");
395                                 return (ENXIO);
396                         }
397                         sc->clkfreq = clock;
398                 }
399         }
400
401         tmrtype = ofw_bus_search_compatible(dev, compat_data)->ocd_data;
402         tc_err = ENXIO;
403         et_err = ENXIO;
404
405         /*
406          * If we're handling the global timer and it is fixed-frequency, set it
407          * up to use as a timecounter.  If it's variable frequency it won't work
408          * as a timecounter.  We also can't use it for DELAY(), so hopefully the
409          * platform provides its own implementation. If it doesn't, ours will
410          * get used, but since the frequency isn't set, it will only use the
411          * bogus loop counter.
412          */
413         if (tmrtype & TMR_GBL) {
414                 if (!arm_tmr_freq_varies)
415                         tc_err = attach_tc(sc);
416                 else if (bootverbose)
417                         device_printf(sc->dev,
418                             "not using variable-frequency device as timecounter");
419                 sc->memrid++;
420                 sc->irqrid++;
421         }
422
423         /* If we are handling the private timer, set it up as an eventtimer. */
424         if (tmrtype & TMR_PRV) {
425                 et_err = attach_et(sc);
426         }
427
428         /*
429          * If we didn't successfully set up a timecounter or eventtimer then we
430          * didn't actually attach at all, return error.
431          */
432         if (tc_err != 0 && et_err != 0) {
433                 return (ENXIO);
434         }
435         return (0);
436 }
437
438 static device_method_t arm_tmr_methods[] = {
439         DEVMETHOD(device_probe,         arm_tmr_probe),
440         DEVMETHOD(device_attach,        arm_tmr_attach),
441         { 0, 0 }
442 };
443
444 static driver_t arm_tmr_driver = {
445         "mp_tmr",
446         arm_tmr_methods,
447         sizeof(struct arm_tmr_softc),
448 };
449
450 static devclass_t arm_tmr_devclass;
451
452 EARLY_DRIVER_MODULE(mp_tmr, simplebus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
453     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
454 EARLY_DRIVER_MODULE(mp_tmr, ofwbus, arm_tmr_driver, arm_tmr_devclass, 0, 0,
455     BUS_PASS_TIMER + BUS_PASS_ORDER_MIDDLE);
456
457 /*
458  * Handle a change in clock frequency.  The mpcore timer runs at half the CPU
459  * frequency.  When the CPU frequency changes due to power-saving or thermal
460  * managment, the platform-specific code that causes the frequency change calls
461  * this routine to inform the clock driver, and we in turn inform the event
462  * timer system, which actually updates the value in et->frequency for us and
463  * reschedules the current event(s) in a way that's atomic with respect to
464  * start/stop/intr code that may be running on various CPUs at the time of the
465  * call.
466  *
467  * This routine can also be called by a platform's early init code.  If the
468  * value passed is ARM_TMR_FREQUENCY_VARIES, that will cause the attach() code
469  * to register as an eventtimer, but not a timecounter.  If the value passed in
470  * is any other non-zero value it is used as the fixed frequency for the timer.
471  */
472 void
473 arm_tmr_change_frequency(uint64_t newfreq)
474 {
475
476         if (newfreq == ARM_TMR_FREQUENCY_VARIES) {
477                 arm_tmr_freq_varies = true;
478                 return;
479         }
480
481         arm_tmr_freq = newfreq;
482         if (arm_tmr_et != NULL)
483                 et_change_frequency(arm_tmr_et, newfreq);
484 }
485
486 /**
487  *      DELAY - Delay for at least usec microseconds.
488  *      @usec: number of microseconds to delay by
489  *
490  *      This function is called all over the kernel and is suppose to provide a
491  *      consistent delay.  This function may also be called before the console
492  *      is setup so no printf's can be called here.
493  *
494  *      RETURNS:
495  *      nothing
496  */
497 static void __used /* Must emit function code for the weak ref below. */
498 arm_tmr_DELAY(int usec)
499 {
500         struct arm_tmr_softc *sc;
501         int32_t counts_per_usec;
502         int32_t counts;
503         uint32_t first, last;
504
505         /* Check the timers are setup, if not just use a for loop for the meantime */
506         if (arm_tmr_tc == NULL || arm_tmr_timecount.tc_frequency == 0) {
507                 for (; usec > 0; usec--)
508                         for (counts = 200; counts > 0; counts--)
509                                 cpufunc_nullop();       /* Prevent gcc from optimizing
510                                                          * out the loop
511                                                          */
512                 return;
513         }
514
515         sc = arm_tmr_tc->tc_priv;
516
517         /* Get the number of times to count */
518         counts_per_usec = ((arm_tmr_timecount.tc_frequency / 1000000) + 1);
519
520         /*
521          * Clamp the timeout at a maximum value (about 32 seconds with
522          * a 66MHz clock). *Nobody* should be delay()ing for anywhere
523          * near that length of time and if they are, they should be hung
524          * out to dry.
525          */
526         if (usec >= (0x80000000U / counts_per_usec))
527                 counts = (0x80000000U / counts_per_usec) - 1;
528         else
529                 counts = usec * counts_per_usec;
530
531         first = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
532
533         while (counts > 0) {
534                 last = tmr_gbl_read_4(sc, GBL_TIMER_COUNT_LOW);
535                 counts -= (int32_t)(last - first);
536                 first = last;
537         }
538 }
539
540 /*
541  * Supply a DELAY() implementation via weak linkage.  A platform may want to use
542  * the mpcore per-cpu eventtimers but provide its own DELAY() routine,
543  * especially when the core frequency can change on the fly.
544  */
545 __weak_reference(arm_tmr_DELAY, DELAY);
546