]> CyberLeo.Net >> Repos - FreeBSD/FreeBSD.git/blob - sys/arm/mv/mv_common.c
Include machine/acle-compat.h in cdefs.h on arm if the compiler doesn't
[FreeBSD/FreeBSD.git] / sys / arm / mv / mv_common.c
1 /*-
2  * Copyright (C) 2008-2011 MARVELL INTERNATIONAL LTD.
3  * All rights reserved.
4  *
5  * Developed by Semihalf.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of MARVELL nor the names of contributors
16  *    may be used to endorse or promote products derived from this software
17  *    without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED.  IN NO EVENT SHALL AUTHOR OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  */
31
32 #include <sys/cdefs.h>
33 __FBSDID("$FreeBSD$");
34
35 #include <sys/param.h>
36 #include <sys/systm.h>
37 #include <sys/bus.h>
38 #include <sys/kernel.h>
39 #include <sys/malloc.h>
40 #include <sys/kdb.h>
41 #include <sys/reboot.h>
42
43 #include <dev/fdt/fdt_common.h>
44 #include <dev/ofw/openfirm.h>
45
46 #include <machine/bus.h>
47 #include <machine/fdt.h>
48 #include <machine/vmparam.h>
49 #include <machine/intr.h>
50
51 #include <arm/mv/mvreg.h>
52 #include <arm/mv/mvvar.h>
53 #include <arm/mv/mvwin.h>
54
55
56 MALLOC_DEFINE(M_IDMA, "idma", "idma dma test memory");
57
58 #define IDMA_DEBUG
59 #undef IDMA_DEBUG
60
61 #define MAX_CPU_WIN     5
62
63 #ifdef DEBUG
64 #define debugf(fmt, args...) do { printf("%s(): ", __func__);   \
65     printf(fmt,##args); } while (0)
66 #else
67 #define debugf(fmt, args...)
68 #endif
69
70 #ifdef DEBUG
71 #define MV_DUMP_WIN     1
72 #else
73 #define MV_DUMP_WIN     0
74 #endif
75
76 static int win_eth_can_remap(int i);
77
78 #ifndef SOC_MV_FREY
79 static int decode_win_cpu_valid(void);
80 #endif
81 static int decode_win_usb_valid(void);
82 static int decode_win_usb3_valid(void);
83 static int decode_win_eth_valid(void);
84 static int decode_win_pcie_valid(void);
85 static int decode_win_sata_valid(void);
86
87 static int decode_win_idma_valid(void);
88 static int decode_win_xor_valid(void);
89
90 #ifndef SOC_MV_FREY
91 static void decode_win_cpu_setup(void);
92 #endif
93 #ifdef SOC_MV_ARMADAXP
94 static int decode_win_sdram_fixup(void);
95 #endif
96 static void decode_win_usb_setup(u_long);
97 static void decode_win_usb3_setup(u_long);
98 static void decode_win_eth_setup(u_long);
99 static void decode_win_sata_setup(u_long);
100
101 static void decode_win_idma_setup(u_long);
102 static void decode_win_xor_setup(u_long);
103
104 static void decode_win_usb_dump(u_long);
105 static void decode_win_usb3_dump(u_long);
106 static void decode_win_eth_dump(u_long base);
107 static void decode_win_idma_dump(u_long base);
108 static void decode_win_xor_dump(u_long base);
109
110 static int fdt_get_ranges(const char *, void *, int, int *, int *);
111 #ifdef SOC_MV_ARMADA38X
112 int gic_decode_fdt(phandle_t iparent, pcell_t *intr, int *interrupt,
113     int *trig, int *pol);
114 #endif
115
116 static int win_cpu_from_dt(void);
117 static int fdt_win_setup(void);
118
119 static uint32_t dev_mask = 0;
120 static int cpu_wins_no = 0;
121 static int eth_port = 0;
122 static int usb_port = 0;
123
124 static struct decode_win cpu_win_tbl[MAX_CPU_WIN];
125
126 const struct decode_win *cpu_wins = cpu_win_tbl;
127
128 typedef void (*decode_win_setup_t)(u_long);
129 typedef void (*dump_win_t)(u_long);
130
131 struct soc_node_spec {
132         const char              *compat;
133         decode_win_setup_t      decode_handler;
134         dump_win_t              dump_handler;
135 };
136
137 static struct soc_node_spec soc_nodes[] = {
138         { "mrvl,ge", &decode_win_eth_setup, &decode_win_eth_dump },
139         { "mrvl,usb-ehci", &decode_win_usb_setup, &decode_win_usb_dump },
140         { "marvell,armada-380-xhci", &decode_win_usb3_setup, &decode_win_usb3_dump },
141         { "mrvl,sata", &decode_win_sata_setup, NULL },
142         { "mrvl,xor", &decode_win_xor_setup, &decode_win_xor_dump },
143         { "mrvl,idma", &decode_win_idma_setup, &decode_win_idma_dump },
144         { "mrvl,pcie", &decode_win_pcie_setup, NULL },
145         { NULL, NULL, NULL },
146 };
147
148 struct fdt_pm_mask_entry fdt_pm_mask_table[] = {
149         { "mrvl,ge",            CPU_PM_CTRL_GE(0) },
150         { "mrvl,ge",            CPU_PM_CTRL_GE(1) },
151         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(0) },
152         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(1) },
153         { "mrvl,usb-ehci",      CPU_PM_CTRL_USB(2) },
154         { "mrvl,xor",           CPU_PM_CTRL_XOR },
155         { "mrvl,sata",          CPU_PM_CTRL_SATA },
156
157         { NULL, 0 }
158 };
159
160 static __inline int
161 pm_is_disabled(uint32_t mask)
162 {
163 #if defined(SOC_MV_KIRKWOOD)
164         return (soc_power_ctrl_get(mask) == mask);
165 #else
166         return (soc_power_ctrl_get(mask) == mask ? 0 : 1);
167 #endif
168 }
169
170 /*
171  * Disable device using power management register.
172  * 1 - Device Power On
173  * 0 - Device Power Off
174  * Mask can be set in loader.
175  * EXAMPLE:
176  * loader> set hw.pm-disable-mask=0x2
177  *
178  * Common mask:
179  * |-------------------------------|
180  * | Device | Kirkwood | Discovery |
181  * |-------------------------------|
182  * | USB0   | 0x00008  | 0x020000  |
183  * |-------------------------------|
184  * | USB1   |     -    | 0x040000  |
185  * |-------------------------------|
186  * | USB2   |     -    | 0x080000  |
187  * |-------------------------------|
188  * | GE0    | 0x00001  | 0x000002  |
189  * |-------------------------------|
190  * | GE1    |     -    | 0x000004  |
191  * |-------------------------------|
192  * | IDMA   |     -    | 0x100000  |
193  * |-------------------------------|
194  * | XOR    | 0x10000  | 0x200000  |
195  * |-------------------------------|
196  * | CESA   | 0x20000  | 0x400000  |
197  * |-------------------------------|
198  * | SATA   | 0x04000  | 0x004000  |
199  * --------------------------------|
200  * This feature can be used only on Kirkwood and Discovery
201  * machines.
202  */
203 static __inline void
204 pm_disable_device(int mask)
205 {
206 #ifdef DIAGNOSTIC
207         uint32_t reg;
208
209         reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
210         printf("Power Management Register: 0%x\n", reg);
211
212         reg &= ~mask;
213         soc_power_ctrl_set(reg);
214         printf("Device %x is disabled\n", mask);
215
216         reg = soc_power_ctrl_get(CPU_PM_CTRL_ALL);
217         printf("Power Management Register: 0%x\n", reg);
218 #endif
219 }
220
221 int
222 fdt_pm(phandle_t node)
223 {
224         uint32_t cpu_pm_ctrl;
225         int i, ena, compat;
226
227         ena = 1;
228         cpu_pm_ctrl = read_cpu_ctrl(CPU_PM_CTRL);
229         for (i = 0; fdt_pm_mask_table[i].compat != NULL; i++) {
230                 if (dev_mask & (1 << i))
231                         continue;
232
233                 compat = fdt_is_compatible(node, fdt_pm_mask_table[i].compat);
234 #if defined(SOC_MV_KIRKWOOD)
235                 if (compat && (cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
236                         dev_mask |= (1 << i);
237                         ena = 0;
238                         break;
239                 } else if (compat) {
240                         dev_mask |= (1 << i);
241                         break;
242                 }
243 #else
244                 if (compat && (~cpu_pm_ctrl & fdt_pm_mask_table[i].mask)) {
245                         dev_mask |= (1 << i);
246                         ena = 0;
247                         break;
248                 } else if (compat) {
249                         dev_mask |= (1 << i);
250                         break;
251                 }
252 #endif
253         }
254
255         return (ena);
256 }
257
258 uint32_t
259 read_cpu_ctrl(uint32_t reg)
260 {
261
262         return (bus_space_read_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg));
263 }
264
265 void
266 write_cpu_ctrl(uint32_t reg, uint32_t val)
267 {
268
269         bus_space_write_4(fdtbus_bs_tag, MV_CPU_CONTROL_BASE, reg, val);
270 }
271
272 #if defined(SOC_MV_ARMADAXP) || defined(SOC_MV_ARMADA38X)
273 uint32_t
274 read_cpu_mp_clocks(uint32_t reg)
275 {
276
277         return (bus_space_read_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg));
278 }
279
280 void
281 write_cpu_mp_clocks(uint32_t reg, uint32_t val)
282 {
283
284         bus_space_write_4(fdtbus_bs_tag, MV_MP_CLOCKS_BASE, reg, val);
285 }
286
287 uint32_t
288 read_cpu_misc(uint32_t reg)
289 {
290
291         return (bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE, reg));
292 }
293
294 void
295 write_cpu_misc(uint32_t reg, uint32_t val)
296 {
297
298         bus_space_write_4(fdtbus_bs_tag, MV_MISC_BASE, reg, val);
299 }
300 #endif
301
302 void
303 cpu_reset(void)
304 {
305
306 #if defined(SOC_MV_ARMADAXP) || defined (SOC_MV_ARMADA38X)
307         write_cpu_misc(RSTOUTn_MASK, SOFT_RST_OUT_EN);
308         write_cpu_misc(SYSTEM_SOFT_RESET, SYS_SOFT_RST);
309 #else
310         write_cpu_ctrl(RSTOUTn_MASK, SOFT_RST_OUT_EN);
311         write_cpu_ctrl(SYSTEM_SOFT_RESET, SYS_SOFT_RST);
312 #endif
313         while (1);
314 }
315
316 uint32_t
317 cpu_extra_feat(void)
318 {
319         uint32_t dev, rev;
320         uint32_t ef = 0;
321
322         soc_id(&dev, &rev);
323
324         switch (dev) {
325         case MV_DEV_88F6281:
326         case MV_DEV_88F6282:
327         case MV_DEV_88RC8180:
328         case MV_DEV_MV78100_Z0:
329         case MV_DEV_MV78100:
330                 __asm __volatile("mrc p15, 1, %0, c15, c1, 0" : "=r" (ef));
331                 break;
332         case MV_DEV_88F5182:
333         case MV_DEV_88F5281:
334                 __asm __volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (ef));
335                 break;
336         default:
337                 if (bootverbose)
338                         printf("This ARM Core does not support any extra features\n");
339         }
340
341         return (ef);
342 }
343
344 /*
345  * Get the power status of device. This feature is only supported on
346  * Kirkwood and Discovery SoCs.
347  */
348 uint32_t
349 soc_power_ctrl_get(uint32_t mask)
350 {
351
352 #if !defined(SOC_MV_ORION) && !defined(SOC_MV_LOKIPLUS) && !defined(SOC_MV_FREY)
353         if (mask != CPU_PM_CTRL_NONE)
354                 mask &= read_cpu_ctrl(CPU_PM_CTRL);
355
356         return (mask);
357 #else
358         return (mask);
359 #endif
360 }
361
362 /*
363  * Set the power status of device. This feature is only supported on
364  * Kirkwood and Discovery SoCs.
365  */
366 void
367 soc_power_ctrl_set(uint32_t mask)
368 {
369
370 #if !defined(SOC_MV_ORION) && !defined(SOC_MV_LOKIPLUS)
371         if (mask != CPU_PM_CTRL_NONE)
372                 write_cpu_ctrl(CPU_PM_CTRL, mask);
373 #endif
374 }
375
376 void
377 soc_id(uint32_t *dev, uint32_t *rev)
378 {
379
380         /*
381          * Notice: system identifiers are available in the registers range of
382          * PCIE controller, so using this function is only allowed (and
383          * possible) after the internal registers range has been mapped in via
384          * devmap_bootstrap().
385          */
386         *dev = bus_space_read_4(fdtbus_bs_tag, MV_PCIE_BASE, 0) >> 16;
387         *rev = bus_space_read_4(fdtbus_bs_tag, MV_PCIE_BASE, 8) & 0xff;
388 }
389
390 static void
391 soc_identify(void)
392 {
393         uint32_t d, r, size, mode;
394         const char *dev;
395         const char *rev;
396
397         soc_id(&d, &r);
398
399         printf("SOC: ");
400         if (bootverbose)
401                 printf("(0x%4x:0x%02x) ", d, r);
402
403         rev = "";
404         switch (d) {
405         case MV_DEV_88F5181:
406                 dev = "Marvell 88F5181";
407                 if (r == 3)
408                         rev = "B1";
409                 break;
410         case MV_DEV_88F5182:
411                 dev = "Marvell 88F5182";
412                 if (r == 2)
413                         rev = "A2";
414                 break;
415         case MV_DEV_88F5281:
416                 dev = "Marvell 88F5281";
417                 if (r == 4)
418                         rev = "D0";
419                 else if (r == 5)
420                         rev = "D1";
421                 else if (r == 6)
422                         rev = "D2";
423                 break;
424         case MV_DEV_88F6281:
425                 dev = "Marvell 88F6281";
426                 if (r == 0)
427                         rev = "Z0";
428                 else if (r == 2)
429                         rev = "A0";
430                 else if (r == 3)
431                         rev = "A1";
432                 break;
433         case MV_DEV_88RC8180:
434                 dev = "Marvell 88RC8180";
435                 break;
436         case MV_DEV_88RC9480:
437                 dev = "Marvell 88RC9480";
438                 break;
439         case MV_DEV_88RC9580:
440                 dev = "Marvell 88RC9580";
441                 break;
442         case MV_DEV_88F6781:
443                 dev = "Marvell 88F6781";
444                 if (r == 2)
445                         rev = "Y0";
446                 break;
447         case MV_DEV_88F6282:
448                 dev = "Marvell 88F6282";
449                 if (r == 0)
450                         rev = "A0";
451                 else if (r == 1)
452                         rev = "A1";
453                 break;
454         case MV_DEV_88F6828:
455                 dev = "Marvell 88F6828";
456                 break;
457         case MV_DEV_88F6820:
458                 dev = "Marvell 88F6820";
459                 break;
460         case MV_DEV_88F6810:
461                 dev = "Marvell 88F6810";
462                 break;
463         case MV_DEV_MV78100_Z0:
464                 dev = "Marvell MV78100 Z0";
465                 break;
466         case MV_DEV_MV78100:
467                 dev = "Marvell MV78100";
468                 break;
469         case MV_DEV_MV78160:
470                 dev = "Marvell MV78160";
471                 break;
472         case MV_DEV_MV78260:
473                 dev = "Marvell MV78260";
474                 break;
475         case MV_DEV_MV78460:
476                 dev = "Marvell MV78460";
477                 break;
478         default:
479                 dev = "UNKNOWN";
480                 break;
481         }
482
483         printf("%s", dev);
484         if (*rev != '\0')
485                 printf(" rev %s", rev);
486         printf(", TClock %dMHz\n", get_tclk() / 1000 / 1000);
487
488         mode = read_cpu_ctrl(CPU_CONFIG);
489         printf("  Instruction cache prefetch %s, data cache prefetch %s\n",
490             (mode & CPU_CONFIG_IC_PREF) ? "enabled" : "disabled",
491             (mode & CPU_CONFIG_DC_PREF) ? "enabled" : "disabled");
492
493         switch (d) {
494         case MV_DEV_88F6281:
495         case MV_DEV_88F6282:
496                 mode = read_cpu_ctrl(CPU_L2_CONFIG) & CPU_L2_CONFIG_MODE;
497                 printf("  256KB 4-way set-associative %s unified L2 cache\n",
498                     mode ? "write-through" : "write-back");
499                 break;
500         case MV_DEV_MV78100:
501                 mode = read_cpu_ctrl(CPU_CONTROL);
502                 size = mode & CPU_CONTROL_L2_SIZE;
503                 mode = mode & CPU_CONTROL_L2_MODE;
504                 printf("  %s set-associative %s unified L2 cache\n",
505                     size ? "256KB 4-way" : "512KB 8-way",
506                     mode ? "write-through" : "write-back");
507                 break;
508         default:
509                 break;
510         }
511 }
512
513 static void
514 platform_identify(void *dummy)
515 {
516
517         soc_identify();
518
519         /*
520          * XXX Board identification e.g. read out from FPGA or similar should
521          * go here
522          */
523 }
524 SYSINIT(platform_identify, SI_SUB_CPU, SI_ORDER_SECOND, platform_identify,
525     NULL);
526
527 #ifdef KDB
528 static void
529 mv_enter_debugger(void *dummy)
530 {
531
532         if (boothowto & RB_KDB)
533                 kdb_enter(KDB_WHY_BOOTFLAGS, "Boot flags requested debugger");
534 }
535 SYSINIT(mv_enter_debugger, SI_SUB_CPU, SI_ORDER_ANY, mv_enter_debugger, NULL);
536 #endif
537
538 int
539 soc_decode_win(void)
540 {
541         uint32_t dev, rev;
542         int mask, err;
543
544         mask = 0;
545         TUNABLE_INT_FETCH("hw.pm-disable-mask", &mask);
546
547         if (mask != 0)
548                 pm_disable_device(mask);
549
550         /* Retrieve data about physical addresses from device tree. */
551         if ((err = win_cpu_from_dt()) != 0)
552                 return (err);
553
554         /* Retrieve our ID: some windows facilities vary between SoC models */
555         soc_id(&dev, &rev);
556
557 #ifdef SOC_MV_ARMADAXP
558         if ((err = decode_win_sdram_fixup()) != 0)
559                 return(err);
560 #endif
561
562 #ifndef SOC_MV_FREY
563         if (!decode_win_cpu_valid() || !decode_win_usb_valid() ||
564             !decode_win_eth_valid() || !decode_win_idma_valid() ||
565             !decode_win_pcie_valid() || !decode_win_sata_valid() ||
566             !decode_win_xor_valid() || !decode_win_usb3_valid())
567                 return (EINVAL);
568
569         decode_win_cpu_setup();
570 #else
571         if (!decode_win_usb_valid() ||
572             !decode_win_eth_valid() || !decode_win_idma_valid() ||
573             !decode_win_pcie_valid() || !decode_win_sata_valid() ||
574             !decode_win_xor_valid() || !decode_win_usb3_valid())
575                 return (EINVAL);
576 #endif
577         if (MV_DUMP_WIN)
578                 soc_dump_decode_win();
579
580         eth_port = 0;
581         usb_port = 0;
582         if ((err = fdt_win_setup()) != 0)
583                 return (err);
584
585         return (0);
586 }
587
588 /**************************************************************************
589  * Decode windows registers accessors
590  **************************************************************************/
591 #if !defined(SOC_MV_FREY)
592 WIN_REG_IDX_RD(win_cpu, cr, MV_WIN_CPU_CTRL, MV_MBUS_BRIDGE_BASE)
593 WIN_REG_IDX_RD(win_cpu, br, MV_WIN_CPU_BASE, MV_MBUS_BRIDGE_BASE)
594 WIN_REG_IDX_RD(win_cpu, remap_l, MV_WIN_CPU_REMAP_LO, MV_MBUS_BRIDGE_BASE)
595 WIN_REG_IDX_RD(win_cpu, remap_h, MV_WIN_CPU_REMAP_HI, MV_MBUS_BRIDGE_BASE)
596 WIN_REG_IDX_WR(win_cpu, cr, MV_WIN_CPU_CTRL, MV_MBUS_BRIDGE_BASE)
597 WIN_REG_IDX_WR(win_cpu, br, MV_WIN_CPU_BASE, MV_MBUS_BRIDGE_BASE)
598 WIN_REG_IDX_WR(win_cpu, remap_l, MV_WIN_CPU_REMAP_LO, MV_MBUS_BRIDGE_BASE)
599 WIN_REG_IDX_WR(win_cpu, remap_h, MV_WIN_CPU_REMAP_HI, MV_MBUS_BRIDGE_BASE)
600 #endif
601
602 WIN_REG_BASE_IDX_RD(win_usb, cr, MV_WIN_USB_CTRL)
603 WIN_REG_BASE_IDX_RD(win_usb, br, MV_WIN_USB_BASE)
604 WIN_REG_BASE_IDX_WR(win_usb, cr, MV_WIN_USB_CTRL)
605 WIN_REG_BASE_IDX_WR(win_usb, br, MV_WIN_USB_BASE)
606
607 #ifdef SOC_MV_ARMADA38X
608 WIN_REG_BASE_IDX_RD(win_usb3, cr, MV_WIN_USB3_CTRL)
609 WIN_REG_BASE_IDX_RD(win_usb3, br, MV_WIN_USB3_BASE)
610 WIN_REG_BASE_IDX_WR(win_usb3, cr, MV_WIN_USB3_CTRL)
611 WIN_REG_BASE_IDX_WR(win_usb3, br, MV_WIN_USB3_BASE)
612 #endif
613
614 WIN_REG_BASE_IDX_RD(win_eth, br, MV_WIN_ETH_BASE)
615 WIN_REG_BASE_IDX_RD(win_eth, sz, MV_WIN_ETH_SIZE)
616 WIN_REG_BASE_IDX_RD(win_eth, har, MV_WIN_ETH_REMAP)
617 WIN_REG_BASE_IDX_WR(win_eth, br, MV_WIN_ETH_BASE)
618 WIN_REG_BASE_IDX_WR(win_eth, sz, MV_WIN_ETH_SIZE)
619 WIN_REG_BASE_IDX_WR(win_eth, har, MV_WIN_ETH_REMAP)
620
621 WIN_REG_BASE_IDX_RD2(win_xor, br, MV_WIN_XOR_BASE)
622 WIN_REG_BASE_IDX_RD2(win_xor, sz, MV_WIN_XOR_SIZE)
623 WIN_REG_BASE_IDX_RD2(win_xor, har, MV_WIN_XOR_REMAP)
624 WIN_REG_BASE_IDX_RD2(win_xor, ctrl, MV_WIN_XOR_CTRL)
625 WIN_REG_BASE_IDX_WR2(win_xor, br, MV_WIN_XOR_BASE)
626 WIN_REG_BASE_IDX_WR2(win_xor, sz, MV_WIN_XOR_SIZE)
627 WIN_REG_BASE_IDX_WR2(win_xor, har, MV_WIN_XOR_REMAP)
628 WIN_REG_BASE_IDX_WR2(win_xor, ctrl, MV_WIN_XOR_CTRL)
629
630 WIN_REG_BASE_RD(win_eth, bare, 0x290)
631 WIN_REG_BASE_RD(win_eth, epap, 0x294)
632 WIN_REG_BASE_WR(win_eth, bare, 0x290)
633 WIN_REG_BASE_WR(win_eth, epap, 0x294)
634
635 WIN_REG_BASE_IDX_RD(win_pcie, cr, MV_WIN_PCIE_CTRL);
636 WIN_REG_BASE_IDX_RD(win_pcie, br, MV_WIN_PCIE_BASE);
637 WIN_REG_BASE_IDX_RD(win_pcie, remap, MV_WIN_PCIE_REMAP);
638 WIN_REG_BASE_IDX_WR(win_pcie, cr, MV_WIN_PCIE_CTRL);
639 WIN_REG_BASE_IDX_WR(win_pcie, br, MV_WIN_PCIE_BASE);
640 WIN_REG_BASE_IDX_WR(win_pcie, remap, MV_WIN_PCIE_REMAP);
641 WIN_REG_BASE_IDX_RD(pcie_bar, br, MV_PCIE_BAR_BASE);
642 WIN_REG_BASE_IDX_WR(pcie_bar, br, MV_PCIE_BAR_BASE);
643 WIN_REG_BASE_IDX_WR(pcie_bar, brh, MV_PCIE_BAR_BASE_H);
644 WIN_REG_BASE_IDX_WR(pcie_bar, cr, MV_PCIE_BAR_CTRL);
645
646 WIN_REG_BASE_IDX_RD(win_idma, br, MV_WIN_IDMA_BASE)
647 WIN_REG_BASE_IDX_RD(win_idma, sz, MV_WIN_IDMA_SIZE)
648 WIN_REG_BASE_IDX_RD(win_idma, har, MV_WIN_IDMA_REMAP)
649 WIN_REG_BASE_IDX_RD(win_idma, cap, MV_WIN_IDMA_CAP)
650 WIN_REG_BASE_IDX_WR(win_idma, br, MV_WIN_IDMA_BASE)
651 WIN_REG_BASE_IDX_WR(win_idma, sz, MV_WIN_IDMA_SIZE)
652 WIN_REG_BASE_IDX_WR(win_idma, har, MV_WIN_IDMA_REMAP)
653 WIN_REG_BASE_IDX_WR(win_idma, cap, MV_WIN_IDMA_CAP)
654 WIN_REG_BASE_RD(win_idma, bare, 0xa80)
655 WIN_REG_BASE_WR(win_idma, bare, 0xa80)
656
657 WIN_REG_BASE_IDX_RD(win_sata, cr, MV_WIN_SATA_CTRL);
658 WIN_REG_BASE_IDX_RD(win_sata, br, MV_WIN_SATA_BASE);
659 WIN_REG_BASE_IDX_WR(win_sata, cr, MV_WIN_SATA_CTRL);
660 WIN_REG_BASE_IDX_WR(win_sata, br, MV_WIN_SATA_BASE);
661 #ifndef SOC_MV_DOVE
662 WIN_REG_IDX_RD(ddr, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
663 WIN_REG_IDX_RD(ddr, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
664 WIN_REG_IDX_WR(ddr, br, MV_WIN_DDR_BASE, MV_DDR_CADR_BASE)
665 WIN_REG_IDX_WR(ddr, sz, MV_WIN_DDR_SIZE, MV_DDR_CADR_BASE)
666 #else
667 /*
668  * On 88F6781 (Dove) SoC DDR Controller is accessed through
669  * single MBUS <-> AXI bridge. In this case we provide emulated
670  * ddr_br_read() and ddr_sz_read() functions to keep compatibility
671  * with common decoding windows setup code.
672  */
673
674 static inline uint32_t ddr_br_read(int i)
675 {
676         uint32_t mmap;
677
678         /* Read Memory Address Map Register for CS i */
679         mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
680
681         /* Return CS i base address */
682         return (mmap & 0xFF000000);
683 }
684
685 static inline uint32_t ddr_sz_read(int i)
686 {
687         uint32_t mmap, size;
688
689         /* Read Memory Address Map Register for CS i */
690         mmap = bus_space_read_4(fdtbus_bs_tag, MV_DDR_CADR_BASE + (i * 0x10), 0);
691
692         /* Extract size of CS space in 64kB units */
693         size = (1 << ((mmap >> 16) & 0x0F));
694
695         /* Return CS size and enable/disable status */
696         return (((size - 1) << 16) | (mmap & 0x01));
697 }
698 #endif
699
700 #if !defined(SOC_MV_FREY)
701 /**************************************************************************
702  * Decode windows helper routines
703  **************************************************************************/
704 void
705 soc_dump_decode_win(void)
706 {
707         uint32_t dev, rev;
708         int i;
709
710         soc_id(&dev, &rev);
711
712         for (i = 0; i < MV_WIN_CPU_MAX; i++) {
713                 printf("CPU window#%d: c 0x%08x, b 0x%08x", i,
714                     win_cpu_cr_read(i),
715                     win_cpu_br_read(i));
716
717                 if (win_cpu_can_remap(i))
718                         printf(", rl 0x%08x, rh 0x%08x",
719                             win_cpu_remap_l_read(i),
720                             win_cpu_remap_h_read(i));
721
722                 printf("\n");
723         }
724         printf("Internal regs base: 0x%08x\n",
725             bus_space_read_4(fdtbus_bs_tag, MV_INTREGS_BASE, 0));
726
727         for (i = 0; i < MV_WIN_DDR_MAX; i++)
728                 printf("DDR CS#%d: b 0x%08x, s 0x%08x\n", i,
729                     ddr_br_read(i), ddr_sz_read(i));
730 }
731
732 /**************************************************************************
733  * CPU windows routines
734  **************************************************************************/
735 int
736 win_cpu_can_remap(int i)
737 {
738         uint32_t dev, rev;
739
740         soc_id(&dev, &rev);
741
742         /* Depending on the SoC certain windows have remap capability */
743         if ((dev == MV_DEV_88F5182 && i < 2) ||
744             (dev == MV_DEV_88F5281 && i < 4) ||
745             (dev == MV_DEV_88F6281 && i < 4) ||
746             (dev == MV_DEV_88F6282 && i < 4) ||
747             (dev == MV_DEV_88F6828 && i < 20) ||
748             (dev == MV_DEV_88F6820 && i < 20) ||
749             (dev == MV_DEV_88F6810 && i < 20) ||
750             (dev == MV_DEV_88RC8180 && i < 2) ||
751             (dev == MV_DEV_88F6781 && i < 4) ||
752             (dev == MV_DEV_MV78100_Z0 && i < 8) ||
753             ((dev & MV_DEV_FAMILY_MASK) == MV_DEV_DISCOVERY && i < 8))
754                 return (1);
755
756         return (0);
757 }
758
759 /* XXX This should check for overlapping remap fields too.. */
760 int
761 decode_win_overlap(int win, int win_no, const struct decode_win *wintab)
762 {
763         const struct decode_win *tab;
764         int i;
765
766         tab = wintab;
767
768         for (i = 0; i < win_no; i++, tab++) {
769                 if (i == win)
770                         /* Skip self */
771                         continue;
772
773                 if ((tab->base + tab->size - 1) < (wintab + win)->base)
774                         continue;
775
776                 else if (((wintab + win)->base + (wintab + win)->size - 1) <
777                     tab->base)
778                         continue;
779                 else
780                         return (i);
781         }
782
783         return (-1);
784 }
785
786 static int
787 decode_win_cpu_valid(void)
788 {
789         int i, j, rv;
790         uint32_t b, e, s;
791
792         if (cpu_wins_no > MV_WIN_CPU_MAX) {
793                 printf("CPU windows: too many entries: %d\n", cpu_wins_no);
794                 return (0);
795         }
796
797         rv = 1;
798         for (i = 0; i < cpu_wins_no; i++) {
799
800                 if (cpu_wins[i].target == 0) {
801                         printf("CPU window#%d: DDR target window is not "
802                             "supposed to be reprogrammed!\n", i);
803                         rv = 0;
804                 }
805
806                 if (cpu_wins[i].remap != ~0 && win_cpu_can_remap(i) != 1) {
807                         printf("CPU window#%d: not capable of remapping, but "
808                             "val 0x%08x defined\n", i, cpu_wins[i].remap);
809                         rv = 0;
810                 }
811
812                 s = cpu_wins[i].size;
813                 b = cpu_wins[i].base;
814                 e = b + s - 1;
815                 if (s > (0xFFFFFFFF - b + 1)) {
816                         /*
817                          * XXX this boundary check should account for 64bit
818                          * and remapping..
819                          */
820                         printf("CPU window#%d: no space for size 0x%08x at "
821                             "0x%08x\n", i, s, b);
822                         rv = 0;
823                         continue;
824                 }
825
826                 if (b != rounddown2(b, s)) {
827                         printf("CPU window#%d: address 0x%08x is not aligned "
828                             "to 0x%08x\n", i, b, s);
829                         rv = 0;
830                         continue;
831                 }
832
833                 j = decode_win_overlap(i, cpu_wins_no, &cpu_wins[0]);
834                 if (j >= 0) {
835                         printf("CPU window#%d: (0x%08x - 0x%08x) overlaps "
836                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
837                             cpu_wins[j].base,
838                             cpu_wins[j].base + cpu_wins[j].size - 1);
839                         rv = 0;
840                 }
841         }
842
843         return (rv);
844 }
845
846 int
847 decode_win_cpu_set(int target, int attr, vm_paddr_t base, uint32_t size,
848     vm_paddr_t remap)
849 {
850         uint32_t br, cr;
851         int win, i;
852
853         if (remap == ~0) {
854                 win = MV_WIN_CPU_MAX - 1;
855                 i = -1;
856         } else {
857                 win = 0;
858                 i = 1;
859         }
860
861         while ((win >= 0) && (win < MV_WIN_CPU_MAX)) {
862                 cr = win_cpu_cr_read(win);
863                 if ((cr & MV_WIN_CPU_ENABLE_BIT) == 0)
864                         break;
865                 if ((cr & ((0xff << MV_WIN_CPU_ATTR_SHIFT) |
866                     (0x1f << MV_WIN_CPU_TARGET_SHIFT))) ==
867                     ((attr << MV_WIN_CPU_ATTR_SHIFT) |
868                     (target << MV_WIN_CPU_TARGET_SHIFT)))
869                         break;
870                 win += i;
871         }
872         if ((win < 0) || (win >= MV_WIN_CPU_MAX) ||
873             ((remap != ~0) && (win_cpu_can_remap(win) == 0)))
874                 return (-1);
875
876         br = base & 0xffff0000;
877         win_cpu_br_write(win, br);
878
879         if (win_cpu_can_remap(win)) {
880                 if (remap != ~0) {
881                         win_cpu_remap_l_write(win, remap & 0xffff0000);
882                         win_cpu_remap_h_write(win, 0);
883                 } else {
884                         /*
885                          * Remap function is not used for a given window
886                          * (capable of remapping) - set remap field with the
887                          * same value as base.
888                          */
889                         win_cpu_remap_l_write(win, base & 0xffff0000);
890                         win_cpu_remap_h_write(win, 0);
891                 }
892         }
893
894         cr = ((size - 1) & 0xffff0000) | (attr << MV_WIN_CPU_ATTR_SHIFT) |
895             (target << MV_WIN_CPU_TARGET_SHIFT) | MV_WIN_CPU_ENABLE_BIT;
896         win_cpu_cr_write(win, cr);
897
898         return (0);
899 }
900
901 static void
902 decode_win_cpu_setup(void)
903 {
904         int i;
905
906         /* Disable all CPU windows */
907         for (i = 0; i < MV_WIN_CPU_MAX; i++) {
908                 win_cpu_cr_write(i, 0);
909                 win_cpu_br_write(i, 0);
910                 if (win_cpu_can_remap(i)) {
911                         win_cpu_remap_l_write(i, 0);
912                         win_cpu_remap_h_write(i, 0);
913                 }
914         }
915
916         for (i = 0; i < cpu_wins_no; i++)
917                 if (cpu_wins[i].target > 0)
918                         decode_win_cpu_set(cpu_wins[i].target,
919                             cpu_wins[i].attr, cpu_wins[i].base,
920                             cpu_wins[i].size, cpu_wins[i].remap);
921
922 }
923 #endif
924
925 #ifdef SOC_MV_ARMADAXP
926 static int
927 decode_win_sdram_fixup(void)
928 {
929         struct mem_region mr[FDT_MEM_REGIONS];
930         uint8_t window_valid[MV_WIN_DDR_MAX];
931         int mr_cnt, err, i, j;
932         uint32_t valid_win_num = 0;
933
934         /* Grab physical memory regions information from device tree. */
935         err = fdt_get_mem_regions(mr, &mr_cnt, NULL);
936         if (err != 0)
937                 return (err);
938
939         for (i = 0; i < MV_WIN_DDR_MAX; i++)
940                 window_valid[i] = 0;
941
942         /* Try to match entries from device tree with settings from u-boot */
943         for (i = 0; i < mr_cnt; i++) {
944                 for (j = 0; j < MV_WIN_DDR_MAX; j++) {
945                         if (ddr_is_active(j) &&
946                             (ddr_base(j) == mr[i].mr_start) &&
947                             (ddr_size(j) == mr[i].mr_size)) {
948                                 window_valid[j] = 1;
949                                 valid_win_num++;
950                         }
951                 }
952         }
953
954         if (mr_cnt != valid_win_num)
955                 return (EINVAL);
956
957         /* Destroy windows without corresponding device tree entry */
958         for (j = 0; j < MV_WIN_DDR_MAX; j++) {
959                 if (ddr_is_active(j) && (window_valid[j] != 1)) {
960                         printf("Disabling SDRAM decoding window: %d\n", j);
961                         ddr_disable(j);
962                 }
963         }
964
965         return (0);
966 }
967 #endif
968 /*
969  * Check if we're able to cover all active DDR banks.
970  */
971 static int
972 decode_win_can_cover_ddr(int max)
973 {
974         int i, c;
975
976         c = 0;
977         for (i = 0; i < MV_WIN_DDR_MAX; i++)
978                 if (ddr_is_active(i))
979                         c++;
980
981         if (c > max) {
982                 printf("Unable to cover all active DDR banks: "
983                     "%d, available windows: %d\n", c, max);
984                 return (0);
985         }
986
987         return (1);
988 }
989
990 /**************************************************************************
991  * DDR windows routines
992  **************************************************************************/
993 int
994 ddr_is_active(int i)
995 {
996
997         if (ddr_sz_read(i) & 0x1)
998                 return (1);
999
1000         return (0);
1001 }
1002
1003 void
1004 ddr_disable(int i)
1005 {
1006
1007         ddr_sz_write(i, 0);
1008         ddr_br_write(i, 0);
1009 }
1010
1011 uint32_t
1012 ddr_base(int i)
1013 {
1014
1015         return (ddr_br_read(i) & 0xff000000);
1016 }
1017
1018 uint32_t
1019 ddr_size(int i)
1020 {
1021
1022         return ((ddr_sz_read(i) | 0x00ffffff) + 1);
1023 }
1024
1025 uint32_t
1026 ddr_attr(int i)
1027 {
1028         uint32_t dev, rev;
1029
1030         soc_id(&dev, &rev);
1031         if (dev == MV_DEV_88RC8180)
1032                 return ((ddr_sz_read(i) & 0xf0) >> 4);
1033         if (dev == MV_DEV_88F6781)
1034                 return (0);
1035
1036         return (i == 0 ? 0xe :
1037             (i == 1 ? 0xd :
1038             (i == 2 ? 0xb :
1039             (i == 3 ? 0x7 : 0xff))));
1040 }
1041
1042 uint32_t
1043 ddr_target(int i)
1044 {
1045         uint32_t dev, rev;
1046
1047         soc_id(&dev, &rev);
1048         if (dev == MV_DEV_88RC8180) {
1049                 i = (ddr_sz_read(i) & 0xf0) >> 4;
1050                 return (i == 0xe ? 0xc :
1051                     (i == 0xd ? 0xd :
1052                     (i == 0xb ? 0xe :
1053                     (i == 0x7 ? 0xf : 0xc))));
1054         }
1055
1056         /*
1057          * On SOCs other than 88RC8180 Mbus unit ID for
1058          * DDR SDRAM controller is always 0x0.
1059          */
1060         return (0);
1061 }
1062
1063 /**************************************************************************
1064  * USB windows routines
1065  **************************************************************************/
1066 static int
1067 decode_win_usb_valid(void)
1068 {
1069
1070         return (decode_win_can_cover_ddr(MV_WIN_USB_MAX));
1071 }
1072
1073 static void
1074 decode_win_usb_dump(u_long base)
1075 {
1076         int i;
1077
1078         if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port - 1)))
1079                 return;
1080
1081         for (i = 0; i < MV_WIN_USB_MAX; i++)
1082                 printf("USB window#%d: c 0x%08x, b 0x%08x\n", i,
1083                     win_usb_cr_read(base, i), win_usb_br_read(base, i));
1084 }
1085
1086 /*
1087  * Set USB decode windows.
1088  */
1089 static void
1090 decode_win_usb_setup(u_long base)
1091 {
1092         uint32_t br, cr;
1093         int i, j;
1094
1095
1096         if (pm_is_disabled(CPU_PM_CTRL_USB(usb_port)))
1097                 return;
1098
1099         usb_port++;
1100
1101         for (i = 0; i < MV_WIN_USB_MAX; i++) {
1102                 win_usb_cr_write(base, i, 0);
1103                 win_usb_br_write(base, i, 0);
1104         }
1105
1106         /* Only access to active DRAM banks is required */
1107         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1108                 if (ddr_is_active(i)) {
1109                         br = ddr_base(i);
1110                         /*
1111                          * XXX for 6281 we should handle Mbus write
1112                          * burst limit field in the ctrl reg
1113                          */
1114                         cr = (((ddr_size(i) - 1) & 0xffff0000) |
1115                             (ddr_attr(i) << 8) |
1116                             (ddr_target(i) << 4) | 1);
1117
1118                         /* Set the first free USB window */
1119                         for (j = 0; j < MV_WIN_USB_MAX; j++) {
1120                                 if (win_usb_cr_read(base, j) & 0x1)
1121                                         continue;
1122
1123                                 win_usb_br_write(base, j, br);
1124                                 win_usb_cr_write(base, j, cr);
1125                                 break;
1126                         }
1127                 }
1128         }
1129 }
1130
1131 /**************************************************************************
1132  * USB3 windows routines
1133  **************************************************************************/
1134 #ifdef SOC_MV_ARMADA38X
1135 static int
1136 decode_win_usb3_valid(void)
1137 {
1138
1139         return (decode_win_can_cover_ddr(MV_WIN_USB3_MAX));
1140 }
1141
1142 static void
1143 decode_win_usb3_dump(u_long base)
1144 {
1145         int i;
1146
1147         for (i = 0; i < MV_WIN_USB3_MAX; i++)
1148                 printf("USB3.0 window#%d: c 0x%08x, b 0x%08x\n", i,
1149                     win_usb3_cr_read(base, i), win_usb3_br_read(base, i));
1150 }
1151
1152 /*
1153  * Set USB3 decode windows
1154  */
1155 static void
1156 decode_win_usb3_setup(u_long base)
1157 {
1158         uint32_t br, cr;
1159         int i, j;
1160
1161         for (i = 0; i < MV_WIN_USB3_MAX; i++) {
1162                 win_usb3_cr_write(base, i, 0);
1163                 win_usb3_br_write(base, i, 0);
1164         }
1165
1166         /* Only access to active DRAM banks is required */
1167         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1168                 if (ddr_is_active(i)) {
1169                         br = ddr_base(i);
1170                         cr = (((ddr_size(i) - 1) &
1171                             (IO_WIN_SIZE_MASK << IO_WIN_SIZE_SHIFT)) |
1172                             (ddr_attr(i) << IO_WIN_ATTR_SHIFT) |
1173                             (ddr_target(i) << IO_WIN_TGT_SHIFT) |
1174                             IO_WIN_ENA_MASK);
1175
1176                         /* Set the first free USB3.0 window */
1177                         for (j = 0; j < MV_WIN_USB3_MAX; j++) {
1178                                 if (win_usb3_cr_read(base, j) & IO_WIN_ENA_MASK)
1179                                         continue;
1180
1181                                 win_usb3_br_write(base, j, br);
1182                                 win_usb3_cr_write(base, j, cr);
1183                                 break;
1184                         }
1185                 }
1186         }
1187 }
1188 #else
1189 /*
1190  * Provide dummy functions to satisfy the build
1191  * for SoCs not equipped with USB3
1192  */
1193 static int
1194 decode_win_usb3_valid(void)
1195 {
1196
1197         return (1);
1198 }
1199
1200 static void
1201 decode_win_usb3_setup(u_long base)
1202 {
1203 }
1204
1205 static void
1206 decode_win_usb3_dump(u_long base)
1207 {
1208 }
1209 #endif
1210 /**************************************************************************
1211  * ETH windows routines
1212  **************************************************************************/
1213
1214 static int
1215 win_eth_can_remap(int i)
1216 {
1217
1218         /* ETH encode windows 0-3 have remap capability */
1219         if (i < 4)
1220                 return (1);
1221
1222         return (0);
1223 }
1224
1225 static int
1226 eth_bare_read(uint32_t base, int i)
1227 {
1228         uint32_t v;
1229
1230         v = win_eth_bare_read(base);
1231         v &= (1 << i);
1232
1233         return (v >> i);
1234 }
1235
1236 static void
1237 eth_bare_write(uint32_t base, int i, int val)
1238 {
1239         uint32_t v;
1240
1241         v = win_eth_bare_read(base);
1242         v &= ~(1 << i);
1243         v |= (val << i);
1244         win_eth_bare_write(base, v);
1245 }
1246
1247 static void
1248 eth_epap_write(uint32_t base, int i, int val)
1249 {
1250         uint32_t v;
1251
1252         v = win_eth_epap_read(base);
1253         v &= ~(0x3 << (i * 2));
1254         v |= (val << (i * 2));
1255         win_eth_epap_write(base, v);
1256 }
1257
1258 static void
1259 decode_win_eth_dump(u_long base)
1260 {
1261         int i;
1262
1263         if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port - 1)))
1264                 return;
1265
1266         for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1267                 printf("ETH window#%d: b 0x%08x, s 0x%08x", i,
1268                     win_eth_br_read(base, i),
1269                     win_eth_sz_read(base, i));
1270
1271                 if (win_eth_can_remap(i))
1272                         printf(", ha 0x%08x",
1273                             win_eth_har_read(base, i));
1274
1275                 printf("\n");
1276         }
1277         printf("ETH windows: bare 0x%08x, epap 0x%08x\n",
1278             win_eth_bare_read(base),
1279             win_eth_epap_read(base));
1280 }
1281
1282 #if defined(SOC_MV_LOKIPLUS)
1283 #define MV_WIN_ETH_DDR_TRGT(n)  0
1284 #else
1285 #define MV_WIN_ETH_DDR_TRGT(n)  ddr_target(n)
1286 #endif
1287
1288 static void
1289 decode_win_eth_setup(u_long base)
1290 {
1291         uint32_t br, sz;
1292         int i, j;
1293
1294         if (pm_is_disabled(CPU_PM_CTRL_GE(eth_port)))
1295                 return;
1296
1297         eth_port++;
1298
1299         /* Disable, clear and revoke protection for all ETH windows */
1300         for (i = 0; i < MV_WIN_ETH_MAX; i++) {
1301
1302                 eth_bare_write(base, i, 1);
1303                 eth_epap_write(base, i, 0);
1304                 win_eth_br_write(base, i, 0);
1305                 win_eth_sz_write(base, i, 0);
1306                 if (win_eth_can_remap(i))
1307                         win_eth_har_write(base, i, 0);
1308         }
1309
1310         /* Only access to active DRAM banks is required */
1311         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1312                 if (ddr_is_active(i)) {
1313
1314                         br = ddr_base(i) | (ddr_attr(i) << 8) | MV_WIN_ETH_DDR_TRGT(i);
1315                         sz = ((ddr_size(i) - 1) & 0xffff0000);
1316
1317                         /* Set the first free ETH window */
1318                         for (j = 0; j < MV_WIN_ETH_MAX; j++) {
1319                                 if (eth_bare_read(base, j) == 0)
1320                                         continue;
1321
1322                                 win_eth_br_write(base, j, br);
1323                                 win_eth_sz_write(base, j, sz);
1324
1325                                 /* XXX remapping ETH windows not supported */
1326
1327                                 /* Set protection RW */
1328                                 eth_epap_write(base, j, 0x3);
1329
1330                                 /* Enable window */
1331                                 eth_bare_write(base, j, 0);
1332                                 break;
1333                         }
1334                 }
1335 }
1336
1337 static int
1338 decode_win_eth_valid(void)
1339 {
1340
1341         return (decode_win_can_cover_ddr(MV_WIN_ETH_MAX));
1342 }
1343
1344 /**************************************************************************
1345  * PCIE windows routines
1346  **************************************************************************/
1347
1348 void
1349 decode_win_pcie_setup(u_long base)
1350 {
1351         uint32_t size = 0, ddrbase = ~0;
1352         uint32_t cr, br;
1353         int i, j;
1354
1355         for (i = 0; i < MV_PCIE_BAR_MAX; i++) {
1356                 pcie_bar_br_write(base, i,
1357                     MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1358                 if (i < 3)
1359                         pcie_bar_brh_write(base, i, 0);
1360                 if (i > 0)
1361                         pcie_bar_cr_write(base, i, 0);
1362         }
1363
1364         for (i = 0; i < MV_WIN_PCIE_MAX; i++) {
1365                 win_pcie_cr_write(base, i, 0);
1366                 win_pcie_br_write(base, i, 0);
1367                 win_pcie_remap_write(base, i, 0);
1368         }
1369
1370         /* On End-Point only set BAR size to 1MB regardless of DDR size */
1371         if ((bus_space_read_4(fdtbus_bs_tag, base, MV_PCIE_CONTROL)
1372             & MV_PCIE_ROOT_CMPLX) == 0) {
1373                 pcie_bar_cr_write(base, 1, 0xf0000 | 1);
1374                 return;
1375         }
1376
1377         for (i = 0; i < MV_WIN_DDR_MAX; i++) {
1378                 if (ddr_is_active(i)) {
1379                         /* Map DDR to BAR 1 */
1380                         cr = (ddr_size(i) - 1) & 0xffff0000;
1381                         size += ddr_size(i) & 0xffff0000;
1382                         cr |= (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
1383                         br = ddr_base(i);
1384                         if (br < ddrbase)
1385                                 ddrbase = br;
1386
1387                         /* Use the first available PCIE window */
1388                         for (j = 0; j < MV_WIN_PCIE_MAX; j++) {
1389                                 if (win_pcie_cr_read(base, j) != 0)
1390                                         continue;
1391
1392                                 win_pcie_br_write(base, j, br);
1393                                 win_pcie_cr_write(base, j, cr);
1394                                 break;
1395                         }
1396                 }
1397         }
1398
1399         /*
1400          * Upper 16 bits in BAR register is interpreted as BAR size
1401          * (in 64 kB units) plus 64kB, so subtract 0x10000
1402          * form value passed to register to get correct value.
1403          */
1404         size -= 0x10000;
1405         pcie_bar_cr_write(base, 1, size | 1);
1406         pcie_bar_br_write(base, 1, ddrbase |
1407             MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1408         pcie_bar_br_write(base, 0, fdt_immr_pa |
1409             MV_PCIE_BAR_64BIT | MV_PCIE_BAR_PREFETCH_EN);
1410 }
1411
1412 static int
1413 decode_win_pcie_valid(void)
1414 {
1415
1416         return (decode_win_can_cover_ddr(MV_WIN_PCIE_MAX));
1417 }
1418
1419 /**************************************************************************
1420  * IDMA windows routines
1421  **************************************************************************/
1422 #if defined(SOC_MV_ORION) || defined(SOC_MV_DISCOVERY)
1423 static int
1424 idma_bare_read(u_long base, int i)
1425 {
1426         uint32_t v;
1427
1428         v = win_idma_bare_read(base);
1429         v &= (1 << i);
1430
1431         return (v >> i);
1432 }
1433
1434 static void
1435 idma_bare_write(u_long base, int i, int val)
1436 {
1437         uint32_t v;
1438
1439         v = win_idma_bare_read(base);
1440         v &= ~(1 << i);
1441         v |= (val << i);
1442         win_idma_bare_write(base, v);
1443 }
1444
1445 /*
1446  * Sets channel protection 'val' for window 'w' on channel 'c'
1447  */
1448 static void
1449 idma_cap_write(u_long base, int c, int w, int val)
1450 {
1451         uint32_t v;
1452
1453         v = win_idma_cap_read(base, c);
1454         v &= ~(0x3 << (w * 2));
1455         v |= (val << (w * 2));
1456         win_idma_cap_write(base, c, v);
1457 }
1458
1459 /*
1460  * Set protection 'val' on all channels for window 'w'
1461  */
1462 static void
1463 idma_set_prot(u_long base, int w, int val)
1464 {
1465         int c;
1466
1467         for (c = 0; c < MV_IDMA_CHAN_MAX; c++)
1468                 idma_cap_write(base, c, w, val);
1469 }
1470
1471 static int
1472 win_idma_can_remap(int i)
1473 {
1474
1475         /* IDMA decode windows 0-3 have remap capability */
1476         if (i < 4)
1477                 return (1);
1478
1479         return (0);
1480 }
1481
1482 void
1483 decode_win_idma_setup(u_long base)
1484 {
1485         uint32_t br, sz;
1486         int i, j;
1487
1488         if (pm_is_disabled(CPU_PM_CTRL_IDMA))
1489                 return;
1490         /*
1491          * Disable and clear all IDMA windows, revoke protection for all channels
1492          */
1493         for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
1494
1495                 idma_bare_write(base, i, 1);
1496                 win_idma_br_write(base, i, 0);
1497                 win_idma_sz_write(base, i, 0);
1498                 if (win_idma_can_remap(i) == 1)
1499                         win_idma_har_write(base, i, 0);
1500         }
1501         for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
1502                 win_idma_cap_write(base, i, 0);
1503
1504         /*
1505          * Set up access to all active DRAM banks
1506          */
1507         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1508                 if (ddr_is_active(i)) {
1509                         br = ddr_base(i) | (ddr_attr(i) << 8) | ddr_target(i);
1510                         sz = ((ddr_size(i) - 1) & 0xffff0000);
1511
1512                         /* Place DDR entries in non-remapped windows */
1513                         for (j = 0; j < MV_WIN_IDMA_MAX; j++)
1514                                 if (win_idma_can_remap(j) != 1 &&
1515                                     idma_bare_read(base, j) == 1) {
1516
1517                                         /* Configure window */
1518                                         win_idma_br_write(base, j, br);
1519                                         win_idma_sz_write(base, j, sz);
1520
1521                                         /* Set protection RW on all channels */
1522                                         idma_set_prot(base, j, 0x3);
1523
1524                                         /* Enable window */
1525                                         idma_bare_write(base, j, 0);
1526                                         break;
1527                                 }
1528                 }
1529
1530         /*
1531          * Remaining targets -- from statically defined table
1532          */
1533         for (i = 0; i < idma_wins_no; i++)
1534                 if (idma_wins[i].target > 0) {
1535                         br = (idma_wins[i].base & 0xffff0000) |
1536                             (idma_wins[i].attr << 8) | idma_wins[i].target;
1537                         sz = ((idma_wins[i].size - 1) & 0xffff0000);
1538
1539                         /* Set the first free IDMA window */
1540                         for (j = 0; j < MV_WIN_IDMA_MAX; j++) {
1541                                 if (idma_bare_read(base, j) == 0)
1542                                         continue;
1543
1544                                 /* Configure window */
1545                                 win_idma_br_write(base, j, br);
1546                                 win_idma_sz_write(base, j, sz);
1547                                 if (win_idma_can_remap(j) &&
1548                                     idma_wins[j].remap >= 0)
1549                                         win_idma_har_write(base, j,
1550                                             idma_wins[j].remap);
1551
1552                                 /* Set protection RW on all channels */
1553                                 idma_set_prot(base, j, 0x3);
1554
1555                                 /* Enable window */
1556                                 idma_bare_write(base, j, 0);
1557                                 break;
1558                         }
1559                 }
1560 }
1561
1562 int
1563 decode_win_idma_valid(void)
1564 {
1565         const struct decode_win *wintab;
1566         int c, i, j, rv;
1567         uint32_t b, e, s;
1568
1569         if (idma_wins_no > MV_WIN_IDMA_MAX) {
1570                 printf("IDMA windows: too many entries: %d\n", idma_wins_no);
1571                 return (0);
1572         }
1573         for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
1574                 if (ddr_is_active(i))
1575                         c++;
1576
1577         if (idma_wins_no > (MV_WIN_IDMA_MAX - c)) {
1578                 printf("IDMA windows: too many entries: %d, available: %d\n",
1579                     idma_wins_no, MV_WIN_IDMA_MAX - c);
1580                 return (0);
1581         }
1582
1583         wintab = idma_wins;
1584         rv = 1;
1585         for (i = 0; i < idma_wins_no; i++, wintab++) {
1586
1587                 if (wintab->target == 0) {
1588                         printf("IDMA window#%d: DDR target window is not "
1589                             "supposed to be reprogrammed!\n", i);
1590                         rv = 0;
1591                 }
1592
1593                 if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
1594                         printf("IDMA window#%d: not capable of remapping, but "
1595                             "val 0x%08x defined\n", i, wintab->remap);
1596                         rv = 0;
1597                 }
1598
1599                 s = wintab->size;
1600                 b = wintab->base;
1601                 e = b + s - 1;
1602                 if (s > (0xFFFFFFFF - b + 1)) {
1603                         /* XXX this boundary check should account for 64bit and
1604                          * remapping.. */
1605                         printf("IDMA window#%d: no space for size 0x%08x at "
1606                             "0x%08x\n", i, s, b);
1607                         rv = 0;
1608                         continue;
1609                 }
1610
1611                 j = decode_win_overlap(i, idma_wins_no, &idma_wins[0]);
1612                 if (j >= 0) {
1613                         printf("IDMA window#%d: (0x%08x - 0x%08x) overlaps "
1614                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
1615                             idma_wins[j].base,
1616                             idma_wins[j].base + idma_wins[j].size - 1);
1617                         rv = 0;
1618                 }
1619         }
1620
1621         return (rv);
1622 }
1623
1624 void
1625 decode_win_idma_dump(u_long base)
1626 {
1627         int i;
1628
1629         if (pm_is_disabled(CPU_PM_CTRL_IDMA))
1630                 return;
1631
1632         for (i = 0; i < MV_WIN_IDMA_MAX; i++) {
1633                 printf("IDMA window#%d: b 0x%08x, s 0x%08x", i,
1634                     win_idma_br_read(base, i), win_idma_sz_read(base, i));
1635                 
1636                 if (win_idma_can_remap(i))
1637                         printf(", ha 0x%08x", win_idma_har_read(base, i));
1638
1639                 printf("\n");
1640         }
1641         for (i = 0; i < MV_IDMA_CHAN_MAX; i++)
1642                 printf("IDMA channel#%d: ap 0x%08x\n", i,
1643                     win_idma_cap_read(base, i));
1644         printf("IDMA windows: bare 0x%08x\n", win_idma_bare_read(base));
1645 }
1646 #else
1647
1648 /* Provide dummy functions to satisfy the build for SoCs not equipped with IDMA */
1649 int
1650 decode_win_idma_valid(void)
1651 {
1652
1653         return (1);
1654 }
1655
1656 void
1657 decode_win_idma_setup(u_long base)
1658 {
1659 }
1660
1661 void
1662 decode_win_idma_dump(u_long base)
1663 {
1664 }
1665 #endif
1666
1667 /**************************************************************************
1668  * XOR windows routines
1669  **************************************************************************/
1670 #if defined(SOC_MV_KIRKWOOD) || defined(SOC_MV_DISCOVERY)
1671 static int
1672 xor_ctrl_read(u_long base, int i, int c, int e)
1673 {
1674         uint32_t v;
1675         v = win_xor_ctrl_read(base, c, e);
1676         v &= (1 << i);
1677
1678         return (v >> i);
1679 }
1680
1681 static void
1682 xor_ctrl_write(u_long base, int i, int c, int e, int val)
1683 {
1684         uint32_t v;
1685
1686         v = win_xor_ctrl_read(base, c, e);
1687         v &= ~(1 << i);
1688         v |= (val << i);
1689         win_xor_ctrl_write(base, c, e, v);
1690 }
1691
1692 /*
1693  * Set channel protection 'val' for window 'w' on channel 'c'
1694  */
1695 static void
1696 xor_chan_write(u_long base, int c, int e, int w, int val)
1697 {
1698         uint32_t v;
1699
1700         v = win_xor_ctrl_read(base, c, e);
1701         v &= ~(0x3 << (w * 2 + 16));
1702         v |= (val << (w * 2 + 16));
1703         win_xor_ctrl_write(base, c, e, v);
1704 }
1705
1706 /*
1707  * Set protection 'val' on all channels for window 'w' on engine 'e'
1708  */
1709 static void
1710 xor_set_prot(u_long base, int w, int e, int val)
1711 {
1712         int c;
1713
1714         for (c = 0; c < MV_XOR_CHAN_MAX; c++)
1715                 xor_chan_write(base, c, e, w, val);
1716 }
1717
1718 static int
1719 win_xor_can_remap(int i)
1720 {
1721
1722         /* XOR decode windows 0-3 have remap capability */
1723         if (i < 4)
1724                 return (1);
1725
1726         return (0);
1727 }
1728
1729 static int
1730 xor_max_eng(void)
1731 {
1732         uint32_t dev, rev;
1733
1734         soc_id(&dev, &rev);
1735         switch (dev) {
1736         case MV_DEV_88F6281:
1737         case MV_DEV_88F6282:
1738         case MV_DEV_MV78130:
1739         case MV_DEV_MV78160:
1740         case MV_DEV_MV78230:
1741         case MV_DEV_MV78260:
1742         case MV_DEV_MV78460:
1743                 return (2);
1744         case MV_DEV_MV78100:
1745         case MV_DEV_MV78100_Z0:
1746                 return (1);
1747         default:
1748                 return (0);
1749         }
1750 }
1751
1752 static void
1753 xor_active_dram(u_long base, int c, int e, int *window)
1754 {
1755         uint32_t br, sz;
1756         int i, m, w;
1757
1758         /*
1759          * Set up access to all active DRAM banks
1760          */
1761         m = xor_max_eng();
1762         for (i = 0; i < m; i++)
1763                 if (ddr_is_active(i)) {
1764                         br = ddr_base(i) | (ddr_attr(i) << 8) |
1765                             ddr_target(i);
1766                         sz = ((ddr_size(i) - 1) & 0xffff0000);
1767
1768                         /* Place DDR entries in non-remapped windows */
1769                         for (w = 0; w < MV_WIN_XOR_MAX; w++)
1770                                 if (win_xor_can_remap(w) != 1 &&
1771                                     (xor_ctrl_read(base, w, c, e) == 0) &&
1772                                     w > *window) {
1773                                         /* Configure window */
1774                                         win_xor_br_write(base, w, e, br);
1775                                         win_xor_sz_write(base, w, e, sz);
1776
1777                                         /* Set protection RW on all channels */
1778                                         xor_set_prot(base, w, e, 0x3);
1779
1780                                         /* Enable window */
1781                                         xor_ctrl_write(base, w, c, e, 1);
1782                                         (*window)++;
1783                                         break;
1784                                 }
1785                 }
1786 }
1787
1788 void
1789 decode_win_xor_setup(u_long base)
1790 {
1791         uint32_t br, sz;
1792         int i, j, z, e = 1, m, window;
1793
1794         if (pm_is_disabled(CPU_PM_CTRL_XOR))
1795                 return;
1796
1797         /*
1798          * Disable and clear all XOR windows, revoke protection for all
1799          * channels
1800          */
1801         m = xor_max_eng();
1802         for (j = 0; j < m; j++, e--) {
1803
1804                 /* Number of non-remaped windows */
1805                 window = MV_XOR_NON_REMAP - 1;
1806
1807                 for (i = 0; i < MV_WIN_XOR_MAX; i++) {
1808                         win_xor_br_write(base, i, e, 0);
1809                         win_xor_sz_write(base, i, e, 0);
1810                 }
1811
1812                 if (win_xor_can_remap(i) == 1)
1813                         win_xor_har_write(base, i, e, 0);
1814
1815                 for (i = 0; i < MV_XOR_CHAN_MAX; i++) {
1816                         win_xor_ctrl_write(base, i, e, 0);
1817                         xor_active_dram(base, i, e, &window);
1818                 }
1819
1820                 /*
1821                  * Remaining targets -- from a statically defined table
1822                  */
1823                 for (i = 0; i < xor_wins_no; i++)
1824                         if (xor_wins[i].target > 0) {
1825                                 br = (xor_wins[i].base & 0xffff0000) |
1826                                     (xor_wins[i].attr << 8) |
1827                                     xor_wins[i].target;
1828                                 sz = ((xor_wins[i].size - 1) & 0xffff0000);
1829
1830                                 /* Set the first free XOR window */
1831                                 for (z = 0; z < MV_WIN_XOR_MAX; z++) {
1832                                         if (xor_ctrl_read(base, z, 0, e) &&
1833                                             xor_ctrl_read(base, z, 1, e))
1834                                                 continue;
1835
1836                                         /* Configure window */
1837                                         win_xor_br_write(base, z, e, br);
1838                                         win_xor_sz_write(base, z, e, sz);
1839                                         if (win_xor_can_remap(z) &&
1840                                             xor_wins[z].remap >= 0)
1841                                                 win_xor_har_write(base, z, e,
1842                                                     xor_wins[z].remap);
1843
1844                                         /* Set protection RW on all channels */
1845                                         xor_set_prot(base, z, e, 0x3);
1846
1847                                         /* Enable window */
1848                                         xor_ctrl_write(base, z, 0, e, 1);
1849                                         xor_ctrl_write(base, z, 1, e, 1);
1850                                         break;
1851                                 }
1852                         }
1853         }
1854 }
1855
1856 int
1857 decode_win_xor_valid(void)
1858 {
1859         const struct decode_win *wintab;
1860         int c, i, j, rv;
1861         uint32_t b, e, s;
1862
1863         if (xor_wins_no > MV_WIN_XOR_MAX) {
1864                 printf("XOR windows: too many entries: %d\n", xor_wins_no);
1865                 return (0);
1866         }
1867         for (i = 0, c = 0; i < MV_WIN_DDR_MAX; i++)
1868                 if (ddr_is_active(i))
1869                         c++;
1870
1871         if (xor_wins_no > (MV_WIN_XOR_MAX - c)) {
1872                 printf("XOR windows: too many entries: %d, available: %d\n",
1873                     xor_wins_no, MV_WIN_IDMA_MAX - c);
1874                 return (0);
1875         }
1876
1877         wintab = xor_wins;
1878         rv = 1;
1879         for (i = 0; i < xor_wins_no; i++, wintab++) {
1880
1881                 if (wintab->target == 0) {
1882                         printf("XOR window#%d: DDR target window is not "
1883                             "supposed to be reprogrammed!\n", i);
1884                         rv = 0;
1885                 }
1886
1887                 if (wintab->remap >= 0 && win_cpu_can_remap(i) != 1) {
1888                         printf("XOR window#%d: not capable of remapping, but "
1889                             "val 0x%08x defined\n", i, wintab->remap);
1890                         rv = 0;
1891                 }
1892
1893                 s = wintab->size;
1894                 b = wintab->base;
1895                 e = b + s - 1;
1896                 if (s > (0xFFFFFFFF - b + 1)) {
1897                         /*
1898                          * XXX this boundary check should account for 64bit
1899                          * and remapping..
1900                          */
1901                         printf("XOR window#%d: no space for size 0x%08x at "
1902                             "0x%08x\n", i, s, b);
1903                         rv = 0;
1904                         continue;
1905                 }
1906
1907                 j = decode_win_overlap(i, xor_wins_no, &xor_wins[0]);
1908                 if (j >= 0) {
1909                         printf("XOR window#%d: (0x%08x - 0x%08x) overlaps "
1910                             "with #%d (0x%08x - 0x%08x)\n", i, b, e, j,
1911                             xor_wins[j].base,
1912                             xor_wins[j].base + xor_wins[j].size - 1);
1913                         rv = 0;
1914                 }
1915         }
1916
1917         return (rv);
1918 }
1919
1920 void
1921 decode_win_xor_dump(u_long base)
1922 {
1923         int i, j;
1924         int e = 1;
1925
1926         if (pm_is_disabled(CPU_PM_CTRL_XOR))
1927                 return;
1928
1929         for (j = 0; j < xor_max_eng(); j++, e--) {
1930                 for (i = 0; i < MV_WIN_XOR_MAX; i++) {
1931                         printf("XOR window#%d: b 0x%08x, s 0x%08x", i,
1932                             win_xor_br_read(base, i, e), win_xor_sz_read(base, i, e));
1933
1934                         if (win_xor_can_remap(i))
1935                                 printf(", ha 0x%08x", win_xor_har_read(base, i, e));
1936
1937                         printf("\n");
1938                 }
1939                 for (i = 0; i < MV_XOR_CHAN_MAX; i++)
1940                         printf("XOR control#%d: 0x%08x\n", i,
1941                             win_xor_ctrl_read(base, i, e));
1942         }
1943 }
1944
1945 #else
1946 /* Provide dummy functions to satisfy the build for SoCs not equipped with XOR */
1947 static int
1948 decode_win_xor_valid(void)
1949 {
1950
1951         return (1);
1952 }
1953
1954 static void
1955 decode_win_xor_setup(u_long base)
1956 {
1957 }
1958
1959 static void
1960 decode_win_xor_dump(u_long base)
1961 {
1962 }
1963 #endif
1964
1965 /**************************************************************************
1966  * SATA windows routines
1967  **************************************************************************/
1968 static void
1969 decode_win_sata_setup(u_long base)
1970 {
1971         uint32_t cr, br;
1972         int i, j;
1973
1974         if (pm_is_disabled(CPU_PM_CTRL_SATA))
1975                 return;
1976
1977         for (i = 0; i < MV_WIN_SATA_MAX; i++) {
1978                 win_sata_cr_write(base, i, 0);
1979                 win_sata_br_write(base, i, 0);
1980         }
1981
1982         for (i = 0; i < MV_WIN_DDR_MAX; i++)
1983                 if (ddr_is_active(i)) {
1984                         cr = ((ddr_size(i) - 1) & 0xffff0000) |
1985                             (ddr_attr(i) << 8) | (ddr_target(i) << 4) | 1;
1986                         br = ddr_base(i);
1987
1988                         /* Use the first available SATA window */
1989                         for (j = 0; j < MV_WIN_SATA_MAX; j++) {
1990                                 if ((win_sata_cr_read(base, j) & 1) != 0)
1991                                         continue;
1992
1993                                 win_sata_br_write(base, j, br);
1994                                 win_sata_cr_write(base, j, cr);
1995                                 break;
1996                         }
1997                 }
1998 }
1999
2000 static int
2001 decode_win_sata_valid(void)
2002 {
2003         uint32_t dev, rev;
2004
2005         soc_id(&dev, &rev);
2006         if (dev == MV_DEV_88F5281)
2007                 return (1);
2008
2009         return (decode_win_can_cover_ddr(MV_WIN_SATA_MAX));
2010 }
2011
2012 /**************************************************************************
2013  * FDT parsing routines.
2014  **************************************************************************/
2015
2016 static int
2017 fdt_get_ranges(const char *nodename, void *buf, int size, int *tuples,
2018     int *tuplesize)
2019 {
2020         phandle_t node;
2021         pcell_t addr_cells, par_addr_cells, size_cells;
2022         int len, tuple_size, tuples_count;
2023
2024         node = OF_finddevice(nodename);
2025         if (node == -1)
2026                 return (EINVAL);
2027
2028         if ((fdt_addrsize_cells(node, &addr_cells, &size_cells)) != 0)
2029                 return (ENXIO);
2030
2031         par_addr_cells = fdt_parent_addr_cells(node);
2032         if (par_addr_cells > 2)
2033                 return (ERANGE);
2034
2035         tuple_size = sizeof(pcell_t) * (addr_cells + par_addr_cells +
2036             size_cells);
2037
2038         /* Note the OF_getprop_alloc() cannot be used at this early stage. */
2039         len = OF_getprop(node, "ranges", buf, size);
2040
2041         /*
2042          * XXX this does not handle the empty 'ranges;' case, which is
2043          * legitimate and should be allowed.
2044          */
2045         tuples_count = len / tuple_size;
2046         if (tuples_count <= 0)
2047                 return (ERANGE);
2048
2049         if (par_addr_cells > 2 || addr_cells > 2 || size_cells > 2)
2050                 return (ERANGE);
2051
2052         *tuples = tuples_count;
2053         *tuplesize = tuple_size;
2054         return (0);
2055 }
2056
2057 static int
2058 win_cpu_from_dt(void)
2059 {
2060         pcell_t ranges[48];
2061         phandle_t node;
2062         int i, entry_size, err, t, tuple_size, tuples;
2063         u_long sram_base, sram_size;
2064
2065         t = 0;
2066         /* Retrieve 'ranges' property of '/localbus' node. */
2067         if ((err = fdt_get_ranges("/localbus", ranges, sizeof(ranges),
2068             &tuples, &tuple_size)) == 0) {
2069                 /*
2070                  * Fill CPU decode windows table.
2071                  */
2072                 bzero((void *)&cpu_win_tbl, sizeof(cpu_win_tbl));
2073
2074                 entry_size = tuple_size / sizeof(pcell_t);
2075                 cpu_wins_no = tuples;
2076
2077                 for (i = 0, t = 0; t < tuples; i += entry_size, t++) {
2078                         cpu_win_tbl[t].target = 1;
2079                         cpu_win_tbl[t].attr = fdt32_to_cpu(ranges[i + 1]);
2080                         cpu_win_tbl[t].base = fdt32_to_cpu(ranges[i + 2]);
2081                         cpu_win_tbl[t].size = fdt32_to_cpu(ranges[i + 3]);
2082                         cpu_win_tbl[t].remap = ~0;
2083                         debugf("target = 0x%0x attr = 0x%0x base = 0x%0x "
2084                             "size = 0x%0x remap = 0x%0x\n",
2085                             cpu_win_tbl[t].target,
2086                             cpu_win_tbl[t].attr, cpu_win_tbl[t].base,
2087                             cpu_win_tbl[t].size, cpu_win_tbl[t].remap);
2088                 }
2089         }
2090
2091         /*
2092          * Retrieve CESA SRAM data.
2093          */
2094         if ((node = OF_finddevice("sram")) != -1)
2095                 if (fdt_is_compatible(node, "mrvl,cesa-sram"))
2096                         goto moveon;
2097
2098         if ((node = OF_finddevice("/")) == 0)
2099                 return (ENXIO);
2100
2101         if ((node = fdt_find_compatible(node, "mrvl,cesa-sram", 0)) == 0)
2102                 /* SRAM block is not always present. */
2103                 return (0);
2104 moveon:
2105         sram_base = sram_size = 0;
2106         if (fdt_regsize(node, &sram_base, &sram_size) != 0)
2107                 return (EINVAL);
2108
2109         cpu_win_tbl[t].target = MV_WIN_CESA_TARGET;
2110         cpu_win_tbl[t].attr = MV_WIN_CESA_ATTR(1);
2111         cpu_win_tbl[t].base = sram_base;
2112         cpu_win_tbl[t].size = sram_size;
2113         cpu_win_tbl[t].remap = ~0;
2114         cpu_wins_no++;
2115         debugf("sram: base = 0x%0lx size = 0x%0lx\n", sram_base, sram_size);
2116
2117         return (0);
2118 }
2119
2120 static int
2121 fdt_win_setup(void)
2122 {
2123         phandle_t node, child;
2124         struct soc_node_spec *soc_node;
2125         u_long size, base;
2126         int err, i;
2127
2128         node = OF_finddevice("/");
2129         if (node == -1)
2130                 panic("fdt_win_setup: no root node");
2131
2132         /*
2133          * Traverse through all children of root and simple-bus nodes.
2134          * For each found device retrieve decode windows data (if applicable).
2135          */
2136         child = OF_child(node);
2137         while (child != 0) {
2138                 for (i = 0; soc_nodes[i].compat != NULL; i++) {
2139
2140                         soc_node = &soc_nodes[i];
2141
2142                         if (!fdt_is_compatible(child, soc_node->compat))
2143                                 continue;
2144
2145                         err = fdt_regsize(child, &base, &size);
2146                         if (err != 0)
2147                                 return (err);
2148
2149                         base = (base & 0x000fffff) | fdt_immr_va;
2150                         if (soc_node->decode_handler != NULL)
2151                                 soc_node->decode_handler(base);
2152                         else
2153                                 return (ENXIO);
2154
2155                         if (MV_DUMP_WIN && (soc_node->dump_handler != NULL))
2156                                 soc_node->dump_handler(base);
2157                 }
2158
2159                 /*
2160                  * Once done with root-level children let's move down to
2161                  * simple-bus and its children.
2162                  */
2163                 child = OF_peer(child);
2164                 if ((child == 0) && (node == OF_finddevice("/"))) {
2165                         node = fdt_find_compatible(node, "simple-bus", 0);
2166                         if (node == 0)
2167                                 return (ENXIO);
2168                         child = OF_child(node);
2169                 }
2170                 /*
2171                  * Next, move one more level down to internal-regs node (if
2172                  * it is present) and its children. This node also have
2173                  * "simple-bus" compatible.
2174                  */
2175                 if ((child == 0) && (node == OF_finddevice("simple-bus"))) {
2176                         node = fdt_find_compatible(node, "simple-bus", 0);
2177                         if (node == 0)
2178                                 return (0);
2179                         child = OF_child(node);
2180                 }
2181         }
2182
2183         return (0);
2184 }
2185
2186 static void
2187 fdt_fixup_busfreq(phandle_t root)
2188 {
2189         phandle_t sb;
2190         pcell_t freq;
2191
2192         freq = cpu_to_fdt32(get_tclk());
2193
2194         /*
2195          * Fix bus speed in cpu node
2196          */
2197         if ((sb = OF_finddevice("cpu")) != 0)
2198                 if (fdt_is_compatible_strict(sb, "ARM,88VS584"))
2199                         OF_setprop(sb, "bus-frequency", (void *)&freq,
2200                             sizeof(freq));
2201
2202         /*
2203          * This fixup sets the simple-bus bus-frequency property.
2204          */
2205         if ((sb = fdt_find_compatible(root, "simple-bus", 1)) != 0)
2206                 OF_setprop(sb, "bus-frequency", (void *)&freq, sizeof(freq));
2207 }
2208
2209 static void
2210 fdt_fixup_ranges(phandle_t root)
2211 {
2212         phandle_t node;
2213         pcell_t par_addr_cells, addr_cells, size_cells;
2214         pcell_t ranges[3], reg[2], *rangesptr;
2215         int len, tuple_size, tuples_count;
2216         uint32_t base;
2217
2218         /* Fix-up SoC ranges according to real fdt_immr_pa */
2219         if ((node = fdt_find_compatible(root, "simple-bus", 1)) != 0) {
2220                 if (fdt_addrsize_cells(node, &addr_cells, &size_cells) == 0 &&
2221                     (par_addr_cells = fdt_parent_addr_cells(node) <= 2)) {
2222                         tuple_size = sizeof(pcell_t) * (par_addr_cells +
2223                            addr_cells + size_cells);
2224                         len = OF_getprop(node, "ranges", ranges,
2225                             sizeof(ranges));
2226                         tuples_count = len / tuple_size;
2227                         /* Unexpected settings are not supported */
2228                         if (tuples_count != 1)
2229                                 goto fixup_failed;
2230
2231                         rangesptr = &ranges[0];
2232                         rangesptr += par_addr_cells;
2233                         base = fdt_data_get((void *)rangesptr, addr_cells);
2234                         *rangesptr = cpu_to_fdt32(fdt_immr_pa);
2235                         if (OF_setprop(node, "ranges", (void *)&ranges[0],
2236                             sizeof(ranges)) < 0)
2237                                 goto fixup_failed;
2238                 }
2239         }
2240
2241         /* Fix-up PCIe reg according to real PCIe registers' PA */
2242         if ((node = fdt_find_compatible(root, "mrvl,pcie", 1)) != 0) {
2243                 if (fdt_addrsize_cells(OF_parent(node), &par_addr_cells,
2244                     &size_cells) == 0) {
2245                         tuple_size = sizeof(pcell_t) * (par_addr_cells +
2246                             size_cells);
2247                         len = OF_getprop(node, "reg", reg, sizeof(reg));
2248                         tuples_count = len / tuple_size;
2249                         /* Unexpected settings are not supported */
2250                         if (tuples_count != 1)
2251                                 goto fixup_failed;
2252
2253                         base = fdt_data_get((void *)&reg[0], par_addr_cells);
2254                         base &= ~0xFF000000;
2255                         base |= fdt_immr_pa;
2256                         reg[0] = cpu_to_fdt32(base);
2257                         if (OF_setprop(node, "reg", (void *)&reg[0],
2258                             sizeof(reg)) < 0)
2259                                 goto fixup_failed;
2260                 }
2261         }
2262         /* Fix-up succeeded. May return and continue */
2263         return;
2264
2265 fixup_failed:
2266         while (1) {
2267                 /*
2268                  * In case of any error while fixing ranges just hang.
2269                  *      1. No message can be displayed yet since console
2270                  *         is not initialized.
2271                  *      2. Going further will cause failure on bus_space_map()
2272                  *         relying on the wrong ranges or data abort when
2273                  *         accessing PCIe registers.
2274                  */
2275         }
2276 }
2277
2278 struct fdt_fixup_entry fdt_fixup_table[] = {
2279         { "mrvl,DB-88F6281", &fdt_fixup_busfreq },
2280         { "mrvl,DB-78460", &fdt_fixup_busfreq },
2281         { "mrvl,DB-78460", &fdt_fixup_ranges },
2282         { NULL, NULL }
2283 };
2284
2285 #ifndef INTRNG
2286 static int
2287 fdt_pic_decode_ic(phandle_t node, pcell_t *intr, int *interrupt, int *trig,
2288     int *pol)
2289 {
2290
2291         if (!fdt_is_compatible(node, "mrvl,pic") &&
2292             !fdt_is_compatible(node, "mrvl,mpic"))
2293                 return (ENXIO);
2294
2295         *interrupt = fdt32_to_cpu(intr[0]);
2296         *trig = INTR_TRIGGER_CONFORM;
2297         *pol = INTR_POLARITY_CONFORM;
2298
2299         return (0);
2300 }
2301
2302 fdt_pic_decode_t fdt_pic_table[] = {
2303 #ifdef SOC_MV_ARMADA38X
2304         &gic_decode_fdt,
2305 #endif
2306         &fdt_pic_decode_ic,
2307         NULL
2308 };
2309 #endif
2310
2311 uint64_t
2312 get_sar_value(void)
2313 {
2314         uint32_t sar_low, sar_high;
2315
2316 #if defined(SOC_MV_ARMADAXP)
2317         sar_high = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2318             SAMPLE_AT_RESET_HI);
2319         sar_low = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2320             SAMPLE_AT_RESET_LO);
2321 #elif defined(SOC_MV_ARMADA38X)
2322         sar_high = 0;
2323         sar_low = bus_space_read_4(fdtbus_bs_tag, MV_MISC_BASE,
2324             SAMPLE_AT_RESET);
2325 #else
2326         /*
2327          * TODO: Add getting proper values for other SoC configurations
2328          */
2329         sar_high = 0;
2330         sar_low = 0;
2331 #endif
2332
2333         return (((uint64_t)sar_high << 32) | sar_low);
2334 }